summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/src/BulletDynamics/Featherstone
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/bullet/src/BulletDynamics/Featherstone')
-rw-r--r--thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBody.cpp2043
-rw-r--r--thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBody.h814
-rw-r--r--thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyConstraint.cpp417
-rw-r--r--thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyConstraint.h195
-rw-r--r--thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyConstraintSolver.cpp1429
-rw-r--r--thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyConstraintSolver.h100
-rw-r--r--thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyDynamicsWorld.cpp991
-rw-r--r--thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyDynamicsWorld.h114
-rw-r--r--thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyFixedConstraint.cpp211
-rw-r--r--thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyFixedConstraint.h94
-rw-r--r--thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyGearConstraint.cpp184
-rw-r--r--thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyGearConstraint.h117
-rw-r--r--thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyJointFeedback.h27
-rw-r--r--thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyJointLimitConstraint.cpp205
-rw-r--r--thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyJointLimitConstraint.h50
-rw-r--r--thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyJointMotor.cpp186
-rw-r--r--thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyJointMotor.h81
-rw-r--r--thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyLink.h244
-rw-r--r--thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyLinkCollider.h125
-rw-r--r--thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyPoint2Point.cpp221
-rw-r--r--thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyPoint2Point.h68
-rw-r--r--thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodySliderConstraint.cpp230
-rw-r--r--thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodySliderConstraint.h105
-rw-r--r--thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodySolverConstraint.h90
24 files changed, 8341 insertions, 0 deletions
diff --git a/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBody.cpp b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBody.cpp
new file mode 100644
index 0000000000..62865e0c78
--- /dev/null
+++ b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBody.cpp
@@ -0,0 +1,2043 @@
+/*
+ * PURPOSE:
+ * Class representing an articulated rigid body. Stores the body's
+ * current state, allows forces and torques to be set, handles
+ * timestepping and implements Featherstone's algorithm.
+ *
+ * COPYRIGHT:
+ * Copyright (C) Stephen Thompson, <stephen@solarflare.org.uk>, 2011-2013
+ * Portions written By Erwin Coumans: connection to LCP solver, various multibody constraints, replacing Eigen math library by Bullet LinearMath and a dedicated 6x6 matrix inverse (solveImatrix)
+ * Portions written By Jakub Stepien: support for multi-DOF constraints, introduction of spatial algebra and several other improvements
+
+ This software is provided 'as-is', without any express or implied warranty.
+ In no event will the authors be held liable for any damages arising from the use of this software.
+ Permission is granted to anyone to use this software for any purpose,
+ including commercial applications, and to alter it and redistribute it freely,
+ subject to the following restrictions:
+
+ 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+ 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+ 3. This notice may not be removed or altered from any source distribution.
+
+ */
+
+
+#include "btMultiBody.h"
+#include "btMultiBodyLink.h"
+#include "btMultiBodyLinkCollider.h"
+#include "btMultiBodyJointFeedback.h"
+#include "LinearMath/btTransformUtil.h"
+#include "LinearMath/btSerializer.h"
+//#include "Bullet3Common/b3Logging.h"
+// #define INCLUDE_GYRO_TERM
+
+///todo: determine if we need these options. If so, make a proper API, otherwise delete those globals
+bool gJointFeedbackInWorldSpace = false;
+bool gJointFeedbackInJointFrame = false;
+
+namespace {
+ const btScalar SLEEP_EPSILON = btScalar(0.05); // this is a squared velocity (m^2 s^-2)
+ const btScalar SLEEP_TIMEOUT = btScalar(2); // in seconds
+}
+
+namespace {
+ void SpatialTransform(const btMatrix3x3 &rotation_matrix, // rotates vectors in 'from' frame to vectors in 'to' frame
+ const btVector3 &displacement, // vector from origin of 'from' frame to origin of 'to' frame, in 'to' coordinates
+ const btVector3 &top_in, // top part of input vector
+ const btVector3 &bottom_in, // bottom part of input vector
+ btVector3 &top_out, // top part of output vector
+ btVector3 &bottom_out) // bottom part of output vector
+ {
+ top_out = rotation_matrix * top_in;
+ bottom_out = -displacement.cross(top_out) + rotation_matrix * bottom_in;
+ }
+
+#if 0
+ void InverseSpatialTransform(const btMatrix3x3 &rotation_matrix,
+ const btVector3 &displacement,
+ const btVector3 &top_in,
+ const btVector3 &bottom_in,
+ btVector3 &top_out,
+ btVector3 &bottom_out)
+ {
+ top_out = rotation_matrix.transpose() * top_in;
+ bottom_out = rotation_matrix.transpose() * (bottom_in + displacement.cross(top_in));
+ }
+
+ btScalar SpatialDotProduct(const btVector3 &a_top,
+ const btVector3 &a_bottom,
+ const btVector3 &b_top,
+ const btVector3 &b_bottom)
+ {
+ return a_bottom.dot(b_top) + a_top.dot(b_bottom);
+ }
+
+ void SpatialCrossProduct(const btVector3 &a_top,
+ const btVector3 &a_bottom,
+ const btVector3 &b_top,
+ const btVector3 &b_bottom,
+ btVector3 &top_out,
+ btVector3 &bottom_out)
+ {
+ top_out = a_top.cross(b_top);
+ bottom_out = a_bottom.cross(b_top) + a_top.cross(b_bottom);
+ }
+#endif
+
+}
+
+
+//
+// Implementation of class btMultiBody
+//
+
+btMultiBody::btMultiBody(int n_links,
+ btScalar mass,
+ const btVector3 &inertia,
+ bool fixedBase,
+ bool canSleep,
+ bool /*deprecatedUseMultiDof*/)
+ :
+ m_baseCollider(0),
+ m_baseName(0),
+ m_basePos(0,0,0),
+ m_baseQuat(0, 0, 0, 1),
+ m_baseMass(mass),
+ m_baseInertia(inertia),
+
+ m_fixedBase(fixedBase),
+ m_awake(true),
+ m_canSleep(canSleep),
+ m_sleepTimer(0),
+ m_userObjectPointer(0),
+ m_userIndex2(-1),
+ m_userIndex(-1),
+ m_linearDamping(0.04f),
+ m_angularDamping(0.04f),
+ m_useGyroTerm(true),
+ m_maxAppliedImpulse(1000.f),
+ m_maxCoordinateVelocity(100.f),
+ m_hasSelfCollision(true),
+ __posUpdated(false),
+ m_dofCount(0),
+ m_posVarCnt(0),
+ m_useRK4(false),
+ m_useGlobalVelocities(false),
+ m_internalNeedsJointFeedback(false)
+{
+ m_cachedInertiaTopLeft.setValue(0,0,0,0,0,0,0,0,0);
+ m_cachedInertiaTopRight.setValue(0,0,0,0,0,0,0,0,0);
+ m_cachedInertiaLowerLeft.setValue(0,0,0,0,0,0,0,0,0);
+ m_cachedInertiaLowerRight.setValue(0,0,0,0,0,0,0,0,0);
+ m_cachedInertiaValid=false;
+
+ m_links.resize(n_links);
+ m_matrixBuf.resize(n_links + 1);
+
+ m_baseForce.setValue(0, 0, 0);
+ m_baseTorque.setValue(0, 0, 0);
+}
+
+btMultiBody::~btMultiBody()
+{
+}
+
+void btMultiBody::setupFixed(int i,
+ btScalar mass,
+ const btVector3 &inertia,
+ int parent,
+ const btQuaternion &rotParentToThis,
+ const btVector3 &parentComToThisPivotOffset,
+ const btVector3 &thisPivotToThisComOffset, bool /*deprecatedDisableParentCollision*/)
+{
+
+ m_links[i].m_mass = mass;
+ m_links[i].m_inertiaLocal = inertia;
+ m_links[i].m_parent = parent;
+ m_links[i].setAxisTop(0, 0., 0., 0.);
+ m_links[i].setAxisBottom(0, btVector3(0,0,0));
+ m_links[i].m_zeroRotParentToThis = rotParentToThis;
+ m_links[i].m_dVector = thisPivotToThisComOffset;
+ m_links[i].m_eVector = parentComToThisPivotOffset;
+
+ m_links[i].m_jointType = btMultibodyLink::eFixed;
+ m_links[i].m_dofCount = 0;
+ m_links[i].m_posVarCount = 0;
+
+ m_links[i].m_flags |=BT_MULTIBODYLINKFLAGS_DISABLE_PARENT_COLLISION;
+
+ m_links[i].updateCacheMultiDof();
+
+ updateLinksDofOffsets();
+
+}
+
+
+void btMultiBody::setupPrismatic(int i,
+ btScalar mass,
+ const btVector3 &inertia,
+ int parent,
+ const btQuaternion &rotParentToThis,
+ const btVector3 &jointAxis,
+ const btVector3 &parentComToThisPivotOffset,
+ const btVector3 &thisPivotToThisComOffset,
+ bool disableParentCollision)
+{
+ m_dofCount += 1;
+ m_posVarCnt += 1;
+
+ m_links[i].m_mass = mass;
+ m_links[i].m_inertiaLocal = inertia;
+ m_links[i].m_parent = parent;
+ m_links[i].m_zeroRotParentToThis = rotParentToThis;
+ m_links[i].setAxisTop(0, 0., 0., 0.);
+ m_links[i].setAxisBottom(0, jointAxis);
+ m_links[i].m_eVector = parentComToThisPivotOffset;
+ m_links[i].m_dVector = thisPivotToThisComOffset;
+ m_links[i].m_cachedRotParentToThis = rotParentToThis;
+
+ m_links[i].m_jointType = btMultibodyLink::ePrismatic;
+ m_links[i].m_dofCount = 1;
+ m_links[i].m_posVarCount = 1;
+ m_links[i].m_jointPos[0] = 0.f;
+ m_links[i].m_jointTorque[0] = 0.f;
+
+ if (disableParentCollision)
+ m_links[i].m_flags |=BT_MULTIBODYLINKFLAGS_DISABLE_PARENT_COLLISION;
+ //
+
+ m_links[i].updateCacheMultiDof();
+
+ updateLinksDofOffsets();
+}
+
+void btMultiBody::setupRevolute(int i,
+ btScalar mass,
+ const btVector3 &inertia,
+ int parent,
+ const btQuaternion &rotParentToThis,
+ const btVector3 &jointAxis,
+ const btVector3 &parentComToThisPivotOffset,
+ const btVector3 &thisPivotToThisComOffset,
+ bool disableParentCollision)
+{
+ m_dofCount += 1;
+ m_posVarCnt += 1;
+
+ m_links[i].m_mass = mass;
+ m_links[i].m_inertiaLocal = inertia;
+ m_links[i].m_parent = parent;
+ m_links[i].m_zeroRotParentToThis = rotParentToThis;
+ m_links[i].setAxisTop(0, jointAxis);
+ m_links[i].setAxisBottom(0, jointAxis.cross(thisPivotToThisComOffset));
+ m_links[i].m_dVector = thisPivotToThisComOffset;
+ m_links[i].m_eVector = parentComToThisPivotOffset;
+
+ m_links[i].m_jointType = btMultibodyLink::eRevolute;
+ m_links[i].m_dofCount = 1;
+ m_links[i].m_posVarCount = 1;
+ m_links[i].m_jointPos[0] = 0.f;
+ m_links[i].m_jointTorque[0] = 0.f;
+
+ if (disableParentCollision)
+ m_links[i].m_flags |=BT_MULTIBODYLINKFLAGS_DISABLE_PARENT_COLLISION;
+ //
+ m_links[i].updateCacheMultiDof();
+ //
+ updateLinksDofOffsets();
+}
+
+
+
+void btMultiBody::setupSpherical(int i,
+ btScalar mass,
+ const btVector3 &inertia,
+ int parent,
+ const btQuaternion &rotParentToThis,
+ const btVector3 &parentComToThisPivotOffset,
+ const btVector3 &thisPivotToThisComOffset,
+ bool disableParentCollision)
+{
+
+ m_dofCount += 3;
+ m_posVarCnt += 4;
+
+ m_links[i].m_mass = mass;
+ m_links[i].m_inertiaLocal = inertia;
+ m_links[i].m_parent = parent;
+ m_links[i].m_zeroRotParentToThis = rotParentToThis;
+ m_links[i].m_dVector = thisPivotToThisComOffset;
+ m_links[i].m_eVector = parentComToThisPivotOffset;
+
+ m_links[i].m_jointType = btMultibodyLink::eSpherical;
+ m_links[i].m_dofCount = 3;
+ m_links[i].m_posVarCount = 4;
+ m_links[i].setAxisTop(0, 1.f, 0.f, 0.f);
+ m_links[i].setAxisTop(1, 0.f, 1.f, 0.f);
+ m_links[i].setAxisTop(2, 0.f, 0.f, 1.f);
+ m_links[i].setAxisBottom(0, m_links[i].getAxisTop(0).cross(thisPivotToThisComOffset));
+ m_links[i].setAxisBottom(1, m_links[i].getAxisTop(1).cross(thisPivotToThisComOffset));
+ m_links[i].setAxisBottom(2, m_links[i].getAxisTop(2).cross(thisPivotToThisComOffset));
+ m_links[i].m_jointPos[0] = m_links[i].m_jointPos[1] = m_links[i].m_jointPos[2] = 0.f; m_links[i].m_jointPos[3] = 1.f;
+ m_links[i].m_jointTorque[0] = m_links[i].m_jointTorque[1] = m_links[i].m_jointTorque[2] = 0.f;
+
+
+ if (disableParentCollision)
+ m_links[i].m_flags |=BT_MULTIBODYLINKFLAGS_DISABLE_PARENT_COLLISION;
+ //
+ m_links[i].updateCacheMultiDof();
+ //
+ updateLinksDofOffsets();
+}
+
+void btMultiBody::setupPlanar(int i,
+ btScalar mass,
+ const btVector3 &inertia,
+ int parent,
+ const btQuaternion &rotParentToThis,
+ const btVector3 &rotationAxis,
+ const btVector3 &parentComToThisComOffset,
+ bool disableParentCollision)
+{
+
+ m_dofCount += 3;
+ m_posVarCnt += 3;
+
+ m_links[i].m_mass = mass;
+ m_links[i].m_inertiaLocal = inertia;
+ m_links[i].m_parent = parent;
+ m_links[i].m_zeroRotParentToThis = rotParentToThis;
+ m_links[i].m_dVector.setZero();
+ m_links[i].m_eVector = parentComToThisComOffset;
+
+ //
+ btVector3 vecNonParallelToRotAxis(1, 0, 0);
+ if(rotationAxis.normalized().dot(vecNonParallelToRotAxis) > 0.999)
+ vecNonParallelToRotAxis.setValue(0, 1, 0);
+ //
+
+ m_links[i].m_jointType = btMultibodyLink::ePlanar;
+ m_links[i].m_dofCount = 3;
+ m_links[i].m_posVarCount = 3;
+ btVector3 n=rotationAxis.normalized();
+ m_links[i].setAxisTop(0, n[0],n[1],n[2]);
+ m_links[i].setAxisTop(1,0,0,0);
+ m_links[i].setAxisTop(2,0,0,0);
+ m_links[i].setAxisBottom(0,0,0,0);
+ btVector3 cr = m_links[i].getAxisTop(0).cross(vecNonParallelToRotAxis);
+ m_links[i].setAxisBottom(1,cr[0],cr[1],cr[2]);
+ cr = m_links[i].getAxisBottom(1).cross(m_links[i].getAxisTop(0));
+ m_links[i].setAxisBottom(2,cr[0],cr[1],cr[2]);
+ m_links[i].m_jointPos[0] = m_links[i].m_jointPos[1] = m_links[i].m_jointPos[2] = 0.f;
+ m_links[i].m_jointTorque[0] = m_links[i].m_jointTorque[1] = m_links[i].m_jointTorque[2] = 0.f;
+
+ if (disableParentCollision)
+ m_links[i].m_flags |=BT_MULTIBODYLINKFLAGS_DISABLE_PARENT_COLLISION;
+ //
+ m_links[i].updateCacheMultiDof();
+ //
+ updateLinksDofOffsets();
+}
+
+void btMultiBody::finalizeMultiDof()
+{
+ m_deltaV.resize(0);
+ m_deltaV.resize(6 + m_dofCount);
+ m_realBuf.resize(6 + m_dofCount + m_dofCount*m_dofCount + 6 + m_dofCount); //m_dofCount for joint-space vels + m_dofCount^2 for "D" matrices + delta-pos vector (6 base "vels" + joint "vels")
+ m_vectorBuf.resize(2 * m_dofCount); //two 3-vectors (i.e. one six-vector) for each system dof ("h" matrices)
+ for (int i=0;i<m_vectorBuf.size();i++)
+ {
+ m_vectorBuf[i].setValue(0,0,0);
+ }
+ updateLinksDofOffsets();
+}
+
+int btMultiBody::getParent(int i) const
+{
+ return m_links[i].m_parent;
+}
+
+btScalar btMultiBody::getLinkMass(int i) const
+{
+ return m_links[i].m_mass;
+}
+
+const btVector3 & btMultiBody::getLinkInertia(int i) const
+{
+ return m_links[i].m_inertiaLocal;
+}
+
+btScalar btMultiBody::getJointPos(int i) const
+{
+ return m_links[i].m_jointPos[0];
+}
+
+btScalar btMultiBody::getJointVel(int i) const
+{
+ return m_realBuf[6 + m_links[i].m_dofOffset];
+}
+
+btScalar * btMultiBody::getJointPosMultiDof(int i)
+{
+ return &m_links[i].m_jointPos[0];
+}
+
+btScalar * btMultiBody::getJointVelMultiDof(int i)
+{
+ return &m_realBuf[6 + m_links[i].m_dofOffset];
+}
+
+const btScalar * btMultiBody::getJointPosMultiDof(int i) const
+{
+ return &m_links[i].m_jointPos[0];
+}
+
+const btScalar * btMultiBody::getJointVelMultiDof(int i) const
+{
+ return &m_realBuf[6 + m_links[i].m_dofOffset];
+}
+
+
+void btMultiBody::setJointPos(int i, btScalar q)
+{
+ m_links[i].m_jointPos[0] = q;
+ m_links[i].updateCacheMultiDof();
+}
+
+void btMultiBody::setJointPosMultiDof(int i, btScalar *q)
+{
+ for(int pos = 0; pos < m_links[i].m_posVarCount; ++pos)
+ m_links[i].m_jointPos[pos] = q[pos];
+
+ m_links[i].updateCacheMultiDof();
+}
+
+void btMultiBody::setJointVel(int i, btScalar qdot)
+{
+ m_realBuf[6 + m_links[i].m_dofOffset] = qdot;
+}
+
+void btMultiBody::setJointVelMultiDof(int i, btScalar *qdot)
+{
+ for(int dof = 0; dof < m_links[i].m_dofCount; ++dof)
+ m_realBuf[6 + m_links[i].m_dofOffset + dof] = qdot[dof];
+}
+
+const btVector3 & btMultiBody::getRVector(int i) const
+{
+ return m_links[i].m_cachedRVector;
+}
+
+const btQuaternion & btMultiBody::getParentToLocalRot(int i) const
+{
+ return m_links[i].m_cachedRotParentToThis;
+}
+
+btVector3 btMultiBody::localPosToWorld(int i, const btVector3 &local_pos) const
+{
+ btAssert(i>=-1);
+ btAssert(i<m_links.size());
+ if ((i<-1) || (i>=m_links.size()))
+ {
+ return btVector3(SIMD_INFINITY,SIMD_INFINITY,SIMD_INFINITY);
+ }
+
+ btVector3 result = local_pos;
+ while (i != -1) {
+ // 'result' is in frame i. transform it to frame parent(i)
+ result += getRVector(i);
+ result = quatRotate(getParentToLocalRot(i).inverse(),result);
+ i = getParent(i);
+ }
+
+ // 'result' is now in the base frame. transform it to world frame
+ result = quatRotate(getWorldToBaseRot().inverse() ,result);
+ result += getBasePos();
+
+ return result;
+}
+
+btVector3 btMultiBody::worldPosToLocal(int i, const btVector3 &world_pos) const
+{
+ btAssert(i>=-1);
+ btAssert(i<m_links.size());
+ if ((i<-1) || (i>=m_links.size()))
+ {
+ return btVector3(SIMD_INFINITY,SIMD_INFINITY,SIMD_INFINITY);
+ }
+
+ if (i == -1) {
+ // world to base
+ return quatRotate(getWorldToBaseRot(),(world_pos - getBasePos()));
+ } else {
+ // find position in parent frame, then transform to current frame
+ return quatRotate(getParentToLocalRot(i),worldPosToLocal(getParent(i), world_pos)) - getRVector(i);
+ }
+}
+
+btVector3 btMultiBody::localDirToWorld(int i, const btVector3 &local_dir) const
+{
+ btAssert(i>=-1);
+ btAssert(i<m_links.size());
+ if ((i<-1) || (i>=m_links.size()))
+ {
+ return btVector3(SIMD_INFINITY,SIMD_INFINITY,SIMD_INFINITY);
+ }
+
+
+ btVector3 result = local_dir;
+ while (i != -1) {
+ result = quatRotate(getParentToLocalRot(i).inverse() , result);
+ i = getParent(i);
+ }
+ result = quatRotate(getWorldToBaseRot().inverse() , result);
+ return result;
+}
+
+btVector3 btMultiBody::worldDirToLocal(int i, const btVector3 &world_dir) const
+{
+ btAssert(i>=-1);
+ btAssert(i<m_links.size());
+ if ((i<-1) || (i>=m_links.size()))
+ {
+ return btVector3(SIMD_INFINITY,SIMD_INFINITY,SIMD_INFINITY);
+ }
+
+ if (i == -1) {
+ return quatRotate(getWorldToBaseRot(), world_dir);
+ } else {
+ return quatRotate(getParentToLocalRot(i) ,worldDirToLocal(getParent(i), world_dir));
+ }
+}
+
+btMatrix3x3 btMultiBody::localFrameToWorld(int i, const btMatrix3x3 &local_frame) const
+{
+ btMatrix3x3 result = local_frame;
+ btVector3 frameInWorld0 = localDirToWorld(i, local_frame.getColumn(0));
+ btVector3 frameInWorld1 = localDirToWorld(i, local_frame.getColumn(1));
+ btVector3 frameInWorld2 = localDirToWorld(i, local_frame.getColumn(2));
+ result.setValue(frameInWorld0[0], frameInWorld1[0], frameInWorld2[0], frameInWorld0[1], frameInWorld1[1], frameInWorld2[1], frameInWorld0[2], frameInWorld1[2], frameInWorld2[2]);
+ return result;
+}
+
+void btMultiBody::compTreeLinkVelocities(btVector3 *omega, btVector3 *vel) const
+{
+ int num_links = getNumLinks();
+ // Calculates the velocities of each link (and the base) in its local frame
+ omega[0] = quatRotate(m_baseQuat ,getBaseOmega());
+ vel[0] = quatRotate(m_baseQuat ,getBaseVel());
+
+ for (int i = 0; i < num_links; ++i)
+ {
+ const int parent = m_links[i].m_parent;
+
+ // transform parent vel into this frame, store in omega[i+1], vel[i+1]
+ SpatialTransform(btMatrix3x3(m_links[i].m_cachedRotParentToThis), m_links[i].m_cachedRVector,
+ omega[parent+1], vel[parent+1],
+ omega[i+1], vel[i+1]);
+
+ // now add qidot * shat_i
+ //only supported for revolute/prismatic joints, todo: spherical and planar joints
+ switch(m_links[i].m_jointType)
+ {
+ case btMultibodyLink::ePrismatic:
+ case btMultibodyLink::eRevolute:
+ {
+ btVector3 axisTop = m_links[i].getAxisTop(0);
+ btVector3 axisBottom = m_links[i].getAxisBottom(0);
+ btScalar jointVel = getJointVel(i);
+ omega[i+1] += jointVel * axisTop;
+ vel[i+1] += jointVel * axisBottom;
+ break;
+ }
+ default:
+ {
+ }
+ }
+ }
+}
+
+btScalar btMultiBody::getKineticEnergy() const
+{
+ int num_links = getNumLinks();
+ // TODO: would be better not to allocate memory here
+ btAlignedObjectArray<btVector3> omega;omega.resize(num_links+1);
+ btAlignedObjectArray<btVector3> vel;vel.resize(num_links+1);
+ compTreeLinkVelocities(&omega[0], &vel[0]);
+
+ // we will do the factor of 0.5 at the end
+ btScalar result = m_baseMass * vel[0].dot(vel[0]);
+ result += omega[0].dot(m_baseInertia * omega[0]);
+
+ for (int i = 0; i < num_links; ++i) {
+ result += m_links[i].m_mass * vel[i+1].dot(vel[i+1]);
+ result += omega[i+1].dot(m_links[i].m_inertiaLocal * omega[i+1]);
+ }
+
+ return 0.5f * result;
+}
+
+btVector3 btMultiBody::getAngularMomentum() const
+{
+ int num_links = getNumLinks();
+ // TODO: would be better not to allocate memory here
+ btAlignedObjectArray<btVector3> omega;omega.resize(num_links+1);
+ btAlignedObjectArray<btVector3> vel;vel.resize(num_links+1);
+ btAlignedObjectArray<btQuaternion> rot_from_world;rot_from_world.resize(num_links+1);
+ compTreeLinkVelocities(&omega[0], &vel[0]);
+
+ rot_from_world[0] = m_baseQuat;
+ btVector3 result = quatRotate(rot_from_world[0].inverse() , (m_baseInertia * omega[0]));
+
+ for (int i = 0; i < num_links; ++i) {
+ rot_from_world[i+1] = m_links[i].m_cachedRotParentToThis * rot_from_world[m_links[i].m_parent+1];
+ result += (quatRotate(rot_from_world[i+1].inverse() , (m_links[i].m_inertiaLocal * omega[i+1])));
+ }
+
+ return result;
+}
+
+void btMultiBody::clearConstraintForces()
+{
+ m_baseConstraintForce.setValue(0, 0, 0);
+ m_baseConstraintTorque.setValue(0, 0, 0);
+
+
+ for (int i = 0; i < getNumLinks(); ++i) {
+ m_links[i].m_appliedConstraintForce.setValue(0, 0, 0);
+ m_links[i].m_appliedConstraintTorque.setValue(0, 0, 0);
+ }
+}
+void btMultiBody::clearForcesAndTorques()
+{
+ m_baseForce.setValue(0, 0, 0);
+ m_baseTorque.setValue(0, 0, 0);
+
+
+ for (int i = 0; i < getNumLinks(); ++i) {
+ m_links[i].m_appliedForce.setValue(0, 0, 0);
+ m_links[i].m_appliedTorque.setValue(0, 0, 0);
+ m_links[i].m_jointTorque[0] = m_links[i].m_jointTorque[1] = m_links[i].m_jointTorque[2] = m_links[i].m_jointTorque[3] = m_links[i].m_jointTorque[4] = m_links[i].m_jointTorque[5] = 0.f;
+ }
+}
+
+void btMultiBody::clearVelocities()
+{
+ for (int i = 0; i < 6 + getNumDofs(); ++i)
+ {
+ m_realBuf[i] = 0.f;
+ }
+}
+void btMultiBody::addLinkForce(int i, const btVector3 &f)
+{
+ m_links[i].m_appliedForce += f;
+}
+
+void btMultiBody::addLinkTorque(int i, const btVector3 &t)
+{
+ m_links[i].m_appliedTorque += t;
+}
+
+void btMultiBody::addLinkConstraintForce(int i, const btVector3 &f)
+{
+ m_links[i].m_appliedConstraintForce += f;
+}
+
+void btMultiBody::addLinkConstraintTorque(int i, const btVector3 &t)
+{
+ m_links[i].m_appliedConstraintTorque += t;
+}
+
+
+
+void btMultiBody::addJointTorque(int i, btScalar Q)
+{
+ m_links[i].m_jointTorque[0] += Q;
+}
+
+void btMultiBody::addJointTorqueMultiDof(int i, int dof, btScalar Q)
+{
+ m_links[i].m_jointTorque[dof] += Q;
+}
+
+void btMultiBody::addJointTorqueMultiDof(int i, const btScalar *Q)
+{
+ for(int dof = 0; dof < m_links[i].m_dofCount; ++dof)
+ m_links[i].m_jointTorque[dof] = Q[dof];
+}
+
+const btVector3 & btMultiBody::getLinkForce(int i) const
+{
+ return m_links[i].m_appliedForce;
+}
+
+const btVector3 & btMultiBody::getLinkTorque(int i) const
+{
+ return m_links[i].m_appliedTorque;
+}
+
+btScalar btMultiBody::getJointTorque(int i) const
+{
+ return m_links[i].m_jointTorque[0];
+}
+
+btScalar * btMultiBody::getJointTorqueMultiDof(int i)
+{
+ return &m_links[i].m_jointTorque[0];
+}
+
+inline btMatrix3x3 outerProduct(const btVector3& v0, const btVector3& v1) //renamed it from vecMulVecTranspose (http://en.wikipedia.org/wiki/Outer_product); maybe it should be moved to btVector3 like dot and cross?
+{
+ btVector3 row0 = btVector3(
+ v0.x() * v1.x(),
+ v0.x() * v1.y(),
+ v0.x() * v1.z());
+ btVector3 row1 = btVector3(
+ v0.y() * v1.x(),
+ v0.y() * v1.y(),
+ v0.y() * v1.z());
+ btVector3 row2 = btVector3(
+ v0.z() * v1.x(),
+ v0.z() * v1.y(),
+ v0.z() * v1.z());
+
+ btMatrix3x3 m(row0[0],row0[1],row0[2],
+ row1[0],row1[1],row1[2],
+ row2[0],row2[1],row2[2]);
+ return m;
+}
+
+#define vecMulVecTranspose(v0, v1Transposed) outerProduct(v0, v1Transposed)
+//
+
+void btMultiBody::computeAccelerationsArticulatedBodyAlgorithmMultiDof(btScalar dt,
+ btAlignedObjectArray<btScalar> &scratch_r,
+ btAlignedObjectArray<btVector3> &scratch_v,
+ btAlignedObjectArray<btMatrix3x3> &scratch_m,
+ bool isConstraintPass)
+{
+ // Implement Featherstone's algorithm to calculate joint accelerations (q_double_dot)
+ // and the base linear & angular accelerations.
+
+ // We apply damping forces in this routine as well as any external forces specified by the
+ // caller (via addBaseForce etc).
+
+ // output should point to an array of 6 + num_links reals.
+ // Format is: 3 angular accelerations (in world frame), 3 linear accelerations (in world frame),
+ // num_links joint acceleration values.
+
+ // We added support for multi degree of freedom (multi dof) joints.
+ // In addition we also can compute the joint reaction forces. This is performed in a second pass,
+ // so that we can include the effect of the constraint solver forces (computed in the PGS LCP solver)
+
+ m_internalNeedsJointFeedback = false;
+
+ int num_links = getNumLinks();
+
+ const btScalar DAMPING_K1_LINEAR = m_linearDamping;
+ const btScalar DAMPING_K2_LINEAR = m_linearDamping;
+
+ const btScalar DAMPING_K1_ANGULAR = m_angularDamping;
+ const btScalar DAMPING_K2_ANGULAR= m_angularDamping;
+
+ btVector3 base_vel = getBaseVel();
+ btVector3 base_omega = getBaseOmega();
+
+ // Temporary matrices/vectors -- use scratch space from caller
+ // so that we don't have to keep reallocating every frame
+
+ scratch_r.resize(2*m_dofCount + 6); //multidof? ("Y"s use it and it is used to store qdd) => 2 x m_dofCount
+ scratch_v.resize(8*num_links + 6);
+ scratch_m.resize(4*num_links + 4);
+
+ //btScalar * r_ptr = &scratch_r[0];
+ btScalar * output = &scratch_r[m_dofCount]; // "output" holds the q_double_dot results
+ btVector3 * v_ptr = &scratch_v[0];
+
+ // vhat_i (top = angular, bottom = linear part)
+ btSpatialMotionVector *spatVel = (btSpatialMotionVector *)v_ptr;
+ v_ptr += num_links * 2 + 2;
+ //
+ // zhat_i^A
+ btSpatialForceVector * zeroAccSpatFrc = (btSpatialForceVector *)v_ptr;
+ v_ptr += num_links * 2 + 2;
+ //
+ // chat_i (note NOT defined for the base)
+ btSpatialMotionVector * spatCoriolisAcc = (btSpatialMotionVector *)v_ptr;
+ v_ptr += num_links * 2;
+ //
+ // Ihat_i^A.
+ btSymmetricSpatialDyad * spatInertia = (btSymmetricSpatialDyad *)&scratch_m[num_links + 1];
+
+ // Cached 3x3 rotation matrices from parent frame to this frame.
+ btMatrix3x3 * rot_from_parent = &m_matrixBuf[0];
+ btMatrix3x3 * rot_from_world = &scratch_m[0];
+
+ // hhat_i, ahat_i
+ // hhat is NOT stored for the base (but ahat is)
+ btSpatialForceVector * h = (btSpatialForceVector *)(m_dofCount > 0 ? &m_vectorBuf[0] : 0);
+ btSpatialMotionVector * spatAcc = (btSpatialMotionVector *)v_ptr;
+ v_ptr += num_links * 2 + 2;
+ //
+ // Y_i, invD_i
+ btScalar * invD = m_dofCount > 0 ? &m_realBuf[6 + m_dofCount] : 0;
+ btScalar * Y = &scratch_r[0];
+ //
+ //aux variables
+ btSpatialMotionVector spatJointVel; //spatial velocity due to the joint motion (i.e. without predecessors' influence)
+ btScalar D[36]; //"D" matrix; it's dofxdof for each body so asingle 6x6 D matrix will do
+ btScalar invD_times_Y[6]; //D^{-1} * Y [dofxdof x dofx1 = dofx1] <=> D^{-1} * u; better moved to buffers since it is recalced in calcAccelerationDeltasMultiDof; num_dof of btScalar would cover all bodies
+ btSpatialMotionVector result; //holds results of the SolveImatrix op; it is a spatial motion vector (accel)
+ btScalar Y_minus_hT_a[6]; //Y - h^{T} * a; it's dofx1 for each body so a single 6x1 temp is enough
+ btSpatialForceVector spatForceVecTemps[6]; //6 temporary spatial force vectors
+ btSpatialTransformationMatrix fromParent; //spatial transform from parent to child
+ btSymmetricSpatialDyad dyadTemp; //inertia matrix temp
+ btSpatialTransformationMatrix fromWorld;
+ fromWorld.m_trnVec.setZero();
+ /////////////////
+
+ // ptr to the joint accel part of the output
+ btScalar * joint_accel = output + 6;
+
+ // Start of the algorithm proper.
+
+ // First 'upward' loop.
+ // Combines CompTreeLinkVelocities and InitTreeLinks from Mirtich.
+
+ rot_from_parent[0] = btMatrix3x3(m_baseQuat); //m_baseQuat assumed to be alias!?
+
+ //create the vector of spatial velocity of the base by transforming global-coor linear and angular velocities into base-local coordinates
+ spatVel[0].setVector(rot_from_parent[0] * base_omega, rot_from_parent[0] * base_vel);
+
+ if (m_fixedBase)
+ {
+ zeroAccSpatFrc[0].setZero();
+ }
+ else
+ {
+ btVector3 baseForce = isConstraintPass? m_baseConstraintForce : m_baseForce;
+ btVector3 baseTorque = isConstraintPass? m_baseConstraintTorque : m_baseTorque;
+ //external forces
+ zeroAccSpatFrc[0].setVector(-(rot_from_parent[0] * baseTorque), -(rot_from_parent[0] * baseForce));
+
+ //adding damping terms (only)
+ btScalar linDampMult = 1., angDampMult = 1.;
+ zeroAccSpatFrc[0].addVector(angDampMult * m_baseInertia * spatVel[0].getAngular() * (DAMPING_K1_ANGULAR + DAMPING_K2_ANGULAR * spatVel[0].getAngular().safeNorm()),
+ linDampMult * m_baseMass * spatVel[0].getLinear() * (DAMPING_K1_LINEAR + DAMPING_K2_LINEAR * spatVel[0].getLinear().safeNorm()));
+
+ //
+ //p += vhat x Ihat vhat - done in a simpler way
+ if (m_useGyroTerm)
+ zeroAccSpatFrc[0].addAngular(spatVel[0].getAngular().cross(m_baseInertia * spatVel[0].getAngular()));
+ //
+ zeroAccSpatFrc[0].addLinear(m_baseMass * spatVel[0].getAngular().cross(spatVel[0].getLinear()));
+ }
+
+
+ //init the spatial AB inertia (it has the simple form thanks to choosing local body frames origins at their COMs)
+ spatInertia[0].setMatrix( btMatrix3x3(0,0,0,0,0,0,0,0,0),
+ //
+ btMatrix3x3(m_baseMass, 0, 0,
+ 0, m_baseMass, 0,
+ 0, 0, m_baseMass),
+ //
+ btMatrix3x3(m_baseInertia[0], 0, 0,
+ 0, m_baseInertia[1], 0,
+ 0, 0, m_baseInertia[2])
+ );
+
+ rot_from_world[0] = rot_from_parent[0];
+
+ //
+ for (int i = 0; i < num_links; ++i) {
+ const int parent = m_links[i].m_parent;
+ rot_from_parent[i+1] = btMatrix3x3(m_links[i].m_cachedRotParentToThis);
+ rot_from_world[i+1] = rot_from_parent[i+1] * rot_from_world[parent+1];
+
+ fromParent.m_rotMat = rot_from_parent[i+1]; fromParent.m_trnVec = m_links[i].m_cachedRVector;
+ fromWorld.m_rotMat = rot_from_world[i+1];
+ fromParent.transform(spatVel[parent+1], spatVel[i+1]);
+
+ // now set vhat_i to its true value by doing
+ // vhat_i += qidot * shat_i
+ if(!m_useGlobalVelocities)
+ {
+ spatJointVel.setZero();
+
+ for(int dof = 0; dof < m_links[i].m_dofCount; ++dof)
+ spatJointVel += m_links[i].m_axes[dof] * getJointVelMultiDof(i)[dof];
+
+ // remember vhat_i is really vhat_p(i) (but in current frame) at this point => we need to add velocity across the inboard joint
+ spatVel[i+1] += spatJointVel;
+
+ //
+ // vhat_i is vhat_p(i) transformed to local coors + the velocity across the i-th inboard joint
+ //spatVel[i+1] = fromParent * spatVel[parent+1] + spatJointVel;
+
+ }
+ else
+ {
+ fromWorld.transformRotationOnly(m_links[i].m_absFrameTotVelocity, spatVel[i+1]);
+ fromWorld.transformRotationOnly(m_links[i].m_absFrameLocVelocity, spatJointVel);
+ }
+
+ // we can now calculate chat_i
+ spatVel[i+1].cross(spatJointVel, spatCoriolisAcc[i]);
+
+ // calculate zhat_i^A
+ //
+ //external forces
+ btVector3 linkAppliedForce = isConstraintPass? m_links[i].m_appliedConstraintForce : m_links[i].m_appliedForce;
+ btVector3 linkAppliedTorque =isConstraintPass ? m_links[i].m_appliedConstraintTorque : m_links[i].m_appliedTorque;
+
+ zeroAccSpatFrc[i+1].setVector(-(rot_from_world[i+1] * linkAppliedTorque), -(rot_from_world[i+1] * linkAppliedForce ));
+
+#if 0
+ {
+
+ b3Printf("stepVelocitiesMultiDof zeroAccSpatFrc[%d] linear:%f,%f,%f, angular:%f,%f,%f",
+ i+1,
+ zeroAccSpatFrc[i+1].m_topVec[0],
+ zeroAccSpatFrc[i+1].m_topVec[1],
+ zeroAccSpatFrc[i+1].m_topVec[2],
+
+ zeroAccSpatFrc[i+1].m_bottomVec[0],
+ zeroAccSpatFrc[i+1].m_bottomVec[1],
+ zeroAccSpatFrc[i+1].m_bottomVec[2]);
+ }
+#endif
+ //
+ //adding damping terms (only)
+ btScalar linDampMult = 1., angDampMult = 1.;
+ zeroAccSpatFrc[i+1].addVector(angDampMult * m_links[i].m_inertiaLocal * spatVel[i+1].getAngular() * (DAMPING_K1_ANGULAR + DAMPING_K2_ANGULAR * spatVel[i+1].getAngular().safeNorm()),
+ linDampMult * m_links[i].m_mass * spatVel[i+1].getLinear() * (DAMPING_K1_LINEAR + DAMPING_K2_LINEAR * spatVel[i+1].getLinear().safeNorm()));
+
+ // calculate Ihat_i^A
+ //init the spatial AB inertia (it has the simple form thanks to choosing local body frames origins at their COMs)
+ spatInertia[i+1].setMatrix( btMatrix3x3(0,0,0,0,0,0,0,0,0),
+ //
+ btMatrix3x3(m_links[i].m_mass, 0, 0,
+ 0, m_links[i].m_mass, 0,
+ 0, 0, m_links[i].m_mass),
+ //
+ btMatrix3x3(m_links[i].m_inertiaLocal[0], 0, 0,
+ 0, m_links[i].m_inertiaLocal[1], 0,
+ 0, 0, m_links[i].m_inertiaLocal[2])
+ );
+ //
+ //p += vhat x Ihat vhat - done in a simpler way
+ if(m_useGyroTerm)
+ zeroAccSpatFrc[i+1].addAngular(spatVel[i+1].getAngular().cross(m_links[i].m_inertiaLocal * spatVel[i+1].getAngular()));
+ //
+ zeroAccSpatFrc[i+1].addLinear(m_links[i].m_mass * spatVel[i+1].getAngular().cross(spatVel[i+1].getLinear()));
+ //btVector3 temp = m_links[i].m_mass * spatVel[i+1].getAngular().cross(spatVel[i+1].getLinear());
+ ////clamp parent's omega
+ //btScalar parOmegaMod = temp.length();
+ //btScalar parOmegaModMax = 1000;
+ //if(parOmegaMod > parOmegaModMax)
+ // temp *= parOmegaModMax / parOmegaMod;
+ //zeroAccSpatFrc[i+1].addLinear(temp);
+ //printf("|zeroAccSpatFrc[%d]| = %.4f\n", i+1, temp.length());
+ //temp = spatCoriolisAcc[i].getLinear();
+ //printf("|spatCoriolisAcc[%d]| = %.4f\n", i+1, temp.length());
+
+
+
+ //printf("w[%d] = [%.4f %.4f %.4f]\n", i, vel_top_angular[i+1].x(), vel_top_angular[i+1].y(), vel_top_angular[i+1].z());
+ //printf("v[%d] = [%.4f %.4f %.4f]\n", i, vel_bottom_linear[i+1].x(), vel_bottom_linear[i+1].y(), vel_bottom_linear[i+1].z());
+ //printf("c[%d] = [%.4f %.4f %.4f]\n", i, coriolis_bottom_linear[i].x(), coriolis_bottom_linear[i].y(), coriolis_bottom_linear[i].z());
+ }
+
+ // 'Downward' loop.
