summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyConstraintSolver.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyConstraintSolver.cpp')
-rw-r--r--thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyConstraintSolver.cpp1429
1 files changed, 0 insertions, 1429 deletions
diff --git a/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyConstraintSolver.cpp b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyConstraintSolver.cpp
deleted file mode 100644
index 1e2d074096..0000000000
--- a/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyConstraintSolver.cpp
+++ /dev/null
@@ -1,1429 +0,0 @@
-/*
-Bullet Continuous Collision Detection and Physics Library
-Copyright (c) 2013 Erwin Coumans http://bulletphysics.org
-
-This software is provided 'as-is', without any express or implied warranty.
-In no event will the authors be held liable for any damages arising from the use of this software.
-Permission is granted to anyone to use this software for any purpose,
-including commercial applications, and to alter it and redistribute it freely,
-subject to the following restrictions:
-
-1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
-2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
-3. This notice may not be removed or altered from any source distribution.
-*/
-
-
-#include "btMultiBodyConstraintSolver.h"
-#include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h"
-#include "btMultiBodyLinkCollider.h"
-
-#include "BulletDynamics/ConstraintSolver/btSolverBody.h"
-#include "btMultiBodyConstraint.h"
-#include "BulletDynamics/ConstraintSolver/btContactSolverInfo.h"
-
-#include "LinearMath/btQuickprof.h"
-
-btScalar btMultiBodyConstraintSolver::solveSingleIteration(int iteration, btCollisionObject** bodies ,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer)
-{
- btScalar leastSquaredResidual = btSequentialImpulseConstraintSolver::solveSingleIteration(iteration, bodies ,numBodies,manifoldPtr, numManifolds,constraints,numConstraints,infoGlobal,debugDrawer);
-
- //solve featherstone non-contact constraints
-
- //printf("m_multiBodyNonContactConstraints = %d\n",m_multiBodyNonContactConstraints.size());
-
- for (int j=0;j<m_multiBodyNonContactConstraints.size();j++)
- {
- int index = iteration&1? j : m_multiBodyNonContactConstraints.size()-1-j;
-
- btMultiBodySolverConstraint& constraint = m_multiBodyNonContactConstraints[index];
-
- btScalar residual = resolveSingleConstraintRowGeneric(constraint);
- leastSquaredResidual += residual*residual;
-
- if(constraint.m_multiBodyA)
- constraint.m_multiBodyA->setPosUpdated(false);
- if(constraint.m_multiBodyB)
- constraint.m_multiBodyB->setPosUpdated(false);
- }
-
- //solve featherstone normal contact
- for (int j0=0;j0<m_multiBodyNormalContactConstraints.size();j0++)
- {
- int index = j0;//iteration&1? j0 : m_multiBodyNormalContactConstraints.size()-1-j0;
-
- btMultiBodySolverConstraint& constraint = m_multiBodyNormalContactConstraints[index];
- btScalar residual = 0.f;
-
- if (iteration < infoGlobal.m_numIterations)
- {
- residual = resolveSingleConstraintRowGeneric(constraint);
- }
-
- leastSquaredResidual += residual*residual;
-
- if(constraint.m_multiBodyA)
- constraint.m_multiBodyA->setPosUpdated(false);
- if(constraint.m_multiBodyB)
- constraint.m_multiBodyB->setPosUpdated(false);
- }
-
- //solve featherstone frictional contact
-
- for (int j1=0;j1<this->m_multiBodyFrictionContactConstraints.size();j1++)
- {
- if (iteration < infoGlobal.m_numIterations)
- {
- int index = j1;//iteration&1? j1 : m_multiBodyFrictionContactConstraints.size()-1-j1;
-
- btMultiBodySolverConstraint& frictionConstraint = m_multiBodyFrictionContactConstraints[index];
- btScalar totalImpulse = m_multiBodyNormalContactConstraints[frictionConstraint.m_frictionIndex].m_appliedImpulse;
- //adjust friction limits here
- if (totalImpulse>btScalar(0))
- {
- frictionConstraint.m_lowerLimit = -(frictionConstraint.m_friction*totalImpulse);
- frictionConstraint.m_upperLimit = frictionConstraint.m_friction*totalImpulse;
- btScalar residual = resolveSingleConstraintRowGeneric(frictionConstraint);
- leastSquaredResidual += residual*residual;
-
- if(frictionConstraint.m_multiBodyA)
- frictionConstraint.m_multiBodyA->setPosUpdated(false);
- if(frictionConstraint.m_multiBodyB)
- frictionConstraint.m_multiBodyB->setPosUpdated(false);
- }
- }
- }
- return leastSquaredResidual;
-}
-
-btScalar btMultiBodyConstraintSolver::solveGroupCacheFriendlySetup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer)
-{
- m_multiBodyNonContactConstraints.resize(0);
- m_multiBodyNormalContactConstraints.resize(0);
- m_multiBodyFrictionContactConstraints.resize(0);
- m_data.m_jacobians.resize(0);
- m_data.m_deltaVelocitiesUnitImpulse.resize(0);
- m_data.m_deltaVelocities.resize(0);
-
- for (int i=0;i<numBodies;i++)
- {
- const btMultiBodyLinkCollider* fcA = btMultiBodyLinkCollider::upcast(bodies[i]);
- if (fcA)
- {
- fcA->m_multiBody->setCompanionId(-1);
- }
- }
-
- btScalar val = btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup( bodies,numBodies,manifoldPtr, numManifolds, constraints,numConstraints,infoGlobal,debugDrawer);
-
- return val;
-}
-
-void btMultiBodyConstraintSolver::applyDeltaVee(btScalar* delta_vee, btScalar impulse, int velocityIndex, int ndof)
-{
- for (int i = 0; i < ndof; ++i)
- m_data.m_deltaVelocities[velocityIndex+i] += delta_vee[i] * impulse;
-}
-
-btScalar btMultiBodyConstraintSolver::resolveSingleConstraintRowGeneric(const btMultiBodySolverConstraint& c)
-{
-
- btScalar deltaImpulse = c.m_rhs-btScalar(c.m_appliedImpulse)*c.m_cfm;
- btScalar deltaVelADotn=0;
- btScalar deltaVelBDotn=0;
- btSolverBody* bodyA = 0;
- btSolverBody* bodyB = 0;
- int ndofA=0;
- int ndofB=0;
-
- if (c.m_multiBodyA)
- {
- ndofA = c.m_multiBodyA->getNumDofs() + 6;
- for (int i = 0; i < ndofA; ++i)
- deltaVelADotn += m_data.m_jacobians[c.m_jacAindex+i] * m_data.m_deltaVelocities[c.m_deltaVelAindex+i];
- } else if(c.m_solverBodyIdA >= 0)
- {
