diff options
Diffstat (limited to 'thirdparty/bullet/src/BulletInverseDynamics/IDMath.cpp')
-rw-r--r-- | thirdparty/bullet/src/BulletInverseDynamics/IDMath.cpp | 437 |
1 files changed, 0 insertions, 437 deletions
diff --git a/thirdparty/bullet/src/BulletInverseDynamics/IDMath.cpp b/thirdparty/bullet/src/BulletInverseDynamics/IDMath.cpp deleted file mode 100644 index 99fe20e492..0000000000 --- a/thirdparty/bullet/src/BulletInverseDynamics/IDMath.cpp +++ /dev/null @@ -1,437 +0,0 @@ -#include "IDMath.hpp" - -#include <cmath> -#include <limits> - -namespace btInverseDynamics { -static const idScalar kIsZero = 5 * std::numeric_limits<idScalar>::epsilon(); -// requirements for axis length deviation from 1.0 -// experimentally set from random euler angle rotation matrices -static const idScalar kAxisLengthEpsilon = 10 * kIsZero; - -void setZero(vec3 &v) { - v(0) = 0; - v(1) = 0; - v(2) = 0; -} - -void setZero(vecx &v) { - for (int i = 0; i < v.size(); i++) { - v(i) = 0; - } -} - -void setZero(mat33 &m) { - m(0, 0) = 0; - m(0, 1) = 0; - m(0, 2) = 0; - m(1, 0) = 0; - m(1, 1) = 0; - m(1, 2) = 0; - m(2, 0) = 0; - m(2, 1) = 0; - m(2, 2) = 0; -} - -void skew(vec3& v, mat33* result) { - (*result)(0, 0) = 0.0; - (*result)(0, 1) = -v(2); - (*result)(0, 2) = v(1); - (*result)(1, 0) = v(2); - (*result)(1, 1) = 0.0; - (*result)(1, 2) = -v(0); - (*result)(2, 0) = -v(1); - (*result)(2, 1) = v(0); - (*result)(2, 2) = 0.0; -} - -idScalar maxAbs(const vecx &v) { - idScalar result = 0.0; - for (int i = 0; i < v.size(); i++) { - const idScalar tmp = BT_ID_FABS(v(i)); - if (tmp > result) { - result = tmp; - } - } - return result; -} - -idScalar maxAbs(const vec3 &v) { - idScalar result = 0.0; - for (int i = 0; i < 3; i++) { - const idScalar tmp = BT_ID_FABS(v(i)); - if (tmp > result) { - result = tmp; - } - } - return result; -} - -#if (defined BT_ID_HAVE_MAT3X) -idScalar maxAbsMat3x(const mat3x &m) { - // only used for tests -- so just loop here for portability - idScalar result = 0.0; - for (idArrayIdx col = 0; col < m.cols(); col++) { - for (idArrayIdx row = 0; row < 3; row++) { - result = BT_ID_MAX(result, std::fabs(m(row, col))); - } - } - return result; -} - -void mul(const mat33 &a, const mat3x &b, mat3x *result) { - if (b.cols() != result->cols()) { - error_message("size missmatch. b.cols()= %d, result->cols()= %d\n", - static_cast<int>(b.cols()), static_cast<int>(result->cols())); - abort(); - } - - for (idArrayIdx col = 0; col < b.cols(); col++) { - const idScalar x = a(0,0)*b(0,col)+a(0,1)*b(1,col)+a(0,2)*b(2,col); - const idScalar y = a(1,0)*b(0,col)+a(1,1)*b(1,col)+a(1,2)*b(2,col); - const idScalar z = a(2,0)*b(0,col)+a(2,1)*b(1,col)+a(2,2)*b(2,col); - setMat3xElem(0, col, x, result); - setMat3xElem(1, col, y, result); - setMat3xElem(2, col, z, result); - } -} -void add(const mat3x &a, const mat3x &b, mat3x *result) { - if (a.cols() != b.cols()) { - error_message("size missmatch. a.cols()= %d, b.cols()= %d\n", - static_cast<int>(a.cols()), static_cast<int>(b.cols())); - abort(); - } - for (idArrayIdx col = 0; col < b.cols(); col++) { - for (idArrayIdx row = 