+ // (part of TreeForwardDynamics in Mirtich.)
+ for (int i = num_links - 1; i >= 0; --i)
+ {
+ const int parent = m_links[i].m_parent;
+ fromParent.m_rotMat = rot_from_parent[i+1]; fromParent.m_trnVec = m_links[i].m_cachedRVector;
+
+ for(int dof = 0; dof < m_links[i].m_dofCount; ++dof)
+ {
+ btSpatialForceVector &hDof = h[m_links[i].m_dofOffset + dof];
+ //
+ hDof = spatInertia[i+1] * m_links[i].m_axes[dof];
+ //
+ Y[m_links[i].m_dofOffset + dof] = m_links[i].m_jointTorque[dof]
+ - m_links[i].m_axes[dof].dot(zeroAccSpatFrc[i+1])
+ - spatCoriolisAcc[i].dot(hDof)
+ ;
+ }
+
+ for(int dof = 0; dof < m_links[i].m_dofCount; ++dof)
+ {
+ btScalar *D_row = &D[dof * m_links[i].m_dofCount];
+ for(int dof2 = 0; dof2 < m_links[i].m_dofCount; ++dof2)
+ {
+ btSpatialForceVector &hDof2 = h[m_links[i].m_dofOffset + dof2];
+ D_row[dof2] = m_links[i].m_axes[dof].dot(hDof2);
+ }
+ }
+
+ btScalar *invDi = &invD[m_links[i].m_dofOffset*m_links[i].m_dofOffset];
+ switch(m_links[i].m_jointType)
+ {
+ case btMultibodyLink::ePrismatic:
+ case btMultibodyLink::eRevolute:
+ {
+ invDi[0] = 1.0f / D[0];
+ break;
+ }
+ case btMultibodyLink::eSpherical:
+ case btMultibodyLink::ePlanar:
+ {
+ btMatrix3x3 D3x3; D3x3.setValue(D[0], D[1], D[2], D[3], D[4], D[5], D[6], D[7], D[8]);
+ btMatrix3x3 invD3x3; invD3x3 = D3x3.inverse();
+
+ //unroll the loop?
+ for(int row = 0; row < 3; ++row)
+ {
+ for(int col = 0; col < 3; ++col)
+ {
+ invDi[row * 3 + col] = invD3x3[row][col];
+ }
+ }
+
+ break;
+ }
+ default:
+ {
+
+ }
+ }
+
+ //determine h*D^{-1}
+ for(int dof = 0; dof < m_links[i].m_dofCount; ++dof)
+ {
+ spatForceVecTemps[dof].setZero();
+
+ for(int dof2 = 0; dof2 < m_links[i].m_dofCount; ++dof2)
+ {
+ btSpatialForceVector &hDof2 = h[m_links[i].m_dofOffset + dof2];
+ //
+ spatForceVecTemps[dof] += hDof2 * invDi[dof2 * m_links[i].m_dofCount + dof];
+ }
+ }
+
+ dyadTemp = spatInertia[i+1];
+
+ //determine (h*D^{-1}) * h^{T}
+ for(int dof = 0; dof < m_links[i].m_dofCount; ++dof)
+ {
+ btSpatialForceVector &hDof = h[m_links[i].m_dofOffset + dof];
+ //
+ dyadTemp -= symmetricSpatialOuterProduct(hDof, spatForceVecTemps[dof]);
+ }
+
+ fromParent.transformInverse(dyadTemp, spatInertia[parent+1], btSpatialTransformationMatrix::Add);
+
+ for(int dof = 0; dof < m_links[i].m_dofCount; ++dof)
+ {
+ invD_times_Y[dof] = 0.f;
+
+ for(int dof2 = 0; dof2 < m_links[i].m_dofCount; ++dof2)
+ {
+ invD_times_Y[dof] += invDi[dof * m_links[i].m_dofCount + dof2] * Y[m_links[i].m_dofOffset + dof2];
+ }
+ }
+
+ spatForceVecTemps[0] = zeroAccSpatFrc[i+1] + spatInertia[i+1] * spatCoriolisAcc[i];
+
+ for(int dof = 0; dof < m_links[i].m_dofCount; ++dof)
+ {
+ btSpatialForceVector &hDof = h[m_links[i].m_dofOffset + dof];
+ //
+ spatForceVecTemps[0] += hDof * invD_times_Y[dof];
+ }
+
+ fromParent.transformInverse(spatForceVecTemps[0], spatForceVecTemps[1]);
+
+ zeroAccSpatFrc[parent+1] += spatForceVecTemps[1];
+ }
+
+
+ // Second 'upward' loop
+ // (part of TreeForwardDynamics in Mirtich)
+
+ if (m_fixedBase)
+ {
+ spatAcc[0].setZero();
+ }
+ else
+ {
+ if (num_links > 0)
+ {
+ m_cachedInertiaValid = true;
+ m_cachedInertiaTopLeft = spatInertia[0].m_topLeftMat;
+ m_cachedInertiaTopRight = spatInertia[0].m_topRightMat;
+ m_cachedInertiaLowerLeft = spatInertia[0].m_bottomLeftMat;
+ m_cachedInertiaLowerRight= spatInertia[0].m_topLeftMat.transpose();
+
+ }
+
+ solveImatrix(zeroAccSpatFrc[0], result);
+ spatAcc[0] = -result;
+ }
+
+
+ // now do the loop over the m_links
+ for (int i = 0; i < num_links; ++i)
+ {
+ // qdd = D^{-1} * (Y - h^{T}*apar) = (S^{T}*I*S)^{-1} * (tau - S^{T}*I*cor - S^{T}*zeroAccFrc - S^{T}*I*apar)
+ // a = apar + cor + Sqdd
+ //or
+ // qdd = D^{-1} * (Y - h^{T}*(apar+cor))
+ // a = apar + Sqdd
+
+ const int parent = m_links[i].m_parent;
+ fromParent.m_rotMat = rot_from_parent[i+1]; fromParent.m_trnVec = m_links[i].m_cachedRVector;
+
+ fromParent.transform(spatAcc[parent+1], spatAcc[i+1]);
+
+ for(int dof = 0; dof < m_links[i].m_dofCount; ++dof)
+ {
+ btSpatialForceVector &hDof = h[m_links[i].m_dofOffset + dof];
+ //
+ Y_minus_hT_a[dof] = Y[m_links[i].m_dofOffset + dof] - spatAcc[i+1].dot(hDof);
+ }
+
+ btScalar *invDi = &invD[m_links[i].m_dofOffset*m_links[i].m_dofOffset];
+ //D^{-1} * (Y - h^{T}*apar)
+ mulMatrix(invDi, Y_minus_hT_a, m_links[i].m_dofCount, m_links[i].m_dofCount, m_links[i].m_dofCount, 1, &joint_accel[m_links[i].m_dofOffset]);
+
+ spatAcc[i+1] += spatCoriolisAcc[i];
+
+ for(int dof = 0; dof < m_links[i].m_dofCount; ++dof)
+ spatAcc[i+1] += m_links[i].m_axes[dof] * joint_accel[m_links[i].m_dofOffset + dof];
+
+ if (m_links[i].m_jointFeedback)
+ {
+ m_internalNeedsJointFeedback = true;
+
+ btVector3 angularBotVec = (spatInertia[i+1]*spatAcc[i+1]+zeroAccSpatFrc[i+1]).m_bottomVec;
+ btVector3 linearTopVec = (spatInertia[i+1]*spatAcc[i+1]+zeroAccSpatFrc[i+1]).m_topVec;
+
+ if (gJointFeedbackInJointFrame)
+ {
+ //shift the reaction forces to the joint frame
+ //linear (force) component is the same
+ //shift the angular (torque, moment) component using the relative position, m_links[i].m_dVector
+ angularBotVec = angularBotVec - linearTopVec.cross(m_links[i].m_dVector);
+ }
+
+
+ if (gJointFeedbackInWorldSpace)
+ {
+ if (isConstraintPass)
+ {
+ m_links[i].m_jointFeedback->m_reactionForces.m_bottomVec += m_links[i].m_cachedWorldTransform.getBasis()*angularBotVec;
+ m_links[i].m_jointFeedback->m_reactionForces.m_topVec += m_links[i].m_cachedWorldTransform.getBasis()*linearTopVec;
+ } else
+ {
+ m_links[i].m_jointFeedback->m_reactionForces.m_bottomVec = m_links[i].m_cachedWorldTransform.getBasis()*angularBotVec;
+ m_links[i].m_jointFeedback->m_reactionForces.m_topVec = m_links[i].m_cachedWorldTransform.getBasis()*linearTopVec;
+ }
+ } else
+ {
+ if (isConstraintPass)
+ {
+ m_links[i].m_jointFeedback->m_reactionForces.m_bottomVec += angularBotVec;
+ m_links[i].m_jointFeedback->m_reactionForces.m_topVec += linearTopVec;
+
+ }
+ else
+ {
+ m_links[i].m_jointFeedback->m_reactionForces.m_bottomVec = angularBotVec;
+ m_links[i].m_jointFeedback->m_reactionForces.m_topVec = linearTopVec;
+ }
+ }
+ }
+
+ }
+
+ // transform base accelerations back to the world frame.
+ btVector3 omegadot_out = rot_from_parent[0].transpose() * spatAcc[0].getAngular();
+ output[0] = omegadot_out[0];
+ output[1] = omegadot_out[1];
+ output[2] = omegadot_out[2];
+
+ btVector3 vdot_out = rot_from_parent[0].transpose() * (spatAcc[0].getLinear() + spatVel[0].getAngular().cross(spatVel[0].getLinear()));
+ output[3] = vdot_out[0];
+ output[4] = vdot_out[1];
+ output[5] = vdot_out[2];
+
+ /////////////////
+ //printf("q = [");
+ //printf("%.6f, %.6f, %.6f, %.6f, %.6f, %.6f, %.6f ", m_baseQuat.x(), m_baseQuat.y(), m_baseQuat.z(), m_baseQuat.w(), m_basePos.x(), m_basePos.y(), m_basePos.z());
+ //for(int link = 0; link < getNumLinks(); ++link)
+ // for(int dof = 0; dof < m_links[link].m_dofCount; ++dof)
+ // printf("%.6f ", m_links[link].m_jointPos[dof]);
+ //printf("]\n");
+ ////
+ //printf("qd = [");
+ //for(int dof = 0; dof < getNumDofs() + 6; ++dof)
+ // printf("%.6f ", m_realBuf[dof]);
+ //printf("]\n");
+ //printf("qdd = [");
+ //for(int dof = 0; dof < getNumDofs() + 6; ++dof)
+ // printf("%.6f ", output[dof]);
+ //printf("]\n");
+ /////////////////
+
+ // Final step: add the accelerations (times dt) to the velocities.
+
+ if (!isConstraintPass)
+ {
+ if(dt > 0.)
+ applyDeltaVeeMultiDof(output, dt);
+
+ }
+ /////
+ //btScalar angularThres = 1;
+ //btScalar maxAngVel = 0.;
+ //bool scaleDown = 1.;
+ //for(int link = 0; link < m_links.size(); ++link)
+ //{
+ // if(spatVel[link+1].getAngular().length() > maxAngVel)
+ // {
+ // maxAngVel = spatVel[link+1].getAngular().length();
+ // scaleDown = angularThres / spatVel[link+1].getAngular().length();
+ // break;
+ // }
+ //}
+
+ //if(scaleDown != 1.)
+ //{
+ // for(int link = 0; link < m_links.size(); ++link)
+ // {
+ // if(m_links[link].m_jointType == btMultibodyLink::eRevolute || m_links[link].m_jointType == btMultibodyLink::eSpherical)
+ // {
+ // for(int dof = 0; dof < m_links[link].m_dofCount; ++dof)
+ // getJointVelMultiDof(link)[dof] *= scaleDown;
+ // }
+ // }
+ //}
+ /////
+
+ /////////////////////
+ if(m_useGlobalVelocities)
+ {
+ for (int i = 0; i < num_links; ++i)
+ {
+ const int parent = m_links[i].m_parent;
+ //rot_from_parent[i+1] = btMatrix3x3(m_links[i].m_cachedRotParentToThis); /// <- done
+ //rot_from_world[i+1] = rot_from_parent[i+1] * rot_from_world[parent+1]; /// <- done
+
+ fromParent.m_rotMat = rot_from_parent[i+1]; fromParent.m_trnVec = m_links[i].m_cachedRVector;
+ fromWorld.m_rotMat = rot_from_world[i+1];
+
+ // vhat_i = i_xhat_p(i) * vhat_p(i)
+ fromParent.transform(spatVel[parent+1], spatVel[i+1]);
+ //nice alternative below (using operator *) but it generates temps
+ /////////////////////////////////////////////////////////////
+
+ // now set vhat_i to its true value by doing
+ // vhat_i += qidot * shat_i
+ spatJointVel.setZero();
+
+ for(int dof = 0; dof < m_links[i].m_dofCount; ++dof)
+ spatJointVel += m_links[i].m_axes[dof] * getJointVelMultiDof(i)[dof];
+
+ // remember vhat_i is really vhat_p(i) (but in current frame) at this point => we need to add velocity across the inboard joint
+ spatVel[i+1] += spatJointVel;
+
+
+ fromWorld.transformInverseRotationOnly(spatVel[i+1], m_links[i].m_absFrameTotVelocity);
+ fromWorld.transformInverseRotationOnly(spatJointVel, m_links[i].m_absFrameLocVelocity);
+ }
+ }
+
+}
+
+
+
+void btMultiBody::solveImatrix(const btVector3& rhs_top, const btVector3& rhs_bot, btScalar result[6]) const
+{
+ int num_links = getNumLinks();
+ ///solve I * x = rhs, so the result = invI * rhs
+ if (num_links == 0)
+ {
+ // in the case of 0 m_links (i.e. a plain rigid body, not a multibody) rhs * invI is easier
+ result[0] = rhs_bot[0] / m_baseInertia[0];
+ result[1] = rhs_bot[1] / m_baseInertia[1];
+ result[2] = rhs_bot[2] / m_baseInertia[2];
+ result[3] = rhs_top[0] / m_baseMass;
+ result[4] = rhs_top[1] / m_baseMass;
+ result[5] = rhs_top[2] / m_baseMass;
+ } else
+ {
+ if (!m_cachedInertiaValid)
+ {
+ for (int i=0;i<6;i++)
+ {
+ result[i] = 0.f;
+ }
+ return;
+ }
+ /// Special routine for calculating the inverse of a spatial inertia matrix
+ ///the 6x6 matrix is stored as 4 blocks of 3x3 matrices
+ btMatrix3x3 Binv = m_cachedInertiaTopRight.inverse()*-1.f;
+ btMatrix3x3 tmp = m_cachedInertiaLowerRight * Binv;
+ btMatrix3x3 invIupper_right = (tmp * m_cachedInertiaTopLeft + m_cachedInertiaLowerLeft).inverse();
+ tmp = invIupper_right * m_cachedInertiaLowerRight;
+ btMatrix3x3 invI_upper_left = (tmp * Binv);
+ btMatrix3x3 invI_lower_right = (invI_upper_left).transpose();
+ tmp = m_cachedInertiaTopLeft * invI_upper_left;
+ tmp[0][0]-= 1.0;
+ tmp[1][1]-= 1.0;
+ tmp[2][2]-= 1.0;
+ btMatrix3x3 invI_lower_left = (Binv * tmp);
+
+ //multiply result = invI * rhs
+ {
+ btVector3 vtop = invI_upper_left*rhs_top;
+ btVector3 tmp;
+ tmp = invIupper_right * rhs_bot;
+ vtop += tmp;
+ btVector3 vbot = invI_lower_left*rhs_top;
+ tmp = invI_lower_right * rhs_bot;
+ vbot += tmp;
+ result[0] = vtop[0];
+ result[1] = vtop[1];
+ result[2] = vtop[2];
+ result[3] = vbot[0];
+ result[4] = vbot[1];
+ result[5] = vbot[2];
+ }
+
+ }
+}
+void btMultiBody::solveImatrix(const btSpatialForceVector &rhs, btSpatialMotionVector &result) const
+{
+ int num_links = getNumLinks();
+ ///solve I * x = rhs, so the result = invI * rhs
+ if (num_links == 0)
+ {
+ // in the case of 0 m_links (i.e. a plain rigid body, not a multibody) rhs * invI is easier
+ result.setAngular(rhs.getAngular() / m_baseInertia);
+ result.setLinear(rhs.getLinear() / m_baseMass);
+ } else
+ {
+ /// Special routine for calculating the inverse of a spatial inertia matrix
+ ///the 6x6 matrix is stored as 4 blocks of 3x3 matrices
+ if (!m_cachedInertiaValid)
+ {
+ result.setLinear(btVector3(0,0,0));
+ result.setAngular(btVector3(0,0,0));
+ result.setVector(btVector3(0,0,0),btVector3(0,0,0));
+ return;
+ }
+ btMatrix3x3 Binv = m_cachedInertiaTopRight.inverse()*-1.f;
+ btMatrix3x3 tmp = m_cachedInertiaLowerRight * Binv;
+ btMatrix3x3 invIupper_right = (tmp * m_cachedInertiaTopLeft + m_cachedInertiaLowerLeft).inverse();
+ tmp = invIupper_right * m_cachedInertiaLowerRight;
+ btMatrix3x3 invI_upper_left = (tmp * Binv);
+ btMatrix3x3 invI_lower_right = (invI_upper_left).transpose();
+ tmp = m_cachedInertiaTopLeft * invI_upper_left;
+ tmp[0][0]-= 1.0;
+ tmp[1][1]-= 1.0;
+ tmp[2][2]-= 1.0;
+ btMatrix3x3 invI_lower_left = (Binv * tmp);
+
+ //multiply result = invI * rhs
+ {
+ btVector3 vtop = invI_upper_left*rhs.getLinear();
+ btVector3 tmp;
+ tmp = invIupper_right * rhs.getAngular();
+ vtop += tmp;
+ btVector3 vbot = invI_lower_left*rhs.getLinear();
+ tmp = invI_lower_right * rhs.getAngular();
+ vbot += tmp;
+ result.setVector(vtop, vbot);
+ }
+
+ }
+}
+
+void btMultiBody::mulMatrix(btScalar *pA, btScalar *pB, int rowsA, int colsA, int rowsB, int colsB, btScalar *pC) const
+{
+ for (int row = 0; row < rowsA; row++)
+ {
+ for (int col = 0; col < colsB; col++)
+ {
+ pC[row * colsB + col] = 0.f;
+ for (int inner = 0; inner < rowsB; inner++)
+ {
+ pC[row * colsB + col] += pA[row * colsA + inner] * pB[col + inner * colsB];
+ }
+ }
+ }
+}
+
+void btMultiBody::calcAccelerationDeltasMultiDof(const btScalar *force, btScalar *output,
+ btAlignedObjectArray<btScalar> &scratch_r, btAlignedObjectArray<btVector3> &scratch_v) const
+{
+ // Temporary matrices/vectors -- use scratch space from caller
+ // so that we don't have to keep reallocating every frame
+
+
+ int num_links = getNumLinks();
+ scratch_r.resize(m_dofCount);
+ scratch_v.resize(4*num_links + 4);
+
+ btScalar * r_ptr = m_dofCount ? &scratch_r[0] : 0;
+ btVector3 * v_ptr = &scratch_v[0];
+
+ // zhat_i^A (scratch space)
+ btSpatialForceVector * zeroAccSpatFrc = (btSpatialForceVector *)v_ptr;
+ v_ptr += num_links * 2 + 2;
+
+ // rot_from_parent (cached from calcAccelerations)
+ const btMatrix3x3 * rot_from_parent = &m_matrixBuf[0];
+
+ // hhat (cached), accel (scratch)
+ // hhat is NOT stored for the base (but ahat is)
+ const btSpatialForceVector * h = (btSpatialForceVector *)(m_dofCount > 0 ? &m_vectorBuf[0] : 0);
+ btSpatialMotionVector * spatAcc = (btSpatialMotionVector *)v_ptr;
+ v_ptr += num_links * 2 + 2;
+
+ // Y_i (scratch), invD_i (cached)
+ const btScalar * invD = m_dofCount > 0 ? &m_realBuf[6 + m_dofCount] : 0;
+ btScalar * Y = r_ptr;
+ ////////////////
+ //aux variables
+ btScalar invD_times_Y[6]; //D^{-1} * Y [dofxdof x dofx1 = dofx1] <=> D^{-1} * u; better moved to buffers since it is recalced in calcAccelerationDeltasMultiDof; num_dof of btScalar would cover all bodies
+ btSpatialMotionVector result; //holds results of the SolveImatrix op; it is a spatial motion vector (accel)
+ btScalar Y_minus_hT_a[6]; //Y - h^{T} * a; it's dofx1 for each body so a single 6x1 temp is enough
+ btSpatialForceVector spatForceVecTemps[6]; //6 temporary spatial force vectors
+ btSpatialTransformationMatrix fromParent;
+ /////////////////
+
+ // First 'upward' loop.
+ // Combines CompTreeLinkVelocities and InitTreeLinks from Mirtich.
+
+ // Fill in zero_acc
+ // -- set to force/torque on the base, zero otherwise
+ if (m_fixedBase)
+ {
+ zeroAccSpatFrc[0].setZero();
+ } else
+ {
+ //test forces
+ fromParent.m_rotMat = rot_from_parent[0];
+ fromParent.transformRotationOnly(btSpatialForceVector(-force[0],-force[1],-force[2], -force[3],-force[4],-force[5]), zeroAccSpatFrc[0]);
+ }
+ for (int i = 0; i < num_links; ++i)
+ {
+ zeroAccSpatFrc[i+1].setZero();
+ }
+
+ // 'Downward' loop.
+ // (part of TreeForwardDynamics in Mirtich.)
+ for (int i = num_links - 1; i >= 0; --i)
+ {
+ const int parent = m_links[i].m_parent;
+ fromParent.m_rotMat = rot_from_parent[i+1]; fromParent.m_trnVec = m_links[i].m_cachedRVector;
+
+ for(int dof = 0; dof < m_links[i].m_dofCount; ++dof)
+ {
+ Y[m_links[i].m_dofOffset + dof] = force[6 + m_links[i].m_dofOffset + dof]
+ - m_links[i].m_axes[dof].dot(zeroAccSpatFrc[i+1])
+ ;
+ }
+
+ btVector3 in_top, in_bottom, out_top, out_bottom;
+ const btScalar *invDi = &invD[m_links[i].m_dofOffset*m_links[i].m_dofOffset];
+
+ for(int dof = 0; dof < m_links[i].m_dofCount; ++dof)
+ {
+ invD_times_Y[dof] = 0.f;
+
+ for(int dof2 = 0; dof2 < m_links[i].m_dofCount; ++dof2)
+ {
+ invD_times_Y[dof] += invDi[dof * m_links[i].m_dofCount + dof2] * Y[m_links[i].m_dofOffset + dof2];
+ }
+ }
+
+ // Zp += pXi * (Zi + hi*Yi/Di)
+ spatForceVecTemps[0] = zeroAccSpatFrc[i+1];
+
+ for(int dof = 0; dof < m_links[i].m_dofCount; ++dof)
+ {
+ const btSpatialForceVector &hDof = h[m_links[i].m_dofOffset + dof];
+ //
+ spatForceVecTemps[0] += hDof * invD_times_Y[dof];
+ }
+
+
+ fromParent.transformInverse(spatForceVecTemps[0], spatForceVecTemps[1]);
+
+ zeroAccSpatFrc[parent+1] += spatForceVecTemps[1];
+ }
+
+ // ptr to the joint accel part of the output
+ btScalar * joint_accel = output + 6;
+
+
+ // Second 'upward' loop
+ // (part of TreeForwardDynamics in Mirtich)
+
+ if (m_fixedBase)
+ {
+ spatAcc[0].setZero();
+ }
+ else
+ {
+ solveImatrix(zeroAccSpatFrc[0], result);
+ spatAcc[0] = -result;
+
+ }
+
+ // now do the loop over the m_links
+ for (int i = 0; i < num_links; ++i)
+ {
+ const int parent = m_links[i].m_parent;
+ fromParent.m_rotMat = rot_from_parent[i+1]; fromParent.m_trnVec = m_links[i].m_cachedRVector;
+
+ fromParent.transform(spatAcc[parent+1], spatAcc[i+1]);
+
+ for(int dof = 0; dof < m_links[i].m_dofCount; ++dof)
+ {
+ const btSpatialForceVector &hDof = h[m_links[i].m_dofOffset + dof];
+ //
+ Y_minus_hT_a[dof] = Y[m_links[i].m_dofOffset + dof] - spatAcc[i+1].dot(hDof);
+ }
+
+ const btScalar *invDi = &invD[m_links[i].m_dofOffset*m_links[i].m_dofOffset];
+ mulMatrix(const_cast<btScalar*>(invDi), Y_minus_hT_a, m_links[i].m_dofCount, m_links[i].m_dofCount, m_links[i].m_dofCount, 1, &joint_accel[m_links[i].m_dofOffset]);
+
+ for(int dof = 0; dof < m_links[i].m_dofCount; ++dof)
+ spatAcc[i+1] += m_links[i].m_axes[dof] * joint_accel[m_links[i].m_dofOffset + dof];
+ }
+
+ // transform base accelerations back to the world frame.
+ btVector3 omegadot_out;
+ omegadot_out = rot_from_parent[0].transpose() * spatAcc[0].getAngular();
+ output[0] = omegadot_out[0];
+ output[1] = omegadot_out[1];
+ output[2] = omegadot_out[2];
+
+ btVector3 vdot_out;
+ vdot_out = rot_from_parent[0].transpose() * spatAcc[0].getLinear();
+ output[3] = vdot_out[0];
+ output[4] = vdot_out[1];
+ output[5] = vdot_out[2];
+
+ /////////////////
+ //printf("delta = [");
+ //for(int dof = 0; dof < getNumDofs() + 6; ++dof)
+ // printf("%.2f ", output[dof]);
+ //printf("]\n");
+ /////////////////
+}
+
+
+
+
+void btMultiBody::stepPositionsMultiDof(btScalar dt, btScalar *pq, btScalar *pqd)
+{
+ int num_links = getNumLinks();
+ // step position by adding dt * velocity
+ //btVector3 v = getBaseVel();
+ //m_basePos += dt * v;
+ //
+ btScalar *pBasePos = (pq ? &pq[4] : m_basePos);
+ btScalar *pBaseVel = (pqd ? &pqd[3] : &m_realBuf[3]); //note: the !pqd case assumes m_realBuf holds with base velocity at 3,4,5 (should be wrapped for safety)
+ //
+ pBasePos[0] += dt * pBaseVel[0];
+ pBasePos[1] += dt * pBaseVel[1];
+ pBasePos[2] += dt * pBaseVel[2];
+
+ ///////////////////////////////
+ //local functor for quaternion integration (to avoid error prone redundancy)
+ struct
+ {
+ //"exponential map" based on btTransformUtil::integrateTransform(..)
+ void operator() (const btVector3 &omega, btQuaternion &quat, bool baseBody, btScalar dt)
+ {
+ //baseBody => quat is alias and omega is global coor
+ //!baseBody => quat is alibi and omega is local coor
+
+ btVector3 axis;
+ btVector3 angvel;
+
+ if(!baseBody)
+ angvel = quatRotate(quat, omega); //if quat is not m_baseQuat, it is alibi => ok
+ else
+ angvel = omega;
+
+ btScalar fAngle = angvel.length();
+ //limit the angular motion
+ if (fAngle * dt > ANGULAR_MOTION_THRESHOLD)
+ {
+ fAngle = btScalar(0.5)*SIMD_HALF_PI / dt;
+ }
+
+ if ( fAngle < btScalar(0.001) )
+ {
+ // use Taylor's expansions of sync function
+ axis = angvel*( btScalar(0.5)*dt-(dt*dt*dt)*(btScalar(0.020833333333))*fAngle*fAngle );
+ }
+ else
+ {
+ // sync(fAngle) = sin(c*fAngle)/t
+ axis = angvel*( btSin(btScalar(0.5)*fAngle*dt)/fAngle );
+ }
+
+ if(!baseBody)
+ quat = btQuaternion(axis.x(),axis.y(),axis.z(),btCos( fAngle*dt*btScalar(0.5) )) * quat;
+ else
+ quat = quat * btQuaternion(-axis.x(),-axis.y(),-axis.z(),btCos( fAngle*dt*btScalar(0.5) ));
+ //equivalent to: quat = (btQuaternion(axis.x(),axis.y(),axis.z(),btCos( fAngle*dt*btScalar(0.5) )) * quat.inverse()).inverse();
+
+ quat.normalize();
+ }
+ } pQuatUpdateFun;
+ ///////////////////////////////
+
+ //pQuatUpdateFun(getBaseOmega(), m_baseQuat, true, dt);
+ //
+ btScalar *pBaseQuat = pq ? pq : m_baseQuat;
+ btScalar *pBaseOmega = pqd ? pqd : &m_realBuf[0]; //note: the !pqd case assumes m_realBuf starts with base omega (should be wrapped for safety)
+ //
+ btQuaternion baseQuat; baseQuat.setValue(pBaseQuat[0], pBaseQuat[1], pBaseQuat[2], pBaseQuat[3]);
+ btVector3 baseOmega; baseOmega.setValue(pBaseOmega[0], pBaseOmega[1], pBaseOmega[2]);
+ pQuatUpdateFun(baseOmega, baseQuat, true, dt);
+ pBaseQuat[0] = baseQuat.x();
+ pBaseQuat[1] = baseQuat.y();
+ pBaseQuat[2] = baseQuat.z();
+ pBaseQuat[3] = baseQuat.w();
+
+
+ //printf("pBaseOmega = %.4f %.4f %.4f\n", pBaseOmega->x(), pBaseOmega->y(), pBaseOmega->z());
+ //printf("pBaseVel = %.4f %.4f %.4f\n", pBaseVel->x(), pBaseVel->y(), pBaseVel->z());
+ //printf("baseQuat = %.4f %.4f %.4f %.4f\n", pBaseQuat->x(), pBaseQuat->y(), pBaseQuat->z(), pBaseQuat->w());
+
+ if(pq)
+ pq += 7;
+ if(pqd)
+ pqd += 6;
+
+ // Finally we can update m_jointPos for each of the m_links
+ for (int i = 0; i < num_links; ++i)
+ {
+ btScalar *pJointPos = (pq ? pq : &m_links[i].m_jointPos[0]);
+ btScalar *pJointVel = (pqd ? pqd : getJointVelMultiDof(i));
+
+ switch(m_links[i].m_jointType)
+ {
+ case btMultibodyLink::ePrismatic:
+ case btMultibodyLink::eRevolute:
+ {
+ btScalar jointVel = pJointVel[0];
+ pJointPos[0] += dt * jointVel;
+ break;
+ }
+ case btMultibodyLink::eSpherical:
+ {
+ btVector3 jointVel; jointVel.setValue(pJointVel[0], pJointVel[1], pJointVel[2]);
+ btQuaternion jointOri; jointOri.setValue(pJointPos[0], pJointPos[1], pJointPos[2], pJointPos[3]);
+ pQuatUpdateFun(jointVel, jointOri, false, dt);
+ pJointPos[0] = jointOri.x(); pJointPos[1] = jointOri.y(); pJointPos[2] = jointOri.z(); pJointPos[3] = jointOri.w();
+ break;
+ }
+ case btMultibodyLink::ePlanar:
+ {
+ pJointPos[0] += dt * getJointVelMultiDof(i)[0];
+
+ btVector3 q0_coors_qd1qd2 = getJointVelMultiDof(i)[1] * m_links[i].getAxisBottom(1) + getJointVelMultiDof(i)[2] * m_links[i].getAxisBottom(2);
+ btVector3 no_q0_coors_qd1qd2 = quatRotate(btQuaternion(m_links[i].getAxisTop(0), pJointPos[0]), q0_coors_qd1qd2);
+ pJointPos[1] += m_links[i].getAxisBottom(1).dot(no_q0_coors_qd1qd2) * dt;
+ pJointPos[2] += m_links[i].getAxisBottom(2).dot(no_q0_coors_qd1qd2) * dt;
+
+ break;
+ }
+ default:
+ {
+ }
+
+ }
+
+ m_links[i].updateCacheMultiDof(pq);
+
+ if(pq)
+ pq += m_links[i].m_posVarCount;
+ if(pqd)
+ pqd += m_links[i].m_dofCount;
+ }
+}
+
+void btMultiBody::fillConstraintJacobianMultiDof(int link,
+ const btVector3 &contact_point,
+ const btVector3 &normal_ang,
+ const btVector3 &normal_lin,
+ btScalar *jac,
+ btAlignedObjectArray<btScalar> &scratch_r,
+ btAlignedObjectArray<btVector3> &scratch_v,
+ btAlignedObjectArray<btMatrix3x3> &scratch_m) const
+{
+ // temporary space
+ int num_links = getNumLinks();
+ int m_dofCount = getNumDofs();
+ scratch_v.resize(3*num_links + 3); //(num_links + base) offsets + (num_links + base) normals_lin + (num_links + base) normals_ang
+ scratch_m.resize(num_links + 1);
+
+ btVector3 * v_ptr = &scratch_v[0];
+ btVector3 * p_minus_com_local = v_ptr; v_ptr += num_links + 1;
+ btVector3 * n_local_lin = v_ptr; v_ptr += num_links + 1;
+ btVector3 * n_local_ang = v_ptr; v_ptr += num_links + 1;
+ btAssert(v_ptr - &scratch_v[0] == scratch_v.size());
+
+ scratch_r.resize(m_dofCount);
+ btScalar * results = m_dofCount > 0 ? &scratch_r[0] : 0;
+
+ btMatrix3x3 * rot_from_world = &scratch_m[0];
+
+ const btVector3 p_minus_com_world = contact_point - m_basePos;
+ const btVector3 &normal_lin_world = normal_lin; //convenience
+ const btVector3 &normal_ang_world = normal_ang;
+
+ rot_from_world[0] = btMatrix3x3(m_baseQuat);
+
+ // omega coeffients first.
+ btVector3 omega_coeffs_world;
+ omega_coeffs_world = p_minus_com_world.cross(normal_lin_world);
+ jac[0] = omega_coeffs_world[0] + normal_ang_world[0];
+ jac[1] = omega_coeffs_world[1] + normal_ang_world[1];
+ jac[2] = omega_coeffs_world[2] + normal_ang_world[2];
+ // then v coefficients
+ jac[3] = normal_lin_world[0];
+ jac[4] = normal_lin_world[1];
+ jac[5] = normal_lin_world[2];
+
+ //create link-local versions of p_minus_com and normal
+ p_minus_com_local[0] = rot_from_world[0] * p_minus_com_world;
+ n_local_lin[0] = rot_from_world[0] * normal_lin_world;
+ n_local_ang[0] = rot_from_world[0] * normal_ang_world;
+
+ // Set remaining jac values to zero for now.
+ for (int i = 6; i < 6 + m_dofCount; ++i)
+ {
+ jac[i] = 0;
+ }
+
+ // Qdot coefficients, if necessary.
+ if (num_links > 0 && link > -1) {
+
+ // TODO: speed this up -- don't calculate for m_links we don't need.
+ // (Also, we are making 3 separate calls to this function, for the normal & the 2 friction directions,
+ // which is resulting in repeated work being done...)
+
+ // calculate required normals & positions in the local frames.
+ for (int i = 0; i < num_links; ++i) {
+
+ // transform to local frame
+ const int parent = m_links[i].m_parent;
+ const btMatrix3x3 mtx(m_links[i].m_cachedRotParentToThis);
+ rot_from_world[i+1] = mtx * rot_from_world[parent+1];
+
+ n_local_lin[i+1] = mtx * n_local_lin[parent+1];
+ n_local_ang[i+1] = mtx * n_local_ang[parent+1];
+ p_minus_com_local[i+1] = mtx * p_minus_com_local[parent+1] - m_links[i].m_cachedRVector;
+
+ // calculate the jacobian entry
+ switch(m_links[i].m_jointType)
+ {
+ case btMultibodyLink::eRevolute:
+ {
+ results[m_links[i].m_dofOffset] = n_local_lin[i+1].dot(m_links[i].getAxisTop(0).cross(p_minus_com_local[i+1]) + m_links[i].getAxisBottom(0));
+ results[m_links[i].m_dofOffset] += n_local_ang[i+1].dot(m_links[i].getAxisTop(0));
+ break;
+ }
+ case btMultibodyLink::ePrismatic:
+ {
+ results[m_links[i].m_dofOffset] = n_local_lin[i+1].dot(m_links[i].getAxisBottom(0));
+ break;
+ }
+ case btMultibodyLink::eSpherical:
+ {
+ results[m_links[i].m_dofOffset + 0] = n_local_lin[i+1].dot(m_links[i].getAxisTop(0).cross(p_minus_com_local[i+1]) + m_links[i].getAxisBottom(0));
+ results[m_links[i].m_dofOffset + 1] = n_local_lin[i+1].dot(m_links[i].getAxisTop(1).cross(p_minus_com_local[i+1]) + m_links[i].getAxisBottom(1));
+ results[m_links[i].m_dofOffset + 2] = n_local_lin[i+1].dot(m_links[i].getAxisTop(2).cross(p_minus_com_local[i+1]) + m_links[i].getAxisBottom(2));
+
+ results[m_links[i].m_dofOffset + 0] += n_local_ang[i+1].dot(m_links[i].getAxisTop(0));
+ results[m_links[i].m_dofOffset + 1] += n_local_ang[i+1].dot(m_links[i].getAxisTop(1));
+ results[m_links[i].m_dofOffset + 2] += n_local_ang[i+1].dot(m_links[i].getAxisTop(2));
+
+ break;
+ }
+ case btMultibodyLink::ePlanar:
+ {
+ results[m_links[i].m_dofOffset + 0] = n_local_lin[i+1].dot(m_links[i].getAxisTop(0).cross(p_minus_com_local[i+1]));// + m_links[i].getAxisBottom(0));
+ results[m_links[i].m_dofOffset + 1] = n_local_lin[i+1].dot(m_links[i].getAxisBottom(1));
+ results[m_links[i].m_dofOffset + 2] = n_local_lin[i+1].dot(m_links[i].getAxisBottom(2));
+
+ break;
+ }
+ default:
+ {
+ }
+ }
+
+ }
+
+ // Now copy through to output.
+ //printf("jac[%d] = ", link);
+ while (link != -1)
+ {
+ for(int dof = 0; dof < m_links[link].m_dofCount; ++dof)
+ {
+ jac[6 + m_links[link].m_dofOffset + dof] = results[m_links[link].m_dofOffset + dof];
+ //printf("%.2f\t", jac[6 + m_links[link].m_dofOffset + dof]);
+ }
+
+ link = m_links[link].m_parent;
+ }
+ //printf("]\n");
+ }
+}
+
+
+void btMultiBody::wakeUp()
+{
+ m_awake = true;
+}
+
+void btMultiBody::goToSleep()
+{
+ m_awake = false;
+}
+
+void btMultiBody::checkMotionAndSleepIfRequired(btScalar timestep)
+{
+ extern bool gDisableDeactivation;
+ if (!m_canSleep || gDisableDeactivation)
+ {
+ m_awake = true;
+ m_sleepTimer = 0;
+ return;
+ }
+
+ // motion is computed as omega^2 + v^2 + (sum of squares of joint velocities)
+ btScalar motion = 0;
+ {
+ for (int i = 0; i < 6 + m_dofCount; ++i)
+ motion += m_realBuf[i] * m_realBuf[i];
+ }
+
+
+ if (motion < SLEEP_EPSILON) {
+ m_sleepTimer += timestep;
+ if (m_sleepTimer > SLEEP_TIMEOUT) {
+ goToSleep();
+ }
+ } else {
+ m_sleepTimer = 0;
+ if (!m_awake)
+ wakeUp();
+ }
+}
+
+
+void btMultiBody::forwardKinematics(btAlignedObjectArray<btQuaternion>& world_to_local,btAlignedObjectArray<btVector3>& local_origin)
+{
+
+ int num_links = getNumLinks();
+
+ // Cached 3x3 rotation matrices from parent frame to this frame.
+ btMatrix3x3* rot_from_parent =(btMatrix3x3 *) &m_matrixBuf[0];
+
+ rot_from_parent[0] = btMatrix3x3(m_baseQuat); //m_baseQuat assumed to be alias!?