- bodyA = &m_tmpSolverBodyPool[c.m_solverBodyIdA];
- deltaVelADotn += c.m_contactNormal1.dot(bodyA->internalGetDeltaLinearVelocity()) + c.m_relpos1CrossNormal.dot(bodyA->internalGetDeltaAngularVelocity());
- }
-
- if (c.m_multiBodyB)
- {
- ndofB = c.m_multiBodyB->getNumDofs() + 6;
- for (int i = 0; i < ndofB; ++i)
- deltaVelBDotn += m_data.m_jacobians[c.m_jacBindex+i] * m_data.m_deltaVelocities[c.m_deltaVelBindex+i];
- } else if(c.m_solverBodyIdB >= 0)
- {
- bodyB = &m_tmpSolverBodyPool[c.m_solverBodyIdB];
- deltaVelBDotn += c.m_contactNormal2.dot(bodyB->internalGetDeltaLinearVelocity()) + c.m_relpos2CrossNormal.dot(bodyB->internalGetDeltaAngularVelocity());
- }
-
-
- deltaImpulse -= deltaVelADotn*c.m_jacDiagABInv;//m_jacDiagABInv = 1./denom
- deltaImpulse -= deltaVelBDotn*c.m_jacDiagABInv;
- const btScalar sum = btScalar(c.m_appliedImpulse) + deltaImpulse;
-
- if (sum < c.m_lowerLimit)
- {
- deltaImpulse = c.m_lowerLimit-c.m_appliedImpulse;
- c.m_appliedImpulse = c.m_lowerLimit;
- }
- else if (sum > c.m_upperLimit)
- {
- deltaImpulse = c.m_upperLimit-c.m_appliedImpulse;
- c.m_appliedImpulse = c.m_upperLimit;
- }
- else
- {
- c.m_appliedImpulse = sum;
- }
-
- if (c.m_multiBodyA)
- {
- applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacAindex],deltaImpulse,c.m_deltaVelAindex,ndofA);
-#ifdef DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
- //note: update of the actual velocities (below) in the multibody does not have to happen now since m_deltaVelocities can be applied after all iterations
- //it would make the multibody solver more like the regular one with m_deltaVelocities being equivalent to btSolverBody::m_deltaLinearVelocity/m_deltaAngularVelocity
- c.m_multiBodyA->applyDeltaVeeMultiDof2(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacAindex],deltaImpulse);
-#endif //DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
- } else if(c.m_solverBodyIdA >= 0)
- {
- bodyA->internalApplyImpulse(c.m_contactNormal1*bodyA->internalGetInvMass(),c.m_angularComponentA,deltaImpulse);
-
- }
- if (c.m_multiBodyB)
- {
- applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacBindex],deltaImpulse,c.m_deltaVelBindex,ndofB);
-#ifdef DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
- //note: update of the actual velocities (below) in the multibody does not have to happen now since m_deltaVelocities can be applied after all iterations
- //it would make the multibody solver more like the regular one with m_deltaVelocities being equivalent to btSolverBody::m_deltaLinearVelocity/m_deltaAngularVelocity
- c.m_multiBodyB->applyDeltaVeeMultiDof2(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacBindex],deltaImpulse);
-#endif //DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
- } else if(c.m_solverBodyIdB >= 0)
- {
- bodyB->internalApplyImpulse(c.m_contactNormal2*bodyB->internalGetInvMass(),c.m_angularComponentB,deltaImpulse);
- }
- return deltaImpulse;
-}
-
-
-
-
-void btMultiBodyConstraintSolver::setupMultiBodyContactConstraint(btMultiBodySolverConstraint& solverConstraint,
- const btVector3& contactNormal,
- btManifoldPoint& cp, const btContactSolverInfo& infoGlobal,
- btScalar& relaxation,
- bool isFriction, btScalar desiredVelocity, btScalar cfmSlip)
-{
-
- BT_PROFILE("setupMultiBodyContactConstraint");
- btVector3 rel_pos1;
- btVector3 rel_pos2;
-
- btMultiBody* multiBodyA = solverConstraint.m_multiBodyA;
- btMultiBody* multiBodyB = solverConstraint.m_multiBodyB;
-
- const btVector3& pos1 = cp.getPositionWorldOnA();
- const btVector3& pos2 = cp.getPositionWorldOnB();
-
- btSolverBody* bodyA = multiBodyA ? 0 : &m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdA];
- btSolverBody* bodyB = multiBodyB ? 0 : &m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdB];
-
- btRigidBody* rb0 = multiBodyA ? 0 : bodyA->m_originalBody;
- btRigidBody* rb1 = multiBodyB ? 0 : bodyB->m_originalBody;
-
- if (bodyA)
- rel_pos1 = pos1 - bodyA->getWorldTransform().getOrigin();
- if (bodyB)
- rel_pos2 = pos2 - bodyB->getWorldTransform().getOrigin();
-
- relaxation = infoGlobal.m_sor;
-
- btScalar invTimeStep = btScalar(1)/infoGlobal.m_timeStep;
-
- //cfm = 1 / ( dt * kp + kd )
- //erp = dt * kp / ( dt * kp + kd )
-
- btScalar cfm;
- btScalar erp;
- if (isFriction)
- {
- cfm = infoGlobal.m_frictionCFM;
- erp = infoGlobal.m_frictionERP;
- } else
- {
- cfm = infoGlobal.m_globalCfm;
- erp = infoGlobal.m_erp2;
-
- if ((cp.m_contactPointFlags&BT_CONTACT_FLAG_HAS_CONTACT_CFM) || (cp.m_contactPointFlags&BT_CONTACT_FLAG_HAS_CONTACT_ERP))
- {
- if (cp.m_contactPointFlags&BT_CONTACT_FLAG_HAS_CONTACT_CFM)
- cfm = cp.m_contactCFM;
- if (cp.m_contactPointFlags&BT_CONTACT_FLAG_HAS_CONTACT_ERP)
- erp = cp.m_contactERP;
- } else
- {
- if (cp.m_contactPointFlags & BT_CONTACT_FLAG_CONTACT_STIFFNESS_DAMPING)
- {
- btScalar denom = ( infoGlobal.m_timeStep * cp.m_combinedContactStiffness1 + cp.m_combinedContactDamping1 );
- if (denom < SIMD_EPSILON)
- {
- denom = SIMD_EPSILON;
- }
- cfm = btScalar(1) / denom;
- erp = (infoGlobal.m_timeStep * cp.m_combinedContactStiffness1) / denom;
- }
- }
- }
-
- cfm *= invTimeStep;
-
- if (multiBodyA)
- {
- if (solverConstraint.m_linkA<0)
- {
- rel_pos1 = pos1 - multiBodyA->getBasePos();
- } else
- {
- rel_pos1 = pos1 - multiBodyA->getLink(solverConstraint.m_linkA).m_cachedWorldTransform.getOrigin();
- }
- const int ndofA = multiBodyA->getNumDofs() + 6;
-
- solverConstraint.m_deltaVelAindex = multiBodyA->getCompanionId();
-
- if (solverConstraint.m_deltaVelAindex <0)
- {
- solverConstraint.m_deltaVelAindex = m_data.m_deltaVelocities.size();
- multiBodyA->setCompanionId(solverConstraint.m_deltaVelAindex);
- m_data.m_deltaVelocities.resize(m_data.m_deltaVelocities.size()+ndofA);
- } else
- {
- btAssert(m_data.m_deltaVelocities.size() >= solverConstraint.m_deltaVelAindex+ndofA);
- }
-
- solverConstraint.m_jacAindex = m_data.m_jacobians.size();
- m_data.m_jacobians.resize(m_data.m_jacobians.size()+ndofA);
- m_data.m_deltaVelocitiesUnitImpulse.resize(m_data.m_deltaVelocitiesUnitImpulse.size()+ndofA);
