diff options
Diffstat (limited to 'thirdparty/bullet/src/BulletInverseDynamics/IDMath.cpp')
-rw-r--r-- | thirdparty/bullet/src/BulletInverseDynamics/IDMath.cpp | 437 |
1 files changed, 437 insertions, 0 deletions
diff --git a/thirdparty/bullet/src/BulletInverseDynamics/IDMath.cpp b/thirdparty/bullet/src/BulletInverseDynamics/IDMath.cpp new file mode 100644 index 0000000000..99fe20e492 --- /dev/null +++ b/thirdparty/bullet/src/BulletInverseDynamics/IDMath.cpp @@ -0,0 +1,437 @@ +#include "IDMath.hpp" + +#include <cmath> +#include <limits> + +namespace btInverseDynamics { +static const idScalar kIsZero = 5 * std::numeric_limits<idScalar>::epsilon(); +// requirements for axis length deviation from 1.0 +// experimentally set from random euler angle rotation matrices +static const idScalar kAxisLengthEpsilon = 10 * kIsZero; + +void setZero(vec3 &v) { + v(0) = 0; + v(1) = 0; + v(2) = 0; +} + +void setZero(vecx &v) { + for (int i = 0; i < v.size(); i++) { + v(i) = 0; + } +} + +void setZero(mat33 &m) { + m(0, 0) = 0; + m(0, 1) = 0; + m(0, 2) = 0; + m(1, 0) = 0; + m(1, 1) = 0; + m(1, 2) = 0; + m(2, 0) = 0; + m(2, 1) = 0; + m(2, 2) = 0; +} + +void skew(vec3& v, mat33* result) { + (*result)(0, 0) = 0.0; + (*result)(0, 1) = -v(2); + (*result)(0, 2) = v(1); + (*result)(1, 0) = v(2); + (*result)(1, 1) = 0.0; + (*result)(1, 2) = -v(0); + (*result)(2, 0) = -v(1); + (*result)(2, 1) = v(0); + (*result)(2, 2) = 0.0; +} + +idScalar maxAbs(const vecx &v) { + idScalar result = 0.0; + for (int i = 0; i < v.size(); i++) { + const idScalar tmp = BT_ID_FABS(v(i)); + if (tmp > result) { + result = tmp; + } + } + return result; +} + +idScalar maxAbs(const vec3 &v) { + idScalar result = 0.0; + for (int i = 0; i < 3; i++) { + const idScalar tmp = BT_ID_FABS(v(i)); + if (tmp > result) { + result = tmp; + } + } + return result; +} + +#if (defined BT_ID_HAVE_MAT3X) +idScalar maxAbsMat3x(const mat3x &m) { + // only used for tests -- so just loop here for portability + idScalar result = 0.0; + for (idArrayIdx col = 0; col < m.cols(); col++) { + for (idArrayIdx row = 0; row < 3; row++) { + result = BT_ID_MAX(result, std::fabs(m(row, col))); + } + } + return result; +} + +void mul(const mat33 &a, const mat3x &b, mat3x *result) { + if (b.cols() != result->cols()) { + error_message("size missmatch. b.cols()= %d, result->cols()= %d\n", + static_cast<int>(b.cols()), static_cast<int>(result->cols())); + abort(); + } + + for (idArrayIdx col = 0; col < b.cols(); col++) { + const idScalar x = a(0,0)*b(0,col)+a(0,1)*b(1,col)+a(0,2)*b(2,col); + const idScalar y = a(1,0)*b(0,col)+a(1,1)*b(1,col)+a(1,2)*b(2,col); + const idScalar z = a(2,0)*b(0,col)+a(2,1)*b(1,col)+a(2,2)*b(2,col); + setMat3xElem(0, col, x, result); + setMat3xElem(1, col, y, result); + setMat3xElem(2, col, z, result); + } +} +void add(const mat3x &a, const mat3x &b, mat3x *result) { + if (a.cols() != b.cols()) { + error_message("size missmatch. a.cols()= %d, b.cols()= %d\n", + static_cast<int>(a.cols()), static_cast<int>(b.cols())); + abort(); + } + for (idArrayIdx col = 0; col < b.cols(); col++) { + for (idArrayIdx row = 0; row < 3; row++) { + setMat3xElem(row, col, a(row, col) + b(row, col), result); + } + } +} +void sub(const mat3x &a, const mat3x &b, mat3x *result) { + if (a.cols() != b.cols()) { + error_message("size missmatch. a.cols()= %d, b.cols()= %d\n", + static_cast<int>(a.cols()), static_cast<int>(b.cols())); + abort(); + } + for (idArrayIdx col = 0; col < b.cols(); col++) { + for (idArrayIdx row = 0; row < 3; row++) { + setMat3xElem(row, col, a(row, col) - b(row, col), result); + } + } +} +#endif + +mat33 transformX(const idScalar &alpha) { + mat33 T; + const idScalar cos_alpha = BT_ID_COS(alpha); + const idScalar sin_alpha = BT_ID_SIN(alpha); + // [1 0 0] + // [0 c s] + // [0 -s c] + T(0, 0) = 1.0; + T(0, 1) = 0.0; + T(0, 2) = 0.0; + + T(1, 0) = 0.0; + T(1, 1) = cos_alpha; + T(1, 2) = sin_alpha; + + T(2, 0) = 0.0; + T(2, 1) = -sin_alpha; + T(2, 2) = cos_alpha; + + return T; +} + +mat33 transformY(const idScalar &beta) { + mat33 T; + const idScalar cos_beta = BT_ID_COS(beta); + const idScalar sin_beta = BT_ID_SIN(beta); + // [c 0 -s] + // [0 1 0] + // [s 0 c] + T(0, 0) = cos_beta; + T(0, 1) = 0.0; + T(0, 2) = -sin_beta; + + T(1, 0) = 0.0; + T(1, 1) = 1.0; + T(1, 2) = 0.0; + + T(2, 0) = sin_beta; + T(2, 1) = 0.0; + T(2, 2) = cos_beta; + + return T; +} + +mat33 transformZ(const idScalar &gamma) { + mat33 T; + const idScalar cos_gamma = BT_ID_COS(gamma); + const idScalar sin_gamma = BT_ID_SIN(gamma); + // [ c s 0] + // [-s c 0] + // [ 0 0 1] + T(0, 0) = cos_gamma; + T(0, 1) = sin_gamma; + T(0, 2) = 0.0; + + T(1, 0) = -sin_gamma; + T(1, 1) = cos_gamma; + T(1, 2) = 0.0; + + T(2, 0) = 0.0; + T(2, 1) = 0.0; + T(2, 2) = 1.0; + + return T; +} + +mat33 tildeOperator(const vec3 &v) { + mat33 m; + m(0, 0) = 0.0; + m(0, 1) = -v(2); + m(0, 2) = v(1); + m(1, 0) = v(2); + m(1, 1) = 0.0; + m(1, 2) = -v(0); + m(2, 0) = -v(1); + m(2, 1) = v(0); + m(2, 2) = 0.0; + return m; +} + +void getVecMatFromDH(idScalar theta, idScalar d, idScalar a, idScalar alpha, vec3 *r, mat33 *T) { + const idScalar sa = BT_ID_SIN(alpha); + const idScalar ca = BT_ID_COS(alpha); + const idScalar st = BT_ID_SIN(theta); + const idScalar ct = BT_ID_COS(theta); + + (*r)(0) = a; + (*r)(1) = -sa * d; + (*r)(2) = ca * d; + + (*T)(0, 0) = ct; + (*T)(0, 1) = -st; + (*T)(0, 2) = 0.0; + + (*T)(1, 0) = st * ca; + (*T)(1, 1) = ct * ca; + (*T)(1, 2) = -sa; + + (*T)(2, 0) = st * sa; + (*T)(2, 1) = ct * sa; + (*T)(2, 2) = ca; +} + +void bodyTParentFromAxisAngle(const vec3 &axis, const idScalar &angle, mat33 *T) { + const idScalar c = BT_ID_COS(angle); + const idScalar s = -BT_ID_SIN(angle); + const idScalar one_m_c = 1.0 - c; + + const idScalar &x = axis(0); + const idScalar &y = axis(1); + const idScalar &z = axis(2); + + (*T)(0, 0) = x * x * one_m_c + c; + (*T)(0, 1) = x * y * one_m_c - z * s; + (*T)(0, 2) = x * z * one_m_c + y * s; + + (*T)(1, 0) = x * y * one_m_c + z * s; + (*T)(1, 1) = y * y * one_m_c + c; + (*T)(1, 2) = y * z * one_m_c - x * s; + + (*T)(2, 0) = x * z * one_m_c - y * s; + (*T)(2, 1) = y * z * one_m_c + x * s; + (*T)(2, 2) = z * z * one_m_c + c; +} + +bool isPositiveDefinite(const mat33 &m) { + // test