+
+ for (int i = 0; i < num_links; ++i)
+ {
+ rot_from_parent[i+1] = btMatrix3x3(m_links[i].m_cachedRotParentToThis);
+ }
+
+ int nLinks = getNumLinks();
+ ///base + num m_links
+ world_to_local.resize(nLinks+1);
+ local_origin.resize(nLinks+1);
+
+ world_to_local[0] = getWorldToBaseRot();
+ local_origin[0] = getBasePos();
+
+ for (int k=0;k<getNumLinks();k++)
+ {
+ const int parent = getParent(k);
+ world_to_local[k+1] = getParentToLocalRot(k) * world_to_local[parent+1];
+ local_origin[k+1] = local_origin[parent+1] + (quatRotate(world_to_local[k+1].inverse() , getRVector(k)));
+ }
+
+ for (int link=0;link<getNumLinks();link++)
+ {
+ int index = link+1;
+
+ btVector3 posr = local_origin[index];
+ btScalar quat[4]={-world_to_local[index].x(),-world_to_local[index].y(),-world_to_local[index].z(),world_to_local[index].w()};
+ btTransform tr;
+ tr.setIdentity();
+ tr.setOrigin(posr);
+ tr.setRotation(btQuaternion(quat[0],quat[1],quat[2],quat[3]));
+ getLink(link).m_cachedWorldTransform = tr;
+
+ }
+
+}
+
+void btMultiBody::updateCollisionObjectWorldTransforms(btAlignedObjectArray<btQuaternion>& world_to_local,btAlignedObjectArray<btVector3>& local_origin)
+{
+ world_to_local.resize(getNumLinks()+1);
+ local_origin.resize(getNumLinks()+1);
+
+ world_to_local[0] = getWorldToBaseRot();
+ local_origin[0] = getBasePos();
+
+ if (getBaseCollider())
+ {
+ btVector3 posr = local_origin[0];
+ // float pos[4]={posr.x(),posr.y(),posr.z(),1};
+ btScalar quat[4]={-world_to_local[0].x(),-world_to_local[0].y(),-world_to_local[0].z(),world_to_local[0].w()};
+ btTransform tr;
+ tr.setIdentity();
+ tr.setOrigin(posr);
+ tr.setRotation(btQuaternion(quat[0],quat[1],quat[2],quat[3]));
+
+ getBaseCollider()->setWorldTransform(tr);
+
+ }
+
+ for (int k=0;k<getNumLinks();k++)
+ {
+ const int parent = getParent(k);
+ world_to_local[k+1] = getParentToLocalRot(k) * world_to_local[parent+1];
+ local_origin[k+1] = local_origin[parent+1] + (quatRotate(world_to_local[k+1].inverse() , getRVector(k)));
+ }
+
+
+ for (int m=0;m<getNumLinks();m++)
+ {
+ btMultiBodyLinkCollider* col = getLink(m).m_collider;
+ if (col)
+ {
+ int link = col->m_link;
+ btAssert(link == m);
+
+ int index = link+1;
+
+ btVector3 posr = local_origin[index];
+ // float pos[4]={posr.x(),posr.y(),posr.z(),1};
+ btScalar quat[4]={-world_to_local[index].x(),-world_to_local[index].y(),-world_to_local[index].z(),world_to_local[index].w()};
+ btTransform tr;
+ tr.setIdentity();
+ tr.setOrigin(posr);
+ tr.setRotation(btQuaternion(quat[0],quat[1],quat[2],quat[3]));
+
+ col->setWorldTransform(tr);
+ }
+ }
+}
+
+int btMultiBody::calculateSerializeBufferSize() const
+{
+ int sz = sizeof(btMultiBodyData);
+ return sz;
+}
+
+ ///fills the dataBuffer and returns the struct name (and 0 on failure)
+const char* btMultiBody::serialize(void* dataBuffer, class btSerializer* serializer) const
+{
+ btMultiBodyData* mbd = (btMultiBodyData*) dataBuffer;
+ getBaseWorldTransform().serialize(mbd->m_baseWorldTransform);
+ mbd->m_baseMass = this->getBaseMass();
+ getBaseInertia().serialize(mbd->m_baseInertia);
+ {
+ char* name = (char*) serializer->findNameForPointer(m_baseName);
+ mbd->m_baseName = (char*)serializer->getUniquePointer(name);
+ if (mbd->m_baseName)
+ {
+ serializer->serializeName(name);
+ }
+ }
+ mbd->m_numLinks = this->getNumLinks();
+ if (mbd->m_numLinks)
+ {
+ int sz = sizeof(btMultiBodyLinkData);
+ int numElem = mbd->m_numLinks;
+ btChunk* chunk = serializer->allocate(sz,numElem);
+ btMultiBodyLinkData* memPtr = (btMultiBodyLinkData*)chunk->m_oldPtr;
+ for (int i=0;i<numElem;i++,memPtr++)
+ {
+
+ memPtr->m_jointType = getLink(i).m_jointType;
+ memPtr->m_dofCount = getLink(i).m_dofCount;
+ memPtr->m_posVarCount = getLink(i).m_posVarCount;
+
+ getLink(i).m_inertiaLocal.serialize(memPtr->m_linkInertia);
+ memPtr->m_linkMass = getLink(i).m_mass;
+ memPtr->m_parentIndex = getLink(i).m_parent;
+ memPtr->m_jointDamping = getLink(i).m_jointDamping;
+ memPtr->m_jointFriction = getLink(i).m_jointFriction;
+ memPtr->m_jointLowerLimit = getLink(i).m_jointLowerLimit;
+ memPtr->m_jointUpperLimit = getLink(i).m_jointUpperLimit;
+ memPtr->m_jointMaxForce = getLink(i).m_jointMaxForce;
+ memPtr->m_jointMaxVelocity = getLink(i).m_jointMaxVelocity;
+
+ getLink(i).m_eVector.serialize(memPtr->m_parentComToThisComOffset);
+ getLink(i).m_dVector.serialize(memPtr->m_thisPivotToThisComOffset);
+ getLink(i).m_zeroRotParentToThis.serialize(memPtr->m_zeroRotParentToThis);
+ btAssert(memPtr->m_dofCount<=3);
+ for (int dof = 0;dof<getLink(i).m_dofCount;dof++)
+ {
+ getLink(i).getAxisBottom(dof).serialize(memPtr->m_jointAxisBottom[dof]);
+ getLink(i).getAxisTop(dof).serialize(memPtr->m_jointAxisTop[dof]);
+
+ memPtr->m_jointTorque[dof] = getLink(i).m_jointTorque[dof];
+ memPtr->m_jointVel[dof] = getJointVelMultiDof(i)[dof];
+
+ }
+ int numPosVar = getLink(i).m_posVarCount;
+ for (int posvar = 0; posvar < numPosVar;posvar++)
+ {
+ memPtr->m_jointPos[posvar] = getLink(i).m_jointPos[posvar];
+ }
+
+
+ {
+ char* name = (char*) serializer->findNameForPointer(m_links[i].m_linkName);
+ memPtr->m_linkName = (char*)serializer->getUniquePointer(name);
+ if (memPtr->m_linkName)
+ {
+ serializer->serializeName(name);
+ }
+ }
+ {
+ char* name = (char*) serializer->findNameForPointer(m_links[i].m_jointName);
+ memPtr->m_jointName = (char*)serializer->getUniquePointer(name);
+ if (memPtr->m_jointName)
+ {
+ serializer->serializeName(name);
+ }
+ }
+ memPtr->m_linkCollider = (btCollisionObjectData*)serializer->getUniquePointer(getLink(i).m_collider);
+
+ }
+ serializer->finalizeChunk(chunk,btMultiBodyLinkDataName,BT_ARRAY_CODE,(void*) &m_links[0]);
+ }
+ mbd->m_links = mbd->m_numLinks? (btMultiBodyLinkData*) serializer->getUniquePointer((void*)&m_links[0]):0;
+
+ // Fill padding with zeros to appease msan.
+#ifdef BT_USE_DOUBLE_PRECISION
+ memset(mbd->m_padding, 0, sizeof(mbd->m_padding));
+#endif
+
+ return btMultiBodyDataName;
+}
diff --git a/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBody.h b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBody.h
new file mode 100644
index 0000000000..655165ac18
--- /dev/null
+++ b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBody.h
@@ -0,0 +1,814 @@
+/*
+ * PURPOSE:
+ * Class representing an articulated rigid body. Stores the body's
+ * current state, allows forces and torques to be set, handles
+ * timestepping and implements Featherstone's algorithm.
+ *
+ * COPYRIGHT:
+ * Copyright (C) Stephen Thompson, <stephen@solarflare.org.uk>, 2011-2013
+ * Portions written By Erwin Coumans: connection to LCP solver, various multibody constraints, replacing Eigen math library by Bullet LinearMath and a dedicated 6x6 matrix inverse (solveImatrix)
+ * Portions written By Jakub Stepien: support for multi-DOF constraints, introduction of spatial algebra and several other improvements
+
+ This software is provided 'as-is', without any express or implied warranty.
+ In no event will the authors be held liable for any damages arising from the use of this software.
+ Permission is granted to anyone to use this software for any purpose,
+ including commercial applications, and to alter it and redistribute it freely,
+ subject to the following restrictions:
+
+ 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+ 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+ 3. This notice may not be removed or altered from any source distribution.
+
+ */
+
+
+#ifndef BT_MULTIBODY_H
+#define BT_MULTIBODY_H
+
+#include "LinearMath/btScalar.h"
+#include "LinearMath/btVector3.h"
+#include "LinearMath/btQuaternion.h"
+#include "LinearMath/btMatrix3x3.h"
+#include "LinearMath/btAlignedObjectArray.h"
+
+
+///serialization data, don't change them if you are not familiar with the details of the serialization mechanisms
+#ifdef BT_USE_DOUBLE_PRECISION
+ #define btMultiBodyData btMultiBodyDoubleData
+ #define btMultiBodyDataName "btMultiBodyDoubleData"
+ #define btMultiBodyLinkData btMultiBodyLinkDoubleData
+ #define btMultiBodyLinkDataName "btMultiBodyLinkDoubleData"
+#else
+ #define btMultiBodyData btMultiBodyFloatData
+ #define btMultiBodyDataName "btMultiBodyFloatData"
+ #define btMultiBodyLinkData btMultiBodyLinkFloatData
+ #define btMultiBodyLinkDataName "btMultiBodyLinkFloatData"
+#endif //BT_USE_DOUBLE_PRECISION
+
+#include "btMultiBodyLink.h"
+class btMultiBodyLinkCollider;
+
+ATTRIBUTE_ALIGNED16(class) btMultiBody
+{
+public:
+
+
+ BT_DECLARE_ALIGNED_ALLOCATOR();
+
+ //
+ // initialization
+ //
+
+ btMultiBody(int n_links, // NOT including the base
+ btScalar mass, // mass of base
+ const btVector3 &inertia, // inertia of base, in base frame; assumed diagonal
+ bool fixedBase, // whether the base is fixed (true) or can move (false)
+ bool canSleep, bool deprecatedMultiDof=true);
+
+
+ virtual ~btMultiBody();
+
+ //note: fixed link collision with parent is always disabled
+ void setupFixed(int linkIndex,
+ btScalar mass,
+ const btVector3 &inertia,
+ int parent,
+ const btQuaternion &rotParentToThis,
+ const btVector3 &parentComToThisPivotOffset,
+ const btVector3 &thisPivotToThisComOffset, bool deprecatedDisableParentCollision=true);
+
+
+ void setupPrismatic(int i,
+ btScalar mass,
+ const btVector3 &inertia,
+ int parent,
+ const btQuaternion &rotParentToThis,
+ const btVector3 &jointAxis,
+ const btVector3 &parentComToThisPivotOffset,
+ const btVector3 &thisPivotToThisComOffset,
+ bool disableParentCollision);
+
+ void setupRevolute(int linkIndex, // 0 to num_links-1
+ btScalar mass,
+ const btVector3 &inertia,
+ int parentIndex,
+ const btQuaternion &rotParentToThis, // rotate points in parent frame to this frame, when q = 0
+ const btVector3 &jointAxis, // in my frame
+ const btVector3 &parentComToThisPivotOffset, // vector from parent COM to joint axis, in PARENT frame
+ const btVector3 &thisPivotToThisComOffset, // vector from joint axis to my COM, in MY frame
+ bool disableParentCollision=false);
+
+ void setupSpherical(int linkIndex, // 0 to num_links-1
+ btScalar mass,
+ const btVector3 &inertia,
+ int parent,
+ const btQuaternion &rotParentToThis, // rotate points in parent frame to this frame, when q = 0
+ const btVector3 &parentComToThisPivotOffset, // vector from parent COM to joint axis, in PARENT frame
+ const btVector3 &thisPivotToThisComOffset, // vector from joint axis to my COM, in MY frame
+ bool disableParentCollision=false);
+
+ void setupPlanar(int i, // 0 to num_links-1
+ btScalar mass,
+ const btVector3 &inertia,
+ int parent,
+ const btQuaternion &rotParentToThis, // rotate points in parent frame to this frame, when q = 0
+ const btVector3 &rotationAxis,
+ const btVector3 &parentComToThisComOffset, // vector from parent COM to this COM, in PARENT frame
+ bool disableParentCollision=false);
+
+ const btMultibodyLink& getLink(int index) const
+ {
+ return m_links[index];
+ }
+
+ btMultibodyLink& getLink(int index)
+ {
+ return m_links[index];
+ }
+
+
+ void setBaseCollider(btMultiBodyLinkCollider* collider)//collider can be NULL to disable collision for the base
+ {
+ m_baseCollider = collider;
+ }
+ const btMultiBodyLinkCollider* getBaseCollider() const
+ {
+ return m_baseCollider;
+ }
+ btMultiBodyLinkCollider* getBaseCollider()
+ {
+ return m_baseCollider;
+ }
+
+ btMultiBodyLinkCollider* getLinkCollider(int index)
+ {
+ if (index >= 0 && index < getNumLinks())
+ {
+ return getLink(index).m_collider;
+ }
+ return 0;
+ }
+
+ //
+ // get parent
+ // input: link num from 0 to num_links-1
+ // output: link num from 0 to num_links-1, OR -1 to mean the base.
+ //
+ int getParent(int link_num) const;
+
+
+ //
+ // get number of m_links, masses, moments of inertia
+ //
+
+ int getNumLinks() const { return m_links.size(); }
+ int getNumDofs() const { return m_dofCount; }
+ int getNumPosVars() const { return m_posVarCnt; }
+ btScalar getBaseMass() const { return m_baseMass; }
+ const btVector3 & getBaseInertia() const { return m_baseInertia; }
+ btScalar getLinkMass(int i) const;
+ const btVector3 & getLinkInertia(int i) const;
+
+
+
+ //
+ // change mass (incomplete: can only change base mass and inertia at present)
+ //
+
+ void setBaseMass(btScalar mass) { m_baseMass = mass; }
+ void setBaseInertia(const btVector3 &inertia) { m_baseInertia = inertia; }
+
+
+ //
+ // get/set pos/vel/rot/omega for the base link
+ //
+
+ const btVector3 & getBasePos() const { return m_basePos; } // in world frame
+ const btVector3 getBaseVel() const
+ {
+ return btVector3(m_realBuf[3],m_realBuf[4],m_realBuf[5]);
+ } // in world frame
+ const btQuaternion & getWorldToBaseRot() const
+ {
+ return m_baseQuat;
+ } // rotates world vectors into base frame
+ btVector3 getBaseOmega() const { return btVector3(m_realBuf[0],m_realBuf[1],m_realBuf[2]); } // in world frame
+
+ void setBasePos(const btVector3 &pos)
+ {
+ m_basePos = pos;
+ }
+
+ void setBaseWorldTransform(const btTransform& tr)
+ {
+ setBasePos(tr.getOrigin());
+ setWorldToBaseRot(tr.getRotation().inverse());
+
+ }
+
+ btTransform getBaseWorldTransform() const
+ {
+ btTransform tr;
+ tr.setOrigin(getBasePos());
+ tr.setRotation(getWorldToBaseRot().inverse());
+ return tr;
+ }
+
+ void setBaseVel(const btVector3 &vel)
+ {
+
+ m_realBuf[3]=vel[0]; m_realBuf[4]=vel[1]; m_realBuf[5]=vel[2];
+ }
+ void setWorldToBaseRot(const btQuaternion &rot)
+ {
+ m_baseQuat = rot; //m_baseQuat asumed to ba alias!?
+ }
+ void setBaseOmega(const btVector3 &omega)
+ {
+ m_realBuf[0]=omega[0];
+ m_realBuf[1]=omega[1];
+ m_realBuf[2]=omega[2];
+ }
+
+
+ //
+ // get/set pos/vel for child m_links (i = 0 to num_links-1)
+ //
+
+ btScalar getJointPos(int i) const;
+ btScalar getJointVel(int i) const;
+
+ btScalar * getJointVelMultiDof(int i);
+ btScalar * getJointPosMultiDof(int i);
+
+ const btScalar * getJointVelMultiDof(int i) const ;
+ const btScalar * getJointPosMultiDof(int i) const ;
+
+ void setJointPos(int i, btScalar q);
+ void setJointVel(int i, btScalar qdot);
+ void setJointPosMultiDof(int i, btScalar *q);
+ void setJointVelMultiDof(int i, btScalar *qdot);
+
+
+
+ //
+ // direct access to velocities as a vector of 6 + num_links elements.
+ // (omega first, then v, then joint velocities.)
+ //
+ const btScalar * getVelocityVector() const
+ {
+ return &m_realBuf[0];
+ }
+/* btScalar * getVelocityVector()
+ {
+ return &real_buf[0];
+ }
+ */
+
+ //
+ // get the frames of reference (positions and orientations) of the child m_links
+ // (i = 0 to num_links-1)
+ //
+
+ const btVector3 & getRVector(int i) const; // vector from COM(parent(i)) to COM(i), in frame i's coords
+ const btQuaternion & getParentToLocalRot(int i) const; // rotates vectors in frame parent(i) to vectors in frame i.
+
+
+ //
+ // transform vectors in local frame of link i to world frame (or vice versa)
+ //
+ btVector3 localPosToWorld(int i, const btVector3 &vec) const;
+ btVector3 localDirToWorld(int i, const btVector3 &vec) const;
+ btVector3 worldPosToLocal(int i, const btVector3 &vec) const;
+ btVector3 worldDirToLocal(int i, const btVector3 &vec) const;
+
+ //
+ // transform a frame in local coordinate to a frame in world coordinate
+ //
+ btMatrix3x3 localFrameToWorld(int i, const btMatrix3x3 &mat) const;
+
+ //
+ // calculate kinetic energy and angular momentum
+ // useful for debugging.
+ //
+
+ btScalar getKineticEnergy() const;
+ btVector3 getAngularMomentum() const;
+
+
+ //
+ // set external forces and torques. Note all external forces/torques are given in the WORLD frame.
+ //
+
+ void clearForcesAndTorques();
+ void clearConstraintForces();
+
+ void clearVelocities();
+
+ void addBaseForce(const btVector3 &f)
+ {
+ m_baseForce += f;
+ }
+ void addBaseTorque(const btVector3 &t) { m_baseTorque += t; }
+ void addLinkForce(int i, const btVector3 &f);
+ void addLinkTorque(int i, const btVector3 &t);
+
+ void addBaseConstraintForce(const btVector3 &f)
+ {
+ m_baseConstraintForce += f;
+ }
+ void addBaseConstraintTorque(const btVector3 &t) { m_baseConstraintTorque += t; }
+ void addLinkConstraintForce(int i, const btVector3 &f);
+ void addLinkConstraintTorque(int i, const btVector3 &t);
+
+
+void addJointTorque(int i, btScalar Q);
+ void addJointTorqueMultiDof(int i, int dof, btScalar Q);
+ void addJointTorqueMultiDof(int i, const btScalar *Q);
+
+ const btVector3 & getBaseForce() const { return m_baseForce; }
+ const btVector3 & getBaseTorque() const { return m_baseTorque; }
+ const btVector3 & getLinkForce(int i) const;
+ const btVector3 & getLinkTorque(int i) const;
+ btScalar getJointTorque(int i) const;
+ btScalar * getJointTorqueMultiDof(int i);
+
+
+ //
+ // dynamics routines.
+ //
+
+ // timestep the velocities (given the external forces/torques set using addBaseForce etc).
+ // also sets up caches for calcAccelerationDeltas.
+ //
+ // Note: the caller must provide three vectors which are used as
+ // temporary scratch space. The idea here is to reduce dynamic
+ // memory allocation: the same scratch vectors can be re-used
+ // again and again for different Multibodies, instead of each
+ // btMultiBody allocating (and then deallocating) their own
+ // individual scratch buffers. This gives a considerable speed
+ // improvement, at least on Windows (where dynamic memory
+ // allocation appears to be fairly slow).
+ //
+
+
+ void computeAccelerationsArticulatedBodyAlgorithmMultiDof(btScalar dt,
+ btAlignedObjectArray<btScalar> &scratch_r,
+ btAlignedObjectArray<btVector3> &scratch_v,
+ btAlignedObjectArray<btMatrix3x3> &scratch_m,
+ bool isConstraintPass=false
+ );
+
+///stepVelocitiesMultiDof is deprecated, use computeAccelerationsArticulatedBodyAlgorithmMultiDof instead
+ void stepVelocitiesMultiDof(btScalar dt,
+ btAlignedObjectArray<btScalar> &scratch_r,
+ btAlignedObjectArray<btVector3> &scratch_v,
+ btAlignedObjectArray<btMatrix3x3> &scratch_m,
+ bool isConstraintPass=false)
+ {
+ computeAccelerationsArticulatedBodyAlgorithmMultiDof(dt,scratch_r,scratch_v,scratch_m,isConstraintPass);
+ }
+
+ // calcAccelerationDeltasMultiDof
+ // input: force vector (in same format as jacobian, i.e.:
+ // 3 torque values, 3 force values, num_links joint torque values)
+ // output: 3 omegadot values, 3 vdot values, num_links q_double_dot values
+ // (existing contents of output array are replaced)
+ // calcAccelerationDeltasMultiDof must have been called first.
+ void calcAccelerationDeltasMultiDof(const btScalar *force, btScalar *output,
+ btAlignedObjectArray<btScalar> &scratch_r,
+ btAlignedObjectArray<btVector3> &scratch_v) const;
+
+
+ void applyDeltaVeeMultiDof2(const btScalar * delta_vee, btScalar multiplier)
+ {
+ for (int dof = 0; dof < 6 + getNumDofs(); ++dof)
+ {
+ m_deltaV[dof] += delta_vee[dof] * multiplier;
+ }
+ }
+ void processDeltaVeeMultiDof2()
+ {
+ applyDeltaVeeMultiDof(&m_deltaV[0],1);
+
+ for (int dof = 0; dof < 6 + getNumDofs(); ++dof)
+ {
+ m_deltaV[dof] = 0.f;
+ }
+ }
+
+ void applyDeltaVeeMultiDof(const btScalar * delta_vee, btScalar multiplier)
+ {
+ //for (int dof = 0; dof < 6 + getNumDofs(); ++dof)
+ // printf("%.4f ", delta_vee[dof]*multiplier);
+ //printf("\n");
+
+ //btScalar sum = 0;
+ //for (int dof = 0; dof < 6 + getNumDofs(); ++dof)
+ //{
+ // sum += delta_vee[dof]*multiplier*delta_vee[dof]*multiplier;
+ //}
+ //btScalar l = btSqrt(sum);
+
+ //if (l>m_maxAppliedImpulse)
+ //{
+ // multiplier *= m_maxAppliedImpulse/l;
+ //}
+
+ for (int dof = 0; dof < 6 + getNumDofs(); ++dof)
+ {
+ m_realBuf[dof] += delta_vee[dof] * multiplier;
+ btClamp(m_realBuf[dof],-m_maxCoordinateVelocity,m_maxCoordinateVelocity);
+ }
+ }
+
+
+
+ // timestep the positions (given current velocities).
+ void stepPositionsMultiDof(btScalar dt, btScalar *pq = 0, btScalar *pqd = 0);
+
+
+ //
+ // contacts
+ //
+
+ // This routine fills out a contact constraint jacobian for this body.
+ // the 'normal' supplied must be -n for body1 or +n for body2 of the contact.
+ // 'normal' & 'contact_point' are both given in world coordinates.
+
+ void fillContactJacobianMultiDof(int link,
+ const btVector3 &contact_point,
+ const btVector3 &normal,
+ btScalar *jac,
+ btAlignedObjectArray<btScalar> &scratch_r,
+ btAlignedObjectArray<btVector3> &scratch_v,
+ btAlignedObjectArray<btMatrix3x3> &scratch_m) const { fillConstraintJacobianMultiDof(link, contact_point, btVector3(0, 0, 0), normal, jac, scratch_r, scratch_v, scratch_m); }
+
+ //a more general version of fillContactJacobianMultiDof which does not assume..
+ //.. that the constraint in question is contact or, to be more precise, constrains linear velocity only
+ void fillConstraintJacobianMultiDof(int link,
+ const btVector3 &contact_point,
+ const btVector3 &normal_ang,
+ const btVector3 &normal_lin,
+ btScalar *jac,
+ btAlignedObjectArray<btScalar> &scratch_r,
+ btAlignedObjectArray<btVector3> &scratch_v,
+ btAlignedObjectArray<btMatrix3x3> &scratch_m) const;
+
+
+ //
+ // sleeping
+ //
+ void setCanSleep(bool canSleep)
+ {
+ m_canSleep = canSleep;
+ }
+
+ bool getCanSleep()const
+ {
+ return m_canSleep;
+ }
+
+ bool isAwake() const { return m_awake; }
+ void wakeUp();
+ void goToSleep();
+ void checkMotionAndSleepIfRequired(btScalar timestep);
+
+ bool hasFixedBase() const
+ {
+ return m_fixedBase;
+ }
+
+ int getCompanionId() const
+ {
+ return m_companionId;
+ }
+ void setCompanionId(int id)
+ {
+ //printf("for %p setCompanionId(%d)\n",this, id);
+ m_companionId = id;
+ }
+
+ void setNumLinks(int numLinks)//careful: when changing the number of m_links, make sure to re-initialize or update existing m_links
+ {
+ m_links.resize(numLinks);
+ }
+
+ btScalar getLinearDamping() const
+ {
+ return m_linearDamping;
+ }
+ void setLinearDamping( btScalar damp)
+ {
+ m_linearDamping = damp;
+ }
+ btScalar getAngularDamping() const
+ {
+ return m_angularDamping;
+ }
+ void setAngularDamping( btScalar damp)
+ {
+ m_angularDamping = damp;
+ }
+
+ bool getUseGyroTerm() const
+ {
+ return m_useGyroTerm;
+ }
+ void setUseGyroTerm(bool useGyro)
+ {
+ m_useGyroTerm = useGyro;
+ }
+ btScalar getMaxCoordinateVelocity() const
+ {
+ return m_maxCoordinateVelocity ;
+ }
+ void setMaxCoordinateVelocity(btScalar maxVel)
+ {
+ m_maxCoordinateVelocity = maxVel;
+ }
+
+ btScalar getMaxAppliedImpulse() const
+ {
+ return m_maxAppliedImpulse;
+ }
+ void setMaxAppliedImpulse(btScalar maxImp)
+ {
+ m_maxAppliedImpulse = maxImp;
+ }
+ void setHasSelfCollision(bool hasSelfCollision)
+ {
+ m_hasSelfCollision = hasSelfCollision;
+ }
+ bool hasSelfCollision() const
+ {
+ return m_hasSelfCollision;
+ }
+
+
+ void finalizeMultiDof();
+
+ void useRK4Integration(bool use) { m_useRK4 = use; }
+ bool isUsingRK4Integration() const { return m_useRK4; }
+ void useGlobalVelocities(bool use) { m_useGlobalVelocities = use; }
+ bool isUsingGlobalVelocities() const { return m_useGlobalVelocities; }
+
+ bool isPosUpdated() const
+ {
+ return __posUpdated;
+ }
+ void setPosUpdated(bool updated)
+ {
+ __posUpdated = updated;
+ }
+
+ //internalNeedsJointFeedback is for internal use only
+ bool internalNeedsJointFeedback() const
+ {
+ return m_internalNeedsJointFeedback;
+ }
+ void forwardKinematics(btAlignedObjectArray<btQuaternion>& scratch_q,btAlignedObjectArray<btVector3>& scratch_m);
+
+ void compTreeLinkVelocities(btVector3 *omega, btVector3 *vel) const;
+
+ void updateCollisionObjectWorldTransforms(btAlignedObjectArray<btQuaternion>& scratch_q,btAlignedObjectArray<btVector3>& scratch_m);
+
+ virtual int calculateSerializeBufferSize() const;
+
+ ///fills the dataBuffer and returns the struct name (and 0 on failure)
+ virtual const char* serialize(void* dataBuffer, class btSerializer* serializer) const;
+
+ const char* getBaseName() const
+ {
+ return m_baseName;
+ }
+ ///memory of setBaseName needs to be manager by user
+ void setBaseName(const char* name)
+ {
+ m_baseName = name;
+ }
+
+ ///users can point to their objects, userPointer is not used by Bullet
+ void* getUserPointer() const
+ {
+ return m_userObjectPointer;
+ }
+
+ int getUserIndex() const
+ {
+ return m_userIndex;
+ }
+
+ int getUserIndex2() const
+ {
+ return m_userIndex2;
+ }
+ ///users can point to their objects, userPointer is not used by Bullet
+ void setUserPointer(void* userPointer)
+ {
+ m_userObjectPointer = userPointer;
+ }
+
+ ///users can point to their objects, userPointer is not used by Bullet
+ void setUserIndex(int index)
+ {
+ m_userIndex = index;
+ }
+
+ void setUserIndex2(int index)
+ {
+ m_userIndex2 = index;
+ }
+
+private:
+ btMultiBody(const btMultiBody &); // not implemented
+ void operator=(const btMultiBody &); // not implemented
+
+
+ void solveImatrix(const btVector3& rhs_top, const btVector3& rhs_bot, btScalar result[6]) const;
+ void solveImatrix(const btSpatialForceVector &rhs, btSpatialMotionVector &result) const;
+
+ void updateLinksDofOffsets()
+ {
+ int dofOffset = 0, cfgOffset = 0;
+ for(int bidx = 0; bidx < m_links.size(); ++bidx)
+ {
+ m_links[bidx].m_dofOffset = dofOffset; m_links[bidx].m_cfgOffset = cfgOffset;
+ dofOffset += m_links[bidx].m_dofCount; cfgOffset += m_links[bidx].m_posVarCount;
+ }
+ }
+
+ void mulMatrix(btScalar *pA, btScalar *pB, int rowsA, int colsA, int rowsB, int colsB, btScalar *pC) const;
+
+
+private:
+
+ btMultiBodyLinkCollider* m_baseCollider;//can be NULL
+ const char* m_baseName;//memory needs to be manager by user!
+
+ btVector3 m_basePos; // position of COM of base (world frame)
+ btQuaternion m_baseQuat; // rotates world points into base frame
+
+ btScalar m_baseMass; // mass of the base
+ btVector3 m_baseInertia; // inertia of the base (in local frame; diagonal)
+
+ btVector3 m_baseForce; // external force applied to base. World frame.
+ btVector3 m_baseTorque; // external torque applied to base. World frame.
+
+ btVector3 m_baseConstraintForce; // external force applied to base. World frame.
+ btVector3 m_baseConstraintTorque; // external torque applied to base. World frame.
+
+ btAlignedObjectArray<btMultibodyLink> m_links; // array of m_links, excluding the base. index from 0 to num_links-1.
+
+
+ //
+ // realBuf:
+ // offset size array
+ // 0 6 + num_links v (base_omega; base_vel; joint_vels) MULTIDOF [sysdof x sysdof for D matrices (TOO MUCH!) + pos_delta which is sys-cfg sized]
+ // 6+num_links num_links D
+ //
+ // vectorBuf:
+ // offset size array
+ // 0 num_links h_top
+ // num_links num_links h_bottom
+ //
+ // matrixBuf:
+ // offset size array
+ // 0 num_links+1 rot_from_parent
+ //
+ btAlignedObjectArray<btScalar> m_deltaV;
+ btAlignedObjectArray<btScalar> m_realBuf;
+ btAlignedObjectArray<btVector3> m_vectorBuf;
+ btAlignedObjectArray<btMatrix3x3> m_matrixBuf;
+
+
+ btMatrix3x3 m_cachedInertiaTopLeft;
+ btMatrix3x3 m_cachedInertiaTopRight;
+ btMatrix3x3 m_cachedInertiaLowerLeft;
+ btMatrix3x3 m_cachedInertiaLowerRight;
+ bool m_cachedInertiaValid;
+
+ bool m_fixedBase;
+
+ // Sleep parameters.
+ bool m_awake;
+ bool m_canSleep;
+ btScalar m_sleepTimer;
+
+ void* m_userObjectPointer;
+ int m_userIndex2;
+ int m_userIndex;
+
+ int m_companionId;
+ btScalar m_linearDamping;
+ btScalar m_angularDamping;
+ bool m_useGyroTerm;
+ btScalar m_maxAppliedImpulse;
+ btScalar m_maxCoordinateVelocity;
+ bool m_hasSelfCollision;
+
+ bool __posUpdated;
+ int m_dofCount, m_posVarCnt;
+ bool m_useRK4, m_useGlobalVelocities;
+
+ ///the m_needsJointFeedback gets updated/computed during the stepVelocitiesMultiDof and it for internal usage only
+ bool m_internalNeedsJointFeedback;
+};
+
+struct btMultiBodyLinkDoubleData
+{
+ btQuaternionDoubleData m_zeroRotParentToThis;
+ btVector3DoubleData m_parentComToThisComOffset;
+ btVector3DoubleData m_thisPivotToThisComOffset;
+ btVector3DoubleData m_jointAxisTop[6];
+ btVector3DoubleData m_jointAxisBottom[6];
+
+ btVector3DoubleData m_linkInertia; // inertia of the base (in local frame; diagonal)
+ double m_linkMass;
+ int m_parentIndex;
+ int m_jointType;
+
+ int m_dofCount;
+ int m_posVarCount;
+ double m_jointPos[7];
+ double m_jointVel[6];
+ double m_jointTorque[6];
+
+ double m_jointDamping;
+ double m_jointFriction;
+ double m_jointLowerLimit;
+ double m_jointUpperLimit;
+ double m_jointMaxForce;
+ double m_jointMaxVelocity;
+
+ char *m_linkName;
+ char *m_jointName;
+ btCollisionObjectDoubleData *m_linkCollider;
+ char *m_paddingPtr;
+
+};
+
+struct btMultiBodyLinkFloatData
+{
+ btQuaternionFloatData m_zeroRotParentToThis;
+ btVector3FloatData m_parentComToThisComOffset;
+ btVector3FloatData m_thisPivotToThisComOffset;
+ btVector3FloatData m_jointAxisTop[6];
+ btVector3FloatData m_jointAxisBottom[6];
+ btVector3FloatData m_linkInertia; // inertia of the base (in local frame; diagonal)
+ int m_dofCount;
+ float m_linkMass;
+ int m_parentIndex;
+ int m_jointType;
+
+
+
+ float m_jointPos[7];
+ float m_jointVel[6];
+ float m_jointTorque[6];
+ int m_posVarCount;
+ float m_jointDamping;
+ float m_jointFriction;
+ float m_jointLowerLimit;
+ float m_jointUpperLimit;
+ float m_jointMaxForce;
+ float m_jointMaxVelocity;
+
+ char *m_linkName;
+ char *m_jointName;
+ btCollisionObjectFloatData *m_linkCollider;
+ char *m_paddingPtr;
+
+};
+
+///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
+struct btMultiBodyDoubleData
+{
+ btTransformDoubleData m_baseWorldTransform;
+ btVector3DoubleData m_baseInertia; // inertia of the base (in local frame; diagonal)
+ double m_baseMass;
+
+ char *m_baseName;
+ btMultiBodyLinkDoubleData *m_links;
+ btCollisionObjectDoubleData *m_baseCollider;
+ char *m_paddingPtr;
+ int m_numLinks;
+ char m_padding[4];
+};
+
+///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
+struct btMultiBodyFloatData
+{
+ char *m_baseName;
+ btMultiBodyLinkFloatData *m_links;
+ btCollisionObjectFloatData *m_baseCollider;
+ btTransformFloatData m_baseWorldTransform;
+ btVector3FloatData m_baseInertia; // inertia of the base (in local frame; diagonal)
+
+ float m_baseMass;
+ int m_numLinks;
+};
+
+
+
+#endif
diff --git a/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyConstraint.cpp b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyConstraint.cpp
new file mode 100644
index 0000000000..d52852dd8e
--- /dev/null
+++ b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyConstraint.cpp
@@ -0,0 +1,417 @@
+#include "btMultiBodyConstraint.h"
+#include "BulletDynamics/Dynamics/btRigidBody.h"
+#include "btMultiBodyPoint2Point.h" //for testing (BTMBP2PCONSTRAINT_BLOCK_ANGULAR_MOTION_TEST macro)
+
+
+
+btMultiBodyConstraint::btMultiBodyConstraint(btMultiBody* bodyA,btMultiBody* bodyB,int linkA, int linkB, int numRows, bool isUnilateral)
+ :m_bodyA(bodyA),
+ m_bodyB(bodyB),
+ m_linkA(linkA),
+ m_linkB(linkB),
+ m_numRows(numRows),
+ m_jacSizeA(0),
+ m_jacSizeBoth(0),
+ m_isUnilateral(isUnilateral),
+ m_numDofsFinalized(-1),
+ m_maxAppliedImpulse(100)
+{
+
+}
+
+void btMultiBodyConstraint::updateJacobianSizes()
+{
+ if(m_bodyA)
+ {
+ m_jacSizeA = (6 + m_bodyA->getNumDofs());
+ }
+
+ if(m_bodyB)
+ {
+ m_jacSizeBoth = m_jacSizeA + 6 + m_bodyB->getNumDofs();
+ }
+ else
+ m_jacSizeBoth = m_jacSizeA;
+}
+
+void btMultiBodyConstraint::allocateJacobiansMultiDof()
+{
+ updateJacobianSizes();
+
+ m_posOffset = ((1 + m_jacSizeBoth)*m_numRows);
+ m_data.resize((2 + m_jacSizeBoth) * m_numRows);
+}
+
+btMultiBodyConstraint::~btMultiBodyConstraint()
+{
+}
+
+void btMultiBodyConstraint::applyDeltaVee(btMultiBodyJacobianData& data, btScalar* delta_vee, btScalar impulse, int velocityIndex, int ndof)
+{
+ for (int i = 0; i < ndof; ++i)
+ data.m_deltaVelocities[velocityIndex+i] += delta_vee[i] * impulse;
+}
+
+btScalar btMultiBodyConstraint::fillMultiBodyConstraint( btMultiBodySolverConstraint& solverConstraint,
+ btMultiBodyJacobianData& data,
+ btScalar* jacOrgA, btScalar* jacOrgB,
+ const btVector3& constraintNormalAng,
+ const btVector3& constraintNormalLin,
+ const btVector3& posAworld, const btVector3& posBworld,
+ btScalar posError,
+ const btContactSolverInfo& infoGlobal,
+ btScalar lowerLimit, btScalar upperLimit,
+ bool angConstraint,
+ btScalar relaxation,
+ bool isFriction, btScalar desiredVelocity, btScalar cfmSlip)
+{
+ solverConstraint.m_multiBodyA = m_bodyA;
+ solverConstraint.m_multiBodyB = m_bodyB;
+ solverConstraint.m_linkA = m_linkA;
+ solverConstraint.m_linkB = m_linkB;
+
+ btMultiBody* multiBodyA = solverConstraint.m_multiBodyA;
+ btMultiBody* multiBodyB = solverConstraint.m_multiBodyB;
+
+ btSolverBody* bodyA = multiBodyA ? 0 : &data.m_solverBodyPool->at(solverConstraint.m_solverBodyIdA);
+ btSolverBody* bodyB = multiBodyB ? 0 : &data.m_solverBodyPool->at(solverConstraint.m_solverBodyIdB);
+
+ btRigidBody* rb0 = multiBodyA ? 0 : bodyA->m_originalBody;
+ btRigidBody* rb1 = multiBodyB ? 0 : bodyB->m_originalBody;
+
+ btVector3 rel_pos1, rel_pos2; //these two used to be inited to posAworld and posBworld (respectively) but it does not seem necessary
+ if (bodyA)
+ rel_pos1 = posAworld - bodyA->getWorldTransform().getOrigin();
+ if (bodyB)
+ rel_pos2 = posBworld - bodyB->getWorldTransform().getOrigin();
+
+ if (multiBodyA)
+ {
+ if (solverConstraint.m_linkA<0)
+ {
+ rel_pos1 = posAworld - multiBodyA->getBasePos();
+ } else
+ {
+ rel_pos1 = posAworld - multiBodyA->getLink(solverConstraint.m_linkA).m_cachedWorldTransform.getOrigin();
+ }
+
+ const int ndofA = multiBodyA->getNumDofs() + 6;
+
+ solverConstraint.m_deltaVelAindex = multiBodyA->getCompanionId();
+
+ if (solverConstraint.m_deltaVelAindex <0)
+ {
+ solverConstraint.m_deltaVelAindex = data.m_deltaVelocities.size();
+ multiBodyA->setCompanionId(solverConstraint.m_deltaVelAindex);
+ data.m_deltaVelocities.resize(data.m_deltaVelocities.size()+ndofA);
+ } else
+ {
+ btAssert(data.m_deltaVelocities.size() >= solverConstraint.m_deltaVelAindex+ndofA);
+ }
+
+ //determine jacobian of this 1D constraint in terms of multibodyA's degrees of freedom
+ //resize..
+ solverConstraint.m_jacAindex = data.m_jacobians.size();
+ data.m_jacobians.resize(data.m_jacobians.size()+ndofA);
+ //copy/determine
+ if(jacOrgA)
+ {
+ for (int i=0;i<ndofA;i++)
+ data.m_jacobians[solverConstraint.m_jacAindex+i] = jacOrgA[i];
+ }
+ else
+ {
+ btScalar* jac1=&data.m_jacobians[solverConstraint.m_jacAindex];
+ //multiBodyA->fillContactJacobianMultiDof(solverConstraint.m_linkA, posAworld, constraintNormalLin, jac1, data.scratch_r, data.scratch_v, data.scratch_m);
+ multiBodyA->fillConstraintJacobianMultiDof(solverConstraint.m_linkA, posAworld, constraintNormalAng, constraintNormalLin, jac1, data.scratch_r, data.scratch_v, data.scratch_m);
+ }
+
+ //determine the velocity response of multibodyA to reaction impulses of this constraint (i.e. A[i,i] for i=1,...n_con: multibody's inverse inertia with respect to this 1D constraint)
+ //resize..