- btAssert(m_data.m_jacobians.size() == m_data.m_deltaVelocitiesUnitImpulse.size());
-
- btScalar* jac1=&m_data.m_jacobians[solverConstraint.m_jacAindex];
- multiBodyA->fillContactJacobianMultiDof(solverConstraint.m_linkA, cp.getPositionWorldOnA(), contactNormal, jac1, m_data.scratch_r, m_data.scratch_v, m_data.scratch_m);
- btScalar* delta = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
- multiBodyA->calcAccelerationDeltasMultiDof(&m_data.m_jacobians[solverConstraint.m_jacAindex],delta,m_data.scratch_r, m_data.scratch_v);
-
- btVector3 torqueAxis0 = rel_pos1.cross(contactNormal);
- solverConstraint.m_relpos1CrossNormal = torqueAxis0;
- solverConstraint.m_contactNormal1 = contactNormal;
- } else
- {
- btVector3 torqueAxis0 = rel_pos1.cross(contactNormal);
- solverConstraint.m_relpos1CrossNormal = torqueAxis0;
- solverConstraint.m_contactNormal1 = contactNormal;
- solverConstraint.m_angularComponentA = rb0 ? rb0->getInvInertiaTensorWorld()*torqueAxis0*rb0->getAngularFactor() : btVector3(0,0,0);
- }
-
-
-
- if (multiBodyB)
- {
- if (solverConstraint.m_linkB<0)
- {
- rel_pos2 = pos2 - multiBodyB->getBasePos();
- } else
- {
- rel_pos2 = pos2 - multiBodyB->getLink(solverConstraint.m_linkB).m_cachedWorldTransform.getOrigin();
- }
-
- const int ndofB = multiBodyB->getNumDofs() + 6;
-
- solverConstraint.m_deltaVelBindex = multiBodyB->getCompanionId();
- if (solverConstraint.m_deltaVelBindex <0)
- {
- solverConstraint.m_deltaVelBindex = m_data.m_deltaVelocities.size();
- multiBodyB->setCompanionId(solverConstraint.m_deltaVelBindex);
- m_data.m_deltaVelocities.resize(m_data.m_deltaVelocities.size()+ndofB);
- }
-
- solverConstraint.m_jacBindex = m_data.m_jacobians.size();
-
- m_data.m_jacobians.resize(m_data.m_jacobians.size()+ndofB);
- m_data.m_deltaVelocitiesUnitImpulse.resize(m_data.m_deltaVelocitiesUnitImpulse.size()+ndofB);
- btAssert(m_data.m_jacobians.size() == m_data.m_deltaVelocitiesUnitImpulse.size());
-
- multiBodyB->fillContactJacobianMultiDof(solverConstraint.m_linkB, cp.getPositionWorldOnB(), -contactNormal, &m_data.m_jacobians[solverConstraint.m_jacBindex], m_data.scratch_r, m_data.scratch_v, m_data.scratch_m);
- multiBodyB->calcAccelerationDeltasMultiDof(&m_data.m_jacobians[solverConstraint.m_jacBindex],&m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex],m_data.scratch_r, m_data.scratch_v);
-
- btVector3 torqueAxis1 = rel_pos2.cross(contactNormal);
- solverConstraint.m_relpos2CrossNormal = -torqueAxis1;
- solverConstraint.m_contactNormal2 = -contactNormal;
-
- } else
- {
- btVector3 torqueAxis1 = rel_pos2.cross(contactNormal);
- solverConstraint.m_relpos2CrossNormal = -torqueAxis1;
- solverConstraint.m_contactNormal2 = -contactNormal;
-
- solverConstraint.m_angularComponentB = rb1 ? rb1->getInvInertiaTensorWorld()*-torqueAxis1*rb1->getAngularFactor() : btVector3(0,0,0);
- }
-
- {
-
- btVector3 vec;
- btScalar denom0 = 0.f;
- btScalar denom1 = 0.f;
- btScalar* jacB = 0;
- btScalar* jacA = 0;
- btScalar* lambdaA =0;
- btScalar* lambdaB =0;
- int ndofA = 0;
- if (multiBodyA)
- {
- ndofA = multiBodyA->getNumDofs() + 6;
- jacA = &m_data.m_jacobians[solverConstraint.m_jacAindex];
- lambdaA = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
- for (int i = 0; i < ndofA; ++i)
- {
- btScalar j = jacA[i] ;
- btScalar l =lambdaA[i];
- denom0 += j*l;
- }
- } else
- {
- if (rb0)
- {
- vec = ( solverConstraint.m_angularComponentA).cross(rel_pos1);
- denom0 = rb0->getInvMass() + contactNormal.dot(vec);
- }
- }
- if (multiBodyB)
- {
- const int ndofB = multiBodyB->getNumDofs() + 6;
- jacB = &m_data.m_jacobians[solverConstraint.m_jacBindex];
- lambdaB = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
- for (int i = 0; i < ndofB; ++i)
- {
- btScalar j = jacB[i] ;
- btScalar l =lambdaB[i];
- denom1 += j*l;
- }
-
- } else
- {
- if (rb1)
- {
- vec = ( -solverConstraint.m_angularComponentB).cross(rel_pos2);
- denom1 = rb1->getInvMass() + contactNormal.dot(vec);
- }
- }
-
-
-
- btScalar d = denom0+denom1+cfm;
- if (d>SIMD_EPSILON)
- {
- solverConstraint.m_jacDiagABInv = relaxation/(d);
- } else
- {
- //disable the constraint row to handle singularity/redundant constraint
- solverConstraint.m_jacDiagABInv = 0.f;
- }
-
- }
-
-
- //compute rhs and remaining solverConstraint fields
-
-
-
- btScalar restitution = 0.f;
- btScalar distance = 0;
- if (!isFriction)
- {
- distance = cp.getDistance()+infoGlobal.m_linearSlop;
- } else
- {
- if (cp.m_contactPointFlags & BT_CONTACT_FLAG_FRICTION_ANCHOR)
- {
- distance = (cp.getPositionWorldOnA() - cp.getPositionWorldOnB()).dot(contactNormal);
- }
- }
-
-
- btScalar rel_vel = 0.f;
- int ndofA = 0;
- int ndofB = 0;
- {
-
- btVector3 vel1,vel2;
- if (multiBodyA)
- {
- ndofA = multiBodyA->getNumDofs() + 6;
- btScalar* jacA = &m_data.m_jacobians[solverConstraint.m_jacAindex];
- for (int i = 0; i < ndofA ; ++i)
- rel_vel += multiBodyA->getVelocityVector()[i] * jacA[i];
- } else
- {
- if (rb0)
- {
- rel_vel += (rb0->getVelocityInLocalPoint(rel_pos1) +
- (rb0->getTotalTorque()*rb0->getInvInertiaTensorWorld()*infoGlobal.m_timeStep).cross(rel_pos1)+
- rb0->getTotalForce()*rb0->getInvMass()*infoGlobal.m_timeStep).dot(solverConstraint.m_contactNormal1);
- }
- }
- if (multiBodyB)
- {
- ndofB = multiBodyB->getNumDofs() + 6;
- btScalar* jacB = &m_data.m_jacobians[solverConstraint.m_jacBindex];
- for (int i = 0; i < ndofB ; ++i)
- rel_vel += multiBodyB->getVelocityVector()[i] * jacB[i];
-
- } else
- {
- if (rb1)
- {
- rel_vel += (rb1->getVelocityInLocalPoint(rel_pos2)+
- (rb1->getTotalTorque()*rb1->getInvInertiaTensorWorld()*infoGlobal.m_timeStep).cross(rel_pos2) +
- rb1->getTotalForce()*rb1->getInvMass()*infoGlobal.m_timeStep).dot(solverConstraint.m_contactNormal2);
- }
- }
-
- solverConstraint.m_friction = cp.m_combinedFriction;
-
- if(!isFriction)
- {
- restitution = restitutionCurve(rel_vel, cp.m_combinedRestitution, infoGlobal.m_restitutionVelocityThreshold);
- if (restitution <= btScalar(0.))