0; row < 3; row++) { - setMat3xElem(row, col, a(row, col) + b(row, col), result); - } - } -} -void sub(const mat3x &a, const mat3x &b, mat3x *result) { - if (a.cols() != b.cols()) { - error_message("size missmatch. a.cols()= %d, b.cols()= %d\n", - static_cast<int>(a.cols()), static_cast<int>(b.cols())); - abort(); - } - for (idArrayIdx col = 0; col < b.cols(); col++) { - for (idArrayIdx row = 0; row < 3; row++) { - setMat3xElem(row, col, a(row, col) - b(row, col), result); - } - } -} -#endif - -mat33 transformX(const idScalar &alpha) { - mat33 T; - const idScalar cos_alpha = BT_ID_COS(alpha); - const idScalar sin_alpha = BT_ID_SIN(alpha); - // [1 0 0] - // [0 c s] - // [0 -s c] - T(0, 0) = 1.0; - T(0, 1) = 0.0; - T(0, 2) = 0.0; - - T(1, 0) = 0.0; - T(1, 1) = cos_alpha; - T(1, 2) = sin_alpha; - - T(2, 0) = 0.0; - T(2, 1) = -sin_alpha; - T(2, 2) = cos_alpha; - - return T; -} - -mat33 transformY(const idScalar &beta) { - mat33 T; - const idScalar cos_beta = BT_ID_COS(beta); - const idScalar sin_beta = BT_ID_SIN(beta); - // [c 0 -s] - // [0 1 0] - // [s 0 c] - T(0, 0) = cos_beta; - T(0, 1) = 0.0; - T(0, 2) = -sin_beta; - - T(1, 0) = 0.0; - T(1, 1) = 1.0; - T(1, 2) = 0.0; - - T(2, 0) = sin_beta; - T(2, 1) = 0.0; - T(2, 2) = cos_beta; - - return T; -} - -mat33 transformZ(const idScalar &gamma) { - mat33 T; - const idScalar cos_gamma = BT_ID_COS(gamma); - const idScalar sin_gamma = BT_ID_SIN(gamma); - // [ c s 0] - // [-s c 0] - // [ 0 0 1] - T(0, 0) = cos_gamma; - T(0, 1) = sin_gamma; - T(0, 2) = 0.0; - - T(1, 0) = -sin_gamma; - T(1, 1) = cos_gamma; - T(1, 2) = 0.0; - - T(2, 0) = 0.0; - T(2, 1) = 0.0; - T(2, 2) = 1.0; - - return T; -} - -mat33 tildeOperator(const vec3 &v) { - mat33 m; - m(0, 0) = 0.0; - m(0, 1) = -v(2); - m(0, 2) = v(1); - m(1, 0) = v(2); - m(1, 1) = 0.0; - m(1, 2) = -v(0); - m(2, 0) = -v(1); - m(2, 1) = v(0); - m(2, 2) = 0.0; - return m; -} - -void getVecMatFromDH(idScalar theta, idScalar d, idScalar a, idScalar alpha, vec3 *r, mat33 *T) { - const idScalar sa = BT_ID_SIN(alpha); - const idScalar ca = BT_ID_COS(alpha); - const idScalar st = BT_ID_SIN(theta); - const idScalar ct = BT_ID_COS(theta); - - (*r)(0) = a; - (*r)(1) = -sa * d; - (*r)(2) = ca * d; - - (*T)(0, 0) = ct; - (*T)(0, 1) = -st; - (*T)(0, 2) = 0.0; - - (*T)(1, 0) = st * ca; - (*T)(1, 1) = ct * ca; - (*T)(1, 2) = -sa; - - (*T)(2, 0) = st * sa; - (*T)(2, 1) = ct * sa; - (*T)(2, 2) = ca; -} - -void bodyTParentFromAxisAngle(const vec3 &axis, const idScalar &angle, mat33 *T) { - const idScalar c = BT_ID_COS(angle); - const idScalar s = -BT_ID_SIN(angle); - const idScalar one_m_c = 1.0 - c; - - const idScalar &x = axis(0); - const idScalar &y = axis(1); - const idScalar &z = axis(2); - - (*T)(0, 0) = x * x * one_m_c + c; - (*T)(0, 1) = x * y * one_m_c - z * s; - (*T)(0, 2) = x * z * one_m_c + y * s; - - (*T)(1, 0) = x * y * one_m_c + z * s; - (*T)(1, 1) = y * y * one_m_c + c; - (*T)(1, 2) = y * z * one_m_c - x * s; - - (*T)(2, 0) = x * z * one_m_c - y * s; - (*T)(2, 1) = y * z * one_m_c + x * s; - (*T)(2, 2) = z * z * one_m_c + c; -} - -bool isPositiveDefinite(const mat33 &m) { - // test if all upper left determinants are positive - if (m(0, 0) <= 0) { // upper 1x1 - return false; - } - if (m(0, 0) * m(1, 1) - m(0, 1) * m(1, 0) <= 0) { // upper 2x2 - return false; - } - if ((m(0, 0) * (m(1, 1) * m(2, 2) - m(1, 2) * m(2, 1)) - - m(0, 1) * (m(1, 0) * m(2, 2) - m(1, 2) * m(2, 0)) + - m(0, 2) * (m(1, 0) * m(2, 1) - m(1, 1) * m(2, 0))) < 0) { - return false; - } - return true; -} - -bool isPositiveSemiDefinite(const mat33 &m) { - // test if all upper left determinants are positive - if (m(0, 0) < 0) { // upper 1x1 - return false; - } - if (m(0, 0) * m(1, 1) - m(0, 1) * m(1, 0) < 0) { // upper 2x2 - return false; - } - if ((m(0, 0) * (m(1, 1) * m(2, 2) - m(1, 2) * m(2, 1)) - - m(0, 1) * (m(1, 0) * m(2, 2) - m(1, 2) * m(2, 0)) + - m(0, 2) * (m(1, 0) * m(2, 1) - m(1, 1) * m(2, 0))) < 0) { - return false; - } - return true; -} - -bool isPositiveSemiDefiniteFuzzy(const mat33 &m) { - // test if all upper left determinants are positive - if (m(0, 0) < -kIsZero) { // upper 1x1 - return false; - } - if (m(0, 0) * m(1, 1) - m(0, 1) * m(1, 0) < -kIsZero) { // upper 2x2 - return false; - } - if ((m(0, 0) * (m(1, 1) * m(2, 2) - m(1, 2) * m(2, 1)) - - m(0, 1) * (m(1, 0) * m(2, 2) - m(1, 2) * m(2, 0)) + - m(0, 2) * (m(1, 0) * m(2, 1) - m(1, 1) * m(2, 0))) < -kIsZero) { - return false; - } - return true; -} - -idScalar determinant(const mat33 &m) { - return m(0, 0) * m(1, 1) * m(2, 2) + m(0, 1) * m(1, 2) * m(2, 0) + m(0, 2) * m(1, 0) * m(2, 1) - - m(0, 2) * m(1, 1) * m(2, 0) - m(0, 0) * m(1, 2) * m(2, 1) - m(0, 1) * m(1, 0) * m(2, 2); -} - -bool isValidInertiaMatrix(const mat33 &I, const int index, bool has_fixed_joint) { - // TODO(Thomas) do we really want this? - // in cases where the inertia tensor about the center of mass is zero, - // the determinant of the inertia tensor about the joint axis is almost - // zero and can have a very small negative value. - if (!isPositiveSemiDefiniteFuzzy(I)) { - error_message("invalid inertia matrix for body %d, not positive definite " - "(fixed joint)\n", - index); - error_message("matrix is:\n" - "[%.20e %.20e %.20e;\n" - "%.20e %.20e %.20e;\n" - "%.20e %.20e %.20e]\n", - I(0, 0), I(0, 1), I(0, 2), I(1, 0), I(1, 1), I(1, 2), I(2, 0), I(2, 1), - I(2, 2)); - - return false; - } - - // check triangle inequality, must have I(i,i)+I(j,j)>=I(k,k) - if (!has_fixed_joint) { - if (I(0, 0) + I(1, 1) < I(2, 2)) { - error_message("invalid inertia tensor for body %d, I(0,0) + I(1,1) < I(2,2)\n", index); - error_message("matrix is:\n" - "[%.20e %.20e %.20e;\n" - "%.20e %.20e %.20e;\n" - "%.20e %.20e %.20e]\n", - I(0, 0), I(0, 1), I(0, 2), I(1, 0), I(1, 1), I(1, 2), I(2, 0), I(2, 1), - I(2, 2)); - return false; - } - if (I(0, 0) + I(1, 1) < I(2, 2)) { - error_message("invalid inertia tensor for body %d, I(0,0) + I(1,1) < I(2,2)\n", index); - error_message("matrix is:\n" - "[%.20e %.20e %.20e;\n" - "%.20e %.20e %.20e;\n" - "%.20e %.20e %.20e]\n", - I(0, 0), I(0, 1), I(0, 2), I(1, 0), I(1, 1), I(1, 2), I(2, 0), I(2, 1), - I(2, 2)); - return false; - } - if (I(1, 1) + I(2, 2) < I(0, 0)) { - error_message("invalid inertia