+ data.m_deltaVelocitiesUnitImpulse.resize(data.m_deltaVelocitiesUnitImpulse.size()+ndofA); //=> each constraint row has the constrained tree dofs allocated in m_deltaVelocitiesUnitImpulse
+ btAssert(data.m_jacobians.size() == data.m_deltaVelocitiesUnitImpulse.size());
+ btScalar* delta = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
+ //determine..
+ multiBodyA->calcAccelerationDeltasMultiDof(&data.m_jacobians[solverConstraint.m_jacAindex],delta,data.scratch_r, data.scratch_v);
+
+ btVector3 torqueAxis0;
+ if (angConstraint) {
+ torqueAxis0 = constraintNormalAng;
+ }
+ else {
+ torqueAxis0 = rel_pos1.cross(constraintNormalLin);
+
+ }
+ solverConstraint.m_relpos1CrossNormal = torqueAxis0;
+ solverConstraint.m_contactNormal1 = constraintNormalLin;
+ }
+ else //if(rb0)
+ {
+ btVector3 torqueAxis0;
+ if (angConstraint) {
+ torqueAxis0 = constraintNormalAng;
+ }
+ else {
+ torqueAxis0 = rel_pos1.cross(constraintNormalLin);
+ }
+ solverConstraint.m_angularComponentA = rb0 ? rb0->getInvInertiaTensorWorld()*torqueAxis0*rb0->getAngularFactor() : btVector3(0,0,0);
+ solverConstraint.m_relpos1CrossNormal = torqueAxis0;
+ solverConstraint.m_contactNormal1 = constraintNormalLin;
+ }
+
+ if (multiBodyB)
+ {
+ if (solverConstraint.m_linkB<0)
+ {
+ rel_pos2 = posBworld - multiBodyB->getBasePos();
+ } else
+ {
+ rel_pos2 = posBworld - multiBodyB->getLink(solverConstraint.m_linkB).m_cachedWorldTransform.getOrigin();
+ }
+
+ const int ndofB = multiBodyB->getNumDofs() + 6;
+
+ solverConstraint.m_deltaVelBindex = multiBodyB->getCompanionId();
+ if (solverConstraint.m_deltaVelBindex <0)
+ {
+ solverConstraint.m_deltaVelBindex = data.m_deltaVelocities.size();
+ multiBodyB->setCompanionId(solverConstraint.m_deltaVelBindex);
+ data.m_deltaVelocities.resize(data.m_deltaVelocities.size()+ndofB);
+ }
+
+ //determine jacobian of this 1D constraint in terms of multibodyB's degrees of freedom
+ //resize..
+ solverConstraint.m_jacBindex = data.m_jacobians.size();
+ data.m_jacobians.resize(data.m_jacobians.size()+ndofB);
+ //copy/determine..
+ if(jacOrgB)
+ {
+ for (int i=0;i<ndofB;i++)
+ data.m_jacobians[solverConstraint.m_jacBindex+i] = jacOrgB[i];
+ }
+ else
+ {
+ //multiBodyB->fillContactJacobianMultiDof(solverConstraint.m_linkB, posBworld, -constraintNormalLin, &data.m_jacobians[solverConstraint.m_jacBindex], data.scratch_r, data.scratch_v, data.scratch_m);
+ multiBodyB->fillConstraintJacobianMultiDof(solverConstraint.m_linkB, posBworld, -constraintNormalAng, -constraintNormalLin, &data.m_jacobians[solverConstraint.m_jacBindex], data.scratch_r, data.scratch_v, data.scratch_m);
+ }
+
+ //determine velocity response of multibodyB to reaction impulses of this constraint (i.e. A[i,i] for i=1,...n_con: multibody's inverse inertia with respect to this 1D constraint)
+ //resize..
+ data.m_deltaVelocitiesUnitImpulse.resize(data.m_deltaVelocitiesUnitImpulse.size()+ndofB);
+ btAssert(data.m_jacobians.size() == data.m_deltaVelocitiesUnitImpulse.size());
+ btScalar* delta = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
+ //determine..
+ multiBodyB->calcAccelerationDeltasMultiDof(&data.m_jacobians[solverConstraint.m_jacBindex],delta,data.scratch_r, data.scratch_v);
+
+ btVector3 torqueAxis1;
+ if (angConstraint) {
+ torqueAxis1 = constraintNormalAng;
+ }
+ else {
+ torqueAxis1 = rel_pos2.cross(constraintNormalLin);
+ }
+ solverConstraint.m_relpos2CrossNormal = -torqueAxis1;
+ solverConstraint.m_contactNormal2 = -constraintNormalLin;
+ }
+ else //if(rb1)
+ {
+ btVector3 torqueAxis1;
+ if (angConstraint) {
+ torqueAxis1 = constraintNormalAng;
+ }
+ else {
+ torqueAxis1 = rel_pos2.cross(constraintNormalLin);
+ }
+ solverConstraint.m_angularComponentB = rb1 ? rb1->getInvInertiaTensorWorld()*-torqueAxis1*rb1->getAngularFactor() : btVector3(0,0,0);
+ solverConstraint.m_relpos2CrossNormal = -torqueAxis1;
+ solverConstraint.m_contactNormal2 = -constraintNormalLin;
+ }
+ {
+
+ btVector3 vec;
+ btScalar denom0 = 0.f;
+ btScalar denom1 = 0.f;
+ btScalar* jacB = 0;
+ btScalar* jacA = 0;
+ btScalar* deltaVelA = 0;
+ btScalar* deltaVelB = 0;
+ int ndofA = 0;
+ //determine the "effective mass" of the constrained multibodyA with respect to this 1D constraint (i.e. 1/A[i,i])
+ if (multiBodyA)
+ {
+ ndofA = multiBodyA->getNumDofs() + 6;
+ jacA = &data.m_jacobians[solverConstraint.m_jacAindex];
+ deltaVelA = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
+ for (int i = 0; i < ndofA; ++i)
+ {
+ btScalar j = jacA[i] ;
+ btScalar l = deltaVelA[i];
+ denom0 += j*l;
+ }
+ }
+ else if(rb0)
+ {
+ vec = ( solverConstraint.m_angularComponentA).cross(rel_pos1);
+ if (angConstraint) {
+ denom0 = rb0->getInvMass() + constraintNormalAng.dot(vec);
+ }
+ else {
+ denom0 = rb0->getInvMass() + constraintNormalLin.dot(vec);
+ }
+ }
+ //
+ if (multiBodyB)
+ {
+ const int ndofB = multiBodyB->getNumDofs() + 6;
+ jacB = &data.m_jacobians[solverConstraint.m_jacBindex];
+ deltaVelB = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
+ for (int i = 0; i < ndofB; ++i)
+ {
+ btScalar j = jacB[i] ;
+ btScalar l = deltaVelB[i];
+ denom1 += j*l;
+ }
+
+ }
+ else if(rb1)
+ {
+ vec = ( -solverConstraint.m_angularComponentB).cross(rel_pos2);
+ if (angConstraint) {
+ denom1 = rb1->getInvMass() + constraintNormalAng.dot(vec);
+ }
+ else {
+ denom1 = rb1->getInvMass() + constraintNormalLin.dot(vec);
+ }
+ }
+
+ //
+ btScalar d = denom0+denom1;
+ if (d>SIMD_EPSILON)
+ {
+ solverConstraint.m_jacDiagABInv = relaxation/(d);
+ }
+ else
+ {
+ //disable the constraint row to handle singularity/redundant constraint
+ solverConstraint.m_jacDiagABInv = 0.f;
+ }
+ }
+
+
+ //compute rhs and remaining solverConstraint fields
+ btScalar penetration = isFriction? 0 : posError;
+
+ btScalar rel_vel = 0.f;
+ int ndofA = 0;
+ int ndofB = 0;
+ {
+ btVector3 vel1,vel2;
+ if (multiBodyA)
+ {
+ ndofA = multiBodyA->getNumDofs() + 6;
+ btScalar* jacA = &data.m_jacobians[solverConstraint.m_jacAindex];
+ for (int i = 0; i < ndofA ; ++i)
+ rel_vel += multiBodyA->getVelocityVector()[i] * jacA[i];
+ }
+ else if(rb0)
+ {
+ rel_vel += rb0->getVelocityInLocalPoint(rel_pos1).dot(solverConstraint.m_contactNormal1);
+ }
+ if (multiBodyB)
+ {
+ ndofB = multiBodyB->getNumDofs() + 6;
+ btScalar* jacB = &data.m_jacobians[solverConstraint.m_jacBindex];
+ for (int i = 0; i < ndofB ; ++i)
+ rel_vel += multiBodyB->getVelocityVector()[i] * jacB[i];
+
+ }
+ else if(rb1)
+ {
+ rel_vel += rb1->getVelocityInLocalPoint(rel_pos2).dot(solverConstraint.m_contactNormal2);
+ }
+
+ solverConstraint.m_friction = 0.f;//cp.m_combinedFriction;
+ }
+
+
+ ///warm starting (or zero if disabled)
+ /*
+ if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
+ {
+ solverConstraint.m_appliedImpulse = isFriction ? 0 : cp.m_appliedImpulse * infoGlobal.m_warmstartingFactor;
+
+ if (solverConstraint.m_appliedImpulse)
+ {
+ if (multiBodyA)
+ {
+ btScalar impulse = solverConstraint.m_appliedImpulse;
+ btScalar* deltaV = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
+ multiBodyA->applyDeltaVee(deltaV,impulse);
+ applyDeltaVee(data,deltaV,impulse,solverConstraint.m_deltaVelAindex,ndofA);
+ } else
+ {
+ if (rb0)
+ bodyA->internalApplyImpulse(solverConstraint.m_contactNormal1*bodyA->internalGetInvMass()*rb0->getLinearFactor(),solverConstraint.m_angularComponentA,solverConstraint.m_appliedImpulse);
+ }
+ if (multiBodyB)
+ {
+ btScalar impulse = solverConstraint.m_appliedImpulse;
+ btScalar* deltaV = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
+ multiBodyB->applyDeltaVee(deltaV,impulse);
+ applyDeltaVee(data,deltaV,impulse,solverConstraint.m_deltaVelBindex,ndofB);
+ } else
+ {
+ if (rb1)
+ bodyB->internalApplyImpulse(-solverConstraint.m_contactNormal2*bodyB->internalGetInvMass()*rb1->getLinearFactor(),-solverConstraint.m_angularComponentB,-(btScalar)solverConstraint.m_appliedImpulse);
+ }
+ }
+ } else
+ */
+
+ solverConstraint.m_appliedImpulse = 0.f;
+ solverConstraint.m_appliedPushImpulse = 0.f;
+
+ {
+
+ btScalar positionalError = 0.f;
+ btScalar velocityError = desiredVelocity - rel_vel;// * damping;
+
+
+ btScalar erp = infoGlobal.m_erp2;
+
+ //split impulse is not implemented yet for btMultiBody*
+ //if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
+ {
+ erp = infoGlobal.m_erp;
+ }
+
+ positionalError = -penetration * erp/infoGlobal.m_timeStep;
+
+ btScalar penetrationImpulse = positionalError*solverConstraint.m_jacDiagABInv;
+ btScalar velocityImpulse = velocityError *solverConstraint.m_jacDiagABInv;
+
+ //split impulse is not implemented yet for btMultiBody*
+
+ // if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
+ {
+ //combine position and velocity into rhs
+ solverConstraint.m_rhs = penetrationImpulse+velocityImpulse;
+ solverConstraint.m_rhsPenetration = 0.f;
+
+ }
+ /*else
+ {
+ //split position and velocity into rhs and m_rhsPenetration
+ solverConstraint.m_rhs = velocityImpulse;
+ solverConstraint.m_rhsPenetration = penetrationImpulse;
+ }
+ */
+
+ solverConstraint.m_cfm = 0.f;
+ solverConstraint.m_lowerLimit = lowerLimit;
+ solverConstraint.m_upperLimit = upperLimit;
+ }
+
+ return rel_vel;
+
+}
diff --git a/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyConstraint.h b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyConstraint.h
new file mode 100644
index 0000000000..83521b9501
--- /dev/null
+++ b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyConstraint.h
@@ -0,0 +1,195 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2013 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+#ifndef BT_MULTIBODY_CONSTRAINT_H
+#define BT_MULTIBODY_CONSTRAINT_H
+
+#include "LinearMath/btScalar.h"
+#include "LinearMath/btAlignedObjectArray.h"
+#include "btMultiBody.h"
+
+class btMultiBody;
+struct btSolverInfo;
+
+#include "btMultiBodySolverConstraint.h"
+
+struct btMultiBodyJacobianData
+{
+ btAlignedObjectArray<btScalar> m_jacobians;
+ btAlignedObjectArray<btScalar> m_deltaVelocitiesUnitImpulse; //holds the joint-space response of the corresp. tree to the test impulse in each constraint space dimension
+ btAlignedObjectArray<btScalar> m_deltaVelocities; //holds joint-space vectors of all the constrained trees accumulating the effect of corrective impulses applied in SI
+ btAlignedObjectArray<btScalar> scratch_r;
+ btAlignedObjectArray<btVector3> scratch_v;
+ btAlignedObjectArray<btMatrix3x3> scratch_m;
+ btAlignedObjectArray<btSolverBody>* m_solverBodyPool;
+ int m_fixedBodyId;
+
+};
+
+
+ATTRIBUTE_ALIGNED16(class) btMultiBodyConstraint
+{
+protected:
+
+ btMultiBody* m_bodyA;
+ btMultiBody* m_bodyB;
+ int m_linkA;
+ int m_linkB;
+
+ int m_numRows;
+ int m_jacSizeA;
+ int m_jacSizeBoth;
+ int m_posOffset;
+
+ bool m_isUnilateral;
+ int m_numDofsFinalized;
+ btScalar m_maxAppliedImpulse;
+
+
+ // warning: the data block lay out is not consistent for all constraints
+ // data block laid out as follows:
+ // cached impulses. (one per row.)
+ // jacobians. (interleaved, row1 body1 then row1 body2 then row2 body 1 etc)
+ // positions. (one per row.)
+ btAlignedObjectArray<btScalar> m_data;
+
+ void applyDeltaVee(btMultiBodyJacobianData& data, btScalar* delta_vee, btScalar impulse, int velocityIndex, int ndof);
+
+ btScalar fillMultiBodyConstraint(btMultiBodySolverConstraint& solverConstraint,
+ btMultiBodyJacobianData& data,
+ btScalar* jacOrgA, btScalar* jacOrgB,
+ const btVector3& constraintNormalAng,
+
+ const btVector3& constraintNormalLin,
+ const btVector3& posAworld, const btVector3& posBworld,
+ btScalar posError,
+ const btContactSolverInfo& infoGlobal,
+ btScalar lowerLimit, btScalar upperLimit,
+ bool angConstraint = false,
+
+ btScalar relaxation = 1.f,
+ bool isFriction = false, btScalar desiredVelocity=0, btScalar cfmSlip=0);
+
+public:
+
+ BT_DECLARE_ALIGNED_ALLOCATOR();
+
+ btMultiBodyConstraint(btMultiBody* bodyA,btMultiBody* bodyB,int linkA, int linkB, int numRows, bool isUnilateral);
+ virtual ~btMultiBodyConstraint();
+
+ void updateJacobianSizes();
+ void allocateJacobiansMultiDof();
+
+ //many constraints have setFrameInB/setPivotInB. Will use 'getConstraintType' later.
+ virtual void setFrameInB(const btMatrix3x3& frameInB) {}
+ virtual void setPivotInB(const btVector3& pivotInB){}
+
+ virtual void finalizeMultiDof()=0;
+
+ virtual int getIslandIdA() const =0;
+ virtual int getIslandIdB() const =0;
+
+ virtual void createConstraintRows(btMultiBodyConstraintArray& constraintRows,
+ btMultiBodyJacobianData& data,
+ const btContactSolverInfo& infoGlobal)=0;
+
+ int getNumRows() const
+ {
+ return m_numRows;
+ }
+
+ btMultiBody* getMultiBodyA()
+ {
+ return m_bodyA;
+ }
+ btMultiBody* getMultiBodyB()
+ {
+ return m_bodyB;
+ }
+
+ void internalSetAppliedImpulse(int dof, btScalar appliedImpulse)
+ {
+ btAssert(dof>=0);
+ btAssert(dof < getNumRows());
+ m_data[dof] = appliedImpulse;
+
+ }
+
+ btScalar getAppliedImpulse(int dof)
+ {
+ btAssert(dof>=0);
+ btAssert(dof < getNumRows());
+ return m_data[dof];
+ }
+ // current constraint position
+ // constraint is pos >= 0 for unilateral, or pos = 0 for bilateral
+ // NOTE: ignored position for friction rows.
+ btScalar getPosition(int row) const
+ {
+ return m_data[m_posOffset + row];
+ }
+
+ void setPosition(int row, btScalar pos)
+ {
+ m_data[m_posOffset + row] = pos;
+ }
+
+
+ bool isUnilateral() const
+ {
+ return m_isUnilateral;
+ }
+
+ // jacobian blocks.
+ // each of size 6 + num_links. (jacobian2 is null if no body2.)
+ // format: 3 'omega' coefficients, 3 'v' coefficients, then the 'qdot' coefficients.
+ btScalar* jacobianA(int row)
+ {
+ return &m_data[m_numRows + row * m_jacSizeBoth];
+ }
+ const btScalar* jacobianA(int row) const
+ {
+ return &m_data[m_numRows + (row * m_jacSizeBoth)];
+ }
+ btScalar* jacobianB(int row)
+ {
+ return &m_data[m_numRows + (row * m_jacSizeBoth) + m_jacSizeA];
+ }
+ const btScalar* jacobianB(int row) const
+ {
+ return &m_data[m_numRows + (row * m_jacSizeBoth) + m_jacSizeA];
+ }
+
+ btScalar getMaxAppliedImpulse() const
+ {
+ return m_maxAppliedImpulse;
+ }
+ void setMaxAppliedImpulse(btScalar maxImp)
+ {
+ m_maxAppliedImpulse = maxImp;
+ }
+
+ virtual void debugDraw(class btIDebugDraw* drawer)=0;
+
+ virtual void setGearRatio(btScalar ratio) {}
+ virtual void setGearAuxLink(int gearAuxLink) {}
+ virtual void setRelativePositionTarget(btScalar relPosTarget){}
+ virtual void setErp(btScalar erp){}
+
+
+};
+
+#endif //BT_MULTIBODY_CONSTRAINT_H
+
diff --git a/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyConstraintSolver.cpp b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyConstraintSolver.cpp
new file mode 100644
index 0000000000..1e2d074096
--- /dev/null
+++ b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyConstraintSolver.cpp
@@ -0,0 +1,1429 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2013 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+
+#include "btMultiBodyConstraintSolver.h"
+#include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h"
+#include "btMultiBodyLinkCollider.h"
+
+#include "BulletDynamics/ConstraintSolver/btSolverBody.h"
+#include "btMultiBodyConstraint.h"
+#include "BulletDynamics/ConstraintSolver/btContactSolverInfo.h"
+
+#include "LinearMath/btQuickprof.h"
+
+btScalar btMultiBodyConstraintSolver::solveSingleIteration(int iteration, btCollisionObject** bodies ,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer)
+{
+ btScalar leastSquaredResidual = btSequentialImpulseConstraintSolver::solveSingleIteration(iteration, bodies ,numBodies,manifoldPtr, numManifolds,constraints,numConstraints,infoGlobal,debugDrawer);
+
+ //solve featherstone non-contact constraints
+
+ //printf("m_multiBodyNonContactConstraints = %d\n",m_multiBodyNonContactConstraints.size());
+
+ for (int j=0;j<m_multiBodyNonContactConstraints.size();j++)
+ {
+ int index = iteration&1? j : m_multiBodyNonContactConstraints.size()-1-j;
+
+ btMultiBodySolverConstraint& constraint = m_multiBodyNonContactConstraints[index];
+
+ btScalar residual = resolveSingleConstraintRowGeneric(constraint);
+ leastSquaredResidual += residual*residual;
+
+ if(constraint.m_multiBodyA)
+ constraint.m_multiBodyA->setPosUpdated(false);
+ if(constraint.m_multiBodyB)
+ constraint.m_multiBodyB->setPosUpdated(false);
+ }
+
+ //solve featherstone normal contact
+ for (int j0=0;j0<m_multiBodyNormalContactConstraints.size();j0++)
+ {
+ int index = j0;//iteration&1? j0 : m_multiBodyNormalContactConstraints.size()-1-j0;
+
+ btMultiBodySolverConstraint& constraint = m_multiBodyNormalContactConstraints[index];
+ btScalar residual = 0.f;
+
+ if (iteration < infoGlobal.m_numIterations)
+ {
+ residual = resolveSingleConstraintRowGeneric(constraint);
+ }
+
+ leastSquaredResidual += residual*residual;
+
+ if(constraint.m_multiBodyA)
+ constraint.m_multiBodyA->setPosUpdated(false);
+ if(constraint.m_multiBodyB)
+ constraint.m_multiBodyB->setPosUpdated(false);
+ }
+
+ //solve featherstone frictional contact
+
+ for (int j1=0;j1<this->m_multiBodyFrictionContactConstraints.size();j1++)
+ {
+ if (iteration < infoGlobal.m_numIterations)
+ {
+ int index = j1;//iteration&1? j1 : m_multiBodyFrictionContactConstraints.size()-1-j1;
+
+ btMultiBodySolverConstraint& frictionConstraint = m_multiBodyFrictionContactConstraints[index];
+ btScalar totalImpulse = m_multiBodyNormalContactConstraints[frictionConstraint.m_frictionIndex].m_appliedImpulse;
+ //adjust friction limits here
+ if (totalImpulse>btScalar(0))
+ {
+ frictionConstraint.m_lowerLimit = -(frictionConstraint.m_friction*totalImpulse);
+ frictionConstraint.m_upperLimit = frictionConstraint.m_friction*totalImpulse;
+ btScalar residual = resolveSingleConstraintRowGeneric(frictionConstraint);
+ leastSquaredResidual += residual*residual;
+
+ if(frictionConstraint.m_multiBodyA)
+ frictionConstraint.m_multiBodyA->setPosUpdated(false);
+ if(frictionConstraint.m_multiBodyB)
+ frictionConstraint.m_multiBodyB->setPosUpdated(false);
+ }
+ }
+ }
+ return leastSquaredResidual;
+}
+
+btScalar btMultiBodyConstraintSolver::solveGroupCacheFriendlySetup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer)
+{
+ m_multiBodyNonContactConstraints.resize(0);
+ m_multiBodyNormalContactConstraints.resize(0);
+ m_multiBodyFrictionContactConstraints.resize(0);
+ m_data.m_jacobians.resize(0);
+ m_data.m_deltaVelocitiesUnitImpulse.resize(0);
+ m_data.m_deltaVelocities.resize(0);
+
+ for (int i=0;i<numBodies;i++)
+ {
+ const btMultiBodyLinkCollider* fcA = btMultiBodyLinkCollider::upcast(bodies[i]);
+ if (fcA)
+ {
+ fcA->m_multiBody->setCompanionId(-1);
+ }
+ }
+
+ btScalar val = btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup( bodies,numBodies,manifoldPtr, numManifolds, constraints,numConstraints,infoGlobal,debugDrawer);
+
+ return val;
+}
+
+void btMultiBodyConstraintSolver::applyDeltaVee(btScalar* delta_vee, btScalar impulse, int velocityIndex, int ndof)
+{
+ for (int i = 0; i < ndof; ++i)
+ m_data.m_deltaVelocities[velocityIndex+i] += delta_vee[i] * impulse;
+}
+
+btScalar btMultiBodyConstraintSolver::resolveSingleConstraintRowGeneric(const btMultiBodySolverConstraint& c)
+{
+
+ btScalar deltaImpulse = c.m_rhs-btScalar(c.m_appliedImpulse)*c.m_cfm;
+ btScalar deltaVelADotn=0;
+ btScalar deltaVelBDotn=0;
+ btSolverBody* bodyA = 0;
+ btSolverBody* bodyB = 0;
+ int ndofA=0;
+ int ndofB=0;
+
+ if (c.m_multiBodyA)
+ {
+ ndofA = c.m_multiBodyA->getNumDofs() + 6;
+ for (int i = 0; i < ndofA; ++i)
+ deltaVelADotn += m_data.m_jacobians[c.m_jacAindex+i] * m_data.m_deltaVelocities[c.m_deltaVelAindex+i];
+ } else if(c.m_solverBodyIdA >= 0)
+ {
+ bodyA = &m_tmpSolverBodyPool[c.m_solverBodyIdA];
+ deltaVelADotn += c.m_contactNormal1.dot(bodyA->internalGetDeltaLinearVelocity()) + c.m_relpos1CrossNormal.dot(bodyA->internalGetDeltaAngularVelocity());
+ }
+
+ if (c.m_multiBodyB)
+ {
+ ndofB = c.m_multiBodyB->getNumDofs() + 6;
+ for (int i = 0; i < ndofB; ++i)
+ deltaVelBDotn += m_data.m_jacobians[c.m_jacBindex+i] * m_data.m_deltaVelocities[c.m_deltaVelBindex+i];
+ } else if(c.m_solverBodyIdB >= 0)
+ {
+ bodyB = &m_tmpSolverBodyPool[c.m_solverBodyIdB];
+ deltaVelBDotn += c.m_contactNormal2.dot(bodyB->internalGetDeltaLinearVelocity()) + c.m_relpos2CrossNormal.dot(bodyB->internalGetDeltaAngularVelocity());
+ }
+
+
+ deltaImpulse -= deltaVelADotn*c.m_jacDiagABInv;//m_jacDiagABInv = 1./denom
+ deltaImpulse -= deltaVelBDotn*c.m_jacDiagABInv;
+ const btScalar sum = btScalar(c.m_appliedImpulse) + deltaImpulse;
+
+ if (sum < c.m_lowerLimit)
+ {
+ deltaImpulse = c.m_lowerLimit-c.m_appliedImpulse;
+ c.m_appliedImpulse = c.m_lowerLimit;
+ }
+ else if (sum > c.m_upperLimit)
+ {
+ deltaImpulse = c.m_upperLimit-c.m_appliedImpulse;
+ c.m_appliedImpulse = c.m_upperLimit;
+ }
+ else
+ {
+ c.m_appliedImpulse = sum;
+ }
+
+ if (c.m_multiBodyA)
+ {
+ applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacAindex],deltaImpulse,c.m_deltaVelAindex,ndofA);
+#ifdef DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
+ //note: update of the actual velocities (below) in the multibody does not have to happen now since m_deltaVelocities can be applied after all iterations
+ //it would make the multibody solver more like the regular one with m_deltaVelocities being equivalent to btSolverBody::m_deltaLinearVelocity/m_deltaAngularVelocity
+ c.m_multiBodyA->applyDeltaVeeMultiDof2(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacAindex],deltaImpulse);
+#endif //DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
+ } else if(c.m_solverBodyIdA >= 0)
+ {
+ bodyA->internalApplyImpulse(c.m_contactNormal1*bodyA->internalGetInvMass(),c.m_angularComponentA,deltaImpulse);
+
+ }
+ if (c.m_multiBodyB)
+ {
+ applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacBindex],deltaImpulse,c.m_deltaVelBindex,ndofB);
+#ifdef DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
+ //note: update of the actual velocities (below) in the multibody does not have to happen now since m_deltaVelocities can be applied after all iterations
+ //it would make the multibody solver more like the regular one with m_deltaVelocities being equivalent to btSolverBody::m_deltaLinearVelocity/m_deltaAngularVelocity
+ c.m_multiBodyB->applyDeltaVeeMultiDof2(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacBindex],deltaImpulse);
+#endif //DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
+ } else if(c.m_solverBodyIdB >= 0)
+ {
+ bodyB->internalApplyImpulse(c.m_contactNormal2*bodyB->internalGetInvMass(),c.m_angularComponentB,deltaImpulse);
+ }
+ return deltaImpulse;
+}
+
+
+
+
+void btMultiBodyConstraintSolver::setupMultiBodyContactConstraint(btMultiBodySolverConstraint& solverConstraint,
+ const btVector3& contactNormal,
+ btManifoldPoint& cp, const btContactSolverInfo& infoGlobal,
+ btScalar& relaxation,
+ bool isFriction, btScalar desiredVelocity, btScalar cfmSlip)
+{
+
+ BT_PROFILE("setupMultiBodyContactConstraint");
+ btVector3 rel_pos1;
+ btVector3 rel_pos2;
+
+ btMultiBody* multiBodyA = solverConstraint.m_multiBodyA;
+ btMultiBody* multiBodyB = solverConstraint.m_multiBodyB;
+
+ const btVector3& pos1 = cp.getPositionWorldOnA();
+ const btVector3& pos2 = cp.getPositionWorldOnB();
+
+ btSolverBody* bodyA = multiBodyA ? 0 : &m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdA];
+ btSolverBody* bodyB = multiBodyB ? 0 : &m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdB];
+
+ btRigidBody* rb0 = multiBodyA ? 0 : bodyA->m_originalBody;
+ btRigidBody* rb1 = multiBodyB ? 0 : bodyB->m_originalBody;
+
+ if (bodyA)
+ rel_pos1 = pos1 - bodyA->getWorldTransform().getOrigin();
+ if (bodyB)
+ rel_pos2 = pos2 - bodyB->getWorldTransform().getOrigin();
+
+ relaxation = infoGlobal.m_sor;
+
+ btScalar invTimeStep = btScalar(1)/infoGlobal.m_timeStep;
+
+ //cfm = 1 / ( dt * kp + kd )
+ //erp = dt * kp / ( dt * kp + kd )
+
+ btScalar cfm;
+ btScalar erp;
+ if (isFriction)
+ {
+ cfm = infoGlobal.m_frictionCFM;
+ erp = infoGlobal.m_frictionERP;
+ } else
+ {
+ cfm = infoGlobal.m_globalCfm;
+ erp = infoGlobal.m_erp2;
+
+ if ((cp.m_contactPointFlags&BT_CONTACT_FLAG_HAS_CONTACT_CFM) || (cp.m_contactPointFlags&BT_CONTACT_FLAG_HAS_CONTACT_ERP))
+ {
+ if (cp.m_contactPointFlags&BT_CONTACT_FLAG_HAS_CONTACT_CFM)
+ cfm = cp.m_contactCFM;
+ if (cp.m_contactPointFlags&BT_CONTACT_FLAG_HAS_CONTACT_ERP)
+ erp = cp.m_contactERP;
+ } else
+ {
+ if (cp.m_contactPointFlags & BT_CONTACT_FLAG_CONTACT_STIFFNESS_DAMPING)
+ {
+ btScalar denom = ( infoGlobal.m_timeStep * cp.m_combinedContactStiffness1 + cp.m_combinedContactDamping1 );
+ if (denom < SIMD_EPSILON)
+ {
+ denom = SIMD_EPSILON;
+ }
+ cfm = btScalar(1) / denom;
+ erp = (infoGlobal.m_timeStep * cp.m_combinedContactStiffness1) / denom;
+ }
+ }
+ }
+
+ cfm *= invTimeStep;
+
+ if (multiBodyA)
+ {
+ if (solverConstraint.m_linkA<0)
+ {
+ rel_pos1 = pos1 - multiBodyA->getBasePos();
+ } else
+ {
+ rel_pos1 = pos1 - multiBodyA->getLink(solverConstraint.m_linkA).m_cachedWorldTransform.getOrigin();
+ }
+ const int ndofA = multiBodyA->getNumDofs() + 6;
+
+ solverConstraint.m_deltaVelAindex = multiBodyA->getCompanionId();
+
+ if (solverConstraint.m_deltaVelAindex <0)
+ {
+ solverConstraint.m_deltaVelAindex = m_data.m_deltaVelocities.size();
+ multiBodyA->setCompanionId(solverConstraint.m_deltaVelAindex);
+ m_data.m_deltaVelocities.resize(m_data.m_deltaVelocities.size()+ndofA);
+ } else
+ {
+ btAssert(m_data.m_deltaVelocities.size() >= solverConstraint.m_deltaVelAindex+ndofA);
+ }
+
+ solverConstraint.m_jacAindex = m_data.m_jacobians.size();
+ m_data.m_jacobians.resize(m_data.m_jacobians.size()+ndofA);
+ m_data.m_deltaVelocitiesUnitImpulse.resize(m_data.m_deltaVelocitiesUnitImpulse.size()+ndofA);
+ btAssert(m_data.m_jacobians.size() == m_data.m_deltaVelocitiesUnitImpulse.size());
+
+ btScalar* jac1=&m_data.m_jacobians[solverConstraint.m_jacAindex];
+ multiBodyA->fillContactJacobianMultiDof(solverConstraint.m_linkA, cp.getPositionWorldOnA(), contactNormal, jac1, m_data.scratch_r, m_data.scratch_v, m_data.scratch_m);
+ btScalar* delta = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
+ multiBodyA->calcAccelerationDeltasMultiDof(&m_data.m_jacobians[solverConstraint.m_jacAindex],delta,m_data.scratch_r, m_data.scratch_v);
+
+ btVector3 torqueAxis0 = rel_pos1.cross(contactNormal);
+ solverConstraint.m_relpos1CrossNormal = torqueAxis0;
+ solverConstraint.m_contactNormal1 = contactNormal;
+ } else
+ {
+ btVector3 torqueAxis0 = rel_pos1.cross(contactNormal);
+ solverConstraint.m_relpos1CrossNormal = torqueAxis0;
+ solverConstraint.m_contactNormal1 = contactNormal;
+ solverConstraint.m_angularComponentA = rb0 ? rb0->getInvInertiaTensorWorld()*torqueAxis0*rb0->getAngularFactor() : btVector3(0,0,0);
+ }
+
+
+
+ if (multiBodyB)
+ {
+ if (solverConstraint.m_linkB<0)
+ {
+ rel_pos2 = pos2 - multiBodyB->getBasePos();
+ } else
+ {
+ rel_pos2 = pos2 - multiBodyB->getLink(solverConstraint.m_linkB).m_cachedWorldTransform.getOrigin();
+ }
+
+ const int ndofB = multiBodyB->getNumDofs() + 6;
+
+ solverConstraint.m_deltaVelBindex = multiBodyB->getCompanionId();
+ if (solverConstraint.m_deltaVelBindex <0)
+ {
+ solverConstraint.m_deltaVelBindex = m_data.m_deltaVelocities.size();
+ multiBodyB->setCompanionId(solverConstraint.m_deltaVelBindex);
+ m_data.m_deltaVelocities.resize(m_data.m_deltaVelocities.size()+ndofB);
+ }
+
+ solverConstraint.m_jacBindex = m_data.m_jacobians.size();
+
+ m_data.m_jacobians.resize(m_data.m_jacobians.size()+ndofB);
+ m_data.m_deltaVelocitiesUnitImpulse.resize(m_data.m_deltaVelocitiesUnitImpulse.size()+ndofB);
+ btAssert(m_data.m_jacobians.size() == m_data.m_deltaVelocitiesUnitImpulse.size());
+
+ multiBodyB->fillContactJacobianMultiDof(solverConstraint.m_linkB, cp.getPositionWorldOnB(), -contactNormal, &m_data.m_jacobians[solverConstraint.m_jacBindex], m_data.scratch_r, m_data.scratch_v, m_data.scratch_m);
+ multiBodyB->calcAccelerationDeltasMultiDof(&m_data.m_jacobians[solverConstraint.m_jacBindex],&m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex],m_data.scratch_r, m_data.scratch_v);
+
+ btVector3 torqueAxis1 = rel_pos2.cross(contactNormal);
+ solverConstraint.m_relpos2CrossNormal = -torqueAxis1;
+ solverConstraint.m_contactNormal2 = -contactNormal;
+
+ } else
+ {
+ btVector3 torqueAxis1 = rel_pos2.cross(contactNormal);
+ solverConstraint.m_relpos2CrossNormal = -torqueAxis1;
+ solverConstraint.m_contactNormal2 = -contactNormal;
+
+ solverConstraint.m_angularComponentB = rb1 ? rb1->getInvInertiaTensorWorld()*-torqueAxis1*rb1->getAngularFactor() : btVector3(0,0,0);
+ }
+
+ {
+
+ btVector3 vec;
+ btScalar denom0 = 0.f;
+ btScalar denom1 = 0.f;
+ btScalar* jacB = 0;
+ btScalar* jacA = 0;
+ btScalar* lambdaA =0;
+ btScalar* lambdaB =0;
+ int ndofA = 0;
+ if (multiBodyA)
+ {
+ ndofA = multiBodyA->getNumDofs() + 6;
+ jacA = &m_data.m_jacobians[solverConstraint.m_jacAindex];
+ lambdaA = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
+ for (int i = 0; i < ndofA; ++i)
+ {
+ btScalar j = jacA[i] ;
+ btScalar l =lambdaA[i];
+ denom0 += j*l;
+ }
+ } else
+ {
+ if (rb0)
+ {
+ vec = ( solverConstraint.m_angularComponentA).cross(rel_pos1);
+ denom0 = rb0->getInvMass() + contactNormal.dot(vec);
+ }
+ }
+ if (multiBodyB)
+ {
+ const int ndofB = multiBodyB->getNumDofs() + 6;
+ jacB = &m_data.m_jacobians[solverConstraint.m_jacBindex];
+ lambdaB = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
+ for (int i = 0; i < ndofB; ++i)
+ {
+ btScalar j = jacB[i] ;
+ btScalar l =lambdaB[i];
+ denom1 += j*l;
+ }
+
+ } else
+ {
+ if (rb1)
+ {
+ vec = ( -solverConstraint.m_angularComponentB).cross(rel_pos2);
+ denom1 = rb1->getInvMass() + contactNormal.dot(vec);
+ }
+ }
+
+
+
+ btScalar d = denom0+denom1+cfm;
+ if (d>SIMD_EPSILON)
+ {
+ solverConstraint.m_jacDiagABInv = relaxation/(d);
+ } else
+ {
+ //disable the constraint row to handle singularity/redundant constraint
+ solverConstraint.m_jacDiagABInv = 0.f;
+ }
+
+ }
+
+
+ //compute rhs and remaining solverConstraint fields
+
+
+
+ btScalar restitution = 0.f;
+ btScalar distance = 0;
+ if (!isFriction)
+ {
+ distance = cp.getDistance()+infoGlobal.m_linearSlop;
+ } else
+ {
+ if (cp.m_contactPointFlags & BT_CONTACT_FLAG_FRICTION_ANCHOR)
+ {
+ distance = (cp.getPositionWorldOnA() - cp.getPositionWorldOnB()).dot(contactNormal);
+ }
+ }
+
+
+ btScalar rel_vel = 0.f;
+ int ndofA = 0;
+ int ndofB = 0;
+ {
+
+ btVector3 vel1,vel2;
+ if (multiBodyA)
+ {
+ ndofA = multiBodyA->getNumDofs() + 6;
+ btScalar* jacA = &m_data.m_jacobians[solverConstraint.m_jacAindex];
+ for (int i = 0; i < ndofA ; ++i)
+ rel_vel += multiBodyA->getVelocityVector()[i] * jacA[i];
+ } else
+ {
+ if (rb0)
+ {
+ rel_vel += (rb0->getVelocityInLocalPoint(rel_pos1) +
+ (rb0->getTotalTorque()*rb0->getInvInertiaTensorWorld()*infoGlobal.m_timeStep).cross(rel_pos1)+
+ rb0->getTotalForce()*rb0->getInvMass()*infoGlobal.m_timeStep).dot(solverConstraint.m_contactNormal1);
+ }
+ }
+ if (multiBodyB)
+ {
+ ndofB = multiBodyB->getNumDofs() + 6;
+ btScalar* jacB = &m_data.m_jacobians[solverConstraint.m_jacBindex];
+ for (int i = 0; i < ndofB ; ++i)
+ rel_vel += multiBodyB->getVelocityVector()[i] * jacB[i];
+
+ } else
+ {
+ if (rb1)
+ {
+ rel_vel += (rb1->getVelocityInLocalPoint(rel_pos2)+
+ (rb1->getTotalTorque()*rb1->getInvInertiaTensorWorld()*infoGlobal.m_timeStep).cross(rel_pos2) +
+ rb1->getTotalForce()*rb1->getInvMass()*infoGlobal.m_timeStep).dot(solverConstraint.m_contactNormal2);
+ }
+ }
+
+ solverConstraint.m_friction = cp.m_combinedFriction;
+
+ if(!isFriction)
+ {
+ restitution = restitutionCurve(rel_vel, cp.m_combinedRestitution, infoGlobal.m_restitutionVelocityThreshold);
+ if (restitution <= btScalar(0.))