- {
- restitution = 0.f;
- }
- }
- }
-
-
- ///warm starting (or zero if disabled)
- //disable warmstarting for btMultiBody, it has issues gaining energy (==explosion)
- if (0)//infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
- {
- solverConstraint.m_appliedImpulse = isFriction ? 0 : cp.m_appliedImpulse * infoGlobal.m_warmstartingFactor;
-
- if (solverConstraint.m_appliedImpulse)
- {
- if (multiBodyA)
- {
- btScalar impulse = solverConstraint.m_appliedImpulse;
- btScalar* deltaV = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
- multiBodyA->applyDeltaVeeMultiDof(deltaV,impulse);
-
- applyDeltaVee(deltaV,impulse,solverConstraint.m_deltaVelAindex,ndofA);
- } else
- {
- if (rb0)
- bodyA->internalApplyImpulse(solverConstraint.m_contactNormal1*bodyA->internalGetInvMass()*rb0->getLinearFactor(),solverConstraint.m_angularComponentA,solverConstraint.m_appliedImpulse);
- }
- if (multiBodyB)
- {
- btScalar impulse = solverConstraint.m_appliedImpulse;
- btScalar* deltaV = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
- multiBodyB->applyDeltaVeeMultiDof(deltaV,impulse);
- applyDeltaVee(deltaV,impulse,solverConstraint.m_deltaVelBindex,ndofB);
- } else
- {
- if (rb1)
- bodyB->internalApplyImpulse(-solverConstraint.m_contactNormal2*bodyB->internalGetInvMass()*rb1->getLinearFactor(),-solverConstraint.m_angularComponentB,-(btScalar)solverConstraint.m_appliedImpulse);
- }
- }
- } else
- {
- solverConstraint.m_appliedImpulse = 0.f;
- }
-
- solverConstraint.m_appliedPushImpulse = 0.f;
-
- {
-
- btScalar positionalError = 0.f;
- btScalar velocityError = restitution - rel_vel;// * damping; //note for friction restitution is always set to 0 (check above) so it is acutally velocityError = -rel_vel for friction
- if (isFriction)
- {
- positionalError = -distance * erp/infoGlobal.m_timeStep;
- } else
- {
- if (distance>0)
- {
- positionalError = 0;
- velocityError -= distance / infoGlobal.m_timeStep;
-
- } else
- {
- positionalError = -distance * erp/infoGlobal.m_timeStep;
- }
- }
-
- btScalar penetrationImpulse = positionalError*solverConstraint.m_jacDiagABInv;
- btScalar velocityImpulse = velocityError *solverConstraint.m_jacDiagABInv;
-
- if(!isFriction)
- {
- // if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
- {
- //combine position and velocity into rhs
- solverConstraint.m_rhs = penetrationImpulse+velocityImpulse;
- solverConstraint.m_rhsPenetration = 0.f;
-
- }
- /*else
- {
- //split position and velocity into rhs and m_rhsPenetration
- solverConstraint.m_rhs = velocityImpulse;
- solverConstraint.m_rhsPenetration = penetrationImpulse;
- }
- */
- solverConstraint.m_lowerLimit = 0;
- solverConstraint.m_upperLimit = 1e10f;
- }
- else
- {
- solverConstraint.m_rhs = penetrationImpulse+velocityImpulse;
- solverConstraint.m_rhsPenetration = 0.f;
- solverConstraint.m_lowerLimit = -solverConstraint.m_friction;
- solverConstraint.m_upperLimit = solverConstraint.m_friction;
- }
-
- solverConstraint.m_cfm = cfm*solverConstraint.m_jacDiagABInv;
-
-
-
- }
-
-}
-
-void btMultiBodyConstraintSolver::setupMultiBodyTorsionalFrictionConstraint(btMultiBodySolverConstraint& solverConstraint,
- const btVector3& constraintNormal,
- btManifoldPoint& cp,
- btScalar combinedTorsionalFriction,
- const btContactSolverInfo& infoGlobal,
- btScalar& relaxation,
- bool isFriction, btScalar desiredVelocity, btScalar cfmSlip)
-{
-
- BT_PROFILE("setupMultiBodyRollingFrictionConstraint");
- btVector3 rel_pos1;
- btVector3 rel_pos2;
-
- btMultiBody* multiBodyA = solverConstraint.m_multiBodyA;
- btMultiBody* multiBodyB = solverConstraint.m_multiBodyB;
-
- const btVector3& pos1 = cp.getPositionWorldOnA();
- const btVector3& pos2 = cp.getPositionWorldOnB();
-
- btSolverBody* bodyA = multiBodyA ? 0 : &m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdA];
- btSolverBody* bodyB = multiBodyB ? 0 : &m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdB];
-
- btRigidBody* rb0 = multiBodyA ? 0 : bodyA->m_originalBody;
- btRigidBody* rb1 = multiBodyB ? 0 : bodyB->m_originalBody;
-
- if (bodyA)
- rel_pos1 = pos1 - bodyA->getWorldTransform().getOrigin();
- if (bodyB)
- rel_pos2 = pos2 - bodyB->getWorldTransform().getOrigin();
-
- relaxation = infoGlobal.m_sor;
-
- // btScalar invTimeStep = btScalar(1)/infoGlobal.m_timeStep;
-
-
- if (multiBodyA)
- {
- if (solverConstraint.m_linkA<0)
- {
- rel_pos1 = pos1 - multiBodyA->getBasePos();
- } else
- {
- rel_pos1 = pos1 - multiBodyA->getLink(solverConstraint.m_linkA).m_cachedWorldTransform.getOrigin();
- }
- const int ndofA = multiBodyA->getNumDofs() + 6;
-
- solverConstraint.m_deltaVelAindex = multiBodyA->getCompanionId();
-
- if (solverConstraint.m_deltaVelAindex <0)
- {
- solverConstraint.m_deltaVelAindex = m_data.m_deltaVelocities.size();
- multiBodyA->setCompanionId(solverConstraint.m_deltaVelAindex);
- m_data.m_deltaVelocities.resize(m_data.m_deltaVelocities.size()+ndofA);
- } else
- {
- btAssert(m_data.m_deltaVelocities.size() >= solverConstraint.m_deltaVelAindex+ndofA);
- }
-
- solverConstraint.m_jacAindex = m_data.m_jacobians.size();
- m_data.m_jacobians.resize(m_data.m_jacobians.size()+ndofA);
- m_data.m_deltaVelocitiesUnitImpulse.resize(m_data.m_deltaVelocitiesUnitImpulse.size()+ndofA);
- btAssert(m_data.m_jacobians.size() == m_data.m_deltaVelocitiesUnitImpulse.size());
-
- btScalar* jac1=&m_data.m_jacobians[solverConstraint.m_jacAindex];
- multiBodyA->fillConstraintJacobianMultiDof(solverConstraint.m_linkA, cp.getPositionWorldOnA(), constraintNormal, btVector3(0,0,0), jac1, m_data.scratch_r, m_data.scratch_v, m_data.scratch_m);
- btScalar* delta = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
- multiBodyA->calcAccelerationDeltasMultiDof(&m_data.m_jacobians[solverConstraint.m_jacAindex],delta,m_data.scratch_r, m_data.scratch_v);
-
- btVector3 torqueAxis0 = -constraintNormal;
- solverConstraint.m_relpos1CrossNormal = torqueAxis0;
- solverConstraint.m_contactNormal1 = btVector3(0,0,0);
- } else
- {
- btVector3 torqueAxis0 = -constraintNormal;
- solverConstraint.m_relpos1CrossNormal = torqueAxis0;
- solverConstraint.m_contactNormal1 = btVector3(0,0,0);
- solverConstraint.m_angularComponentA = rb0 ? rb0->getInvInertiaTensorWorld()*torqueAxis0*rb0->getAngularFactor() : btVector3(0,0,0);
- }
-
-
-
- if (multiBodyB)
- {
- if (solverConstraint.m_linkB<0)
- {
- rel_pos2 = pos2 - multiBodyB->getBasePos();
- } else
- {
- rel_pos2 = pos2 - multiBodyB->getLink(solverConstraint.m_linkB).m_cachedWorldTransform.getOrigin();
- }
-
- const int ndofB = multiBodyB->getNumDofs() + 6;
-
- solverConstraint.m_deltaVelBindex = multiBodyB->getCompanionId();
- if (solverConstraint.m_deltaVelBindex <0)
- {
- solverConstraint.m_deltaVelBindex = m_data.m_deltaVelocities.size();
- multiBodyB->setCompanionId(solverConstraint.m_deltaVelBindex);
- m_data.m_deltaVelocities.resize(m_data.m_deltaVelocities.size()+ndofB);