if all upper left determinants are positive + if (m(0, 0) <= 0) { // upper 1x1 + return false; + } + if (m(0, 0) * m(1, 1) - m(0, 1) * m(1, 0) <= 0) { // upper 2x2 + return false; + } + if ((m(0, 0) * (m(1, 1) * m(2, 2) - m(1, 2) * m(2, 1)) - + m(0, 1) * (m(1, 0) * m(2, 2) - m(1, 2) * m(2, 0)) + + m(0, 2) * (m(1, 0) * m(2, 1) - m(1, 1) * m(2, 0))) < 0) { + return false; + } + return true; +} + +bool isPositiveSemiDefinite(const mat33 &m) { + // test if all upper left determinants are positive + if (m(0, 0) < 0) { // upper 1x1 + return false; + } + if (m(0, 0) * m(1, 1) - m(0, 1) * m(1, 0) < 0) { // upper 2x2 + return false; + } + if ((m(0, 0) * (m(1, 1) * m(2, 2) - m(1, 2) * m(2, 1)) - + m(0, 1) * (m(1, 0) * m(2, 2) - m(1, 2) * m(2, 0)) + + m(0, 2) * (m(1, 0) * m(2, 1) - m(1, 1) * m(2, 0))) < 0) { + return false; + } + return true; +} + +bool isPositiveSemiDefiniteFuzzy(const mat33 &m) { + // test if all upper left determinants are positive + if (m(0, 0) < -kIsZero) { // upper 1x1 + return false; + } + if (m(0, 0) * m(1, 1) - m(0, 1) * m(1, 0) < -kIsZero) { // upper 2x2 + return false; + } + if ((m(0, 0) * (m(1, 1) * m(2, 2) - m(1, 2) * m(2, 1)) - + m(0, 1) * (m(1, 0) * m(2, 2) - m(1, 2) * m(2, 0)) + + m(0, 2) * (m(1, 0) * m(2, 1) - m(1, 1) * m(2, 0))) < -kIsZero) { + return false; + } + return true; +} + +idScalar determinant(const mat33 &m) { + return m(0, 0) * m(1, 1) * m(2, 2) + m(0, 1) * m(1, 2) * m(2, 0) + m(0, 2) * m(1, 0) * m(2, 1) - + m(0, 2) * m(1, 1) * m(2, 0) - m(0, 0) * m(1, 2) * m(2, 1) - m(0, 1) * m(1, 0) * m(2, 2); +} + +bool isValidInertiaMatrix(const mat33 &I, const int index, bool has_fixed_joint) { + // TODO(Thomas) do we really want this? + // in cases where the inertia tensor about the center of mass is zero, + // the determinant of the inertia tensor about the joint axis is almost + // zero and can have a very small negative value. + if (!isPositiveSemiDefiniteFuzzy(I)) { + error_message("invalid inertia matrix for body %d, not positive definite " + "(fixed joint)\n", + index); + error_message("matrix is:\n" + "[%.20e %.20e %.20e;\n" + "%.20e %.20e %.20e;\n" + "%.20e %.20e %.20e]\n", + I(0, 0), I(0, 1), I(0, 2), I(1, 0), I(1, 1), I(1, 2), I(2, 0), I(2, 1), + I(2, 2)); + + return false; + } + + // check triangle inequality, must have I(i,i)+I(j,j)>=I(k,k) + if (!has_fixed_joint) { + if (I(0, 0) + I(1, 1) < I(2, 2)) { + error_message("invalid inertia tensor for body %d, I(0,0) + I(1,1) < I(2,2)\n", index); + error_message("matrix is:\n" + "[%.20e %.20e %.20e;\n" + "%.20e %.20e %.20e;\n" + "%.20e %.20e %.20e]\n", + I(0, 0), I(0, 1), I(0, 2), I(1, 0), I(1, 1), I(1, 2), I(2, 0), I(2, 1), + I(2, 2)); + return false; + } + if (I(0, 0) + I(1, 1) < I(2, 2)) { + error_message("invalid inertia tensor for body %d, I(0,0) + I(1,1) < I(2,2)\n", index); + error_message("matrix is:\n" + "[%.20e %.20e %.20e;\n" + "%.20e %.20e %.20e;\n" + "%.20e %.20e %.20e]\n", + I(0, 0), I(0, 1), I(0, 2), I(1, 0), I(1, 1), I(1, 2), I(2, 0), I(2, 1), + I(2, 2)); + return false; + } + if (I(1, 1) + I(2, 2) < I(0, 0)) { + error_message("invalid inertia