+ {
+ restitution = 0.f;
+ }
+ }
+ }
+
+
+ ///warm starting (or zero if disabled)
+ //disable warmstarting for btMultiBody, it has issues gaining energy (==explosion)
+ if (0)//infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
+ {
+ solverConstraint.m_appliedImpulse = isFriction ? 0 : cp.m_appliedImpulse * infoGlobal.m_warmstartingFactor;
+
+ if (solverConstraint.m_appliedImpulse)
+ {
+ if (multiBodyA)
+ {
+ btScalar impulse = solverConstraint.m_appliedImpulse;
+ btScalar* deltaV = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
+ multiBodyA->applyDeltaVeeMultiDof(deltaV,impulse);
+
+ applyDeltaVee(deltaV,impulse,solverConstraint.m_deltaVelAindex,ndofA);
+ } else
+ {
+ if (rb0)
+ bodyA->internalApplyImpulse(solverConstraint.m_contactNormal1*bodyA->internalGetInvMass()*rb0->getLinearFactor(),solverConstraint.m_angularComponentA,solverConstraint.m_appliedImpulse);
+ }
+ if (multiBodyB)
+ {
+ btScalar impulse = solverConstraint.m_appliedImpulse;
+ btScalar* deltaV = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
+ multiBodyB->applyDeltaVeeMultiDof(deltaV,impulse);
+ applyDeltaVee(deltaV,impulse,solverConstraint.m_deltaVelBindex,ndofB);
+ } else
+ {
+ if (rb1)
+ bodyB->internalApplyImpulse(-solverConstraint.m_contactNormal2*bodyB->internalGetInvMass()*rb1->getLinearFactor(),-solverConstraint.m_angularComponentB,-(btScalar)solverConstraint.m_appliedImpulse);
+ }
+ }
+ } else
+ {
+ solverConstraint.m_appliedImpulse = 0.f;
+ }
+
+ solverConstraint.m_appliedPushImpulse = 0.f;
+
+ {
+
+ btScalar positionalError = 0.f;
+ btScalar velocityError = restitution - rel_vel;// * damping; //note for friction restitution is always set to 0 (check above) so it is acutally velocityError = -rel_vel for friction
+ if (isFriction)
+ {
+ positionalError = -distance * erp/infoGlobal.m_timeStep;
+ } else
+ {
+ if (distance>0)
+ {
+ positionalError = 0;
+ velocityError -= distance / infoGlobal.m_timeStep;
+
+ } else
+ {
+ positionalError = -distance * erp/infoGlobal.m_timeStep;
+ }
+ }
+
+ btScalar penetrationImpulse = positionalError*solverConstraint.m_jacDiagABInv;
+ btScalar velocityImpulse = velocityError *solverConstraint.m_jacDiagABInv;
+
+ if(!isFriction)
+ {
+ // if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
+ {
+ //combine position and velocity into rhs
+ solverConstraint.m_rhs = penetrationImpulse+velocityImpulse;
+ solverConstraint.m_rhsPenetration = 0.f;
+
+ }
+ /*else
+ {
+ //split position and velocity into rhs and m_rhsPenetration
+ solverConstraint.m_rhs = velocityImpulse;
+ solverConstraint.m_rhsPenetration = penetrationImpulse;
+ }
+ */
+ solverConstraint.m_lowerLimit = 0;
+ solverConstraint.m_upperLimit = 1e10f;
+ }
+ else
+ {
+ solverConstraint.m_rhs = penetrationImpulse+velocityImpulse;
+ solverConstraint.m_rhsPenetration = 0.f;
+ solverConstraint.m_lowerLimit = -solverConstraint.m_friction;
+ solverConstraint.m_upperLimit = solverConstraint.m_friction;
+ }
+
+ solverConstraint.m_cfm = cfm*solverConstraint.m_jacDiagABInv;
+
+
+
+ }
+
+}
+
+void btMultiBodyConstraintSolver::setupMultiBodyTorsionalFrictionConstraint(btMultiBodySolverConstraint& solverConstraint,
+ const btVector3& constraintNormal,
+ btManifoldPoint& cp,
+ btScalar combinedTorsionalFriction,
+ const btContactSolverInfo& infoGlobal,
+ btScalar& relaxation,
+ bool isFriction, btScalar desiredVelocity, btScalar cfmSlip)
+{
+
+ BT_PROFILE("setupMultiBodyRollingFrictionConstraint");
+ btVector3 rel_pos1;
+ btVector3 rel_pos2;
+
+ btMultiBody* multiBodyA = solverConstraint.m_multiBodyA;
+ btMultiBody* multiBodyB = solverConstraint.m_multiBodyB;
+
+ const btVector3& pos1 = cp.getPositionWorldOnA();
+ const btVector3& pos2 = cp.getPositionWorldOnB();
+
+ btSolverBody* bodyA = multiBodyA ? 0 : &m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdA];
+ btSolverBody* bodyB = multiBodyB ? 0 : &m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdB];
+
+ btRigidBody* rb0 = multiBodyA ? 0 : bodyA->m_originalBody;
+ btRigidBody* rb1 = multiBodyB ? 0 : bodyB->m_originalBody;
+
+ if (bodyA)
+ rel_pos1 = pos1 - bodyA->getWorldTransform().getOrigin();
+ if (bodyB)
+ rel_pos2 = pos2 - bodyB->getWorldTransform().getOrigin();
+
+ relaxation = infoGlobal.m_sor;
+
+ // btScalar invTimeStep = btScalar(1)/infoGlobal.m_timeStep;
+
+
+ if (multiBodyA)
+ {
+ if (solverConstraint.m_linkA<0)
+ {
+ rel_pos1 = pos1 - multiBodyA->getBasePos();
+ } else
+ {
+ rel_pos1 = pos1 - multiBodyA->getLink(solverConstraint.m_linkA).m_cachedWorldTransform.getOrigin();
+ }
+ const int ndofA = multiBodyA->getNumDofs() + 6;
+
+ solverConstraint.m_deltaVelAindex = multiBodyA->getCompanionId();
+
+ if (solverConstraint.m_deltaVelAindex <0)
+ {
+ solverConstraint.m_deltaVelAindex = m_data.m_deltaVelocities.size();
+ multiBodyA->setCompanionId(solverConstraint.m_deltaVelAindex);
+ m_data.m_deltaVelocities.resize(m_data.m_deltaVelocities.size()+ndofA);
+ } else
+ {
+ btAssert(m_data.m_deltaVelocities.size() >= solverConstraint.m_deltaVelAindex+ndofA);
+ }
+
+ solverConstraint.m_jacAindex = m_data.m_jacobians.size();
+ m_data.m_jacobians.resize(m_data.m_jacobians.size()+ndofA);
+ m_data.m_deltaVelocitiesUnitImpulse.resize(m_data.m_deltaVelocitiesUnitImpulse.size()+ndofA);
+ btAssert(m_data.m_jacobians.size() == m_data.m_deltaVelocitiesUnitImpulse.size());
+
+ btScalar* jac1=&m_data.m_jacobians[solverConstraint.m_jacAindex];
+ multiBodyA->fillConstraintJacobianMultiDof(solverConstraint.m_linkA, cp.getPositionWorldOnA(), constraintNormal, btVector3(0,0,0), jac1, m_data.scratch_r, m_data.scratch_v, m_data.scratch_m);
+ btScalar* delta = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
+ multiBodyA->calcAccelerationDeltasMultiDof(&m_data.m_jacobians[solverConstraint.m_jacAindex],delta,m_data.scratch_r, m_data.scratch_v);
+
+ btVector3 torqueAxis0 = -constraintNormal;
+ solverConstraint.m_relpos1CrossNormal = torqueAxis0;
+ solverConstraint.m_contactNormal1 = btVector3(0,0,0);
+ } else
+ {
+ btVector3 torqueAxis0 = -constraintNormal;
+ solverConstraint.m_relpos1CrossNormal = torqueAxis0;
+ solverConstraint.m_contactNormal1 = btVector3(0,0,0);
+ solverConstraint.m_angularComponentA = rb0 ? rb0->getInvInertiaTensorWorld()*torqueAxis0*rb0->getAngularFactor() : btVector3(0,0,0);
+ }
+
+
+
+ if (multiBodyB)
+ {
+ if (solverConstraint.m_linkB<0)
+ {
+ rel_pos2 = pos2 - multiBodyB->getBasePos();
+ } else
+ {
+ rel_pos2 = pos2 - multiBodyB->getLink(solverConstraint.m_linkB).m_cachedWorldTransform.getOrigin();
+ }
+
+ const int ndofB = multiBodyB->getNumDofs() + 6;
+
+ solverConstraint.m_deltaVelBindex = multiBodyB->getCompanionId();
+ if (solverConstraint.m_deltaVelBindex <0)
+ {
+ solverConstraint.m_deltaVelBindex = m_data.m_deltaVelocities.size();
+ multiBodyB->setCompanionId(solverConstraint.m_deltaVelBindex);
+ m_data.m_deltaVelocities.resize(m_data.m_deltaVelocities.size()+ndofB);
+ }
+
+ solverConstraint.m_jacBindex = m_data.m_jacobians.size();
+
+ m_data.m_jacobians.resize(m_data.m_jacobians.size()+ndofB);
+ m_data.m_deltaVelocitiesUnitImpulse.resize(m_data.m_deltaVelocitiesUnitImpulse.size()+ndofB);
+ btAssert(m_data.m_jacobians.size() == m_data.m_deltaVelocitiesUnitImpulse.size());
+
+ multiBodyB->fillConstraintJacobianMultiDof(solverConstraint.m_linkB, cp.getPositionWorldOnB(), -constraintNormal, btVector3(0,0,0), &m_data.m_jacobians[solverConstraint.m_jacBindex], m_data.scratch_r, m_data.scratch_v, m_data.scratch_m);
+ multiBodyB->calcAccelerationDeltasMultiDof(&m_data.m_jacobians[solverConstraint.m_jacBindex],&m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex],m_data.scratch_r, m_data.scratch_v);
+
+ btVector3 torqueAxis1 = constraintNormal;
+ solverConstraint.m_relpos2CrossNormal = torqueAxis1;
+ solverConstraint.m_contactNormal2 = -btVector3(0,0,0);
+
+ } else
+ {
+ btVector3 torqueAxis1 = constraintNormal;
+ solverConstraint.m_relpos2CrossNormal = torqueAxis1;
+ solverConstraint.m_contactNormal2 = -btVector3(0,0,0);
+
+ solverConstraint.m_angularComponentB = rb1 ? rb1->getInvInertiaTensorWorld()*torqueAxis1*rb1->getAngularFactor() : btVector3(0,0,0);
+ }
+
+ {
+
+ btScalar denom0 = 0.f;
+ btScalar denom1 = 0.f;
+ btScalar* jacB = 0;
+ btScalar* jacA = 0;
+ btScalar* lambdaA =0;
+ btScalar* lambdaB =0;
+ int ndofA = 0;
+ if (multiBodyA)
+ {
+ ndofA = multiBodyA->getNumDofs() + 6;
+ jacA = &m_data.m_jacobians[solverConstraint.m_jacAindex];
+ lambdaA = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
+ for (int i = 0; i < ndofA; ++i)
+ {
+ btScalar j = jacA[i] ;
+ btScalar l =lambdaA[i];
+ denom0 += j*l;
+ }
+ } else
+ {
+ if (rb0)
+ {
+ btVector3 iMJaA = rb0?rb0->getInvInertiaTensorWorld()*solverConstraint.m_relpos1CrossNormal:btVector3(0,0,0);
+ denom0 = iMJaA.dot(solverConstraint.m_relpos1CrossNormal);
+ }
+ }
+ if (multiBodyB)
+ {
+ const int ndofB = multiBodyB->getNumDofs() + 6;
+ jacB = &m_data.m_jacobians[solverConstraint.m_jacBindex];
+ lambdaB = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
+ for (int i = 0; i < ndofB; ++i)
+ {
+ btScalar j = jacB[i] ;
+ btScalar l =lambdaB[i];
+ denom1 += j*l;
+ }
+
+ } else
+ {
+ if (rb1)
+ {
+ btVector3 iMJaB = rb1?rb1->getInvInertiaTensorWorld()*solverConstraint.m_relpos2CrossNormal:btVector3(0,0,0);
+ denom1 = iMJaB.dot(solverConstraint.m_relpos2CrossNormal);
+ }
+ }
+
+
+
+ btScalar d = denom0+denom1+infoGlobal.m_globalCfm;
+ if (d>SIMD_EPSILON)
+ {
+ solverConstraint.m_jacDiagABInv = relaxation/(d);
+ } else
+ {
+ //disable the constraint row to handle singularity/redundant constraint
+ solverConstraint.m_jacDiagABInv = 0.f;
+ }
+
+ }
+
+
+ //compute rhs and remaining solverConstraint fields
+
+
+
+ btScalar restitution = 0.f;
+ btScalar penetration = isFriction? 0 : cp.getDistance();
+
+ btScalar rel_vel = 0.f;
+ int ndofA = 0;
+ int ndofB = 0;
+ {
+
+ btVector3 vel1,vel2;
+ if (multiBodyA)
+ {
+ ndofA = multiBodyA->getNumDofs() + 6;
+ btScalar* jacA = &m_data.m_jacobians[solverConstraint.m_jacAindex];
+ for (int i = 0; i < ndofA ; ++i)
+ rel_vel += multiBodyA->getVelocityVector()[i] * jacA[i];
+ } else
+ {
+ if (rb0)
+ {
+ btSolverBody* solverBodyA = &m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdA];
+ rel_vel += solverConstraint.m_contactNormal1.dot(rb0?solverBodyA->m_linearVelocity+solverBodyA->m_externalForceImpulse:btVector3(0,0,0))
+ + solverConstraint.m_relpos1CrossNormal.dot(rb0?solverBodyA->m_angularVelocity:btVector3(0,0,0));
+
+ }
+ }
+ if (multiBodyB)
+ {
+ ndofB = multiBodyB->getNumDofs() + 6;
+ btScalar* jacB = &m_data.m_jacobians[solverConstraint.m_jacBindex];
+ for (int i = 0; i < ndofB ; ++i)
+ rel_vel += multiBodyB->getVelocityVector()[i] * jacB[i];
+
+ } else
+ {
+ if (rb1)
+ {
+ btSolverBody* solverBodyB = &m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdB];
+ rel_vel += solverConstraint.m_contactNormal2.dot(rb1?solverBodyB->m_linearVelocity+solverBodyB->m_externalForceImpulse:btVector3(0,0,0))
+ + solverConstraint.m_relpos2CrossNormal.dot(rb1?solverBodyB->m_angularVelocity:btVector3(0,0,0));
+
+ }
+ }
+
+ solverConstraint.m_friction =combinedTorsionalFriction;
+
+ if(!isFriction)
+ {
+ restitution = restitutionCurve(rel_vel, cp.m_combinedRestitution, infoGlobal.m_restitutionVelocityThreshold);
+ if (restitution <= btScalar(0.))
+ {
+ restitution = 0.f;
+ }
+ }
+ }
+
+
+ solverConstraint.m_appliedImpulse = 0.f;
+ solverConstraint.m_appliedPushImpulse = 0.f;
+
+ {
+
+ btScalar velocityError = 0 - rel_vel;// * damping; //note for friction restitution is always set to 0 (check above) so it is acutally velocityError = -rel_vel for friction
+
+
+
+ btScalar velocityImpulse = velocityError*solverConstraint.m_jacDiagABInv;
+
+ solverConstraint.m_rhs = velocityImpulse;
+ solverConstraint.m_rhsPenetration = 0.f;
+ solverConstraint.m_lowerLimit = -solverConstraint.m_friction;
+ solverConstraint.m_upperLimit = solverConstraint.m_friction;
+
+ solverConstraint.m_cfm = infoGlobal.m_globalCfm*solverConstraint.m_jacDiagABInv;
+
+
+
+ }
+
+}
+
+btMultiBodySolverConstraint& btMultiBodyConstraintSolver::addMultiBodyFrictionConstraint(const btVector3& normalAxis,btPersistentManifold* manifold,int frictionIndex,btManifoldPoint& cp,btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity, btScalar cfmSlip)
+{
+ BT_PROFILE("addMultiBodyFrictionConstraint");
+ btMultiBodySolverConstraint& solverConstraint = m_multiBodyFrictionContactConstraints.expandNonInitializing();
+ solverConstraint.m_orgConstraint = 0;
+ solverConstraint.m_orgDofIndex = -1;
+
+ solverConstraint.m_frictionIndex = frictionIndex;
+ bool isFriction = true;
+
+ const btMultiBodyLinkCollider* fcA = btMultiBodyLinkCollider::upcast(manifold->getBody0());
+ const btMultiBodyLinkCollider* fcB = btMultiBodyLinkCollider::upcast(manifold->getBody1());
+
+ btMultiBody* mbA = fcA? fcA->m_multiBody : 0;
+ btMultiBody* mbB = fcB? fcB->m_multiBody : 0;
+
+ int solverBodyIdA = mbA? -1 : getOrInitSolverBody(*colObj0,infoGlobal.m_timeStep);
+ int solverBodyIdB = mbB ? -1 : getOrInitSolverBody(*colObj1,infoGlobal.m_timeStep);
+
+ solverConstraint.m_solverBodyIdA = solverBodyIdA;
+ solverConstraint.m_solverBodyIdB = solverBodyIdB;
+ solverConstraint.m_multiBodyA = mbA;
+ if (mbA)
+ solverConstraint.m_linkA = fcA->m_link;
+
+ solverConstraint.m_multiBodyB = mbB;
+ if (mbB)
+ solverConstraint.m_linkB = fcB->m_link;
+
+ solverConstraint.m_originalContactPoint = &cp;
+
+ setupMultiBodyContactConstraint(solverConstraint, normalAxis, cp, infoGlobal,relaxation,isFriction, desiredVelocity, cfmSlip);
+ return solverConstraint;
+}
+
+btMultiBodySolverConstraint& btMultiBodyConstraintSolver::addMultiBodyTorsionalFrictionConstraint(const btVector3& normalAxis,btPersistentManifold* manifold,int frictionIndex,btManifoldPoint& cp,
+ btScalar combinedTorsionalFriction,
+ btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity, btScalar cfmSlip)
+{
+ BT_PROFILE("addMultiBodyRollingFrictionConstraint");
+ btMultiBodySolverConstraint& solverConstraint = m_multiBodyFrictionContactConstraints.expandNonInitializing();
+ solverConstraint.m_orgConstraint = 0;
+ solverConstraint.m_orgDofIndex = -1;
+
+ solverConstraint.m_frictionIndex = frictionIndex;
+ bool isFriction = true;
+
+ const btMultiBodyLinkCollider* fcA = btMultiBodyLinkCollider::upcast(manifold->getBody0());
+ const btMultiBodyLinkCollider* fcB = btMultiBodyLinkCollider::upcast(manifold->getBody1());
+
+ btMultiBody* mbA = fcA? fcA->m_multiBody : 0;
+ btMultiBody* mbB = fcB? fcB->m_multiBody : 0;
+
+ int solverBodyIdA = mbA? -1 : getOrInitSolverBody(*colObj0,infoGlobal.m_timeStep);
+ int solverBodyIdB = mbB ? -1 : getOrInitSolverBody(*colObj1,infoGlobal.m_timeStep);
+
+ solverConstraint.m_solverBodyIdA = solverBodyIdA;
+ solverConstraint.m_solverBodyIdB = solverBodyIdB;
+ solverConstraint.m_multiBodyA = mbA;
+ if (mbA)
+ solverConstraint.m_linkA = fcA->m_link;
+
+ solverConstraint.m_multiBodyB = mbB;
+ if (mbB)
+ solverConstraint.m_linkB = fcB->m_link;
+
+ solverConstraint.m_originalContactPoint = &cp;
+
+ setupMultiBodyTorsionalFrictionConstraint(solverConstraint, normalAxis, cp, combinedTorsionalFriction,infoGlobal,relaxation,isFriction, desiredVelocity, cfmSlip);
+ return solverConstraint;
+}
+
+void btMultiBodyConstraintSolver::convertMultiBodyContact(btPersistentManifold* manifold,const btContactSolverInfo& infoGlobal)
+{
+ const btMultiBodyLinkCollider* fcA = btMultiBodyLinkCollider::upcast(manifold->getBody0());
+ const btMultiBodyLinkCollider* fcB = btMultiBodyLinkCollider::upcast(manifold->getBody1());
+
+ btMultiBody* mbA = fcA? fcA->m_multiBody : 0;
+ btMultiBody* mbB = fcB? fcB->m_multiBody : 0;
+
+ btCollisionObject* colObj0=0,*colObj1=0;
+
+ colObj0 = (btCollisionObject*)manifold->getBody0();
+ colObj1 = (btCollisionObject*)manifold->getBody1();
+
+ int solverBodyIdA = mbA? -1 : getOrInitSolverBody(*colObj0,infoGlobal.m_timeStep);
+ int solverBodyIdB = mbB ? -1 : getOrInitSolverBody(*colObj1,infoGlobal.m_timeStep);
+
+// btSolverBody* solverBodyA = mbA ? 0 : &m_tmpSolverBodyPool[solverBodyIdA];
+// btSolverBody* solverBodyB = mbB ? 0 : &m_tmpSolverBodyPool[solverBodyIdB];
+
+
+ ///avoid collision response between two static objects
+// if (!solverBodyA || (solverBodyA->m_invMass.isZero() && (!solverBodyB || solverBodyB->m_invMass.isZero())))
+ // return;
+
+ //only a single rollingFriction per manifold
+ int rollingFriction=1;
+
+ for (int j=0;j<manifold->getNumContacts();j++)
+ {
+
+ btManifoldPoint& cp = manifold->getContactPoint(j);
+
+ if (cp.getDistance() <= manifold->getContactProcessingThreshold())
+ {
+
+ btScalar relaxation;
+
+ int frictionIndex = m_multiBodyNormalContactConstraints.size();
+
+ btMultiBodySolverConstraint& solverConstraint = m_multiBodyNormalContactConstraints.expandNonInitializing();
+
+ // btRigidBody* rb0 = btRigidBody::upcast(colObj0);
+ // btRigidBody* rb1 = btRigidBody::upcast(colObj1);
+ solverConstraint.m_orgConstraint = 0;
+ solverConstraint.m_orgDofIndex = -1;
+ solverConstraint.m_solverBodyIdA = solverBodyIdA;
+ solverConstraint.m_solverBodyIdB = solverBodyIdB;
+ solverConstraint.m_multiBodyA = mbA;
+ if (mbA)
+ solverConstraint.m_linkA = fcA->m_link;
+
+ solverConstraint.m_multiBodyB = mbB;
+ if (mbB)
+ solverConstraint.m_linkB = fcB->m_link;
+
+ solverConstraint.m_originalContactPoint = &cp;
+
+ bool isFriction = false;
+ setupMultiBodyContactConstraint(solverConstraint, cp.m_normalWorldOnB,cp, infoGlobal, relaxation, isFriction);
+
+// const btVector3& pos1 = cp.getPositionWorldOnA();
+// const btVector3& pos2 = cp.getPositionWorldOnB();
+
+ /////setup the friction constraints
+#define ENABLE_FRICTION
+#ifdef ENABLE_FRICTION
+ solverConstraint.m_frictionIndex = frictionIndex;
+
+ ///Bullet has several options to set the friction directions
+ ///By default, each contact has only a single friction direction that is recomputed automatically every frame
+ ///based on the relative linear velocity.
+ ///If the relative velocity is zero, it will automatically compute a friction direction.
+
+ ///You can also enable two friction directions, using the SOLVER_USE_2_FRICTION_DIRECTIONS.
+ ///In that case, the second friction direction will be orthogonal to both contact normal and first friction direction.
+ ///
+ ///If you choose SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION, then the friction will be independent from the relative projected velocity.
+ ///
+ ///The user can manually override the friction directions for certain contacts using a contact callback,
+ ///and set the cp.m_lateralFrictionInitialized to true
+ ///In that case, you can set the target relative motion in each friction direction (cp.m_contactMotion1 and cp.m_contactMotion2)
+ ///this will give a conveyor belt effect
+ ///
+
+ btPlaneSpace1(cp.m_normalWorldOnB,cp.m_lateralFrictionDir1,cp.m_lateralFrictionDir2);
+ cp.m_lateralFrictionDir1.normalize();
+ cp.m_lateralFrictionDir2.normalize();
+
+ if (rollingFriction > 0 )
+ {
+ if (cp.m_combinedSpinningFriction>0)
+ {
+ addMultiBodyTorsionalFrictionConstraint(cp.m_normalWorldOnB,manifold,frictionIndex,cp,cp.m_combinedSpinningFriction, colObj0,colObj1, relaxation,infoGlobal);
+ }
+ if (cp.m_combinedRollingFriction>0)
+ {
+
+ applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
+ applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
+ applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
+ applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
+
+ if (cp.m_lateralFrictionDir1.length()>0.001)
+ addMultiBodyTorsionalFrictionConstraint(cp.m_lateralFrictionDir1,manifold,frictionIndex,cp,cp.m_combinedRollingFriction, colObj0,colObj1, relaxation,infoGlobal);
+
+ if (cp.m_lateralFrictionDir2.length()>0.001)
+ addMultiBodyTorsionalFrictionConstraint(cp.m_lateralFrictionDir2,manifold,frictionIndex,cp,cp.m_combinedRollingFriction, colObj0,colObj1, relaxation,infoGlobal);
+ }
+ rollingFriction--;
+ }
+ if (!(infoGlobal.m_solverMode & SOLVER_ENABLE_FRICTION_DIRECTION_CACHING) || !(cp.m_contactPointFlags&BT_CONTACT_FLAG_LATERAL_FRICTION_INITIALIZED))
+ {/*
+ cp.m_lateralFrictionDir1 = vel - cp.m_normalWorldOnB * rel_vel;
+ btScalar lat_rel_vel = cp.m_lateralFrictionDir1.length2();
+ if (!(infoGlobal.m_solverMode & SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION) && lat_rel_vel > SIMD_EPSILON)
+ {
+ cp.m_lateralFrictionDir1 *= 1.f/btSqrt(lat_rel_vel);
+ if((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
+ {
+ cp.m_lateralFrictionDir2 = cp.m_lateralFrictionDir1.cross(cp.m_normalWorldOnB);
+ cp.m_lateralFrictionDir2.normalize();//??
+ applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
+ applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
+ addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
+
+ }
+
+ applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
+ applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
+ addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
+
+ } else
+ */
+ {
+
+
+ applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
+ applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
+ addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir1,manifold,frictionIndex,cp,colObj0,colObj1, relaxation,infoGlobal);
+
+
+ if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
+ {
+ applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
+ applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
+ addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir2,manifold,frictionIndex,cp,colObj0,colObj1, relaxation,infoGlobal);
+ }
+
+ if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS) && (infoGlobal.m_solverMode & SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION))
+ {
+ cp.m_contactPointFlags|=BT_CONTACT_FLAG_LATERAL_FRICTION_INITIALIZED;
+ }
+ }
+
+ } else
+ {
+ addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir1,manifold,frictionIndex,cp,colObj0,colObj1, relaxation,infoGlobal,cp.m_contactMotion1, cp.m_frictionCFM);
+
+ if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
+ addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir2,manifold,frictionIndex,cp,colObj0,colObj1, relaxation, infoGlobal,cp.m_contactMotion2, cp.m_frictionCFM);
+
+ //setMultiBodyFrictionConstraintImpulse( solverConstraint, solverBodyIdA, solverBodyIdB, cp, infoGlobal);
+ //todo:
+ solverConstraint.m_appliedImpulse = 0.f;
+ solverConstraint.m_appliedPushImpulse = 0.f;
+ }
+
+
+#endif //ENABLE_FRICTION
+
+ }
+ }
+}
+
+void btMultiBodyConstraintSolver::convertContacts(btPersistentManifold** manifoldPtr,int numManifolds, const btContactSolverInfo& infoGlobal)
+{
+ //btPersistentManifold* manifold = 0;
+
+ for (int i=0;i<numManifolds;i++)
+ {
+ btPersistentManifold* manifold= manifoldPtr[i];
+ const btMultiBodyLinkCollider* fcA = btMultiBodyLinkCollider::upcast(manifold->getBody0());
+ const btMultiBodyLinkCollider* fcB = btMultiBodyLinkCollider::upcast(manifold->getBody1());
+ if (!fcA && !fcB)
+ {
+ //the contact doesn't involve any Featherstone btMultiBody, so deal with the regular btRigidBody/btCollisionObject case
+ convertContact(manifold,infoGlobal);
+ } else
+ {
+ convertMultiBodyContact(manifold,infoGlobal);
+ }
+ }
+
+ //also convert the multibody constraints, if any
+
+
+ for (int i=0;i<m_tmpNumMultiBodyConstraints;i++)
+ {
+ btMultiBodyConstraint* c = m_tmpMultiBodyConstraints[i];
+ m_data.m_solverBodyPool = &m_tmpSolverBodyPool;
+ m_data.m_fixedBodyId = m_fixedBodyId;
+
+ c->createConstraintRows(m_multiBodyNonContactConstraints,m_data, infoGlobal);
+ }
+
+}
+
+
+
+btScalar btMultiBodyConstraintSolver::solveGroup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifold,int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& info, btIDebugDraw* debugDrawer,btDispatcher* dispatcher)
+{
+ return btSequentialImpulseConstraintSolver::solveGroup(bodies,numBodies,manifold,numManifolds,constraints,numConstraints,info,debugDrawer,dispatcher);
+}
+
+#if 0
+static void applyJointFeedback(btMultiBodyJacobianData& data, const btMultiBodySolverConstraint& solverConstraint, int jacIndex, btMultiBody* mb, btScalar appliedImpulse)
+{
+ if (appliedImpulse!=0 && mb->internalNeedsJointFeedback())
+ {
+ //todo: get rid of those temporary memory allocations for the joint feedback
+ btAlignedObjectArray<btScalar> forceVector;
+ int numDofsPlusBase = 6+mb->getNumDofs();
+ forceVector.resize(numDofsPlusBase);
+ for (int i=0;i<numDofsPlusBase;i++)
+ {
+ forceVector[i] = data.m_jacobians[jacIndex+i]*appliedImpulse;
+ }
+ btAlignedObjectArray<btScalar> output;
+ output.resize(numDofsPlusBase);
+ bool applyJointFeedback = true;
+ mb->calcAccelerationDeltasMultiDof(&forceVector[0],&output[0],data.scratch_r,data.scratch_v,applyJointFeedback);
+ }
+}
+#endif
+
+
+void btMultiBodyConstraintSolver::writeBackSolverBodyToMultiBody(btMultiBodySolverConstraint& c, btScalar deltaTime)
+{
+#if 1
+
+ //bod->addBaseForce(m_gravity * bod->getBaseMass());
+ //bod->addLinkForce(j, m_gravity * bod->getLinkMass(j));
+
+ if (c.m_orgConstraint)
+ {
+ c.m_orgConstraint->internalSetAppliedImpulse(c.m_orgDofIndex,c.m_appliedImpulse);
+ }
+
+
+ if (c.m_multiBodyA)
+ {
+
+ c.m_multiBodyA->setCompanionId(-1);
+ btVector3 force = c.m_contactNormal1*(c.m_appliedImpulse/deltaTime);
+ btVector3 torque = c.m_relpos1CrossNormal*(c.m_appliedImpulse/deltaTime);
+ if (c.m_linkA<0)
+ {
+ c.m_multiBodyA->addBaseConstraintForce(force);
+ c.m_multiBodyA->addBaseConstraintTorque(torque);
+ } else
+ {
+ c.m_multiBodyA->addLinkConstraintForce(c.m_linkA,force);
+ //b3Printf("force = %f,%f,%f\n",force[0],force[1],force[2]);//[0],torque[1],torque[2]);
+ c.m_multiBodyA->addLinkConstraintTorque(c.m_linkA,torque);
+ }
+ }
+
+ if (c.m_multiBodyB)
+ {
+ {
+ c.m_multiBodyB->setCompanionId(-1);
+ btVector3 force = c.m_contactNormal2*(c.m_appliedImpulse/deltaTime);
+ btVector3 torque = c.m_relpos2CrossNormal*(c.m_appliedImpulse/deltaTime);
+ if (c.m_linkB<0)
+ {
+ c.m_multiBodyB->addBaseConstraintForce(force);
+ c.m_multiBodyB->addBaseConstraintTorque(torque);
+ } else
+ {
+ {
+ c.m_multiBodyB->addLinkConstraintForce(c.m_linkB,force);
+ //b3Printf("t = %f,%f,%f\n",force[0],force[1],force[2]);//[0],torque[1],torque[2]);
+ c.m_multiBodyB->addLinkConstraintTorque(c.m_linkB,torque);
+ }
+
+ }
+ }
+ }
+#endif
+
+#ifndef DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
+
+ if (c.m_multiBodyA)
+ {
+
+ if(c.m_multiBodyA->isMultiDof())
+ {
+ c.m_multiBodyA->applyDeltaVeeMultiDof(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacAindex],c.m_appliedImpulse);
+ }
+ else
+ {
+ c.m_multiBodyA->applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacAindex],c.m_appliedImpulse);
+ }
+ }
+
+ if (c.m_multiBodyB)
+ {
+ if(c.m_multiBodyB->isMultiDof())
+ {
+ c.m_multiBodyB->applyDeltaVeeMultiDof(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacBindex],c.m_appliedImpulse);
+ }
+ else
+ {
+ c.m_multiBodyB->applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacBindex],c.m_appliedImpulse);
+ }
+ }
+#endif
+
+
+
+}
+
+btScalar btMultiBodyConstraintSolver::solveGroupCacheFriendlyFinish(btCollisionObject** bodies,int numBodies,const btContactSolverInfo& infoGlobal)
+{
+ BT_PROFILE("btMultiBodyConstraintSolver::solveGroupCacheFriendlyFinish");
+ int numPoolConstraints = m_multiBodyNormalContactConstraints.size();
+
+
+ //write back the delta v to the multi bodies, either as applied impulse (direct velocity change)
+ //or as applied force, so we can measure the joint reaction forces easier
+ for (int i=0;i<numPoolConstraints;i++)
+ {
+ btMultiBodySolverConstraint& solverConstraint = m_multiBodyNormalContactConstraints[i];
+ writeBackSolverBodyToMultiBody(solverConstraint,infoGlobal.m_timeStep);
+
+ writeBackSolverBodyToMultiBody(m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex],infoGlobal.m_timeStep);
+
+ if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
+ {
+ writeBackSolverBodyToMultiBody(m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1],infoGlobal.m_timeStep);
+ }
+ }
+
+
+ for (int i=0;i<m_multiBodyNonContactConstraints.size();i++)
+ {
+ btMultiBodySolverConstraint& solverConstraint = m_multiBodyNonContactConstraints[i];
+ writeBackSolverBodyToMultiBody(solverConstraint,infoGlobal.m_timeStep);
+ }
+
+
+ if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
+ {
+ BT_PROFILE("warm starting write back");
+ for (int j=0;j<numPoolConstraints;j++)
+ {
+ const btMultiBodySolverConstraint& solverConstraint = m_multiBodyNormalContactConstraints[j];
+ btManifoldPoint* pt = (btManifoldPoint*) solverConstraint.m_originalContactPoint;
+ btAssert(pt);
+ pt->m_appliedImpulse = solverConstraint.m_appliedImpulse;
+ pt->m_appliedImpulseLateral1 = m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_appliedImpulse;
+
+ //printf("pt->m_appliedImpulseLateral1 = %f\n", pt->m_appliedImpulseLateral1);
+ if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
+ {
+ pt->m_appliedImpulseLateral2 = m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_appliedImpulse;
+ }
+ //do a callback here?