- }
-
- solverConstraint.m_jacBindex = m_data.m_jacobians.size();
-
- m_data.m_jacobians.resize(m_data.m_jacobians.size()+ndofB);
- m_data.m_deltaVelocitiesUnitImpulse.resize(m_data.m_deltaVelocitiesUnitImpulse.size()+ndofB);
- btAssert(m_data.m_jacobians.size() == m_data.m_deltaVelocitiesUnitImpulse.size());
-
- multiBodyB->fillConstraintJacobianMultiDof(solverConstraint.m_linkB, cp.getPositionWorldOnB(), -constraintNormal, btVector3(0,0,0), &m_data.m_jacobians[solverConstraint.m_jacBindex], m_data.scratch_r, m_data.scratch_v, m_data.scratch_m);
- multiBodyB->calcAccelerationDeltasMultiDof(&m_data.m_jacobians[solverConstraint.m_jacBindex],&m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex],m_data.scratch_r, m_data.scratch_v);
-
- btVector3 torqueAxis1 = constraintNormal;
- solverConstraint.m_relpos2CrossNormal = torqueAxis1;
- solverConstraint.m_contactNormal2 = -btVector3(0,0,0);
-
- } else
- {
- btVector3 torqueAxis1 = constraintNormal;
- solverConstraint.m_relpos2CrossNormal = torqueAxis1;
- solverConstraint.m_contactNormal2 = -btVector3(0,0,0);
-
- solverConstraint.m_angularComponentB = rb1 ? rb1->getInvInertiaTensorWorld()*torqueAxis1*rb1->getAngularFactor() : btVector3(0,0,0);
- }
-
- {
-
- btScalar denom0 = 0.f;
- btScalar denom1 = 0.f;
- btScalar* jacB = 0;
- btScalar* jacA = 0;
- btScalar* lambdaA =0;
- btScalar* lambdaB =0;
- int ndofA = 0;
- if (multiBodyA)
- {
- ndofA = multiBodyA->getNumDofs() + 6;
- jacA = &m_data.m_jacobians[solverConstraint.m_jacAindex];
- lambdaA = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
- for (int i = 0; i < ndofA; ++i)
- {
- btScalar j = jacA[i] ;
- btScalar l =lambdaA[i];
- denom0 += j*l;
- }
- } else
- {
- if (rb0)
- {
- btVector3 iMJaA = rb0?rb0->getInvInertiaTensorWorld()*solverConstraint.m_relpos1CrossNormal:btVector3(0,0,0);
- denom0 = iMJaA.dot(solverConstraint.m_relpos1CrossNormal);
- }
- }
- if (multiBodyB)
- {
- const int ndofB = multiBodyB->getNumDofs() + 6;
- jacB = &m_data.m_jacobians[solverConstraint.m_jacBindex];
- lambdaB = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
- for (int i = 0; i < ndofB; ++i)
- {
- btScalar j = jacB[i] ;
- btScalar l =lambdaB[i];
- denom1 += j*l;
- }
-
- } else
- {
- if (rb1)
- {
- btVector3 iMJaB = rb1?rb1->getInvInertiaTensorWorld()*solverConstraint.m_relpos2CrossNormal:btVector3(0,0,0);
- denom1 = iMJaB.dot(solverConstraint.m_relpos2CrossNormal);
- }
- }
-
-
-
- btScalar d = denom0+denom1+infoGlobal.m_globalCfm;
- if (d>SIMD_EPSILON)
- {
- solverConstraint.m_jacDiagABInv = relaxation/(d);
- } else
- {
- //disable the constraint row to handle singularity/redundant constraint
- solverConstraint.m_jacDiagABInv = 0.f;
- }
-
- }
-
-
- //compute rhs and remaining solverConstraint fields
-
-
-
- btScalar restitution = 0.f;
- btScalar penetration = isFriction? 0 : cp.getDistance();
-
- btScalar rel_vel = 0.f;
- int ndofA = 0;
- int ndofB = 0;
- {
-
- btVector3 vel1,vel2;
- if (multiBodyA)
- {
- ndofA = multiBodyA->getNumDofs() + 6;
- btScalar* jacA = &m_data.m_jacobians[solverConstraint.m_jacAindex];
- for (int i = 0; i < ndofA ; ++i)
- rel_vel += multiBodyA->getVelocityVector()[i] * jacA[i];
- } else
- {
- if (rb0)
- {
- btSolverBody* solverBodyA = &m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdA];
- rel_vel += solverConstraint.m_contactNormal1.dot(rb0?solverBodyA->m_linearVelocity+solverBodyA->m_externalForceImpulse:btVector3(0,0,0))
- + solverConstraint.m_relpos1CrossNormal.dot(rb0?solverBodyA->m_angularVelocity:btVector3(0,0,0));
-
- }
- }
- if (multiBodyB)
- {
- ndofB = multiBodyB->getNumDofs() + 6;
- btScalar* jacB = &m_data.m_jacobians[solverConstraint.m_jacBindex];
- for (int i = 0; i < ndofB ; ++i)
- rel_vel += multiBodyB->getVelocityVector()[i] * jacB[i];
-
- } else
- {
- if (rb1)
- {
- btSolverBody* solverBodyB = &m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdB];
- rel_vel += solverConstraint.m_contactNormal2.dot(rb1?solverBodyB->m_linearVelocity+solverBodyB->m_externalForceImpulse:btVector3(0,0,0))
- + solverConstraint.m_relpos2CrossNormal.dot(rb1?solverBodyB->m_angularVelocity:btVector3(0,0,0));
-
- }
- }
-
- solverConstraint.m_friction =combinedTorsionalFriction;
-
- if(!isFriction)
- {
- restitution = restitutionCurve(rel_vel, cp.m_combinedRestitution, infoGlobal.m_restitutionVelocityThreshold);
- if (restitution <= btScalar(0.))
- {
- restitution = 0.f;
- }
- }
- }
-
-
- solverConstraint.m_appliedImpulse = 0.f;
- solverConstraint.m_appliedPushImpulse = 0.f;
-
- {
-
- btScalar velocityError = 0 - rel_vel;// * damping; //note for friction restitution is always set to 0 (check above) so it is acutally velocityError = -rel_vel for friction
-
-
-
- btScalar velocityImpulse = velocityError*solverConstraint.m_jacDiagABInv;
-
- solverConstraint.m_rhs = velocityImpulse;
- solverConstraint.m_rhsPenetration = 0.f;
- solverConstraint.m_lowerLimit = -solverConstraint.m_friction;
- solverConstraint.m_upperLimit = solverConstraint.m_friction;
-
- solverConstraint.m_cfm = infoGlobal.m_globalCfm*solverConstraint.m_jacDiagABInv;
-
-
-
- }
-
-}
-
-btMultiBodySolverConstraint& btMultiBodyConstraintSolver::addMultiBodyFrictionConstraint(const btVector3& normalAxis,btPersistentManifold* manifold,int frictionIndex,btManifoldPoint& cp,btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity, btScalar cfmSlip)
-{
- BT_PROFILE("addMultiBodyFrictionConstraint");
- btMultiBodySolverConstraint& solverConstraint = m_multiBodyFrictionContactConstraints.expandNonInitializing();
- solverConstraint.m_orgConstraint = 0;
- solverConstraint.m_orgDofIndex = -1;
-
- solverConstraint.m_frictionIndex = frictionIndex;
- bool isFriction = true;
-
- const btMultiBodyLinkCollider* fcA = btMultiBodyLinkCollider::upcast(manifold->getBody0());
- const btMultiBodyLinkCollider* fcB = btMultiBodyLinkCollider::upcast(manifold->getBody1());
-
- btMultiBody* mbA = fcA? fcA->m_multiBody : 0;
- btMultiBody* mbB = fcB? fcB->m_multiBody : 0;
-
- int solverBodyIdA = mbA? -1 : getOrInitSolverBody(*colObj0,infoGlobal.m_timeStep);
- int solverBodyIdB = mbB ? -1 : getOrInitSolverBody(*colObj1,infoGlobal.m_timeStep);
-
- solverConstraint.m_solverBodyIdA = solverBodyIdA;
- solverConstraint.m_solverBodyIdB = solverBodyIdB;
- solverConstraint.m_multiBodyA = mbA;
- if (mbA)
- solverConstraint.m_linkA = fcA->m_link;
-
- solverConstraint.m_multiBodyB = mbB;
- if (mbB)
- solverConstraint.m_linkB = fcB->m_link;
-
- solverConstraint.m_originalContactPoint = &cp;
-
- setupMultiBodyContactConstraint(solverConstraint, normalAxis, cp, infoGlobal,relaxation,isFriction, desiredVelocity, cfmSlip);
- return solverConstraint;
-}
-
-btMultiBodySolverConstraint& btMultiBodyConstraintSolver::addMultiBodyTorsionalFrictionConstraint(const btVector3& normalAxis,btPersistentManifold* manifold,int frictionIndex,btManifoldPoint& cp,