tensor for body %d, I(1,1) + I(2,2) < I(0,0)\n", index); - error_message("matrix is:\n" - "[%.20e %.20e %.20e;\n" - "%.20e %.20e %.20e;\n" - "%.20e %.20e %.20e]\n", - I(0, 0), I(0, 1), I(0, 2), I(1, 0), I(1, 1), I(1, 2), I(2, 0), I(2, 1), - I(2, 2)); - return false; - } - } - // check positive/zero diagonal elements - for (int i = 0; i < 3; i++) { - if (I(i, i) < 0) { // accept zero - error_message("invalid inertia tensor, I(%d,%d)= %e <0\n", i, i, I(i, i)); - return false; - } - } - // check symmetry - if (BT_ID_FABS(I(1, 0) - I(0, 1)) > kIsZero) { - error_message("invalid inertia tensor for body %d I(1,0)!=I(0,1). I(1,0)-I(0,1)= " - "%e\n", - index, I(1, 0) - I(0, 1)); - return false; - } - if (BT_ID_FABS(I(2, 0) - I(0, 2)) > kIsZero) { - error_message("invalid inertia tensor for body %d I(2,0)!=I(0,2). I(2,0)-I(0,2)= " - "%e\n", - index, I(2, 0) - I(0, 2)); - return false; - } - if (BT_ID_FABS(I(1, 2) - I(2, 1)) > kIsZero) { - error_message("invalid inertia tensor body %d I(1,2)!=I(2,1). I(1,2)-I(2,1)= %e\n", index, - I(1, 2) - I(2, 1)); - return false; - } - return true; -} - -bool isValidTransformMatrix(const mat33 &m) { -#define print_mat(x) \ - error_message("matrix is [%e, %e, %e; %e, %e, %e; %e, %e, %e]\n", x(0, 0), x(0, 1), x(0, 2), \ - x(1, 0), x(1, 1), x(1, 2), x(2, 0), x(2, 1), x(2, 2)) - - // check for unit length column vectors - for (int i = 0; i < 3; i++) { - const idScalar length_minus_1 = - BT_ID_FABS(m(0, i) * m(0, i) + m(1, i) * m(1, i) + m(2, i) * m(2, i) - 1.0); - if (length_minus_1 > kAxisLengthEpsilon) { - error_message("Not a valid rotation matrix (column %d not unit length)\n" - "column = [%.18e %.18e %.18e]\n" - "length-1.0= %.18e\n", - i, m(0, i), m(1, i), m(2, i), length_minus_1); - print_mat(m); - return false; - } - } - // check for orthogonal column vectors - if (BT_ID_FABS(m(0, 0) * m(0, 1) + m(1, 0) * m(1, 1) + m(2, 0) * m(2, 1)) > kAxisLengthEpsilon) { - error_message("Not a valid rotation matrix (columns 0 and 1 not orthogonal)\n"); - print_mat(m); - return false; - } - if (BT_ID_FABS(m(0, 0) * m(0, 2) + m(1, 0) * m(1, 2) + m(2, 0) * m(2, 2)) > kAxisLengthEpsilon) { - error_message("Not a valid rotation matrix (columns 0 and 2 not orthogonal)\n"); - print_mat(m); - return false; - } - if (BT_ID_FABS(m(0, 1) * m(0, 2) + m(1, 1) * m(1, 2) + m(2, 1) * m(2, 2)) > kAxisLengthEpsilon) { - error_message("Not a valid rotation matrix (columns 0 and 2 not orthogonal)\n"); - print_mat(m); - return false; - } - // check determinant (rotation not reflection) - if (determinant(m) <= 0) { - error_message("Not a valid rotation matrix (determinant <=0)\n"); - print_mat(m); - return false; - } - return true; -} - -bool isUnitVector(const vec3 &vector) { - return BT_ID_FABS(vector(0) * vector(0) + vector(1) * vector(1) + vector(2) * vector(2) - 1.0) < - kIsZero; -} - -vec3 rpyFromMatrix(const mat33 &rot) { - vec3 rpy; - rpy(2) = BT_ID_ATAN2(-rot(1, 0), rot(0, 0)); - rpy(1) = BT_ID_ATAN2(rot(2, 0), BT_ID_COS(rpy(2)) * rot(0, 0) - BT_ID_SIN(rpy(0)) * rot(1, 0)); - rpy(0) = BT_ID_ATAN2(-rot(2, 0), rot(2, 2)); - return rpy; -} -} |