+ }
+ }
+#if 0
+ //multibody joint feedback
+ {
+ BT_PROFILE("multi body joint feedback");
+ for (int j=0;j<numPoolConstraints;j++)
+ {
+ const btMultiBodySolverConstraint& solverConstraint = m_multiBodyNormalContactConstraints[j];
+
+ //apply the joint feedback into all links of the btMultiBody
+ //todo: double-check the signs of the applied impulse
+
+ if(solverConstraint.m_multiBodyA && solverConstraint.m_multiBodyA->isMultiDof())
+ {
+ applyJointFeedback(m_data,solverConstraint, solverConstraint.m_jacAindex,solverConstraint.m_multiBodyA, solverConstraint.m_appliedImpulse*btSimdScalar(1./infoGlobal.m_timeStep));
+ }
+ if(solverConstraint.m_multiBodyB && solverConstraint.m_multiBodyB->isMultiDof())
+ {
+ applyJointFeedback(m_data,solverConstraint, solverConstraint.m_jacBindex,solverConstraint.m_multiBodyB,solverConstraint.m_appliedImpulse*btSimdScalar(-1./infoGlobal.m_timeStep));
+ }
+#if 0
+ if (m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_multiBodyA && m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_multiBodyA->isMultiDof())
+ {
+ applyJointFeedback(m_data,m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex],
+ m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_jacAindex,
+ m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_multiBodyA,
+ m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_appliedImpulse*btSimdScalar(1./infoGlobal.m_timeStep));
+
+ }
+ if (m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_multiBodyB && m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_multiBodyB->isMultiDof())
+ {
+ applyJointFeedback(m_data,m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex],
+ m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_jacBindex,
+ m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_multiBodyB,
+ m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_appliedImpulse*btSimdScalar(-1./infoGlobal.m_timeStep));
+ }
+
+ if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
+ {
+ if (m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_multiBodyA && m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_multiBodyA->isMultiDof())
+ {
+ applyJointFeedback(m_data,m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1],
+ m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_jacAindex,
+ m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_multiBodyA,
+ m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_appliedImpulse*btSimdScalar(1./infoGlobal.m_timeStep));
+ }
+
+ if (m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_multiBodyB && m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_multiBodyB->isMultiDof())
+ {
+ applyJointFeedback(m_data,m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1],
+ m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_jacBindex,
+ m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_multiBodyB,
+ m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_appliedImpulse*btSimdScalar(-1./infoGlobal.m_timeStep));
+ }
+ }
+#endif
+ }
+
+ for (int i=0;i<m_multiBodyNonContactConstraints.size();i++)
+ {
+ const btMultiBodySolverConstraint& solverConstraint = m_multiBodyNonContactConstraints[i];
+ if(solverConstraint.m_multiBodyA && solverConstraint.m_multiBodyA->isMultiDof())
+ {
+ applyJointFeedback(m_data,solverConstraint, solverConstraint.m_jacAindex,solverConstraint.m_multiBodyA, solverConstraint.m_appliedImpulse*btSimdScalar(1./infoGlobal.m_timeStep));
+ }
+ if(solverConstraint.m_multiBodyB && solverConstraint.m_multiBodyB->isMultiDof())
+ {
+ applyJointFeedback(m_data,solverConstraint, solverConstraint.m_jacBindex,solverConstraint.m_multiBodyB,solverConstraint.m_appliedImpulse*btSimdScalar(1./infoGlobal.m_timeStep));
+ }
+ }
+ }
+
+ numPoolConstraints = m_multiBodyNonContactConstraints.size();
+
+#if 0
+ //@todo: m_originalContactPoint is not initialized for btMultiBodySolverConstraint
+ for (int i=0;i<numPoolConstraints;i++)
+ {
+ const btMultiBodySolverConstraint& c = m_multiBodyNonContactConstraints[i];
+
+ btTypedConstraint* constr = (btTypedConstraint*)c.m_originalContactPoint;
+ btJointFeedback* fb = constr->getJointFeedback();
+ if (fb)
+ {
+ fb->m_appliedForceBodyA += c.m_contactNormal1*c.m_appliedImpulse*constr->getRigidBodyA().getLinearFactor()/infoGlobal.m_timeStep;
+ fb->m_appliedForceBodyB += c.m_contactNormal2*c.m_appliedImpulse*constr->getRigidBodyB().getLinearFactor()/infoGlobal.m_timeStep;
+ fb->m_appliedTorqueBodyA += c.m_relpos1CrossNormal* constr->getRigidBodyA().getAngularFactor()*c.m_appliedImpulse/infoGlobal.m_timeStep;
+ fb->m_appliedTorqueBodyB += c.m_relpos2CrossNormal* constr->getRigidBodyB().getAngularFactor()*c.m_appliedImpulse/infoGlobal.m_timeStep; /*RGM ???? */
+
+ }
+
+ constr->internalSetAppliedImpulse(c.m_appliedImpulse);
+ if (btFabs(c.m_appliedImpulse)>=constr->getBreakingImpulseThreshold())
+ {
+ constr->setEnabled(false);
+ }
+
+ }
+#endif
+#endif
+
+ return btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyFinish(bodies,numBodies,infoGlobal);
+}
+
+
+void btMultiBodyConstraintSolver::solveMultiBodyGroup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifold,int numManifolds,btTypedConstraint** constraints,int numConstraints,btMultiBodyConstraint** multiBodyConstraints, int numMultiBodyConstraints, const btContactSolverInfo& info, btIDebugDraw* debugDrawer,btDispatcher* dispatcher)
+{
+ //printf("solveMultiBodyGroup start\n");
+ m_tmpMultiBodyConstraints = multiBodyConstraints;
+ m_tmpNumMultiBodyConstraints = numMultiBodyConstraints;
+
+ btSequentialImpulseConstraintSolver::solveGroup(bodies,numBodies,manifold,numManifolds,constraints,numConstraints,info,debugDrawer,dispatcher);
+
+ m_tmpMultiBodyConstraints = 0;
+ m_tmpNumMultiBodyConstraints = 0;
+
+
+}
diff --git a/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyConstraintSolver.h b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyConstraintSolver.h
new file mode 100644
index 0000000000..489347d874
--- /dev/null
+++ b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyConstraintSolver.h
@@ -0,0 +1,100 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2013 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+#ifndef BT_MULTIBODY_CONSTRAINT_SOLVER_H
+#define BT_MULTIBODY_CONSTRAINT_SOLVER_H
+
+#include "BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h"
+#include "btMultiBodySolverConstraint.h"
+
+#define DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
+
+class btMultiBody;
+
+#include "btMultiBodyConstraint.h"
+
+
+
+ATTRIBUTE_ALIGNED16(class) btMultiBodyConstraintSolver : public btSequentialImpulseConstraintSolver
+{
+
+protected:
+
+ btMultiBodyConstraintArray m_multiBodyNonContactConstraints;
+
+ btMultiBodyConstraintArray m_multiBodyNormalContactConstraints;
+ btMultiBodyConstraintArray m_multiBodyFrictionContactConstraints;
+
+ btMultiBodyJacobianData m_data;
+
+ //temp storage for multi body constraints for a specific island/group called by 'solveGroup'
+ btMultiBodyConstraint** m_tmpMultiBodyConstraints;
+ int m_tmpNumMultiBodyConstraints;
+
+ btScalar resolveSingleConstraintRowGeneric(const btMultiBodySolverConstraint& c);
+
+
+ void convertContacts(btPersistentManifold** manifoldPtr,int numManifolds, const btContactSolverInfo& infoGlobal);
+
+ btMultiBodySolverConstraint& addMultiBodyFrictionConstraint(const btVector3& normalAxis,btPersistentManifold* manifold,int frictionIndex,btManifoldPoint& cp,btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity=0, btScalar cfmSlip=0);
+
+ btMultiBodySolverConstraint& addMultiBodyTorsionalFrictionConstraint(const btVector3& normalAxis,btPersistentManifold* manifold,int frictionIndex,btManifoldPoint& cp,
+ btScalar combinedTorsionalFriction,
+ btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity=0, btScalar cfmSlip=0);
+
+ void setupMultiBodyJointLimitConstraint(btMultiBodySolverConstraint& constraintRow,
+ btScalar* jacA,btScalar* jacB,
+ btScalar penetration,btScalar combinedFrictionCoeff, btScalar combinedRestitutionCoeff,
+ const btContactSolverInfo& infoGlobal);
+
+ void setupMultiBodyContactConstraint(btMultiBodySolverConstraint& solverConstraint,
+ const btVector3& contactNormal,
+ btManifoldPoint& cp, const btContactSolverInfo& infoGlobal,
+ btScalar& relaxation,
+ bool isFriction, btScalar desiredVelocity=0, btScalar cfmSlip=0);
+
+ //either rolling or spinning friction
+ void setupMultiBodyTorsionalFrictionConstraint(btMultiBodySolverConstraint& solverConstraint,
+ const btVector3& contactNormal,
+ btManifoldPoint& cp,
+ btScalar combinedTorsionalFriction,
+ const btContactSolverInfo& infoGlobal,
+ btScalar& relaxation,
+ bool isFriction, btScalar desiredVelocity=0, btScalar cfmSlip=0);
+
+ void convertMultiBodyContact(btPersistentManifold* manifold,const btContactSolverInfo& infoGlobal);
+ virtual btScalar solveGroupCacheFriendlySetup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer);
+// virtual btScalar solveGroupCacheFriendlyIterations(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer);
+
+ virtual btScalar solveSingleIteration(int iteration, btCollisionObject** bodies ,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer);
+ void applyDeltaVee(btScalar* deltaV, btScalar impulse, int velocityIndex, int ndof);
+ void writeBackSolverBodyToMultiBody(btMultiBodySolverConstraint& constraint, btScalar deltaTime);
+public:
+
+ BT_DECLARE_ALIGNED_ALLOCATOR();
+
+ ///this method should not be called, it was just used during porting/integration of Featherstone btMultiBody, providing backwards compatibility but no support for btMultiBodyConstraint (only contact constraints)
+ virtual btScalar solveGroup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifold,int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& info, btIDebugDraw* debugDrawer,btDispatcher* dispatcher);
+ virtual btScalar solveGroupCacheFriendlyFinish(btCollisionObject** bodies,int numBodies,const btContactSolverInfo& infoGlobal);
+
+ virtual void solveMultiBodyGroup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifold,int numManifolds,btTypedConstraint** constraints,int numConstraints,btMultiBodyConstraint** multiBodyConstraints, int numMultiBodyConstraints, const btContactSolverInfo& info, btIDebugDraw* debugDrawer,btDispatcher* dispatcher);
+};
+
+
+
+
+
+#endif //BT_MULTIBODY_CONSTRAINT_SOLVER_H
+
diff --git a/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyDynamicsWorld.cpp b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyDynamicsWorld.cpp
new file mode 100644
index 0000000000..9eacc22647
--- /dev/null
+++ b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyDynamicsWorld.cpp
@@ -0,0 +1,991 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2013 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+#include "btMultiBodyDynamicsWorld.h"
+#include "btMultiBodyConstraintSolver.h"
+#include "btMultiBody.h"
+#include "btMultiBodyLinkCollider.h"
+#include "BulletCollision/CollisionDispatch/btSimulationIslandManager.h"
+#include "LinearMath/btQuickprof.h"
+#include "btMultiBodyConstraint.h"
+#include "LinearMath/btIDebugDraw.h"
+#include "LinearMath/btSerializer.h"
+
+
+void btMultiBodyDynamicsWorld::addMultiBody(btMultiBody* body, int group, int mask)
+{
+ m_multiBodies.push_back(body);
+
+}
+
+void btMultiBodyDynamicsWorld::removeMultiBody(btMultiBody* body)
+{
+ m_multiBodies.remove(body);
+}
+
+void btMultiBodyDynamicsWorld::calculateSimulationIslands()
+{
+ BT_PROFILE("calculateSimulationIslands");
+
+ getSimulationIslandManager()->updateActivationState(getCollisionWorld(),getCollisionWorld()->getDispatcher());
+
+ {
+ //merge islands based on speculative contact manifolds too
+ for (int i=0;i<this->m_predictiveManifolds.size();i++)
+ {
+ btPersistentManifold* manifold = m_predictiveManifolds[i];
+
+ const btCollisionObject* colObj0 = manifold->getBody0();
+ const btCollisionObject* colObj1 = manifold->getBody1();
+
+ if (((colObj0) && (!(colObj0)->isStaticOrKinematicObject())) &&
+ ((colObj1) && (!(colObj1)->isStaticOrKinematicObject())))
+ {
+ getSimulationIslandManager()->getUnionFind().unite((colObj0)->getIslandTag(),(colObj1)->getIslandTag());
+ }
+ }
+ }
+
+ {
+ int i;
+ int numConstraints = int(m_constraints.size());
+ for (i=0;i< numConstraints ; i++ )
+ {
+ btTypedConstraint* constraint = m_constraints[i];
+ if (constraint->isEnabled())
+ {
+ const btRigidBody* colObj0 = &constraint->getRigidBodyA();
+ const btRigidBody* colObj1 = &constraint->getRigidBodyB();
+
+ if (((colObj0) && (!(colObj0)->isStaticOrKinematicObject())) &&
+ ((colObj1) && (!(colObj1)->isStaticOrKinematicObject())))
+ {
+ getSimulationIslandManager()->getUnionFind().unite((colObj0)->getIslandTag(),(colObj1)->getIslandTag());
+ }
+ }
+ }
+ }
+
+ //merge islands linked by Featherstone link colliders
+ for (int i=0;i<m_multiBodies.size();i++)
+ {
+ btMultiBody* body = m_multiBodies[i];
+ {
+ btMultiBodyLinkCollider* prev = body->getBaseCollider();
+
+ for (int b=0;b<body->getNumLinks();b++)
+ {
+ btMultiBodyLinkCollider* cur = body->getLink(b).m_collider;
+
+ if (((cur) && (!(cur)->isStaticOrKinematicObject())) &&
+ ((prev) && (!(prev)->isStaticOrKinematicObject())))
+ {
+ int tagPrev = prev->getIslandTag();
+ int tagCur = cur->getIslandTag();
+ getSimulationIslandManager()->getUnionFind().unite(tagPrev, tagCur);
+ }
+ if (cur && !cur->isStaticOrKinematicObject())
+ prev = cur;
+
+ }
+ }
+ }
+
+ //merge islands linked by multibody constraints
+ {
+ for (int i=0;i<this->m_multiBodyConstraints.size();i++)
+ {
+ btMultiBodyConstraint* c = m_multiBodyConstraints[i];
+ int tagA = c->getIslandIdA();
+ int tagB = c->getIslandIdB();
+ if (tagA>=0 && tagB>=0)
+ getSimulationIslandManager()->getUnionFind().unite(tagA, tagB);
+ }
+ }
+
+ //Store the island id in each body
+ getSimulationIslandManager()->storeIslandActivationState(getCollisionWorld());
+
+}
+
+
+void btMultiBodyDynamicsWorld::updateActivationState(btScalar timeStep)
+{
+ BT_PROFILE("btMultiBodyDynamicsWorld::updateActivationState");
+
+
+
+ for ( int i=0;i<m_multiBodies.size();i++)
+ {
+ btMultiBody* body = m_multiBodies[i];
+ if (body)
+ {
+ body->checkMotionAndSleepIfRequired(timeStep);
+ if (!body->isAwake())
+ {
+ btMultiBodyLinkCollider* col = body->getBaseCollider();
+ if (col && col->getActivationState() == ACTIVE_TAG)
+ {
+ col->setActivationState( WANTS_DEACTIVATION);
+ col->setDeactivationTime(0.f);
+ }
+ for (int b=0;b<body->getNumLinks();b++)
+ {
+ btMultiBodyLinkCollider* col = body->getLink(b).m_collider;
+ if (col && col->getActivationState() == ACTIVE_TAG)
+ {
+ col->setActivationState( WANTS_DEACTIVATION);
+ col->setDeactivationTime(0.f);
+ }
+ }
+ } else
+ {
+ btMultiBodyLinkCollider* col = body->getBaseCollider();
+ if (col && col->getActivationState() != DISABLE_DEACTIVATION)
+ col->setActivationState( ACTIVE_TAG );
+
+ for (int b=0;b<body->getNumLinks();b++)
+ {
+ btMultiBodyLinkCollider* col = body->getLink(b).m_collider;
+ if (col && col->getActivationState() != DISABLE_DEACTIVATION)
+ col->setActivationState( ACTIVE_TAG );
+ }
+ }
+
+ }
+ }
+
+ btDiscreteDynamicsWorld::updateActivationState(timeStep);
+}
+
+
+SIMD_FORCE_INLINE int btGetConstraintIslandId2(const btTypedConstraint* lhs)
+{
+ int islandId;
+
+ const btCollisionObject& rcolObj0 = lhs->getRigidBodyA();
+ const btCollisionObject& rcolObj1 = lhs->getRigidBodyB();
+ islandId= rcolObj0.getIslandTag()>=0?rcolObj0.getIslandTag():rcolObj1.getIslandTag();
+ return islandId;
+
+}
+
+
+class btSortConstraintOnIslandPredicate2
+{
+ public:
+
+ bool operator() ( const btTypedConstraint* lhs, const btTypedConstraint* rhs ) const
+ {
+ int rIslandId0,lIslandId0;
+ rIslandId0 = btGetConstraintIslandId2(rhs);
+ lIslandId0 = btGetConstraintIslandId2(lhs);
+ return lIslandId0 < rIslandId0;
+ }
+};
+
+
+
+SIMD_FORCE_INLINE int btGetMultiBodyConstraintIslandId(const btMultiBodyConstraint* lhs)
+{
+ int islandId;
+
+ int islandTagA = lhs->getIslandIdA();
+ int islandTagB = lhs->getIslandIdB();
+ islandId= islandTagA>=0?islandTagA:islandTagB;
+ return islandId;
+
+}
+
+
+class btSortMultiBodyConstraintOnIslandPredicate
+{
+ public:
+
+ bool operator() ( const btMultiBodyConstraint* lhs, const btMultiBodyConstraint* rhs ) const
+ {
+ int rIslandId0,lIslandId0;
+ rIslandId0 = btGetMultiBodyConstraintIslandId(rhs);
+ lIslandId0 = btGetMultiBodyConstraintIslandId(lhs);
+ return lIslandId0 < rIslandId0;
+ }
+};
+
+struct MultiBodyInplaceSolverIslandCallback : public btSimulationIslandManager::IslandCallback
+{
+ btContactSolverInfo* m_solverInfo;
+ btMultiBodyConstraintSolver* m_solver;
+ btMultiBodyConstraint** m_multiBodySortedConstraints;
+ int m_numMultiBodyConstraints;
+
+ btTypedConstraint** m_sortedConstraints;
+ int m_numConstraints;
+ btIDebugDraw* m_debugDrawer;
+ btDispatcher* m_dispatcher;
+
+ btAlignedObjectArray<btCollisionObject*> m_bodies;
+ btAlignedObjectArray<btPersistentManifold*> m_manifolds;
+ btAlignedObjectArray<btTypedConstraint*> m_constraints;
+ btAlignedObjectArray<btMultiBodyConstraint*> m_multiBodyConstraints;
+
+
+ MultiBodyInplaceSolverIslandCallback( btMultiBodyConstraintSolver* solver,
+ btDispatcher* dispatcher)
+ :m_solverInfo(NULL),
+ m_solver(solver),
+ m_multiBodySortedConstraints(NULL),
+ m_numConstraints(0),
+ m_debugDrawer(NULL),
+ m_dispatcher(dispatcher)
+ {
+
+ }
+
+ MultiBodyInplaceSolverIslandCallback& operator=(MultiBodyInplaceSolverIslandCallback& other)
+ {
+ btAssert(0);
+ (void)other;
+ return *this;
+ }
+
+ SIMD_FORCE_INLINE void setup ( btContactSolverInfo* solverInfo, btTypedConstraint** sortedConstraints, int numConstraints, btMultiBodyConstraint** sortedMultiBodyConstraints, int numMultiBodyConstraints, btIDebugDraw* debugDrawer)
+ {
+ btAssert(solverInfo);
+ m_solverInfo = solverInfo;
+
+ m_multiBodySortedConstraints = sortedMultiBodyConstraints;
+ m_numMultiBodyConstraints = numMultiBodyConstraints;
+ m_sortedConstraints = sortedConstraints;
+ m_numConstraints = numConstraints;
+
+ m_debugDrawer = debugDrawer;
+ m_bodies.resize (0);
+ m_manifolds.resize (0);
+ m_constraints.resize (0);
+ m_multiBodyConstraints.resize(0);
+ }
+
+
+ virtual void processIsland(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifolds,int numManifolds, int islandId)
+ {
+ if (islandId<0)
+ {
+ ///we don't split islands, so all constraints/contact manifolds/bodies are passed into the solver regardless the island id
+ m_solver->solveMultiBodyGroup( bodies,numBodies,manifolds, numManifolds,m_sortedConstraints, m_numConstraints, &m_multiBodySortedConstraints[0],m_numConstraints,*m_solverInfo,m_debugDrawer,m_dispatcher);
+ } else
+ {
+ //also add all non-contact constraints/joints for this island
+ btTypedConstraint** startConstraint = 0;
+ btMultiBodyConstraint** startMultiBodyConstraint = 0;
+
+ int numCurConstraints = 0;
+ int numCurMultiBodyConstraints = 0;
+
+ int i;
+
+ //find the first constraint for this island
+
+ for (i=0;i<m_numConstraints;i++)
+ {
+ if (btGetConstraintIslandId2(m_sortedConstraints[i]) == islandId)
+ {
+ startConstraint = &m_sortedConstraints[i];
+ break;
+ }
+ }
+ //count the number of constraints in this island
+ for (;i<m_numConstraints;i++)
+ {
+ if (btGetConstraintIslandId2(m_sortedConstraints[i]) == islandId)
+ {
+ numCurConstraints++;
+ }
+ }
+
+ for (i=0;i<m_numMultiBodyConstraints;i++)
+ {
+ if (btGetMultiBodyConstraintIslandId(m_multiBodySortedConstraints[i]) == islandId)
+ {
+
+ startMultiBodyConstraint = &m_multiBodySortedConstraints[i];
+ break;
+ }
+ }
+ //count the number of multi body constraints in this island
+ for (;i<m_numMultiBodyConstraints;i++)
+ {
+ if (btGetMultiBodyConstraintIslandId(m_multiBodySortedConstraints[i]) == islandId)
+ {
+ numCurMultiBodyConstraints++;
+ }
+ }
+
+ //if (m_solverInfo->m_minimumSolverBatchSize<=1)
+ //{
+ // m_solver->solveGroup( bodies,numBodies,manifolds, numManifolds,startConstraint,numCurConstraints,*m_solverInfo,m_debugDrawer,m_dispatcher);
+ //} else
+ {
+
+ for (i=0;i<numBodies;i++)
+ m_bodies.push_back(bodies[i]);
+ for (i=0;i<numManifolds;i++)
+ m_manifolds.push_back(manifolds[i]);
+ for (i=0;i<numCurConstraints;i++)
+ m_constraints.push_back(startConstraint[i]);
+
+ for (i=0;i<numCurMultiBodyConstraints;i++)
+ m_multiBodyConstraints.push_back(startMultiBodyConstraint[i]);
+
+ if ((m_constraints.size()+m_manifolds.size())>m_solverInfo->m_minimumSolverBatchSize)
+ {
+ processConstraints();
+ } else
+ {
+ //printf("deferred\n");
+ }
+ }
+ }
+ }
+ void processConstraints()
+ {
+
+ btCollisionObject** bodies = m_bodies.size()? &m_bodies[0]:0;
+ btPersistentManifold** manifold = m_manifolds.size()?&m_manifolds[0]:0;
+ btTypedConstraint** constraints = m_constraints.size()?&m_constraints[0]:0;
+ btMultiBodyConstraint** multiBodyConstraints = m_multiBodyConstraints.size() ? &m_multiBodyConstraints[0] : 0;
+
+ //printf("mb contacts = %d, mb constraints = %d\n", mbContacts, m_multiBodyConstraints.size());
+
+ m_solver->solveMultiBodyGroup( bodies,m_bodies.size(),manifold, m_manifolds.size(),constraints, m_constraints.size() ,multiBodyConstraints, m_multiBodyConstraints.size(), *m_solverInfo,m_debugDrawer,m_dispatcher);
+ m_bodies.resize(0);
+ m_manifolds.resize(0);
+ m_constraints.resize(0);
+ m_multiBodyConstraints.resize(0);
+ }
+
+};
+
+
+
+btMultiBodyDynamicsWorld::btMultiBodyDynamicsWorld(btDispatcher* dispatcher,btBroadphaseInterface* pairCache,btMultiBodyConstraintSolver* constraintSolver,btCollisionConfiguration* collisionConfiguration)
+ :btDiscreteDynamicsWorld(dispatcher,pairCache,constraintSolver,collisionConfiguration),
+ m_multiBodyConstraintSolver(constraintSolver)
+{
+ //split impulse is not yet supported for Featherstone hierarchies
+// getSolverInfo().m_splitImpulse = false;
+ getSolverInfo().m_solverMode |=SOLVER_USE_2_FRICTION_DIRECTIONS;
+ m_solverMultiBodyIslandCallback = new MultiBodyInplaceSolverIslandCallback(constraintSolver,dispatcher);
+}
+
+btMultiBodyDynamicsWorld::~btMultiBodyDynamicsWorld ()
+{
+ delete m_solverMultiBodyIslandCallback;
+}
+
+void btMultiBodyDynamicsWorld::forwardKinematics()
+{
+
+ for (int b=0;b<m_multiBodies.size();b++)
+ {
+ btMultiBody* bod = m_multiBodies[b];
+ bod->forwardKinematics(m_scratch_world_to_local,m_scratch_local_origin);
+ }
+}
+void btMultiBodyDynamicsWorld::solveConstraints(btContactSolverInfo& solverInfo)
+{
+ forwardKinematics();
+
+
+
+ BT_PROFILE("solveConstraints");
+
+ m_sortedConstraints.resize( m_constraints.size());
+ int i;
+ for (i=0;i<getNumConstraints();i++)
+ {
+ m_sortedConstraints[i] = m_constraints[i];
+ }
+ m_sortedConstraints.quickSort(btSortConstraintOnIslandPredicate2());
+ btTypedConstraint** constraintsPtr = getNumConstraints() ? &m_sortedConstraints[0] : 0;
+
+ m_sortedMultiBodyConstraints.resize(m_multiBodyConstraints.size());
+ for (i=0;i<m_multiBodyConstraints.size();i++)
+ {
+ m_sortedMultiBodyConstraints[i] = m_multiBodyConstraints[i];
+ }
+ m_sortedMultiBodyConstraints.quickSort(btSortMultiBodyConstraintOnIslandPredicate());
+
+ btMultiBodyConstraint** sortedMultiBodyConstraints = m_sortedMultiBodyConstraints.size() ? &m_sortedMultiBodyConstraints[0] : 0;
+
+
+ m_solverMultiBodyIslandCallback->setup(&solverInfo,constraintsPtr,m_sortedConstraints.size(),sortedMultiBodyConstraints,m_sortedMultiBodyConstraints.size(), getDebugDrawer());
+ m_constraintSolver->prepareSolve(getCollisionWorld()->getNumCollisionObjects(), getCollisionWorld()->getDispatcher()->getNumManifolds());
+
+ /// solve all the constraints for this island
+ m_islandManager->buildAndProcessIslands(getCollisionWorld()->getDispatcher(),getCollisionWorld(),m_solverMultiBodyIslandCallback);
+
+#ifndef BT_USE_VIRTUAL_CLEARFORCES_AND_GRAVITY
+ {
+ BT_PROFILE("btMultiBody addForce");
+ for (int i=0;i<this->m_multiBodies.size();i++)
+ {
+ btMultiBody* bod = m_multiBodies[i];
+
+ bool isSleeping = false;
+
+ if (bod->getBaseCollider() && bod->getBaseCollider()->getActivationState() == ISLAND_SLEEPING)
+ {
+ isSleeping = true;
+ }
+ for (int b=0;b<bod->getNumLinks();b++)
+ {
+ if (bod->getLink(b).m_collider && bod->getLink(b).m_collider->getActivationState()==ISLAND_SLEEPING)
+ isSleeping = true;
+ }
+
+ if (!isSleeping)
+ {
+ //useless? they get resized in stepVelocities once again (AND DIFFERENTLY)
+ m_scratch_r.resize(bod->getNumLinks()+1); //multidof? ("Y"s use it and it is used to store qdd)
+ m_scratch_v.resize(bod->getNumLinks()+1);
+ m_scratch_m.resize(bod->getNumLinks()+1);
+
+ bod->addBaseForce(m_gravity * bod->getBaseMass());
+
+ for (int j = 0; j < bod->getNumLinks(); ++j)
+ {
+ bod->addLinkForce(j, m_gravity * bod->getLinkMass(j));
+ }
+ }//if (!isSleeping)
+ }
+ }
+#endif //BT_USE_VIRTUAL_CLEARFORCES_AND_GRAVITY
+
+
+ {
+ BT_PROFILE("btMultiBody stepVelocities");
+ for (int i=0;i<this->m_multiBodies.size();i++)
+ {
+ btMultiBody* bod = m_multiBodies[i];
+
+ bool isSleeping = false;
+
+ if (bod->getBaseCollider() && bod->getBaseCollider()->getActivationState() == ISLAND_SLEEPING)
+ {
+ isSleeping = true;
+ }
+ for (int b=0;b<bod->getNumLinks();b++)
+ {
+ if (bod->getLink(b).m_collider && bod->getLink(b).m_collider->getActivationState()==ISLAND_SLEEPING)
+ isSleeping = true;
+ }
+
+ if (!isSleeping)
+ {
+ //useless? they get resized in stepVelocities once again (AND DIFFERENTLY)
+ m_scratch_r.resize(bod->getNumLinks()+1); //multidof? ("Y"s use it and it is used to store qdd)
+ m_scratch_v.resize(bod->getNumLinks()+1);
+ m_scratch_m.resize(bod->getNumLinks()+1);
+ bool doNotUpdatePos = false;
+
+ {
+ if(!bod->isUsingRK4Integration())
+ {
+ bod->computeAccelerationsArticulatedBodyAlgorithmMultiDof(solverInfo.m_timeStep, m_scratch_r, m_scratch_v, m_scratch_m);
+ }
+ else
+ {
+ //
+ int numDofs = bod->getNumDofs() + 6;
+ int numPosVars = bod->getNumPosVars() + 7;
+ btAlignedObjectArray<btScalar> scratch_r2; scratch_r2.resize(2*numPosVars + 8*numDofs);
+ //convenience
+ btScalar *pMem = &scratch_r2[0];
+ btScalar *scratch_q0 = pMem; pMem += numPosVars;
+ btScalar *scratch_qx = pMem; pMem += numPosVars;
+ btScalar *scratch_qd0 = pMem; pMem += numDofs;
+ btScalar *scratch_qd1 = pMem; pMem += numDofs;
+ btScalar *scratch_qd2 = pMem; pMem += numDofs;
+ btScalar *scratch_qd3 = pMem; pMem += numDofs;
+ btScalar *scratch_qdd0 = pMem; pMem += numDofs;
+ btScalar *scratch_qdd1 = pMem; pMem += numDofs;
+ btScalar *scratch_qdd2 = pMem; pMem += numDofs;
+ btScalar *scratch_qdd3 = pMem; pMem += numDofs;
+ btAssert((pMem - (2*numPosVars + 8*numDofs)) == &scratch_r2[0]);
+
+ /////
+ //copy q0 to scratch_q0 and qd0 to scratch_qd0
+ scratch_q0[0] = bod->getWorldToBaseRot().x();
+ scratch_q0[1] = bod->getWorldToBaseRot().y();
+ scratch_q0[2] = bod->getWorldToBaseRot().z();
+ scratch_q0[3] = bod->getWorldToBaseRot().w();
+ scratch_q0[4] = bod->getBasePos().x();
+ scratch_q0[5] = bod->getBasePos().y();
+ scratch_q0[6] = bod->getBasePos().z();
+ //
+ for(int link = 0; link < bod->getNumLinks(); ++link)
+ {
+ for(int dof = 0; dof < bod->getLink(link).m_posVarCount; ++dof)
+ scratch_q0[7 + bod->getLink(link).m_cfgOffset + dof] = bod->getLink(link).m_jointPos[dof];
+ }
+ //
+ for(int dof = 0; dof < numDofs; ++dof)
+ scratch_qd0[dof] = bod->getVelocityVector()[dof];
+ ////
+ struct
+ {
+ btMultiBody *bod;
+ btScalar *scratch_qx, *scratch_q0;
+
+ void operator()()
+ {
+ for(int dof = 0; dof < bod->getNumPosVars() + 7; ++dof)
+ scratch_qx[dof] = scratch_q0[dof];
+ }
+ } pResetQx = {bod, scratch_qx, scratch_q0};
+ //
+ struct
+ {
+ void operator()(btScalar dt, const btScalar *pDer, const btScalar *pCurVal, btScalar *pVal, int size)
+ {
+ for(int i = 0; i < size; ++i)
+ pVal[i] = pCurVal[i] + dt * pDer[i];
+ }
+
+ } pEulerIntegrate;
+ //
+ struct
+ {
+ void operator()(btMultiBody *pBody, const btScalar *pData)
+ {
+ btScalar *pVel = const_cast<btScalar*>(pBody->getVelocityVector());
+
+ for(int i = 0; i < pBody->getNumDofs() + 6; ++i)
+ pVel[i] = pData[i];
+
+ }
+ } pCopyToVelocityVector;
+ //
+ struct
+ {
+ void operator()(const btScalar *pSrc, btScalar *pDst, int start, int size)
+ {
+ for(int i = 0; i < size; ++i)
+ pDst[i] = pSrc[start + i];
+ }
+ } pCopy;
+ //
+
+ btScalar h = solverInfo.m_timeStep;
+ #define output &m_scratch_r[bod->getNumDofs()]
+ //calc qdd0 from: q0 & qd0
+ bod->computeAccelerationsArticulatedBodyAlgorithmMultiDof(0., m_scratch_r, m_scratch_v, m_scratch_m);
+ pCopy(output, scratch_qdd0, 0, numDofs);
+ //calc q1 = q0 + h/2 * qd0
+ pResetQx();
+ bod->stepPositionsMultiDof(btScalar(.5)*h, scratch_qx, scratch_qd0);
+ //calc qd1 = qd0 + h/2 * qdd0
+ pEulerIntegrate(btScalar(.5)*h, scratch_qdd0, scratch_qd0, scratch_qd1, numDofs);
+ //
+ //calc qdd1 from: q1 & qd1
+ pCopyToVelocityVector(bod, scratch_qd1);
+ bod->computeAccelerationsArticulatedBodyAlgorithmMultiDof(0., m_scratch_r, m_scratch_v, m_scratch_m);
+ pCopy(output, scratch_qdd1, 0, numDofs);
+ //calc q2 = q0 + h/2 * qd1
+ pResetQx();
+ bod->stepPositionsMultiDof(btScalar(.5)*h, scratch_qx, scratch_qd1);
+ //calc qd2 = qd0 + h/2 * qdd1
+ pEulerIntegrate(btScalar(.5)*h, scratch_qdd1, scratch_qd0, scratch_qd2, numDofs);
+ //
+ //calc qdd2 from: q2 & qd2
+ pCopyToVelocityVector(bod, scratch_qd2);
+ bod->computeAccelerationsArticulatedBodyAlgorithmMultiDof(0., m_scratch_r, m_scratch_v, m_scratch_m);
+ pCopy(output, scratch_qdd2, 0, numDofs);
+ //calc q3 = q0 + h * qd2
+ pResetQx();
+ bod->stepPositionsMultiDof(h, scratch_qx, scratch_qd2);
+ //calc qd3 = qd0 + h * qdd2
+ pEulerIntegrate(h, scratch_qdd2, scratch_qd0, scratch_qd3, numDofs);
+ //
+ //calc qdd3 from: q3 & qd3
+ pCopyToVelocityVector(bod, scratch_qd3);
+ bod->computeAccelerationsArticulatedBodyAlgorithmMultiDof(0., m_scratch_r, m_scratch_v, m_scratch_m);
+ pCopy(output, scratch_qdd3, 0, numDofs);
+
+ //
+ //calc q = q0 + h/6(qd0 + 2*(qd1 + qd2) + qd3)
+ //calc qd = qd0 + h/6(qdd0 + 2*(qdd1 + qdd2) + qdd3)
+ btAlignedObjectArray<btScalar> delta_q; delta_q.resize(numDofs);
+ btAlignedObjectArray<btScalar> delta_qd; delta_qd.resize(numDofs);
+ for(int i = 0; i < numDofs; ++i)
+ {
+ delta_q[i] = h/btScalar(6.)*(scratch_qd0[i] + 2*scratch_qd1[i] + 2*scratch_qd2[i] + scratch_qd3[i]);
+ delta_qd[i] = h/btScalar(6.)*(scratch_qdd0[i] + 2*scratch_qdd1[i] + 2*scratch_qdd2[i] + scratch_qdd3[i]);
+ //delta_q[i] = h*scratch_qd0[i];
+ //delta_qd[i] = h*scratch_qdd0[i];
+ }
+ //
+ pCopyToVelocityVector(bod, scratch_qd0);
+ bod->applyDeltaVeeMultiDof(&delta_qd[0], 1);
+ //
+ if(!doNotUpdatePos)
+ {
+ btScalar *pRealBuf = const_cast<btScalar *>(bod->getVelocityVector());
+ pRealBuf += 6 + bod->getNumDofs() + bod->getNumDofs()*bod->getNumDofs();
+
+ for(int i = 0; i < numDofs; ++i)
+ pRealBuf[i] = delta_q[i];
+
+ //bod->stepPositionsMultiDof(1, 0, &delta_q[0]);
+ bod->setPosUpdated(true);
+ }
+
+ //ugly hack which resets the cached data to t0 (needed for constraint solver)
+ {
+ for(int link = 0; link < bod->getNumLinks(); ++link)
+ bod->getLink(link).updateCacheMultiDof();
+ bod->computeAccelerationsArticulatedBodyAlgorithmMultiDof(0, m_scratch_r, m_scratch_v, m_scratch_m);
+ }
+
+ }
+ }
+
+#ifndef BT_USE_VIRTUAL_CLEARFORCES_AND_GRAVITY
+ bod->clearForcesAndTorques();
+#endif //BT_USE_VIRTUAL_CLEARFORCES_AND_GRAVITY
+ }//if (!isSleeping)
+ }
+ }
+
+ clearMultiBodyConstraintForces();
+
+ m_solverMultiBodyIslandCallback->processConstraints();
+
+ m_constraintSolver->allSolved(solverInfo, m_debugDrawer);
+
+ {
+ BT_PROFILE("btMultiBody stepVelocities");
+ for (int i=0;i<this->m_multiBodies.size();i++)
+ {
+ btMultiBody* bod = m_multiBodies[i];
+
+ bool isSleeping = false;
+
+ if (bod->getBaseCollider() && bod->getBaseCollider()->getActivationState() == ISLAND_SLEEPING)
+ {
+ isSleeping = true;
+ }
+ for (int b=0;b<bod->getNumLinks();b++)
+ {
+ if (bod->getLink(b).m_collider && bod->getLink(b).m_collider->getActivationState()==ISLAND_SLEEPING)
+ isSleeping = true;
+ }
+
+ if (!isSleeping)
+ {
+ //useless? they get resized in stepVelocities once again (AND DIFFERENTLY)
+ m_scratch_r.resize(bod->getNumLinks()+1); //multidof? ("Y"s use it and it is used to store qdd)
+ m_scratch_v.resize(bod->getNumLinks()+1);
+ m_scratch_m.resize(bod->getNumLinks()+1);
+
+
+ {
+ if(!bod->isUsingRK4Integration())
+ {
+ bool isConstraintPass = true;
+ bod->computeAccelerationsArticulatedBodyAlgorithmMultiDof(solverInfo.m_timeStep, m_scratch_r, m_scratch_v, m_scratch_m, isConstraintPass);
+ }
+ }
+ }
+ }
+ }
+
+ for (int i=0;i<this->m_multiBodies.size();i++)
+ {
+ btMultiBody* bod = m_multiBodies[i];
+ bod->processDeltaVeeMultiDof2();
+ }
+
+}
+
+void btMultiBodyDynamicsWorld::integrateTransforms(btScalar timeStep)
+{
+ btDiscreteDynamicsWorld::integrateTransforms(timeStep);
+
+ {
+ BT_PROFILE("btMultiBody stepPositions");
+ //integrate and update the Featherstone hierarchies
+
+ for (int b=0;b<m_multiBodies.size();b++)
+ {
+ btMultiBody* bod = m_multiBodies[b];
+ bool isSleeping = false;
+ if (bod->getBaseCollider() && bod->getBaseCollider()->getActivationState() == ISLAND_SLEEPING)
+ {
+ isSleeping = true;
+ }
+ for (int b=0;b<bod->getNumLinks();b++)
+ {
+ if (bod->getLink(b).m_collider && bod->getLink(b).m_collider->getActivationState()==ISLAND_SLEEPING)
+ isSleeping = true;
+ }
+
+
+ if (!isSleeping)
+ {
+ int nLinks = bod->getNumLinks();
+
+ ///base + num m_links
+
+
+ {
+ if(!bod->isPosUpdated())
+ bod->stepPositionsMultiDof(timeStep);
+ else
+ {
+ btScalar *pRealBuf = const_cast<btScalar *>(bod->getVelocityVector());
+ pRealBuf += 6 + bod->getNumDofs() + bod->getNumDofs()*bod->getNumDofs();
+
+ bod->stepPositionsMultiDof(1, 0, pRealBuf);
+ bod->setPosUpdated(false);
+ }
+ }
+
+ m_scratch_world_to_local.resize(nLinks+1);
+ m_scratch_local_origin.resize(nLinks+1);
+
+ bod->updateCollisionObjectWorldTransforms(m_scratch_world_to_local,m_scratch_local_origin);
+
+ } else
+ {
+ bod->clearVelocities();
+ }
+ }
+ }
+}
+
+
+
+void btMultiBodyDynamicsWorld::addMultiBodyConstraint( btMultiBodyConstraint* constraint)
+{
+ m_multiBodyConstraints.push_back(constraint);
+}
+
+void btMultiBodyDynamicsWorld::removeMultiBodyConstraint( btMultiBodyConstraint* constraint)
+{
+ m_multiBodyConstraints.remove(constraint);
+}
+
+void btMultiBodyDynamicsWorld::debugDrawMultiBodyConstraint(btMultiBodyConstraint* constraint)
+{
+ constraint->debugDraw(getDebugDrawer());
+}
+
+
+void btMultiBodyDynamicsWorld::debugDrawWorld()
+{
+ BT_PROFILE("btMultiBodyDynamicsWorld debugDrawWorld");
+
+ btDiscreteDynamicsWorld::debugDrawWorld();
+
+ bool drawConstraints = false;
+ if (getDebugDrawer())
+ {
+ int mode = getDebugDrawer()->getDebugMode();
+ if (mode & (btIDebugDraw::DBG_DrawConstraints | btIDebugDraw::DBG_DrawConstraintLimits))
+ {
+ drawConstraints = true;
+ }
+
+ if (drawConstraints)
+ {
+ BT_PROFILE("btMultiBody debugDrawWorld");
+
+
+ for (int c=0;c<m_multiBodyConstraints.size();c++)
+ {
+ btMultiBodyConstraint* constraint = m_multiBodyConstraints[c];
+ debugDrawMultiBodyConstraint(constraint);
+ }
+
+ for (int b = 0; b<m_multiBodies.size(); b++)
+ {
+ btMultiBody* bod = m_multiBodies[b];
+ bod->forwardKinematics(m_scratch_world_to_local1,m_scratch_local_origin1);
+
+ getDebugDrawer()->drawTransform(bod->getBaseWorldTransform(), 0.1);
+
+
+ for (int m = 0; m<bod->getNumLinks(); m++)
+ {
+
+ const btTransform& tr = bod->getLink(m).m_cachedWorldTransform;
+
+ getDebugDrawer()->drawTransform(tr, 0.1);
+
+ //draw the joint axis
+ if (bod->getLink(m).m_jointType==btMultibodyLink::eRevolute)
+ {
+ btVector3 vec = quatRotate(tr.getRotation(),bod->getLink(m).m_axes[0].m_topVec);
+
+ btVector4 color(0,0,0,1);//1,1,1);
+ btVector3 from = vec+tr.getOrigin()-quatRotate(tr.getRotation(),bod->getLink(m).m_dVector);
+ btVector3 to = tr.getOrigin()-quatRotate(tr.getRotation(),bod->getLink(m).m_dVector);
+ getDebugDrawer()->drawLine(from,to,color);
+ }
+ if (bod->getLink(m).m_jointType==btMultibodyLink::eFixed)
+ {
+ btVector3 vec = quatRotate(tr.getRotation(),bod->getLink(m).m_axes[0].m_bottomVec);
+
+ btVector4 color(0,0,0,1);//1,1,1);
+ btVector3 from = vec+tr.getOrigin()-quatRotate(tr.getRotation(),bod->getLink(m).m_dVector);
+ btVector3 to = tr.getOrigin()-quatRotate(tr.getRotation(),bod->getLink(m).m_dVector);
+ getDebugDrawer()->drawLine(from,to,color);
+ }
+ if (bod->getLink(m).m_jointType==btMultibodyLink::ePrismatic)
+ {
+ btVector3 vec = quatRotate(tr.getRotation(),bod->getLink(m).m_axes[0].m_bottomVec);
+
+ btVector4 color(0,0,0,1);//1,1,1);
+ btVector3 from = vec+tr.getOrigin()-quatRotate(tr.getRotation(),bod->getLink(m).m_dVector);
+ btVector3 to = tr.getOrigin()-quatRotate(tr.getRotation(),bod->getLink(m).m_dVector);
+ getDebugDrawer()->drawLine(from,to,color);
+ }
+
+ }
+ }
+ }
+ }
+
+
+}
+
+
+
+void btMultiBodyDynamicsWorld::applyGravity()
+{
+ btDiscreteDynamicsWorld::applyGravity();
+#ifdef BT_USE_VIRTUAL_CLEARFORCES_AND_GRAVITY
+ BT_PROFILE("btMultiBody addGravity");
+ for (int i=0;i<this->m_multiBodies.size();i++)
+ {
+ btMultiBody* bod = m_multiBodies[i];
+
+ bool isSleeping = false;
+
+ if (bod->getBaseCollider() && bod->getBaseCollider()->getActivationState() == ISLAND_SLEEPING)
+ {
+ isSleeping = true;
+ }
+ for (int b=0;b<bod->getNumLinks();b++)
+ {
+ if (bod->getLink(b).m_collider && bod->getLink(b).m_collider->getActivationState()==ISLAND_SLEEPING)
+ isSleeping = true;
+ }
+
+ if (!isSleeping)
+ {
+ bod->addBaseForce(m_gravity * bod->getBaseMass());
+
+ for (int j = 0; j < bod->getNumLinks(); ++j)
+ {
+ bod->addLinkForce(j, m_gravity * bod->getLinkMass(j));
+ }
+ }//if (!isSleeping)
+ }
+#endif //BT_USE_VIRTUAL_CLEARFORCES_AND_GRAVITY
+}
+
+void btMultiBodyDynamicsWorld::clearMultiBodyConstraintForces()
+{
+ for (int i=0;i<this->m_multiBodies.size();i++)
+ {
+ btMultiBody* bod = m_multiBodies[i];
+ bod->clearConstraintForces();
+ }
+}
+void btMultiBodyDynamicsWorld::clearMultiBodyForces()
+{
+ {
+ // BT_PROFILE("clearMultiBodyForces");
+ for (int i=0;i<this->m_multiBodies.size();i++)
+ {
+ btMultiBody* bod = m_multiBodies[i];
+
+ bool isSleeping = false;
+
+ if (bod->getBaseCollider() && bod->getBaseCollider()->getActivationState() == ISLAND_SLEEPING)
+ {
+ isSleeping = true;
+ }
+ for (int b=0;b<bod->getNumLinks();b++)
+ {
+ if (bod->getLink(b).m_collider && bod->getLink(b).m_collider->getActivationState()==ISLAND_SLEEPING)
+ isSleeping = true;
+ }
+
+ if (!isSleeping)
+ {
+ btMultiBody* bod = m_multiBodies[i];
+ bod->clearForcesAndTorques();
+ }
+ }
+ }
+
+}
+void btMultiBodyDynamicsWorld::clearForces()
+{
+ btDiscreteDynamicsWorld::clearForces();
+
+#ifdef BT_USE_VIRTUAL_CLEARFORCES_AND_GRAVITY
+ clearMultiBodyForces();
+#endif
+}
+
+
+
+
+void btMultiBodyDynamicsWorld::serialize(btSerializer* serializer)
+{
+
+ serializer->startSerialization();
+
+ serializeDynamicsWorldInfo( serializer);
+
+ serializeMultiBodies(serializer);
+
+ serializeRigidBodies(serializer);
+
+ serializeCollisionObjects(serializer);
+
+ serializer->finishSerialization();
+}
+
+void btMultiBodyDynamicsWorld::serializeMultiBodies(btSerializer* serializer)
+{
+ int i;
+ //serialize all collision objects
+ for (i=0;i<m_multiBodies.size();i++)
+ {
+ btMultiBody* mb = m_multiBodies[i];
+ {
+ int len = mb->calculateSerializeBufferSize();
+ btChunk* chunk = serializer->allocate(len,1);
+ const char* structType = mb->serialize(chunk->m_oldPtr, serializer);
+ serializer->finalizeChunk(chunk,structType,BT_MULTIBODY_CODE,mb);
+ }
+ }
+
+} \ No newline at end of file
diff --git a/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyDynamicsWorld.h b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyDynamicsWorld.h
new file mode 100644
index 0000000000..c0c132bbba
--- /dev/null
+++ b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyDynamicsWorld.h
@@ -0,0 +1,114 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2013 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+#ifndef BT_MULTIBODY_DYNAMICS_WORLD_H
+#define BT_MULTIBODY_DYNAMICS_WORLD_H
+
+#include "BulletDynamics/Dynamics/btDiscreteDynamicsWorld.h"
+
+#define BT_USE_VIRTUAL_CLEARFORCES_AND_GRAVITY
+
+class btMultiBody;
+class btMultiBodyConstraint;
+class btMultiBodyConstraintSolver;
+struct MultiBodyInplaceSolverIslandCallback;
+
+///The btMultiBodyDynamicsWorld adds Featherstone multi body dynamics to Bullet
+///This implementation is still preliminary/experimental.