- btScalar combinedTorsionalFriction,
- btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity, btScalar cfmSlip)
-{
- BT_PROFILE("addMultiBodyRollingFrictionConstraint");
- btMultiBodySolverConstraint& solverConstraint = m_multiBodyFrictionContactConstraints.expandNonInitializing();
- solverConstraint.m_orgConstraint = 0;
- solverConstraint.m_orgDofIndex = -1;
-
- solverConstraint.m_frictionIndex = frictionIndex;
- bool isFriction = true;
-
- const btMultiBodyLinkCollider* fcA = btMultiBodyLinkCollider::upcast(manifold->getBody0());
- const btMultiBodyLinkCollider* fcB = btMultiBodyLinkCollider::upcast(manifold->getBody1());
-
- btMultiBody* mbA = fcA? fcA->m_multiBody : 0;
- btMultiBody* mbB = fcB? fcB->m_multiBody : 0;
-
- int solverBodyIdA = mbA? -1 : getOrInitSolverBody(*colObj0,infoGlobal.m_timeStep);
- int solverBodyIdB = mbB ? -1 : getOrInitSolverBody(*colObj1,infoGlobal.m_timeStep);
-
- solverConstraint.m_solverBodyIdA = solverBodyIdA;
- solverConstraint.m_solverBodyIdB = solverBodyIdB;
- solverConstraint.m_multiBodyA = mbA;
- if (mbA)
- solverConstraint.m_linkA = fcA->m_link;
-
- solverConstraint.m_multiBodyB = mbB;
- if (mbB)
- solverConstraint.m_linkB = fcB->m_link;
-
- solverConstraint.m_originalContactPoint = &cp;
-
- setupMultiBodyTorsionalFrictionConstraint(solverConstraint, normalAxis, cp, combinedTorsionalFriction,infoGlobal,relaxation,isFriction, desiredVelocity, cfmSlip);
- return solverConstraint;
-}
-
-void btMultiBodyConstraintSolver::convertMultiBodyContact(btPersistentManifold* manifold,const btContactSolverInfo& infoGlobal)
-{
- const btMultiBodyLinkCollider* fcA = btMultiBodyLinkCollider::upcast(manifold->getBody0());
- const btMultiBodyLinkCollider* fcB = btMultiBodyLinkCollider::upcast(manifold->getBody1());
-
- btMultiBody* mbA = fcA? fcA->m_multiBody : 0;
- btMultiBody* mbB = fcB? fcB->m_multiBody : 0;
-
- btCollisionObject* colObj0=0,*colObj1=0;
-
- colObj0 = (btCollisionObject*)manifold->getBody0();
- colObj1 = (btCollisionObject*)manifold->getBody1();
-
- int solverBodyIdA = mbA? -1 : getOrInitSolverBody(*colObj0,infoGlobal.m_timeStep);
- int solverBodyIdB = mbB ? -1 : getOrInitSolverBody(*colObj1,infoGlobal.m_timeStep);
-
-// btSolverBody* solverBodyA = mbA ? 0 : &m_tmpSolverBodyPool[solverBodyIdA];
-// btSolverBody* solverBodyB = mbB ? 0 : &m_tmpSolverBodyPool[solverBodyIdB];
-
-
- ///avoid collision response between two static objects
-// if (!solverBodyA || (solverBodyA->m_invMass.isZero() && (!solverBodyB || solverBodyB->m_invMass.isZero())))
- // return;
-
- //only a single rollingFriction per manifold
- int rollingFriction=1;
-
- for (int j=0;j<manifold->getNumContacts();j++)
- {
-
- btManifoldPoint& cp = manifold->getContactPoint(j);
-
- if (cp.getDistance() <= manifold->getContactProcessingThreshold())
- {
-
- btScalar relaxation;
-
- int frictionIndex = m_multiBodyNormalContactConstraints.size();
-
- btMultiBodySolverConstraint& solverConstraint = m_multiBodyNormalContactConstraints.expandNonInitializing();
-
- // btRigidBody* rb0 = btRigidBody::upcast(colObj0);
- // btRigidBody* rb1 = btRigidBody::upcast(colObj1);
- solverConstraint.m_orgConstraint = 0;
- solverConstraint.m_orgDofIndex = -1;
- solverConstraint.m_solverBodyIdA = solverBodyIdA;
- solverConstraint.m_solverBodyIdB = solverBodyIdB;
- solverConstraint.m_multiBodyA = mbA;
- if (mbA)
- solverConstraint.m_linkA = fcA->m_link;
-
- solverConstraint.m_multiBodyB = mbB;
- if (mbB)
- solverConstraint.m_linkB = fcB->m_link;
-
- solverConstraint.m_originalContactPoint = &cp;
-
- bool isFriction = false;
- setupMultiBodyContactConstraint(solverConstraint, cp.m_normalWorldOnB,cp, infoGlobal, relaxation, isFriction);
-
-// const btVector3& pos1 = cp.getPositionWorldOnA();
-// const btVector3& pos2 = cp.getPositionWorldOnB();
-
- /////setup the friction constraints
-#define ENABLE_FRICTION
-#ifdef ENABLE_FRICTION
- solverConstraint.m_frictionIndex = frictionIndex;
-
- ///Bullet has several options to set the friction directions
- ///By default, each contact has only a single friction direction that is recomputed automatically every frame
- ///based on the relative linear velocity.
- ///If the relative velocity is zero, it will automatically compute a friction direction.
-
- ///You can also enable two friction directions, using the SOLVER_USE_2_FRICTION_DIRECTIONS.
- ///In that case, the second friction direction will be orthogonal to both contact normal and first friction direction.
- ///
- ///If you choose SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION, then the friction will be independent from the relative projected velocity.
- ///
- ///The user can manually override the friction directions for certain contacts using a contact callback,
- ///and set the cp.m_lateralFrictionInitialized to true
- ///In that case, you can set the target relative motion in each friction direction (cp.m_contactMotion1 and cp.m_contactMotion2)
- ///this will give a conveyor belt effect
- ///
-
- btPlaneSpace1(cp.m_normalWorldOnB,cp.m_lateralFrictionDir1,cp.m_lateralFrictionDir2);
- cp.m_lateralFrictionDir1.normalize();
- cp.m_lateralFrictionDir2.normalize();
-
- if (rollingFriction > 0 )
- {
- if (cp.m_combinedSpinningFriction>0)
- {
- addMultiBodyTorsionalFrictionConstraint(cp.m_normalWorldOnB,manifold,frictionIndex,cp,cp.m_combinedSpinningFriction, colObj0,colObj1, relaxation,infoGlobal);
- }
- if (cp.m_combinedRollingFriction>0)
- {
-
- applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
- applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
- applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
- applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
-
- if (cp.m_lateralFrictionDir1.length()>0.001)
- addMultiBodyTorsionalFrictionConstraint(cp.m_lateralFrictionDir1,manifold,frictionIndex,cp,cp.m_combinedRollingFriction, colObj0,colObj1, relaxation,infoGlobal);
-
- if (cp.m_lateralFrictionDir2.length()>0.001)
- addMultiBodyTorsionalFrictionConstraint(cp.m_lateralFrictionDir2,manifold,frictionIndex,cp,cp.m_combinedRollingFriction, colObj0,colObj1, relaxation,infoGlobal);
- }
- rollingFriction--;
- }
- if (!(infoGlobal.m_solverMode & SOLVER_ENABLE_FRICTION_DIRECTION_CACHING) || !(cp.m_contactPointFlags&BT_CONTACT_FLAG_LATERAL_FRICTION_INITIALIZED))
- {/*
- cp.m_lateralFrictionDir1 = vel - cp.m_normalWorldOnB * rel_vel;
- btScalar lat_rel_vel = cp.m_lateralFrictionDir1.length2();
- if (!(infoGlobal.m_solverMode & SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION) && lat_rel_vel > SIMD_EPSILON)
- {
- cp.m_lateralFrictionDir1 *= 1.f/btSqrt(lat_rel_vel);
- if((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
- {
- cp.m_lateralFrictionDir2 = cp.m_lateralFrictionDir1.cross(cp.m_normalWorldOnB);
- cp.m_lateralFrictionDir2.normalize();//??
- applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
- applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
- addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
-
- }
-
- applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
- applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
- addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
-
- } else
- */
- {
-
-
- applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
- applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
- addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir1,manifold,frictionIndex,cp,colObj0,colObj1, relaxation,infoGlobal);
-
-
- if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
- {
- applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
- applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
- addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir2,manifold,frictionIndex,cp,colObj0,colObj1, relaxation,infoGlobal);
- }
-
- if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS) && (infoGlobal.m_solverMode & SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION))
- {
- cp.m_contactPointFlags|=BT_CONTACT_FLAG_LATERAL_FRICTION_INITIALIZED;
- }
- }
-
- } else
- {
- addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir1,manifold,frictionIndex,cp,colObj0,colObj1, relaxation,infoGlobal,cp.m_contactMotion1, cp.m_frictionCFM);
-
- if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
- addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir2,manifold,frictionIndex,cp,colObj0,colObj1, relaxation, infoGlobal,cp.m_contactMotion2, cp.m_frictionCFM);
-
- //setMultiBodyFrictionConstraintImpulse( solverConstraint, solverBodyIdA, solverBodyIdB, cp, infoGlobal);
- //todo:
- solverConstraint.m_appliedImpulse = 0.f;
- solverConstraint.m_appliedPushImpulse = 0.f;
- }
-
-
-#endif //ENABLE_FRICTION
-
- }
- }
-}
-
-void btMultiBodyConstraintSolver::convertContacts(btPersistentManifold** manifoldPtr,int numManifolds, const btContactSolverInfo& infoGlobal)
-{
- //btPersistentManifold* manifold = 0;
-
- for (int i=0;i<numManifolds;i++)
- {
- btPersistentManifold* manifold= manifoldPtr[i];
- const btMultiBodyLinkCollider* fcA = btMultiBodyLinkCollider::upcast(manifold->getBody0());
- const btMultiBodyLinkCollider* fcB = btMultiBodyLinkCollider::upcast(manifold->getBody1());
- if (!fcA && !fcB)
- {
- //the contact doesn't involve any Featherstone btMultiBody, so deal with the regular btRigidBody/btCollisionObject case
- convertContact(manifold,infoGlobal);
- } else
- {
- convertMultiBodyContact(manifold,infoGlobal);
- }
- }
-
- //also convert the multibody constraints, if any
-
-
- for (int i=0;i<m_tmpNumMultiBodyConstraints;i++)
- {
- btMultiBodyConstraint* c = m_tmpMultiBodyConstraints[i];
- m_data.m_solverBodyPool = &m_tmpSolverBodyPool;
- m_data.m_fixedBodyId = m_fixedBodyId;
-
- c->createConstraintRows(m_multiBodyNonContactConstraints,m_data, infoGlobal);
- }
-
-}
-
-
-
-btScalar btMultiBodyConstraintSolver::solveGroup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifold,int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& info, btIDebugDraw* debugDrawer,btDispatcher* dispatcher)
-{
- return btSequentialImpulseConstraintSolver::solveGroup(bodies,numBodies,manifold,numManifolds,constraints,numConstraints,info,debugDrawer,dispatcher);
-}
-
-#if 0
-static void applyJointFeedback(btMultiBodyJacobianData& data, const btMultiBodySolverConstraint& solverConstraint, int jacIndex, btMultiBody* mb, btScalar appliedImpulse)
-{
- if (appliedImpulse!=0 && mb->internalNeedsJointFeedback())
- {
- //todo: get rid of those temporary memory allocations for the joint feedback
- btAlignedObjectArray<btScalar> forceVector;
- int numDofsPlusBase = 6+mb->getNumDofs();
- forceVector.resize(numDofsPlusBase);
- for (int i=0;i<numDofsPlusBase;i++)
- {
- forceVector[i] = data.m_jacobians[jacIndex+i]*appliedImpulse;
- }
- btAlignedObjectArray<btScalar> output;
- output.resize(numDofsPlusBase);
- bool applyJointFeedback = true;
- mb->calcAccelerationDeltasMultiDof(&forceVector[0],&output[0],data.scratch_r,data.scratch_v,applyJointFeedback);
- }
-}
-#endif
-
-
-void btMultiBodyConstraintSolver::writeBackSolverBodyToMultiBody(btMultiBodySolverConstraint& c, btScalar deltaTime)
-{
-#if 1
-
- //bod->addBaseForce(m_gravity * bod->getBaseMass());
- //bod->addLinkForce(j, m_gravity * bod->getLinkMass(j));
-
- if (c.m_orgConstraint)
- {
- c.m_orgConstraint->internalSetAppliedImpulse(c.m_orgDofIndex,c.m_appliedImpulse);
- }
-
-
- if (c.m_multiBodyA)
- {
-
- c.m_multiBodyA->setCompanionId(-1);
- btVector3 force = c.m_contactNormal1*(c.m_appliedImpulse/deltaTime);
- btVector3 torque = c.m_relpos1CrossNormal*(c.m_appliedImpulse/deltaTime);
- if (c.m_linkA<0)
- {
- c.m_multiBodyA->addBaseConstraintForce(force);
- c.m_multiBodyA->addBaseConstraintTorque(torque);
- } else
- {
- c.m_multiBodyA->addLinkConstraintForce(c.m_linkA,force);
- //b3Printf("force = %f,%f,%f\n",force[0],force[1],force[2]);//[0],torque[1],torque[2]);
- c.m_multiBodyA->addLinkConstraintTorque(c.m_linkA,torque);
- }
- }
-
- if (c.m_multiBodyB)
- {
- {
- c.m_multiBodyB->setCompanionId(-1);
- btVector3 force = c.m_contactNormal2*(c.m_appliedImpulse/deltaTime);
- btVector3 torque = c.m_relpos2CrossNormal*(c.m_appliedImpulse/deltaTime);
- if (c.m_linkB<0)
- {
- c.m_multiBodyB->addBaseConstraintForce(force);
- c.m_multiBodyB->addBaseConstraintTorque(torque);
- } else
- {
- {
- c.m_multiBodyB->addLinkConstraintForce(c.m_linkB,force);
- //b3Printf("t = %f,%f,%f\n",force[0],force[1],force[2]);//[0],torque[1],torque[2]);
- c.m_multiBodyB->addLinkConstraintTorque(c.m_linkB,torque);
- }
-
- }
- }
- }
-#endif
-
-#ifndef DIRECTLY_UPDATE_VELOCITY_DURING_SOLVER_ITERATIONS
-
- if (c.m_multiBodyA)
- {
-
- if(c.m_multiBodyA->isMultiDof())
- {
- c.m_multiBodyA->applyDeltaVeeMultiDof(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacAindex],c.m_appliedImpulse);
- }
- else
- {
- c.m_multiBodyA->applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacAindex],c.m_appliedImpulse);
- }
- }
-
- if (c.m_multiBodyB)
- {
- if(c.m_multiBodyB->isMultiDof())
- {
- c.m_multiBodyB->applyDeltaVeeMultiDof(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacBindex],c.m_appliedImpulse);
- }
- else
- {
- c.m_multiBodyB->applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacBindex],c.m_appliedImpulse);
- }
- }
-#endif
-
-
-
-}
-
-btScalar btMultiBodyConstraintSolver::solveGroupCacheFriendlyFinish(btCollisionObject** bodies,int numBodies,const btContactSolverInfo& infoGlobal)
-{
- BT_PROFILE("btMultiBodyConstraintSolver::solveGroupCacheFriendlyFinish");
- int numPoolConstraints = m_multiBodyNormalContactConstraints.size();
-
-
- //write back the delta v to the multi bodies, either as applied impulse (direct velocity change)
- //or as applied force, so we can measure the joint reaction forces easier
- for (int i=0;i<numPoolConstraints;i++)
- {
- btMultiBodySolverConstraint& solverConstraint = m_multiBodyNormalContactConstraints[i];
- writeBackSolverBodyToMultiBody(solverConstraint,infoGlobal.m_timeStep);
-
- writeBackSolverBodyToMultiBody(m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex],infoGlobal.m_timeStep);
-
- if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
- {
- writeBackSolverBodyToMultiBody(m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1],infoGlobal.m_timeStep);
- }
- }
-
-
- for (int i=0;i<m_multiBodyNonContactConstraints.size();i++)
- {
- btMultiBodySolverConstraint& solverConstraint = m_multiBodyNonContactConstraints[i];
- writeBackSolverBodyToMultiBody(solverConstraint,infoGlobal.m_timeStep);
- }
-
-
- if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
- {
- BT_PROFILE("warm starting write back");
- for (int j=0;j<numPoolConstraints;j++)
- {
- const btMultiBodySolverConstraint& solverConstraint = m_multiBodyNormalContactConstraints[j];
- btManifoldPoint* pt = (btManifoldPoint*) solverConstraint.m_originalContactPoint;
- btAssert(pt);
- pt->m_appliedImpulse = solverConstraint.m_appliedImpulse;
- pt->m_appliedImpulseLateral1 = m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_appliedImpulse;
-
- //printf("pt->m_appliedImpulseLateral1 = %f\n", pt->m_appliedImpulseLateral1);
- if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
- {
- pt->m_appliedImpulseLateral2 = m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_appliedImpulse;
- }
- //do a callback here?