tensor for body %d, I(1,1) + I(2,2) < I(0,0)\n", index); + error_message("matrix is:\n" + "[%.20e %.20e %.20e;\n" + "%.20e %.20e %.20e;\n" + "%.20e %.20e %.20e]\n", + I(0, 0), I(0, 1), I(0, 2), I(1, 0), I(1, 1), I(1, 2), I(2, 0), I(2, 1), + I(2, 2)); + return false; + } + } + // check positive/zero diagonal elements + for (int i = 0; i < 3; i++) { + if (I(i, i) < 0) { // accept zero + error_message("invalid inertia tensor, I(%d,%d)= %e <0\n", i, i, I(i, i)); + return false; + } + } + // check symmetry + if (BT_ID_FABS(I(1, 0) - I(0, 1)) > kIsZero) { + error_message("invalid inertia tensor for body %d I(1,0)!=I(0,1). I(1,0)-I(0,1)= " + "%e\n", + index, I(1, 0) - I(0, 1)); + return false; + } + if (BT_ID_FABS(I(2, 0) - I(0, 2)) > kIsZero) { + error_message("invalid inertia tensor for body %d I(2,0)!=I(0,2). I(2,0)-I(0,2)= " + "%e\n", + index, I(2, 0) - I(0, 2)); + return false; + } + if (BT_ID_FABS(I(1, 2) - I(2, 1)) > kIsZero) { + error_message("invalid inertia tensor body %d I(1,2)!=I(2,1). I(1,2)-I(2,1)= %e\n", index, + I(1, 2) - I(2, 1)); + return false; + } + return true; +} + +bool isValidTransformMatrix(const mat33 &m) { +#define print_mat(x) \ + error_message("matrix is [%e, %e, %e; %e, %e, %e; %e, %e, %e]\n", x(0, 0), x(0, 1), x(0, 2), \ + x(1, 0), x(1, 1), x(1, 2), x(2, 0), x(2, 1), x(2, 2)) + + // check for unit length column vectors + for (int i = 0; i < 3; i++) { + const idScalar length_minus_1 = + BT_ID_FABS(m(0, i) * m(0, i) + m(1, i) * m(1, i) + m(2, i) * m(2, i) - 1.0); + if (length_minus_1 > kAxisLengthEpsilon) { + error_message("Not a valid rotation matrix (column %d not unit length)\n" + "column = [%.18e %.18e %.18e]\n" + "length-1.0= %.18e\n", + i, m(0, i), m(1, i), m(2, i), length_minus_1); + print_mat(m); + return false; + } + } + // check for orthogonal column vectors + if (BT_ID_FABS(m(0, 0) * m(0, 1) + m(1, 0) * m(1, 1) + m(2, 0) * m(2, 1)) > kAxisLengthEpsilon) { + error_message("Not a valid rotation matrix (columns 0 and 1 not orthogonal)\n"); + print_mat(m); + return false; + } + if (BT_ID_FABS(m(0, 0) * m(0, 2) + m(1, 0) * m(1, 2) + m(2, 0) * m(2, 2)) > kAxisLengthEpsilon) { + error_message("Not a valid rotation matrix (columns 0 and 2 not orthogonal)\n"); + print_mat(m); + return false; + } + if (BT_ID_FABS(m(0, 1) * m(0, 2) + m(1, 1) * m(1, 2) + m(2, 1) * m(2, 2)) > kAxisLengthEpsilon) { + error_message("Not a valid rotation matrix (columns 0 and 2 not orthogonal)\n"); + print_mat(m); + return false; + } + // check determinant (rotation not reflection) + if (determinant(m) <= 0) { + error_message("Not a valid rotation matrix (determinant <=0)\n"); + print_mat(m); + return false; + } + return true; +} + +bool isUnitVector(const vec3 &vector) { + return BT_ID_FABS(vector(0) * vector(0) + vector(1) * vector(1) + vector(2) * vector(2) - 1.0) < + kIsZero; +} + +vec3 rpyFromMatrix(const mat33 &rot) { + vec3 rpy; + rpy(2) = BT_ID_ATAN2(-rot(1, 0), rot(0, 0)); + rpy(1) = BT_ID_ATAN2(rot(2, 0), BT_ID_COS(rpy(2)) * rot(0, 0) - BT_ID_SIN(rpy(0)) * rot(1, 0)); + rpy(0) = BT_ID_ATAN2(-rot(2, 0), rot(2, 2)); + return rpy; +} +} |