+class btMultiBodyDynamicsWorld : public btDiscreteDynamicsWorld
+{
+protected:
+ btAlignedObjectArray<btMultiBody*> m_multiBodies;
+ btAlignedObjectArray<btMultiBodyConstraint*> m_multiBodyConstraints;
+ btAlignedObjectArray<btMultiBodyConstraint*> m_sortedMultiBodyConstraints;
+ btMultiBodyConstraintSolver* m_multiBodyConstraintSolver;
+ MultiBodyInplaceSolverIslandCallback* m_solverMultiBodyIslandCallback;
+
+ //cached data to avoid memory allocations
+ btAlignedObjectArray<btQuaternion> m_scratch_world_to_local;
+ btAlignedObjectArray<btVector3> m_scratch_local_origin;
+ btAlignedObjectArray<btQuaternion> m_scratch_world_to_local1;
+ btAlignedObjectArray<btVector3> m_scratch_local_origin1;
+ btAlignedObjectArray<btScalar> m_scratch_r;
+ btAlignedObjectArray<btVector3> m_scratch_v;
+ btAlignedObjectArray<btMatrix3x3> m_scratch_m;
+
+
+ virtual void calculateSimulationIslands();
+ virtual void updateActivationState(btScalar timeStep);
+ virtual void solveConstraints(btContactSolverInfo& solverInfo);
+
+ virtual void serializeMultiBodies(btSerializer* serializer);
+
+public:
+
+ btMultiBodyDynamicsWorld(btDispatcher* dispatcher,btBroadphaseInterface* pairCache,btMultiBodyConstraintSolver* constraintSolver,btCollisionConfiguration* collisionConfiguration);
+
+ virtual ~btMultiBodyDynamicsWorld ();
+
+ virtual void addMultiBody(btMultiBody* body, int group= btBroadphaseProxy::DefaultFilter, int mask=btBroadphaseProxy::AllFilter);
+
+ virtual void removeMultiBody(btMultiBody* body);
+
+ virtual int getNumMultibodies() const
+ {
+ return m_multiBodies.size();
+ }
+
+ btMultiBody* getMultiBody(int mbIndex)
+ {
+ return m_multiBodies[mbIndex];
+ }
+
+ const btMultiBody* getMultiBody(int mbIndex) const
+ {
+ return m_multiBodies[mbIndex];
+ }
+
+ virtual void addMultiBodyConstraint( btMultiBodyConstraint* constraint);
+
+ virtual int getNumMultiBodyConstraints() const
+ {
+ return m_multiBodyConstraints.size();
+ }
+
+ virtual btMultiBodyConstraint* getMultiBodyConstraint( int constraintIndex)
+ {
+ return m_multiBodyConstraints[constraintIndex];
+ }
+
+ virtual const btMultiBodyConstraint* getMultiBodyConstraint( int constraintIndex) const
+ {
+ return m_multiBodyConstraints[constraintIndex];
+ }
+
+ virtual void removeMultiBodyConstraint( btMultiBodyConstraint* constraint);
+
+ virtual void integrateTransforms(btScalar timeStep);
+
+ virtual void debugDrawWorld();
+
+ virtual void debugDrawMultiBodyConstraint(btMultiBodyConstraint* constraint);
+
+ void forwardKinematics();
+ virtual void clearForces();
+ virtual void clearMultiBodyConstraintForces();
+ virtual void clearMultiBodyForces();
+ virtual void applyGravity();
+
+ virtual void serialize(btSerializer* serializer);
+
+};
+#endif //BT_MULTIBODY_DYNAMICS_WORLD_H
diff --git a/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyFixedConstraint.cpp b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyFixedConstraint.cpp
new file mode 100644
index 0000000000..1f94117aa9
--- /dev/null
+++ b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyFixedConstraint.cpp
@@ -0,0 +1,211 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2013 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+///This file was written by Erwin Coumans
+
+#include "btMultiBodyFixedConstraint.h"
+#include "btMultiBodyLinkCollider.h"
+#include "BulletDynamics/Dynamics/btRigidBody.h"
+#include "BulletDynamics/ConstraintSolver/btGeneric6DofSpring2Constraint.h"
+#include "LinearMath/btIDebugDraw.h"
+
+#define BTMBFIXEDCONSTRAINT_DIM 6
+
+btMultiBodyFixedConstraint::btMultiBodyFixedConstraint(btMultiBody* body, int link, btRigidBody* bodyB, const btVector3& pivotInA, const btVector3& pivotInB, const btMatrix3x3& frameInA, const btMatrix3x3& frameInB)
+ :btMultiBodyConstraint(body,0,link,-1,BTMBFIXEDCONSTRAINT_DIM,false),
+ m_rigidBodyA(0),
+ m_rigidBodyB(bodyB),
+ m_pivotInA(pivotInA),
+ m_pivotInB(pivotInB),
+ m_frameInA(frameInA),
+ m_frameInB(frameInB)
+{
+ m_data.resize(BTMBFIXEDCONSTRAINT_DIM);//at least store the applied impulses
+}
+
+btMultiBodyFixedConstraint::btMultiBodyFixedConstraint(btMultiBody* bodyA, int linkA, btMultiBody* bodyB, int linkB, const btVector3& pivotInA, const btVector3& pivotInB, const btMatrix3x3& frameInA, const btMatrix3x3& frameInB)
+ :btMultiBodyConstraint(bodyA,bodyB,linkA,linkB,BTMBFIXEDCONSTRAINT_DIM,false),
+ m_rigidBodyA(0),
+ m_rigidBodyB(0),
+ m_pivotInA(pivotInA),
+ m_pivotInB(pivotInB),
+ m_frameInA(frameInA),
+ m_frameInB(frameInB)
+{
+ m_data.resize(BTMBFIXEDCONSTRAINT_DIM);//at least store the applied impulses
+}
+
+void btMultiBodyFixedConstraint::finalizeMultiDof()
+{
+ //not implemented yet
+ btAssert(0);
+}
+
+btMultiBodyFixedConstraint::~btMultiBodyFixedConstraint()
+{
+}
+
+
+int btMultiBodyFixedConstraint::getIslandIdA() const
+{
+ if (m_rigidBodyA)
+ return m_rigidBodyA->getIslandTag();
+
+ if (m_bodyA)
+ {
+ btMultiBodyLinkCollider* col = m_bodyA->getBaseCollider();
+ if (col)
+ return col->getIslandTag();
+ for (int i=0;i<m_bodyA->getNumLinks();i++)
+ {
+ if (m_bodyA->getLink(i).m_collider)
+ return m_bodyA->getLink(i).m_collider->getIslandTag();
+ }
+ }
+ return -1;
+}
+
+int btMultiBodyFixedConstraint::getIslandIdB() const
+{
+ if (m_rigidBodyB)
+ return m_rigidBodyB->getIslandTag();
+ if (m_bodyB)
+ {
+ btMultiBodyLinkCollider* col = m_bodyB->getBaseCollider();
+ if (col)
+ return col->getIslandTag();
+
+ for (int i=0;i<m_bodyB->getNumLinks();i++)
+ {
+ col = m_bodyB->getLink(i).m_collider;
+ if (col)
+ return col->getIslandTag();
+ }
+ }
+ return -1;
+}
+
+void btMultiBodyFixedConstraint::createConstraintRows(btMultiBodyConstraintArray& constraintRows, btMultiBodyJacobianData& data, const btContactSolverInfo& infoGlobal)
+{
+ int numDim = BTMBFIXEDCONSTRAINT_DIM;
+ for (int i=0;i<numDim;i++)
+ {
+ btMultiBodySolverConstraint& constraintRow = constraintRows.expandNonInitializing();
+ constraintRow.m_orgConstraint = this;
+ constraintRow.m_orgDofIndex = i;
+ constraintRow.m_relpos1CrossNormal.setValue(0,0,0);
+ constraintRow.m_contactNormal1.setValue(0,0,0);
+ constraintRow.m_relpos2CrossNormal.setValue(0,0,0);
+ constraintRow.m_contactNormal2.setValue(0,0,0);
+ constraintRow.m_angularComponentA.setValue(0,0,0);
+ constraintRow.m_angularComponentB.setValue(0,0,0);
+
+ constraintRow.m_solverBodyIdA = data.m_fixedBodyId;
+ constraintRow.m_solverBodyIdB = data.m_fixedBodyId;
+
+ // Convert local points back to world
+ btVector3 pivotAworld = m_pivotInA;
+ btMatrix3x3 frameAworld = m_frameInA;
+ if (m_rigidBodyA)
+ {
+
+ constraintRow.m_solverBodyIdA = m_rigidBodyA->getCompanionId();
+ pivotAworld = m_rigidBodyA->getCenterOfMassTransform()*m_pivotInA;
+ frameAworld = frameAworld.transpose()*btMatrix3x3(m_rigidBodyA->getOrientation());
+
+ } else
+ {
+ if (m_bodyA) {
+ pivotAworld = m_bodyA->localPosToWorld(m_linkA, m_pivotInA);
+ frameAworld = m_bodyA->localFrameToWorld(m_linkA, frameAworld);
+ }
+ }
+ btVector3 pivotBworld = m_pivotInB;
+ btMatrix3x3 frameBworld = m_frameInB;
+ if (m_rigidBodyB)
+ {
+ constraintRow.m_solverBodyIdB = m_rigidBodyB->getCompanionId();
+ pivotBworld = m_rigidBodyB->getCenterOfMassTransform()*m_pivotInB;
+ frameBworld = frameBworld.transpose()*btMatrix3x3(m_rigidBodyB->getOrientation());
+
+ } else
+ {
+ if (m_bodyB) {
+ pivotBworld = m_bodyB->localPosToWorld(m_linkB, m_pivotInB);
+ frameBworld = m_bodyB->localFrameToWorld(m_linkB, frameBworld);
+ }
+ }
+
+ btMatrix3x3 relRot = frameAworld.inverse()*frameBworld;
+ btVector3 angleDiff;
+ btGeneric6DofSpring2Constraint::matrixToEulerXYZ(relRot,angleDiff);
+
+ btVector3 constraintNormalLin(0,0,0);
+ btVector3 constraintNormalAng(0,0,0);
+ btScalar posError = 0.0;
+ if (i < 3) {
+ constraintNormalLin[i] = 1;
+ posError = (pivotAworld-pivotBworld).dot(constraintNormalLin);
+ fillMultiBodyConstraint(constraintRow, data, 0, 0, constraintNormalAng,
+ constraintNormalLin, pivotAworld, pivotBworld,
+ posError,
+ infoGlobal,
+ -m_maxAppliedImpulse, m_maxAppliedImpulse
+ );
+ }
+ else { //i>=3
+ constraintNormalAng = frameAworld.getColumn(i%3);
+ posError = angleDiff[i%3];
+ fillMultiBodyConstraint(constraintRow, data, 0, 0, constraintNormalAng,
+ constraintNormalLin, pivotAworld, pivotBworld,
+ posError,
+ infoGlobal,
+ -m_maxAppliedImpulse, m_maxAppliedImpulse, true
+ );
+ }
+ }
+}
+
+void btMultiBodyFixedConstraint::debugDraw(class btIDebugDraw* drawer)
+{
+ btTransform tr;
+ tr.setIdentity();
+
+ if (m_rigidBodyA)
+ {
+ btVector3 pivot = m_rigidBodyA->getCenterOfMassTransform() * m_pivotInA;
+ tr.setOrigin(pivot);
+ drawer->drawTransform(tr, 0.1);
+ }
+ if (m_bodyA)
+ {
+ btVector3 pivotAworld = m_bodyA->localPosToWorld(m_linkA, m_pivotInA);
+ tr.setOrigin(pivotAworld);
+ drawer->drawTransform(tr, 0.1);
+ }
+ if (m_rigidBodyB)
+ {
+ // that ideally should draw the same frame
+ btVector3 pivot = m_rigidBodyB->getCenterOfMassTransform() * m_pivotInB;
+ tr.setOrigin(pivot);
+ drawer->drawTransform(tr, 0.1);
+ }
+ if (m_bodyB)
+ {
+ btVector3 pivotBworld = m_bodyB->localPosToWorld(m_linkB, m_pivotInB);
+ tr.setOrigin(pivotBworld);
+ drawer->drawTransform(tr, 0.1);
+ }
+}
diff --git a/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyFixedConstraint.h b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyFixedConstraint.h
new file mode 100644
index 0000000000..036025136e
--- /dev/null
+++ b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyFixedConstraint.h
@@ -0,0 +1,94 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2013 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+///This file was written by Erwin Coumans
+
+#ifndef BT_MULTIBODY_FIXED_CONSTRAINT_H
+#define BT_MULTIBODY_FIXED_CONSTRAINT_H
+
+#include "btMultiBodyConstraint.h"
+
+class btMultiBodyFixedConstraint : public btMultiBodyConstraint
+{
+protected:
+
+ btRigidBody* m_rigidBodyA;
+ btRigidBody* m_rigidBodyB;
+ btVector3 m_pivotInA;
+ btVector3 m_pivotInB;
+ btMatrix3x3 m_frameInA;
+ btMatrix3x3 m_frameInB;
+
+public:
+
+ btMultiBodyFixedConstraint(btMultiBody* body, int link, btRigidBody* bodyB, const btVector3& pivotInA, const btVector3& pivotInB, const btMatrix3x3& frameInA, const btMatrix3x3& frameInB);
+ btMultiBodyFixedConstraint(btMultiBody* bodyA, int linkA, btMultiBody* bodyB, int linkB, const btVector3& pivotInA, const btVector3& pivotInB, const btMatrix3x3& frameInA, const btMatrix3x3& frameInB);
+
+ virtual ~btMultiBodyFixedConstraint();
+
+ virtual void finalizeMultiDof();
+
+ virtual int getIslandIdA() const;
+ virtual int getIslandIdB() const;
+
+ virtual void createConstraintRows(btMultiBodyConstraintArray& constraintRows,
+ btMultiBodyJacobianData& data,
+ const btContactSolverInfo& infoGlobal);
+
+ const btVector3& getPivotInA() const
+ {
+ return m_pivotInA;
+ }
+
+ void setPivotInA(const btVector3& pivotInA)
+ {
+ m_pivotInA = pivotInA;
+ }
+
+ const btVector3& getPivotInB() const
+ {
+ return m_pivotInB;
+ }
+
+ virtual void setPivotInB(const btVector3& pivotInB)
+ {
+ m_pivotInB = pivotInB;
+ }
+
+ const btMatrix3x3& getFrameInA() const
+ {
+ return m_frameInA;
+ }
+
+ void setFrameInA(const btMatrix3x3& frameInA)
+ {
+ m_frameInA = frameInA;
+ }
+
+ const btMatrix3x3& getFrameInB() const
+ {
+ return m_frameInB;
+ }
+
+ virtual void setFrameInB(const btMatrix3x3& frameInB)
+ {
+ m_frameInB = frameInB;
+ }
+
+ virtual void debugDraw(class btIDebugDraw* drawer);
+
+};
+
+#endif //BT_MULTIBODY_FIXED_CONSTRAINT_H
diff --git a/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyGearConstraint.cpp b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyGearConstraint.cpp
new file mode 100644
index 0000000000..5fdb7007d8
--- /dev/null
+++ b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyGearConstraint.cpp
@@ -0,0 +1,184 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2013 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+///This file was written by Erwin Coumans
+
+#include "btMultiBodyGearConstraint.h"
+#include "btMultiBody.h"
+#include "btMultiBodyLinkCollider.h"
+#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
+
+btMultiBodyGearConstraint::btMultiBodyGearConstraint(btMultiBody* bodyA, int linkA, btMultiBody* bodyB, int linkB, const btVector3& pivotInA, const btVector3& pivotInB, const btMatrix3x3& frameInA, const btMatrix3x3& frameInB)
+ :btMultiBodyConstraint(bodyA,bodyB,linkA,linkB,1,false),
+ m_gearRatio(1),
+ m_gearAuxLink(-1),
+ m_erp(0),
+ m_relativePositionTarget(0)
+{
+
+}
+
+void btMultiBodyGearConstraint::finalizeMultiDof()
+{
+
+ allocateJacobiansMultiDof();
+
+ m_numDofsFinalized = m_jacSizeBoth;
+}
+
+btMultiBodyGearConstraint::~btMultiBodyGearConstraint()
+{
+}
+
+
+int btMultiBodyGearConstraint::getIslandIdA() const
+{
+
+ if (m_bodyA)
+ {
+ btMultiBodyLinkCollider* col = m_bodyA->getBaseCollider();
+ if (col)
+ return col->getIslandTag();
+ for (int i=0;i<m_bodyA->getNumLinks();i++)
+ {
+ if (m_bodyA->getLink(i).m_collider)
+ return m_bodyA->getLink(i).m_collider->getIslandTag();
+ }
+ }
+ return -1;
+}
+
+int btMultiBodyGearConstraint::getIslandIdB() const
+{
+ if (m_bodyB)
+ {
+ btMultiBodyLinkCollider* col = m_bodyB->getBaseCollider();
+ if (col)
+ return col->getIslandTag();
+
+ for (int i=0;i<m_bodyB->getNumLinks();i++)
+ {
+ col = m_bodyB->getLink(i).m_collider;
+ if (col)
+ return col->getIslandTag();
+ }
+ }
+ return -1;
+}
+
+
+void btMultiBodyGearConstraint::createConstraintRows(btMultiBodyConstraintArray& constraintRows,
+ btMultiBodyJacobianData& data,
+ const btContactSolverInfo& infoGlobal)
+{
+ // only positions need to be updated -- data.m_jacobians and force
+ // directions were set in the ctor and never change.
+
+ if (m_numDofsFinalized != m_jacSizeBoth)
+ {
+ finalizeMultiDof();
+ }
+
+ //don't crash
+ if (m_numDofsFinalized != m_jacSizeBoth)
+ return;
+
+
+ if (m_maxAppliedImpulse==0.f)
+ return;
+
+ // note: we rely on the fact that data.m_jacobians are
+ // always initialized to zero by the Constraint ctor
+ int linkDoF = 0;
+ unsigned int offsetA = 6 + (m_bodyA->getLink(m_linkA).m_dofOffset + linkDoF);
+ unsigned int offsetB = 6 + (m_bodyB->getLink(m_linkB).m_dofOffset + linkDoF);
+
+ // row 0: the lower bound
+ jacobianA(0)[offsetA] = 1;
+ jacobianB(0)[offsetB] = m_gearRatio;
+
+ btScalar posError = 0;
+ const btVector3 dummy(0, 0, 0);
+
+ btScalar kp = 1;
+ btScalar kd = 1;
+ int numRows = getNumRows();
+
+ for (int row=0;row<numRows;row++)
+ {
+ btMultiBodySolverConstraint& constraintRow = constraintRows.expandNonInitializing();
+
+
+ int dof = 0;
+ btScalar currentPosition = m_bodyA->getJointPosMultiDof(m_linkA)[dof];
+ btScalar currentVelocity = m_bodyA->getJointVelMultiDof(m_linkA)[dof];
+ btScalar auxVel = 0;
+
+ if (m_gearAuxLink>=0)
+ {
+ auxVel = m_bodyA->getJointVelMultiDof(m_gearAuxLink)[dof];
+ }
+ currentVelocity += auxVel;
+ if (m_erp!=0)
+ {
+ btScalar currentPositionA = m_bodyA->getJointPosMultiDof(m_linkA)[dof];
+ btScalar currentPositionB = m_gearRatio*m_bodyA->getJointPosMultiDof(m_linkB)[dof];
+ btScalar diff = currentPositionB+currentPositionA;
+ btScalar desiredPositionDiff = this->m_relativePositionTarget;
+ posError = -m_erp*(desiredPositionDiff - diff);
+ }
+
+ btScalar desiredRelativeVelocity = auxVel;
+
+ fillMultiBodyConstraint(constraintRow,data,jacobianA(row),jacobianB(row),dummy,dummy,dummy,dummy,posError,infoGlobal,-m_maxAppliedImpulse,m_maxAppliedImpulse,false,1,false,desiredRelativeVelocity);
+
+ constraintRow.m_orgConstraint = this;
+ constraintRow.m_orgDofIndex = row;
+ {
+ //expect either prismatic or revolute joint type for now
+ btAssert((m_bodyA->getLink(m_linkA).m_jointType == btMultibodyLink::eRevolute)||(m_bodyA->getLink(m_linkA).m_jointType == btMultibodyLink::ePrismatic));
+ switch (m_bodyA->getLink(m_linkA).m_jointType)
+ {
+ case btMultibodyLink::eRevolute:
+ {
+ constraintRow.m_contactNormal1.setZero();
+ constraintRow.m_contactNormal2.setZero();
+ btVector3 revoluteAxisInWorld = quatRotate(m_bodyA->getLink(m_linkA).m_cachedWorldTransform.getRotation(),m_bodyA->getLink(m_linkA).m_axes[0].m_topVec);
+ constraintRow.m_relpos1CrossNormal=revoluteAxisInWorld;
+ constraintRow.m_relpos2CrossNormal=-revoluteAxisInWorld;
+
+ break;
+ }
+ case btMultibodyLink::ePrismatic:
+ {
+ btVector3 prismaticAxisInWorld = quatRotate(m_bodyA->getLink(m_linkA).m_cachedWorldTransform.getRotation(),m_bodyA->getLink(m_linkA).m_axes[0].m_bottomVec);
+ constraintRow.m_contactNormal1=prismaticAxisInWorld;
+ constraintRow.m_contactNormal2=-prismaticAxisInWorld;
+ constraintRow.m_relpos1CrossNormal.setZero();
+ constraintRow.m_relpos2CrossNormal.setZero();
+ break;
+ }
+ default:
+ {
+ btAssert(0);
+ }
+ };
+
+ }
+
+ }
+
+}
+
diff --git a/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyGearConstraint.h b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyGearConstraint.h
new file mode 100644
index 0000000000..0115de6241
--- /dev/null
+++ b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyGearConstraint.h
@@ -0,0 +1,117 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2013 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+///This file was written by Erwin Coumans
+
+#ifndef BT_MULTIBODY_GEAR_CONSTRAINT_H
+#define BT_MULTIBODY_GEAR_CONSTRAINT_H
+
+#include "btMultiBodyConstraint.h"
+
+class btMultiBodyGearConstraint : public btMultiBodyConstraint
+{
+protected:
+
+ btRigidBody* m_rigidBodyA;
+ btRigidBody* m_rigidBodyB;
+ btVector3 m_pivotInA;
+ btVector3 m_pivotInB;
+ btMatrix3x3 m_frameInA;
+ btMatrix3x3 m_frameInB;
+ btScalar m_gearRatio;
+ int m_gearAuxLink;
+ btScalar m_erp;
+ btScalar m_relativePositionTarget;
+
+public:
+
+ //btMultiBodyGearConstraint(btMultiBody* body, int link, btRigidBody* bodyB, const btVector3& pivotInA, const btVector3& pivotInB, const btMatrix3x3& frameInA, const btMatrix3x3& frameInB);
+ btMultiBodyGearConstraint(btMultiBody* bodyA, int linkA, btMultiBody* bodyB, int linkB, const btVector3& pivotInA, const btVector3& pivotInB, const btMatrix3x3& frameInA, const btMatrix3x3& frameInB);
+
+ virtual ~btMultiBodyGearConstraint();
+
+ virtual void finalizeMultiDof();
+
+ virtual int getIslandIdA() const;
+ virtual int getIslandIdB() const;
+
+ virtual void createConstraintRows(btMultiBodyConstraintArray& constraintRows,
+ btMultiBodyJacobianData& data,
+ const btContactSolverInfo& infoGlobal);
+
+ const btVector3& getPivotInA() const
+ {
+ return m_pivotInA;
+ }
+
+ void setPivotInA(const btVector3& pivotInA)
+ {
+ m_pivotInA = pivotInA;
+ }
+
+ const btVector3& getPivotInB() const
+ {
+ return m_pivotInB;
+ }
+
+ virtual void setPivotInB(const btVector3& pivotInB)
+ {
+ m_pivotInB = pivotInB;
+ }
+
+ const btMatrix3x3& getFrameInA() const
+ {
+ return m_frameInA;
+ }
+
+ void setFrameInA(const btMatrix3x3& frameInA)
+ {
+ m_frameInA = frameInA;
+ }
+
+ const btMatrix3x3& getFrameInB() const
+ {
+ return m_frameInB;
+ }
+
+ virtual void setFrameInB(const btMatrix3x3& frameInB)
+ {
+ m_frameInB = frameInB;
+ }
+
+ virtual void debugDraw(class btIDebugDraw* drawer)
+ {
+ //todo(erwincoumans)
+ }
+
+ virtual void setGearRatio(btScalar gearRatio)
+ {
+ m_gearRatio = gearRatio;
+ }
+ virtual void setGearAuxLink(int gearAuxLink)
+ {
+ m_gearAuxLink = gearAuxLink;
+ }
+ virtual void setRelativePositionTarget(btScalar relPosTarget)
+ {
+ m_relativePositionTarget = relPosTarget;
+ }
+ virtual void setErp(btScalar erp)
+ {
+ m_erp = erp;
+ }
+};
+
+#endif //BT_MULTIBODY_GEAR_CONSTRAINT_H
diff --git a/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyJointFeedback.h b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyJointFeedback.h
new file mode 100644
index 0000000000..5c2fa8ed5b
--- /dev/null
+++ b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyJointFeedback.h
@@ -0,0 +1,27 @@
+/*
+Copyright (c) 2015 Google Inc.
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+
+
+#ifndef BT_MULTIBODY_JOINT_FEEDBACK_H
+#define BT_MULTIBODY_JOINT_FEEDBACK_H
+
+#include "LinearMath/btSpatialAlgebra.h"
+
+struct btMultiBodyJointFeedback
+{
+ btSpatialForceVector m_reactionForces;
+};
+
+#endif //BT_MULTIBODY_JOINT_FEEDBACK_H
diff --git a/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyJointLimitConstraint.cpp b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyJointLimitConstraint.cpp
new file mode 100644
index 0000000000..6d173b66a1
--- /dev/null
+++ b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyJointLimitConstraint.cpp
@@ -0,0 +1,205 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2013 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+///This file was written by Erwin Coumans
+
+#include "btMultiBodyJointLimitConstraint.h"
+#include "btMultiBody.h"
+#include "btMultiBodyLinkCollider.h"
+#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
+
+
+
+btMultiBodyJointLimitConstraint::btMultiBodyJointLimitConstraint(btMultiBody* body, int link, btScalar lower, btScalar upper)
+ //:btMultiBodyConstraint(body,0,link,-1,2,true),
+ :btMultiBodyConstraint(body,body,link,body->getLink(link).m_parent,2,true),
+ m_lowerBound(lower),
+ m_upperBound(upper)
+{
+
+}
+
+void btMultiBodyJointLimitConstraint::finalizeMultiDof()
+{
+ // the data.m_jacobians never change, so may as well
+ // initialize them here
+
+ allocateJacobiansMultiDof();
+
+ unsigned int offset = 6 + m_bodyA->getLink(m_linkA).m_dofOffset;
+
+ // row 0: the lower bound
+ jacobianA(0)[offset] = 1;
+ // row 1: the upper bound
+ //jacobianA(1)[offset] = -1;
+ jacobianB(1)[offset] = -1;
+
+ m_numDofsFinalized = m_jacSizeBoth;
+}
+
+btMultiBodyJointLimitConstraint::~btMultiBodyJointLimitConstraint()
+{
+}
+
+int btMultiBodyJointLimitConstraint::getIslandIdA() const
+{
+ if(m_bodyA)
+ {
+ btMultiBodyLinkCollider* col = m_bodyA->getBaseCollider();
+ if (col)
+ return col->getIslandTag();
+ for (int i=0;i<m_bodyA->getNumLinks();i++)
+ {
+ if (m_bodyA->getLink(i).m_collider)
+ return m_bodyA->getLink(i).m_collider->getIslandTag();
+ }
+ }
+ return -1;
+}
+
+int btMultiBodyJointLimitConstraint::getIslandIdB() const
+{
+ if(m_bodyB)
+ {
+ btMultiBodyLinkCollider* col = m_bodyB->getBaseCollider();
+ if (col)
+ return col->getIslandTag();
+
+ for (int i=0;i<m_bodyB->getNumLinks();i++)
+ {
+ col = m_bodyB->getLink(i).m_collider;
+ if (col)
+ return col->getIslandTag();
+ }
+ }
+ return -1;
+}
+
+
+void btMultiBodyJointLimitConstraint::createConstraintRows(btMultiBodyConstraintArray& constraintRows,
+ btMultiBodyJacobianData& data,
+ const btContactSolverInfo& infoGlobal)
+{
+
+ // only positions need to be updated -- data.m_jacobians and force
+ // directions were set in the ctor and never change.
+
+ if (m_numDofsFinalized != m_jacSizeBoth)
+ {
+ finalizeMultiDof();
+ }
+
+
+ // row 0: the lower bound
+ setPosition(0, m_bodyA->getJointPos(m_linkA) - m_lowerBound); //multidof: this is joint-type dependent
+
+ // row 1: the upper bound
+ setPosition(1, m_upperBound - m_bodyA->getJointPos(m_linkA));
+
+ for (int row=0;row<getNumRows();row++)
+ {
+ btScalar penetration = getPosition(row);
+
+ //todo: consider adding some safety threshold here
+ if (penetration>0)
+ {
+ continue;
+ }
+ btScalar direction = row? -1 : 1;
+
+ btMultiBodySolverConstraint& constraintRow = constraintRows.expandNonInitializing();
+ constraintRow.m_orgConstraint = this;
+ constraintRow.m_orgDofIndex = row;
+
+ constraintRow.m_multiBodyA = m_bodyA;
+ constraintRow.m_multiBodyB = m_bodyB;
+ const btScalar posError = 0; //why assume it's zero?
+ const btVector3 dummy(0, 0, 0);
+
+ btScalar rel_vel = fillMultiBodyConstraint(constraintRow,data,jacobianA(row),jacobianB(row),dummy,dummy,dummy,dummy,posError,infoGlobal,0,m_maxAppliedImpulse);
+
+ {
+ //expect either prismatic or revolute joint type for now
+ btAssert((m_bodyA->getLink(m_linkA).m_jointType == btMultibodyLink::eRevolute)||(m_bodyA->getLink(m_linkA).m_jointType == btMultibodyLink::ePrismatic));
+ switch (m_bodyA->getLink(m_linkA).m_jointType)
+ {
+ case btMultibodyLink::eRevolute:
+ {
+ constraintRow.m_contactNormal1.setZero();
+ constraintRow.m_contactNormal2.setZero();
+ btVector3 revoluteAxisInWorld = direction*quatRotate(m_bodyA->getLink(m_linkA).m_cachedWorldTransform.getRotation(),m_bodyA->getLink(m_linkA).m_axes[0].m_topVec);
+ constraintRow.m_relpos1CrossNormal=revoluteAxisInWorld;
+ constraintRow.m_relpos2CrossNormal=-revoluteAxisInWorld;
+
+ break;
+ }
+ case btMultibodyLink::ePrismatic:
+ {
+ btVector3 prismaticAxisInWorld = direction* quatRotate(m_bodyA->getLink(m_linkA).m_cachedWorldTransform.getRotation(),m_bodyA->getLink(m_linkA).m_axes[0].m_bottomVec);
+ constraintRow.m_contactNormal1=prismaticAxisInWorld;
+ constraintRow.m_contactNormal2=-prismaticAxisInWorld;
+ constraintRow.m_relpos1CrossNormal.setZero();
+ constraintRow.m_relpos2CrossNormal.setZero();
+
+ break;
+ }
+ default:
+ {
+ btAssert(0);
+ }
+ };
+
+ }
+
+ {
+
+ btScalar positionalError = 0.f;
+ btScalar velocityError = - rel_vel;// * damping;
+ btScalar erp = infoGlobal.m_erp2;
+ if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
+ {
+ erp = infoGlobal.m_erp;
+ }
+ if (penetration>0)
+ {
+ positionalError = 0;
+ velocityError = -penetration / infoGlobal.m_timeStep;
+ } else
+ {
+ positionalError = -penetration * erp/infoGlobal.m_timeStep;
+ }
+
+ btScalar penetrationImpulse = positionalError*constraintRow.m_jacDiagABInv;
+ btScalar velocityImpulse = velocityError *constraintRow.m_jacDiagABInv;
+ if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
+ {
+ //combine position and velocity into rhs
+ constraintRow.m_rhs = penetrationImpulse+velocityImpulse;
+ constraintRow.m_rhsPenetration = 0.f;
+
+ } else
+ {
+ //split position and velocity into rhs and m_rhsPenetration
+ constraintRow.m_rhs = velocityImpulse;
+ constraintRow.m_rhsPenetration = penetrationImpulse;
+ }
+ }
+ }
+
+}
+
+
+
+
diff --git a/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyJointLimitConstraint.h b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyJointLimitConstraint.h
new file mode 100644
index 0000000000..55b8d122b9
--- /dev/null
+++ b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyJointLimitConstraint.h
@@ -0,0 +1,50 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2013 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+#ifndef BT_MULTIBODY_JOINT_LIMIT_CONSTRAINT_H
+#define BT_MULTIBODY_JOINT_LIMIT_CONSTRAINT_H
+
+#include "btMultiBodyConstraint.h"
+struct btSolverInfo;
+
+class btMultiBodyJointLimitConstraint : public btMultiBodyConstraint
+{
+protected:
+
+ btScalar m_lowerBound;
+ btScalar m_upperBound;
+public:
+
+ btMultiBodyJointLimitConstraint(btMultiBody* body, int link, btScalar lower, btScalar upper);
+ virtual ~btMultiBodyJointLimitConstraint();
+
+ virtual void finalizeMultiDof();
+
+ virtual int getIslandIdA() const;
+ virtual int getIslandIdB() const;
+
+ virtual void createConstraintRows(btMultiBodyConstraintArray& constraintRows,
+ btMultiBodyJacobianData& data,
+ const btContactSolverInfo& infoGlobal);
+
+ virtual void debugDraw(class btIDebugDraw* drawer)
+ {
+ //todo(erwincoumans)
+ }
+
+};
+
+#endif //BT_MULTIBODY_JOINT_LIMIT_CONSTRAINT_H
+
diff --git a/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyJointMotor.cpp b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyJointMotor.cpp
new file mode 100644
index 0000000000..e0921178e9
--- /dev/null
+++ b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyJointMotor.cpp
@@ -0,0 +1,186 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2013 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+///This file was written by Erwin Coumans
+
+#include "btMultiBodyJointMotor.h"
+#include "btMultiBody.h"
+#include "btMultiBodyLinkCollider.h"
+#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
+
+
+btMultiBodyJointMotor::btMultiBodyJointMotor(btMultiBody* body, int link, btScalar desiredVelocity, btScalar maxMotorImpulse)
+ :btMultiBodyConstraint(body,body,link,body->getLink(link).m_parent,1,true),
+ m_desiredVelocity(desiredVelocity),
+ m_desiredPosition(0),
+ m_kd(1.),
+ m_kp(0),
+ m_erp(1),
+ m_rhsClamp(SIMD_INFINITY)
+{
+
+ m_maxAppliedImpulse = maxMotorImpulse;
+ // the data.m_jacobians never change, so may as well
+ // initialize them here
+
+
+}
+
+void btMultiBodyJointMotor::finalizeMultiDof()
+{
+ allocateJacobiansMultiDof();
+ // note: we rely on the fact that data.m_jacobians are
+ // always initialized to zero by the Constraint ctor
+ int linkDoF = 0;
+ unsigned int offset = 6 + (m_bodyA->getLink(m_linkA).m_dofOffset + linkDoF);
+
+ // row 0: the lower bound
+ // row 0: the lower bound
+ jacobianA(0)[offset] = 1;
+
+ m_numDofsFinalized = m_jacSizeBoth;
+}
+
+btMultiBodyJointMotor::btMultiBodyJointMotor(btMultiBody* body, int link, int linkDoF, btScalar desiredVelocity, btScalar maxMotorImpulse)
+ //:btMultiBodyConstraint(body,0,link,-1,1,true),
+ :btMultiBodyConstraint(body,body,link,body->getLink(link).m_parent,1,true),
+ m_desiredVelocity(desiredVelocity),
+ m_desiredPosition(0),
+ m_kd(1.),
+ m_kp(0),
+ m_erp(1),
+ m_rhsClamp(SIMD_INFINITY)
+{
+ btAssert(linkDoF < body->getLink(link).m_dofCount);
+
+ m_maxAppliedImpulse = maxMotorImpulse;
+
+}
+btMultiBodyJointMotor::~btMultiBodyJointMotor()
+{
+}
+
+int btMultiBodyJointMotor::getIslandIdA() const
+{
+ btMultiBodyLinkCollider* col = m_bodyA->getBaseCollider();
+ if (col)
+ return col->getIslandTag();
+ for (int i=0;i<m_bodyA->getNumLinks();i++)
+ {
+ if (m_bodyA->getLink(i).m_collider)
+ return m_bodyA->getLink(i).m_collider->getIslandTag();
+ }
+ return -1;
+}
+
+int btMultiBodyJointMotor::getIslandIdB() const
+{
+ btMultiBodyLinkCollider* col = m_bodyB->getBaseCollider();
+ if (col)
+ return col->getIslandTag();
+
+ for (int i=0;i<m_bodyB->getNumLinks();i++)
+ {
+ col = m_bodyB->getLink(i).m_collider;
+ if (col)
+ return col->getIslandTag();
+ }
+ return -1;
+}
+
+
+void btMultiBodyJointMotor::createConstraintRows(btMultiBodyConstraintArray& constraintRows,
+ btMultiBodyJacobianData& data,
+ const btContactSolverInfo& infoGlobal)
+{
+ // only positions need to be updated -- data.m_jacobians and force
+ // directions were set in the ctor and never change.
+
+ if (m_numDofsFinalized != m_jacSizeBoth)
+ {
+ finalizeMultiDof();
+ }
+
+ //don't crash
+ if (m_numDofsFinalized != m_jacSizeBoth)
+ return;
+
+ if (m_maxAppliedImpulse==0.f)
+ return;
+
+ const btScalar posError = 0;
+ const btVector3 dummy(0, 0, 0);
+
+ for (int row=0;row<getNumRows();row++)
+ {
+ btMultiBodySolverConstraint& constraintRow = constraintRows.expandNonInitializing();
+
+ int dof = 0;
+ btScalar currentPosition = m_bodyA->getJointPosMultiDof(m_linkA)[dof];
+ btScalar currentVelocity = m_bodyA->getJointVelMultiDof(m_linkA)[dof];
+ btScalar positionStabiliationTerm = m_erp*(m_desiredPosition-currentPosition)/infoGlobal.m_timeStep;
+
+ btScalar velocityError = (m_desiredVelocity - currentVelocity);
+ btScalar rhs = m_kp * positionStabiliationTerm + currentVelocity+m_kd * velocityError;
+ if (rhs>m_rhsClamp)
+ {
+ rhs=m_rhsClamp;
+ }
+ if (rhs<-m_rhsClamp)
+ {
+ rhs=-m_rhsClamp;
+ }
+
+
+ fillMultiBodyConstraint(constraintRow,data,jacobianA(row),jacobianB(row),dummy,dummy,dummy,dummy,posError,infoGlobal,-m_maxAppliedImpulse,m_maxAppliedImpulse,false,1,false,rhs);
+ constraintRow.m_orgConstraint = this;
+ constraintRow.m_orgDofIndex = row;
+ {
+ //expect either prismatic or revolute joint type for now
+ btAssert((m_bodyA->getLink(m_linkA).m_jointType == btMultibodyLink::eRevolute)||(m_bodyA->getLink(m_linkA).m_jointType == btMultibodyLink::ePrismatic));
+ switch (m_bodyA->getLink(m_linkA).m_jointType)
+ {
+ case btMultibodyLink::eRevolute:
+ {
+ constraintRow.m_contactNormal1.setZero();
+ constraintRow.m_contactNormal2.setZero();
+ btVector3 revoluteAxisInWorld = quatRotate(m_bodyA->getLink(m_linkA).m_cachedWorldTransform.getRotation(),m_bodyA->getLink(m_linkA).m_axes[0].m_topVec);
+ constraintRow.m_relpos1CrossNormal=revoluteAxisInWorld;
+ constraintRow.m_relpos2CrossNormal=-revoluteAxisInWorld;
+
+ break;
+ }
+ case btMultibodyLink::ePrismatic:
+ {
+ btVector3 prismaticAxisInWorld = quatRotate(m_bodyA->getLink(m_linkA).m_cachedWorldTransform.getRotation(),m_bodyA->getLink(m_linkA).m_axes[0].m_bottomVec);
+ constraintRow.m_contactNormal1=prismaticAxisInWorld;
+ constraintRow.m_contactNormal2=-prismaticAxisInWorld;
+ constraintRow.m_relpos1CrossNormal.setZero();
+ constraintRow.m_relpos2CrossNormal.setZero();
+
+ break;
+ }
+ default:
+ {
+ btAssert(0);
+ }
+ };
+
+ }
+
+ }
+
+}
+
diff --git a/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyJointMotor.h b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyJointMotor.h
new file mode 100644
index 0000000000..4063bed79a
--- /dev/null
+++ b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyJointMotor.h
@@ -0,0 +1,81 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2013 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+///This file was written by Erwin Coumans
+
+#ifndef BT_MULTIBODY_JOINT_MOTOR_H
+#define BT_MULTIBODY_JOINT_MOTOR_H
+
+#include "btMultiBodyConstraint.h"
+struct btSolverInfo;
+
+class btMultiBodyJointMotor : public btMultiBodyConstraint
+{
+protected:
+
+ btScalar m_desiredVelocity;
+ btScalar m_desiredPosition;
+ btScalar m_kd;
+ btScalar m_kp;
+ btScalar m_erp;
+ btScalar m_rhsClamp;//maximum error
+
+
+public:
+
+ btMultiBodyJointMotor(btMultiBody* body, int link, btScalar desiredVelocity, btScalar maxMotorImpulse);
+ btMultiBodyJointMotor(btMultiBody* body, int link, int linkDoF, btScalar desiredVelocity, btScalar maxMotorImpulse);
+ virtual ~btMultiBodyJointMotor();
+ virtual void finalizeMultiDof();
+
+ virtual int getIslandIdA() const;
+ virtual int getIslandIdB() const;
+
+ virtual void createConstraintRows(btMultiBodyConstraintArray& constraintRows,
+ btMultiBodyJacobianData& data,
+ const btContactSolverInfo& infoGlobal);
+
+ virtual void setVelocityTarget(btScalar velTarget, btScalar kd = 1.f)
+ {
+ m_desiredVelocity = velTarget;
+ m_kd = kd;
+ }
+
+ virtual void setPositionTarget(btScalar posTarget, btScalar kp = 1.f)
+ {
+ m_desiredPosition = posTarget;
+ m_kp = kp;
+ }
+
+ virtual void setErp(btScalar erp)
+ {
+ m_erp = erp;
+ }
+ virtual btScalar getErp() const
+ {
+ return m_erp;
+ }
+ virtual void setRhsClamp(btScalar rhsClamp)
+ {
+ m_rhsClamp = rhsClamp;
+ }
+ virtual void debugDraw(class btIDebugDraw* drawer)
+ {
+ //todo(erwincoumans)
+ }
+};
+
+#endif //BT_MULTIBODY_JOINT_MOTOR_H
+
diff --git a/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyLink.h b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyLink.h
new file mode 100644
index 0000000000..01828e5843
--- /dev/null
+++ b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyLink.h
@@ -0,0 +1,244 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2013 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+#ifndef BT_MULTIBODY_LINK_H
+#define BT_MULTIBODY_LINK_H
+
+#include "LinearMath/btQuaternion.h"
+#include "LinearMath/btVector3.h"
+#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
+
+enum btMultiBodyLinkFlags
+{
+ BT_MULTIBODYLINKFLAGS_DISABLE_PARENT_COLLISION = 1,
+ BT_MULTIBODYLINKFLAGS_DISABLE_ALL_PARENT_COLLISION = 2,
+};
+
+//both defines are now permanently enabled
+#define BT_MULTIBODYLINK_INCLUDE_PLANAR_JOINTS
+#define TEST_SPATIAL_ALGEBRA_LAYER
+
+//
+// Various spatial helper functions
+//
+
+//namespace {
+
+
+#include "LinearMath/btSpatialAlgebra.h"
+
+//}
+
+//
+// Link struct
+//
+
+struct btMultibodyLink
+{
+
+ BT_DECLARE_ALIGNED_ALLOCATOR();
+
+ btScalar m_mass; // mass of link
+ btVector3 m_inertiaLocal; // inertia of link (local frame; diagonal)
+
+ int m_parent; // index of the parent link (assumed to be < index of this link), or -1 if parent is the base link.
+
+ btQuaternion m_zeroRotParentToThis; // rotates vectors in parent-frame to vectors in local-frame (when q=0). constant.
+
+ btVector3 m_dVector; // vector from the inboard joint pos to this link's COM. (local frame.) constant.
+ //this is set to zero for planar joint (see also m_eVector comment)
+
+ // m_eVector is constant, but depends on the joint type:
+ // revolute, fixed, prismatic, spherical: vector from parent's COM to the pivot point, in PARENT's frame.
+ // planar: vector from COM of parent to COM of this link, WHEN Q = 0. (local frame.)
+ // todo: fix the planar so it is consistent with the other joints
+
+ btVector3 m_eVector;
+
+ btSpatialMotionVector m_absFrameTotVelocity, m_absFrameLocVelocity;
+
+ enum eFeatherstoneJointType
+ {
+ eRevolute = 0,
+ ePrismatic = 1,
+ eSpherical = 2,
+ ePlanar = 3,
+ eFixed = 4,
+ eInvalid
+ };
+
+
+
+ // "axis" = spatial joint axis (Mirtich Defn 9 p104). (expressed in local frame.) constant.
+ // for prismatic: m_axesTop[0] = zero;
+ // m_axesBottom[0] = unit vector along the joint axis.
+ // for revolute: m_axesTop[0] = unit vector along the rotation axis (u);
+ // m_axesBottom[0] = u cross m_dVector (i.e. COM linear motion due to the rotation at the joint)
+ //
+ // for spherical: m_axesTop[0][1][2] (u1,u2,u3) form a 3x3 identity matrix (3 rotation axes)
+ // m_axesBottom[0][1][2] cross u1,u2,u3 (i.e. COM linear motion due to the rotation at the joint)
+ //
+ // for planar: m_axesTop[0] = unit vector along the rotation axis (u); defines the plane of motion
+ // m_axesTop[1][2] = zero
+ // m_axesBottom[0] = zero
+ // m_axesBottom[1][2] = unit vectors along the translational axes on that plane
+ btSpatialMotionVector m_axes[6];
+ void setAxisTop(int dof, const btVector3 &axis) { m_axes[dof].m_topVec = axis; }
+ void setAxisBottom(int dof, const btVector3 &axis)
+ {
+ m_axes[dof].m_bottomVec = axis;
+ }
+ void setAxisTop(int dof, const btScalar &x, const btScalar &y, const btScalar &z)
+ {
+ m_axes[dof].m_topVec.setValue(x, y, z);
+ }
+ void setAxisBottom(int dof, const btScalar &x, const btScalar &y, const btScalar &z)
+ {
+ m_axes[dof].m_bottomVec.setValue(x, y, z);
+ }
+ const btVector3 & getAxisTop(int dof) const { return m_axes[dof].m_topVec; }
+ const btVector3 & getAxisBottom(int dof) const { return m_axes[dof].m_bottomVec; }
+
+ int m_dofOffset, m_cfgOffset;
+
+ btQuaternion m_cachedRotParentToThis; // rotates vectors in parent frame to vectors in local frame
+ btVector3 m_cachedRVector; // vector from COM of parent to COM of this link, in local frame.
+
+ btVector3 m_appliedForce; // In WORLD frame
+ btVector3 m_appliedTorque; // In WORLD frame
+
+btVector3 m_appliedConstraintForce; // In WORLD frame
+ btVector3 m_appliedConstraintTorque; // In WORLD frame
+
+ btScalar m_jointPos[7];
+
+ //m_jointTorque is the joint torque applied by the user using 'addJointTorque'.
+ //It gets set to zero after each internal stepSimulation call
+ btScalar m_jointTorque[6];
+
+ class btMultiBodyLinkCollider* m_collider;
+ int m_flags;
+
+
+ int m_dofCount, m_posVarCount; //redundant but handy
+
+ eFeatherstoneJointType m_jointType;
+
+ struct btMultiBodyJointFeedback* m_jointFeedback;
+
+ btTransform m_cachedWorldTransform;//this cache is updated when calling btMultiBody::forwardKinematics
+
+ const char* m_linkName;//m_linkName memory needs to be managed by the developer/user!
+ const char* m_jointName;//m_jointName memory needs to be managed by the developer/user!
+ const void* m_userPtr;//m_userPtr ptr needs to be managed by the developer/user!
+
+ btScalar m_jointDamping; //todo: implement this internally. It is unused for now, it is set by a URDF loader. User can apply manual damping.
+ btScalar m_jointFriction; //todo: implement this internally. It is unused for now, it is set by a URDF loader. User can apply manual friction using a velocity motor.
+ btScalar m_jointLowerLimit; //todo: implement this internally. It is unused for now, it is set by a URDF loader.
+ btScalar m_jointUpperLimit; //todo: implement this internally. It is unused for now, it is set by a URDF loader.
+ btScalar m_jointMaxForce; //todo: implement this internally. It is unused for now, it is set by a URDF loader.
+ btScalar m_jointMaxVelocity;//todo: implement this internally. It is unused for now, it is set by a URDF loader.
+
+ // ctor: set some sensible defaults
+ btMultibodyLink()
+ : m_mass(1),
+ m_parent(-1),
+ m_zeroRotParentToThis(0, 0, 0, 1),
+ m_cachedRotParentToThis(0, 0, 0, 1),
+ m_collider(0),
+ m_flags(0),
+ m_dofCount(0),
+ m_posVarCount(0),
+ m_jointType(btMultibodyLink::eInvalid),
+ m_jointFeedback(0),
+ m_linkName(0),
+ m_jointName(0),
+ m_userPtr(0),
+ m_jointDamping(0),
+ m_jointFriction(0),
+ m_jointLowerLimit(0),
+ m_jointUpperLimit(0),
+ m_jointMaxForce(0),
+ m_jointMaxVelocity(0)
+ {
+
+ m_inertiaLocal.setValue(1, 1, 1);
+ setAxisTop(0, 0., 0., 0.);
+ setAxisBottom(0, 1., 0., 0.);
+ m_dVector.setValue(0, 0, 0);
+ m_eVector.setValue(0, 0, 0);
+ m_cachedRVector.setValue(0, 0, 0);
+ m_appliedForce.setValue( 0, 0, 0);
+ m_appliedTorque.setValue(0, 0, 0);
+ //
+ m_jointPos[0] = m_jointPos[1] = m_jointPos[2] = m_jointPos[4] = m_jointPos[5] = m_jointPos[6] = 0.f;
+ m_jointPos[3] = 1.f; //"quat.w"
+ m_jointTorque[0] = m_jointTorque[1] = m_jointTorque[2] = m_jointTorque[3] = m_jointTorque[4] = m_jointTorque[5] = 0.f;
+ m_cachedWorldTransform.setIdentity();
+ }
+
+ // routine to update m_cachedRotParentToThis and m_cachedRVector
+ void updateCacheMultiDof(btScalar *pq = 0)
+ {
+ btScalar *pJointPos = (pq ? pq : &m_jointPos[0]);
+
+ switch(m_jointType)
+ {
+ case eRevolute:
+ {
+ m_cachedRotParentToThis = btQuaternion(getAxisTop(0),-pJointPos[0]) * m_zeroRotParentToThis;
+ m_cachedRVector = m_dVector + quatRotate(m_cachedRotParentToThis,m_eVector);
+
+ break;
+ }
+ case ePrismatic:
+ {
+ // m_cachedRotParentToThis never changes, so no need to update
+ m_cachedRVector = m_dVector + quatRotate(m_cachedRotParentToThis,m_eVector) + pJointPos[0] * getAxisBottom(0);
+
+ break;
+ }
+ case eSpherical:
+ {
+ m_cachedRotParentToThis = btQuaternion(pJointPos[0], pJointPos[1], pJointPos[2], -pJointPos[3]) * m_zeroRotParentToThis;
+ m_cachedRVector = m_dVector + quatRotate(m_cachedRotParentToThis,m_eVector);
+
+ break;
+ }
+ case ePlanar:
+ {
+ m_cachedRotParentToThis = btQuaternion(getAxisTop(0),-pJointPos[0]) * m_zeroRotParentToThis;
+ m_cachedRVector = quatRotate(btQuaternion(getAxisTop(0),-pJointPos[0]), pJointPos[1] * getAxisBottom(1) + pJointPos[2] * getAxisBottom(2)) + quatRotate(m_cachedRotParentToThis,m_eVector);
+
+ break;
+ }
+ case eFixed:
+ {
+ m_cachedRotParentToThis = m_zeroRotParentToThis;
+ m_cachedRVector = m_dVector + quatRotate(m_cachedRotParentToThis,m_eVector);
+
+ break;
+ }
+ default:
+ {
+ //invalid type
+ btAssert(0);
+ }
+ }
+ }
+};
+
+
+#endif //BT_MULTIBODY_LINK_H
diff --git a/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyLinkCollider.h b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyLinkCollider.h
new file mode 100644
index 0000000000..671e15d314
--- /dev/null
+++ b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyLinkCollider.h
@@ -0,0 +1,125 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2013 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+#ifndef BT_FEATHERSTONE_LINK_COLLIDER_H
+#define BT_FEATHERSTONE_LINK_COLLIDER_H
+
+#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
+
+#include "btMultiBody.h"
+
+class btMultiBodyLinkCollider : public btCollisionObject
+{
+//protected:
+public:
+
+ btMultiBody* m_multiBody;
+ int m_link;
+
+
+ btMultiBodyLinkCollider (btMultiBody* multiBody,int link)
+ :m_multiBody(multiBody),
+ m_link(link)
+ {
+ m_checkCollideWith = true;
+ //we need to remove the 'CF_STATIC_OBJECT' flag, otherwise links/base doesn't merge islands
+ //this means that some constraints might point to bodies that are not in the islands, causing crashes
+ //if (link>=0 || (multiBody && !multiBody->hasFixedBase()))
+ {
+ m_collisionFlags &= (~btCollisionObject::CF_STATIC_OBJECT);
+ }
+ // else
+ //{
+ // m_collisionFlags |= (btCollisionObject::CF_STATIC_OBJECT);
+ //}
+
+ m_internalType = CO_FEATHERSTONE_LINK;
+ }
+ static btMultiBodyLinkCollider* upcast(btCollisionObject* colObj)
+ {
+ if (colObj->getInternalType()&btCollisionObject::CO_FEATHERSTONE_LINK)
+ return (btMultiBodyLinkCollider*)colObj;
+ return 0;
+ }
+ static const btMultiBodyLinkCollider* upcast(const btCollisionObject* colObj)
+ {
+ if (colObj->getInternalType()&btCollisionObject::CO_FEATHERSTONE_LINK)
+ return (btMultiBodyLinkCollider*)colObj;
+ return 0;
+ }
+
+ virtual bool checkCollideWithOverride(const btCollisionObject* co) const
+ {
+ const btMultiBodyLinkCollider* other = btMultiBodyLinkCollider::upcast(co);
+ if (!other)
+ return true;
+ if (other->m_multiBody != this->m_multiBody)
+ return true;
+ if (!m_multiBody->hasSelfCollision())
+ return false;
+
+ //check if 'link' has collision disabled
+ if (m_link>=0)
+ {
+ const btMultibodyLink& link = m_multiBody->getLink(this->m_link);
+ if (link.m_flags&BT_MULTIBODYLINKFLAGS_DISABLE_ALL_PARENT_COLLISION)
+ {
+ int parent_of_this = m_link;
+ while (1)
+ {
+ if (parent_of_this==-1)
+ break;
+ parent_of_this = m_multiBody->getLink(parent_of_this).m_parent;
+ if (parent_of_this==other->m_link)
+ {
+ return false;
+ }
+ }
+ }
+ else if (link.m_flags&BT_MULTIBODYLINKFLAGS_DISABLE_PARENT_COLLISION)
+ {
+ if ( link.m_parent == other->m_link)
+ return false;
+ }
+
+ }
+
+ if (other->m_link>=0)
+ {
+ const btMultibodyLink& otherLink = other->m_multiBody->getLink(other->m_link);
+ if (otherLink.m_flags& BT_MULTIBODYLINKFLAGS_DISABLE_ALL_PARENT_COLLISION)
+ {
+ int parent_of_other = other->m_link;
+ while (1)
+ {
+ if (parent_of_other==-1)
+ break;
+ parent_of_other = m_multiBody->getLink(parent_of_other).m_parent;
+ if (parent_of_other==this->m_link)
+ return false;
+ }
+ }
+ else if (otherLink.m_flags& BT_MULTIBODYLINKFLAGS_DISABLE_PARENT_COLLISION)
+ {
+ if (otherLink.m_parent == this->m_link)
+ return false;
+ }
+ }
+ return true;
+ }
+};
+
+#endif //BT_FEATHERSTONE_LINK_COLLIDER_H
+
diff --git a/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyPoint2Point.cpp b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyPoint2Point.cpp
new file mode 100644
index 0000000000..125d52ad0b
--- /dev/null
+++ b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyPoint2Point.cpp
@@ -0,0 +1,221 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2013 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+///This file was written by Erwin Coumans
+
+#include "btMultiBodyPoint2Point.h"
+#include "btMultiBodyLinkCollider.h"
+#include "BulletDynamics/Dynamics/btRigidBody.h"
+#include "LinearMath/btIDebugDraw.h"
+
+#ifndef BTMBP2PCONSTRAINT_BLOCK_ANGULAR_MOTION_TEST
+ #define BTMBP2PCONSTRAINT_DIM 3
+#else
+ #define BTMBP2PCONSTRAINT_DIM 6
+#endif
+
+btMultiBodyPoint2Point::btMultiBodyPoint2Point(btMultiBody* body, int link, btRigidBody* bodyB, const btVector3& pivotInA, const btVector3& pivotInB)
+ :btMultiBodyConstraint(body,0,link,-1,BTMBP2PCONSTRAINT_DIM,false),
+ m_rigidBodyA(0),
+ m_rigidBodyB(bodyB),
+ m_pivotInA(pivotInA),
+ m_pivotInB(pivotInB)
+{
+ m_data.resize(BTMBP2PCONSTRAINT_DIM);//at least store the applied impulses
+}
+
+btMultiBodyPoint2Point::btMultiBodyPoint2Point(btMultiBody* bodyA, int linkA, btMultiBody* bodyB, int linkB, const btVector3& pivotInA, const btVector3& pivotInB)
+ :btMultiBodyConstraint(bodyA,bodyB,linkA,linkB,BTMBP2PCONSTRAINT_DIM,false),
+ m_rigidBodyA(0),
+ m_rigidBodyB(0),
+ m_pivotInA(pivotInA),
+ m_pivotInB(pivotInB)
+{
+ m_data.resize(BTMBP2PCONSTRAINT_DIM);//at least store the applied impulses
+}
+
+void btMultiBodyPoint2Point::finalizeMultiDof()
+{
+ //not implemented yet
+ btAssert(0);
+}
+
+btMultiBodyPoint2Point::~btMultiBodyPoint2Point()
+{
+}
+
+
+int btMultiBodyPoint2Point::getIslandIdA() const
+{
+ if (m_rigidBodyA)
+ return m_rigidBodyA->getIslandTag();
+
+ if (m_bodyA)
+ {
+ btMultiBodyLinkCollider* col = m_bodyA->getBaseCollider();
+ if (col)
+ return col->getIslandTag();
+ for (int i=0;i<m_bodyA->getNumLinks();i++)
+ {
+ if (m_bodyA->getLink(i).m_collider)
+ return m_bodyA->getLink(i).m_collider->getIslandTag();
+ }
+ }
+ return -1;
+}
+
+int btMultiBodyPoint2Point::getIslandIdB() const
+{
+ if (m_rigidBodyB)
+ return m_rigidBodyB->getIslandTag();
+ if (m_bodyB)
+ {
+ btMultiBodyLinkCollider* col = m_bodyB->getBaseCollider();
+ if (col)
+ return col->getIslandTag();
+
+ for (int i=0;i<m_bodyB->getNumLinks();i++)
+ {
+ col = m_bodyB->getLink(i).m_collider;
+ if (col)
+ return col->getIslandTag();
+ }
+ }
+ return -1;
+}
+
+
+
+void btMultiBodyPoint2Point::createConstraintRows(btMultiBodyConstraintArray& constraintRows,
+ btMultiBodyJacobianData& data,
+ const btContactSolverInfo& infoGlobal)
+{
+
+// int i=1;
+int numDim = BTMBP2PCONSTRAINT_DIM;
+ for (int i=0;i<numDim;i++)
+ {
+
+ btMultiBodySolverConstraint& constraintRow = constraintRows.expandNonInitializing();
+ //memset(&constraintRow,0xffffffff,sizeof(btMultiBodySolverConstraint));
+ constraintRow.m_orgConstraint = this;
+ constraintRow.m_orgDofIndex = i;
+ constraintRow.m_relpos1CrossNormal.setValue(0,0,0);
+ constraintRow.m_contactNormal1.setValue(0,0,0);
+ constraintRow.m_relpos2CrossNormal.setValue(0,0,0);
+ constraintRow.m_contactNormal2.setValue(0,0,0);
+ constraintRow.m_angularComponentA.setValue(0,0,0);
+ constraintRow.m_angularComponentB.setValue(0,0,0);
+
+ constraintRow.m_solverBodyIdA = data.m_fixedBodyId;
+ constraintRow.m_solverBodyIdB = data.m_fixedBodyId;
+
+ btVector3 contactNormalOnB(0,0,0);
+#ifndef BTMBP2PCONSTRAINT_BLOCK_ANGULAR_MOTION_TEST
+ contactNormalOnB[i] = -1;
+#else
+ contactNormalOnB[i%3] = -1;
+#endif
+
+
+ // Convert local points back to world
+ btVector3 pivotAworld = m_pivotInA;
+ if (m_rigidBodyA)
+ {
+
+ constraintRow.m_solverBodyIdA = m_rigidBodyA->getCompanionId();
+ pivotAworld = m_rigidBodyA->getCenterOfMassTransform()*m_pivotInA;
+ } else
+ {
+ if (m_bodyA)
+ pivotAworld = m_bodyA->localPosToWorld(m_linkA, m_pivotInA);
+ }
+ btVector3 pivotBworld = m_pivotInB;
+ if (m_rigidBodyB)
+ {
+ constraintRow.m_solverBodyIdB = m_rigidBodyB->getCompanionId();
+ pivotBworld = m_rigidBodyB->getCenterOfMassTransform()*m_pivotInB;
+ } else
+ {
+ if (m_bodyB)
+ pivotBworld = m_bodyB->localPosToWorld(m_linkB, m_pivotInB);
+
+ }
+
+ btScalar posError = i < 3 ? (pivotAworld-pivotBworld).dot(contactNormalOnB) : 0;
+
+#ifndef BTMBP2PCONSTRAINT_BLOCK_ANGULAR_MOTION_TEST
+
+
+ fillMultiBodyConstraint(constraintRow, data, 0, 0, btVector3(0,0,0),
+ contactNormalOnB, pivotAworld, pivotBworld, //sucks but let it be this way "for the time being"
+ posError,
+ infoGlobal,
+ -m_maxAppliedImpulse, m_maxAppliedImpulse
+ );
+ //@todo: support the case of btMultiBody versus btRigidBody,
+ //see btPoint2PointConstraint::getInfo2NonVirtual
+#else
+ const btVector3 dummy(0, 0, 0);
+
+ btAssert(m_bodyA->isMultiDof());
+
+ btScalar* jac1 = jacobianA(i);
+ const btVector3 &normalAng = i >= 3 ? contactNormalOnB : dummy;
+ const btVector3 &normalLin = i < 3 ? contactNormalOnB : dummy;
+
+ m_bodyA->filConstraintJacobianMultiDof(m_linkA, pivotAworld, normalAng, normalLin, jac1, data.scratch_r, data.scratch_v, data.scratch_m);
+
+ fillMultiBodyConstraint(constraintRow, data, jac1, 0,
+ dummy, dummy, dummy, //sucks but let it be this way "for the time being"
+ posError,
+ infoGlobal,
+ -m_maxAppliedImpulse, m_maxAppliedImpulse
+ );
+#endif
+ }
+}
+
+void btMultiBodyPoint2Point::debugDraw(class btIDebugDraw* drawer)
+{
+ btTransform tr;
+ tr.setIdentity();
+
+ if (m_rigidBodyA)
+ {
+ btVector3 pivot = m_rigidBodyA->getCenterOfMassTransform() * m_pivotInA;
+ tr.setOrigin(pivot);
+ drawer->drawTransform(tr, 0.1);
+ }
+ if (m_bodyA)
+ {
+ btVector3 pivotAworld = m_bodyA->localPosToWorld(m_linkA, m_pivotInA);
+ tr.setOrigin(pivotAworld);
+ drawer->drawTransform(tr, 0.1);
+ }
+ if (m_rigidBodyB)
+ {
+ // that ideally should draw the same frame
+ btVector3 pivot = m_rigidBodyB->getCenterOfMassTransform() * m_pivotInB;
+ tr.setOrigin(pivot);
+ drawer->drawTransform(tr, 0.1);
+ }
+ if (m_bodyB)
+ {
+ btVector3 pivotBworld = m_bodyB->localPosToWorld(m_linkB, m_pivotInB);
+ tr.setOrigin(pivotBworld);
+ drawer->drawTransform(tr, 0.1);
+ }
+}
diff --git a/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyPoint2Point.h b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyPoint2Point.h
new file mode 100644
index 0000000000..bf39acc5b9
--- /dev/null
+++ b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyPoint2Point.h
@@ -0,0 +1,68 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2013 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+///This file was written by Erwin Coumans
+
+#ifndef BT_MULTIBODY_POINT2POINT_H
+#define BT_MULTIBODY_POINT2POINT_H
+
+#include "btMultiBodyConstraint.h"
+
+//#define BTMBP2PCONSTRAINT_BLOCK_ANGULAR_MOTION_TEST
+
+ATTRIBUTE_ALIGNED16(class) btMultiBodyPoint2Point : public btMultiBodyConstraint
+{
+protected:
+
+ btRigidBody* m_rigidBodyA;
+ btRigidBody* m_rigidBodyB;
+ btVector3 m_pivotInA;
+ btVector3 m_pivotInB;
+
+
+public:
+
+ BT_DECLARE_ALIGNED_ALLOCATOR();
+
+ btMultiBodyPoint2Point(btMultiBody* body, int link, btRigidBody* bodyB, const btVector3& pivotInA, const btVector3& pivotInB);
+ btMultiBodyPoint2Point(btMultiBody* bodyA, int linkA, btMultiBody* bodyB, int linkB, const btVector3& pivotInA, const btVector3& pivotInB);
+
+ virtual ~btMultiBodyPoint2Point();
+
+ virtual void finalizeMultiDof();
+
+ virtual int getIslandIdA() const;
+ virtual int getIslandIdB() const;
+
+ virtual void createConstraintRows(btMultiBodyConstraintArray& constraintRows,
+ btMultiBodyJacobianData& data,
+ const btContactSolverInfo& infoGlobal);
+
+ const btVector3& getPivotInB() const
+ {
+ return m_pivotInB;
+ }
+
+ virtual void setPivotInB(const btVector3& pivotInB)
+ {
+ m_pivotInB = pivotInB;
+ }
+
+
+ virtual void debugDraw(class btIDebugDraw* drawer);
+
+};
+
+#endif //BT_MULTIBODY_POINT2POINT_H
diff --git a/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodySliderConstraint.cpp b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodySliderConstraint.cpp
new file mode 100644
index 0000000000..3b64b8183f
--- /dev/null
+++ b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodySliderConstraint.cpp
@@ -0,0 +1,230 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2013 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+///This file was written by Erwin Coumans
+
+#include "btMultiBodySliderConstraint.h"
+#include "btMultiBodyLinkCollider.h"
+#include "BulletDynamics/Dynamics/btRigidBody.h"
+#include "BulletDynamics/ConstraintSolver/btGeneric6DofSpring2Constraint.h"
+#include "LinearMath/btIDebugDraw.h"
+
+#define BTMBSLIDERCONSTRAINT_DIM 5
+#define EPSILON 0.000001
+
+btMultiBodySliderConstraint::btMultiBodySliderConstraint(btMultiBody* body, int link, btRigidBody* bodyB, const btVector3& pivotInA, const btVector3& pivotInB, const btMatrix3x3& frameInA, const btMatrix3x3& frameInB, const btVector3& jointAxis)
+ :btMultiBodyConstraint(body,0,link,-1,BTMBSLIDERCONSTRAINT_DIM,false),
+ m_rigidBodyA(0),
+ m_rigidBodyB(bodyB),
+ m_pivotInA(pivotInA),
+ m_pivotInB(pivotInB),
+ m_frameInA(frameInA),
+ m_frameInB(frameInB),
+ m_jointAxis(jointAxis)
+{
+ m_data.resize(BTMBSLIDERCONSTRAINT_DIM);//at least store the applied impulses
+}
+
+btMultiBodySliderConstraint::btMultiBodySliderConstraint(btMultiBody* bodyA, int linkA, btMultiBody* bodyB, int linkB, const btVector3& pivotInA, const btVector3& pivotInB, const btMatrix3x3& frameInA, const btMatrix3x3& frameInB, const btVector3& jointAxis)
+ :btMultiBodyConstraint(bodyA,bodyB,linkA,linkB,BTMBSLIDERCONSTRAINT_DIM,false),
+ m_rigidBodyA(0),
+ m_rigidBodyB(0),
+ m_pivotInA(pivotInA),
+ m_pivotInB(pivotInB),
+ m_frameInA(frameInA),
+ m_frameInB(frameInB),
+ m_jointAxis(jointAxis)
+{
+ m_data.resize(BTMBSLIDERCONSTRAINT_DIM);//at least store the applied impulses
+}
+
+void btMultiBodySliderConstraint::finalizeMultiDof()
+{
+ //not implemented yet
+ btAssert(0);
+}
+
+btMultiBodySliderConstraint::~btMultiBodySliderConstraint()
+{
+}
+
+
+int btMultiBodySliderConstraint::getIslandIdA() const
+{
+ if (m_rigidBodyA)
+ return m_rigidBodyA->getIslandTag();
+
+ if (m_bodyA)
+ {
+ btMultiBodyLinkCollider* col = m_bodyA->getBaseCollider();
+ if (col)
+ return col->getIslandTag();
+ for (int i=0;i<m_bodyA->getNumLinks();i++)
+ {
+ if (m_bodyA->getLink(i).m_collider)
+ return m_bodyA->getLink(i).m_collider->getIslandTag();
+ }
+ }
+ return -1;
+}
+
+int btMultiBodySliderConstraint::getIslandIdB() const
+{
+ if (m_rigidBodyB)
+ return m_rigidBodyB->getIslandTag();
+ if (m_bodyB)
+ {
+ btMultiBodyLinkCollider* col = m_bodyB->getBaseCollider();
+ if (col)
+ return col->getIslandTag();
+
+ for (int i=0;i<m_bodyB->getNumLinks();i++)
+ {
+ col = m_bodyB->getLink(i).m_collider;
+ if (col)
+ return col->getIslandTag();
+ }
+ }
+ return -1;
+}
+
+void btMultiBodySliderConstraint::createConstraintRows(btMultiBodyConstraintArray& constraintRows, btMultiBodyJacobianData& data, const btContactSolverInfo& infoGlobal)
+{
+ // Convert local points back to world
+ btVector3 pivotAworld = m_pivotInA;
+ btMatrix3x3 frameAworld = m_frameInA;
+ btVector3 jointAxis = m_jointAxis;
+ if (m_rigidBodyA)
+ {
+ pivotAworld = m_rigidBodyA->getCenterOfMassTransform()*m_pivotInA;
+ frameAworld = m_frameInA.transpose()*btMatrix3x3(m_rigidBodyA->getOrientation());
+ jointAxis = quatRotate(m_rigidBodyA->getOrientation(),m_jointAxis);
+
+ } else if (m_bodyA) {
+ pivotAworld = m_bodyA->localPosToWorld(m_linkA, m_pivotInA);
+ frameAworld = m_bodyA->localFrameToWorld(m_linkA, m_frameInA);
+ jointAxis = m_bodyA->localDirToWorld(m_linkA, m_jointAxis);
+ }
+ btVector3 pivotBworld = m_pivotInB;
+ btMatrix3x3 frameBworld = m_frameInB;
+ if (m_rigidBodyB)
+ {
+ pivotBworld = m_rigidBodyB->getCenterOfMassTransform()*m_pivotInB;
+ frameBworld = m_frameInB.transpose()*btMatrix3x3(m_rigidBodyB->getOrientation());
+
+ } else if (m_bodyB) {
+ pivotBworld = m_bodyB->localPosToWorld(m_linkB, m_pivotInB);
+ frameBworld = m_bodyB->localFrameToWorld(m_linkB, m_frameInB);
+ }
+
+ btVector3 constraintAxis[2];
+ for (int i = 0; i < 3; ++i)
+ {
+ constraintAxis[0] = frameAworld.getColumn(i).cross(jointAxis);
+ if (constraintAxis[0].safeNorm() > EPSILON)
+ {
+ constraintAxis[0] = constraintAxis[0].normalized();
+ constraintAxis[1] = jointAxis.cross(constraintAxis[0]);
+ constraintAxis[1] = constraintAxis[1].normalized();
+ break;
+ }
+ }
+
+ btMatrix3x3 relRot = frameAworld.inverse()*frameBworld;
+ btVector3 angleDiff;
+ btGeneric6DofSpring2Constraint::matrixToEulerXYZ(relRot,angleDiff);
+
+ int numDim = BTMBSLIDERCONSTRAINT_DIM;
+ for (int i=0;i<numDim;i++)
+ {
+ btMultiBodySolverConstraint& constraintRow = constraintRows.expandNonInitializing();
+ constraintRow.m_orgConstraint = this;
+ constraintRow.m_orgDofIndex = i;
+ constraintRow.m_relpos1CrossNormal.setValue(0,0,0);
+ constraintRow.m_contactNormal1.setValue(0,0,0);
+ constraintRow.m_relpos2CrossNormal.setValue(0,0,0);
+ constraintRow.m_contactNormal2.setValue(0,0,0);
+ constraintRow.m_angularComponentA.setValue(0,0,0);
+ constraintRow.m_angularComponentB.setValue(0,0,0);
+
+ constraintRow.m_solverBodyIdA = data.m_fixedBodyId;
+ constraintRow.m_solverBodyIdB = data.m_fixedBodyId;
+
+ if (m_rigidBodyA)
+ {
+ constraintRow.m_solverBodyIdA = m_rigidBodyA->getCompanionId();
+ }
+ if (m_rigidBodyB)
+ {
+ constraintRow.m_solverBodyIdB = m_rigidBodyB->getCompanionId();
+ }
+
+ btVector3 constraintNormalLin(0,0,0);
+ btVector3 constraintNormalAng(0,0,0);
+ btScalar posError = 0.0;
+ if (i < 2) {
+ constraintNormalLin = constraintAxis[i];
+ posError = (pivotAworld-pivotBworld).dot(constraintNormalLin);
+ fillMultiBodyConstraint(constraintRow, data, 0, 0, constraintNormalAng,
+ constraintNormalLin, pivotAworld, pivotBworld,
+ posError,
+ infoGlobal,
+ -m_maxAppliedImpulse, m_maxAppliedImpulse
+ );
+ }
+ else { //i>=2
+ constraintNormalAng = frameAworld.getColumn(i%3);
+ posError = angleDiff[i%3];
+ fillMultiBodyConstraint(constraintRow, data, 0, 0, constraintNormalAng,
+ constraintNormalLin, pivotAworld, pivotBworld,
+ posError,
+ infoGlobal,
+ -m_maxAppliedImpulse, m_maxAppliedImpulse, true
+ );
+ }
+ }
+}
+
+void btMultiBodySliderConstraint::debugDraw(class btIDebugDraw* drawer)
+{
+ btTransform tr;
+ tr.setIdentity();
+
+ if (m_rigidBodyA)
+ {
+ btVector3 pivot = m_rigidBodyA->getCenterOfMassTransform() * m_pivotInA;
+ tr.setOrigin(pivot);
+ drawer->drawTransform(tr, 0.1);
+ }
+ if (m_bodyA)
+ {
+ btVector3 pivotAworld = m_bodyA->localPosToWorld(m_linkA, m_pivotInA);
+ tr.setOrigin(pivotAworld);
+ drawer->drawTransform(tr, 0.1);
+ }
+ if (m_rigidBodyB)
+ {
+ // that ideally should draw the same frame
+ btVector3 pivot = m_rigidBodyB->getCenterOfMassTransform() * m_pivotInB;
+ tr.setOrigin(pivot);
+ drawer->drawTransform(tr, 0.1);
+ }
+ if (m_bodyB)
+ {
+ btVector3 pivotBworld = m_bodyB->localPosToWorld(m_linkB, m_pivotInB);
+ tr.setOrigin(pivotBworld);
+ drawer->drawTransform(tr, 0.1);
+ }
+}
diff --git a/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodySliderConstraint.h b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodySliderConstraint.h
new file mode 100644
index 0000000000..0a6cf3df12
--- /dev/null
+++ b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodySliderConstraint.h
@@ -0,0 +1,105 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2013 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+///This file was written by Erwin Coumans
+
+#ifndef BT_MULTIBODY_SLIDER_CONSTRAINT_H
+#define BT_MULTIBODY_SLIDER_CONSTRAINT_H
+
+#include "btMultiBodyConstraint.h"
+
+class btMultiBodySliderConstraint : public btMultiBodyConstraint
+{
+protected:
+
+ btRigidBody* m_rigidBodyA;
+ btRigidBody* m_rigidBodyB;
+ btVector3 m_pivotInA;
+ btVector3 m_pivotInB;
+ btMatrix3x3 m_frameInA;
+ btMatrix3x3 m_frameInB;
+ btVector3 m_jointAxis;
+
+public:
+
+ btMultiBodySliderConstraint(btMultiBody* body, int link, btRigidBody* bodyB, const btVector3& pivotInA, const btVector3& pivotInB, const btMatrix3x3& frameInA, const btMatrix3x3& frameInB, const btVector3& jointAxis);
+ btMultiBodySliderConstraint(btMultiBody* bodyA, int linkA, btMultiBody* bodyB, int linkB, const btVector3& pivotInA, const btVector3& pivotInB, const btMatrix3x3& frameInA, const btMatrix3x3& frameInB, const btVector3& jointAxis);
+
+ virtual ~btMultiBodySliderConstraint();
+
+ virtual void finalizeMultiDof();
+
+ virtual int getIslandIdA() const;
+ virtual int getIslandIdB() const;
+
+ virtual void createConstraintRows(btMultiBodyConstraintArray& constraintRows,
+ btMultiBodyJacobianData& data,
+ const btContactSolverInfo& infoGlobal);
+
+ const btVector3& getPivotInA() const
+ {
+ return m_pivotInA;
+ }
+
+ void setPivotInA(const btVector3& pivotInA)
+ {
+ m_pivotInA = pivotInA;
+ }
+
+ const btVector3& getPivotInB() const
+ {
+ return m_pivotInB;
+ }
+
+ virtual void setPivotInB(const btVector3& pivotInB)
+ {
+ m_pivotInB = pivotInB;
+ }
+
+ const btMatrix3x3& getFrameInA() const
+ {
+ return m_frameInA;
+ }
+
+ void setFrameInA(const btMatrix3x3& frameInA)
+ {
+ m_frameInA = frameInA;
+ }
+
+ const btMatrix3x3& getFrameInB() const
+ {
+ return m_frameInB;
+ }
+
+ virtual void setFrameInB(const btMatrix3x3& frameInB)
+ {
+ m_frameInB = frameInB;
+ }
+
+ const btVector3& getJointAxis() const
+ {
+ return m_jointAxis;
+ }
+
+ void setJointAxis(const btVector3& jointAxis)
+ {
+ m_jointAxis = jointAxis;
+ }
+
+ virtual void debugDraw(class btIDebugDraw* drawer);
+
+};
+
+#endif //BT_MULTIBODY_SLIDER_CONSTRAINT_H
diff --git a/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodySolverConstraint.h b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodySolverConstraint.h
new file mode 100644
index 0000000000..6fa1550e9e
--- /dev/null
+++ b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodySolverConstraint.h
@@ -0,0 +1,90 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2013 Erwin Coumans http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+#ifndef BT_MULTIBODY_SOLVER_CONSTRAINT_H
+#define BT_MULTIBODY_SOLVER_CONSTRAINT_H
+
+#include "LinearMath/btVector3.h"
+#include "LinearMath/btAlignedObjectArray.h"
+
+class btMultiBody;
+class btMultiBodyConstraint;
+#include "BulletDynamics/ConstraintSolver/btSolverBody.h"
+#include "BulletDynamics/ConstraintSolver/btContactSolverInfo.h"
+
+///1D constraint along a normal axis between bodyA and bodyB. It can be combined to solve contact and friction constraints.
+ATTRIBUTE_ALIGNED16 (struct) btMultiBodySolverConstraint
+{
+ BT_DECLARE_ALIGNED_ALLOCATOR();
+
+ btMultiBodySolverConstraint() : m_solverBodyIdA(-1), m_multiBodyA(0), m_linkA(-1), m_solverBodyIdB(-1), m_multiBodyB(0), m_linkB(-1),m_orgConstraint(0), m_orgDofIndex(-1)
+ {}
+
+ int m_deltaVelAindex;//more generic version of m_relpos1CrossNormal/m_contactNormal1
+ int m_jacAindex;
+ int m_deltaVelBindex;
+ int m_jacBindex;
+
+ btVector3 m_relpos1CrossNormal;
+ btVector3 m_contactNormal1;
+ btVector3 m_relpos2CrossNormal;
+ btVector3 m_contactNormal2; //usually m_contactNormal2 == -m_contactNormal1, but not always
+
+
+ btVector3 m_angularComponentA;
+ btVector3 m_angularComponentB;
+
+ mutable btSimdScalar m_appliedPushImpulse;
+ mutable btSimdScalar m_appliedImpulse;
+
+ btScalar m_friction;
+ btScalar m_jacDiagABInv;
+ btScalar m_rhs;
+ btScalar m_cfm;
+
+ btScalar m_lowerLimit;
+ btScalar m_upperLimit;
+ btScalar m_rhsPenetration;
+ union
+ {
+ void* m_originalContactPoint;
+ btScalar m_unusedPadding4;
+ };
+
+ int m_overrideNumSolverIterations;
+ int m_frictionIndex;
+
+ int m_solverBodyIdA;
+ btMultiBody* m_multiBodyA;
+ int m_linkA;
+
+ int m_solverBodyIdB;
+ btMultiBody* m_multiBodyB;
+ int m_linkB;
+
+ //for writing back applied impulses
+ btMultiBodyConstraint* m_orgConstraint;
+ int m_orgDofIndex;
+
+ enum btSolverConstraintType
+ {
+ BT_SOLVER_CONTACT_1D = 0,
+ BT_SOLVER_FRICTION_1D
+ };
+};
+
+typedef btAlignedObjectArray<btMultiBodySolverConstraint> btMultiBodyConstraintArray;
+
+#endif //BT_MULTIBODY_SOLVER_CONSTRAINT_H