- }
- }
-#if 0
- //multibody joint feedback
- {
- BT_PROFILE("multi body joint feedback");
- for (int j=0;j<numPoolConstraints;j++)
- {
- const btMultiBodySolverConstraint& solverConstraint = m_multiBodyNormalContactConstraints[j];
-
- //apply the joint feedback into all links of the btMultiBody
- //todo: double-check the signs of the applied impulse
-
- if(solverConstraint.m_multiBodyA && solverConstraint.m_multiBodyA->isMultiDof())
- {
- applyJointFeedback(m_data,solverConstraint, solverConstraint.m_jacAindex,solverConstraint.m_multiBodyA, solverConstraint.m_appliedImpulse*btSimdScalar(1./infoGlobal.m_timeStep));
- }
- if(solverConstraint.m_multiBodyB && solverConstraint.m_multiBodyB->isMultiDof())
- {
- applyJointFeedback(m_data,solverConstraint, solverConstraint.m_jacBindex,solverConstraint.m_multiBodyB,solverConstraint.m_appliedImpulse*btSimdScalar(-1./infoGlobal.m_timeStep));
- }
-#if 0
- if (m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_multiBodyA && m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_multiBodyA->isMultiDof())
- {
- applyJointFeedback(m_data,m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex],
- m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_jacAindex,
- m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_multiBodyA,
- m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_appliedImpulse*btSimdScalar(1./infoGlobal.m_timeStep));
-
- }
- if (m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_multiBodyB && m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_multiBodyB->isMultiDof())
- {
- applyJointFeedback(m_data,m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex],
- m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_jacBindex,
- m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_multiBodyB,
- m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex].m_appliedImpulse*btSimdScalar(-1./infoGlobal.m_timeStep));
- }
-
- if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
- {
- if (m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_multiBodyA && m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_multiBodyA->isMultiDof())
- {
- applyJointFeedback(m_data,m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1],
- m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_jacAindex,
- m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_multiBodyA,
- m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_appliedImpulse*btSimdScalar(1./infoGlobal.m_timeStep));
- }
-
- if (m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_multiBodyB && m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_multiBodyB->isMultiDof())
- {
- applyJointFeedback(m_data,m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1],
- m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_jacBindex,
- m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_multiBodyB,
- m_multiBodyFrictionContactConstraints[solverConstraint.m_frictionIndex+1].m_appliedImpulse*btSimdScalar(-1./infoGlobal.m_timeStep));
- }
- }
-#endif
- }
-
- for (int i=0;i<m_multiBodyNonContactConstraints.size();i++)
- {
- const btMultiBodySolverConstraint& solverConstraint = m_multiBodyNonContactConstraints[i];
- if(solverConstraint.m_multiBodyA && solverConstraint.m_multiBodyA->isMultiDof())
- {
- applyJointFeedback(m_data,solverConstraint, solverConstraint.m_jacAindex,solverConstraint.m_multiBodyA, solverConstraint.m_appliedImpulse*btSimdScalar(1./infoGlobal.m_timeStep));
- }
- if(solverConstraint.m_multiBodyB && solverConstraint.m_multiBodyB->isMultiDof())
- {
- applyJointFeedback(m_data,solverConstraint, solverConstraint.m_jacBindex,solverConstraint.m_multiBodyB,solverConstraint.m_appliedImpulse*btSimdScalar(1./infoGlobal.m_timeStep));
- }
- }
- }
-
- numPoolConstraints = m_multiBodyNonContactConstraints.size();
-
-#if 0
- //@todo: m_originalContactPoint is not initialized for btMultiBodySolverConstraint
- for (int i=0;i<numPoolConstraints;i++)
- {
- const btMultiBodySolverConstraint& c = m_multiBodyNonContactConstraints[i];
-
- btTypedConstraint* constr = (btTypedConstraint*)c.m_originalContactPoint;
- btJointFeedback* fb = constr->getJointFeedback();
- if (fb)
- {
- fb->m_appliedForceBodyA += c.m_contactNormal1*c.m_appliedImpulse*constr->getRigidBodyA().getLinearFactor()/infoGlobal.m_timeStep;
- fb->m_appliedForceBodyB += c.m_contactNormal2*c.m_appliedImpulse*constr->getRigidBodyB().getLinearFactor()/infoGlobal.m_timeStep;
- fb->m_appliedTorqueBodyA += c.m_relpos1CrossNormal* constr->getRigidBodyA().getAngularFactor()*c.m_appliedImpulse/infoGlobal.m_timeStep;
- fb->m_appliedTorqueBodyB += c.m_relpos2CrossNormal* constr->getRigidBodyB().getAngularFactor()*c.m_appliedImpulse/infoGlobal.m_timeStep; /*RGM ???? */
-
- }
-
- constr->internalSetAppliedImpulse(c.m_appliedImpulse);
- if (btFabs(c.m_appliedImpulse)>=constr->getBreakingImpulseThreshold())
- {
- constr->setEnabled(false);
- }
-
- }
-#endif
-#endif
-
- return btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyFinish(bodies,numBodies,infoGlobal);
-}
-
-
-void btMultiBodyConstraintSolver::solveMultiBodyGroup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifold,int numManifolds,btTypedConstraint** constraints,int numConstraints,btMultiBodyConstraint** multiBodyConstraints, int numMultiBodyConstraints, const btContactSolverInfo& info, btIDebugDraw* debugDrawer,btDispatcher* dispatcher)
-{
- //printf("solveMultiBodyGroup start\n");
- m_tmpMultiBodyConstraints = multiBodyConstraints;
- m_tmpNumMultiBodyConstraints = numMultiBodyConstraints;
-
- btSequentialImpulseConstraintSolver::solveGroup(bodies,numBodies,manifold,numManifolds,constraints,numConstraints,info,debugDrawer,dispatcher);
-
- m_tmpMultiBodyConstraints = 0;
- m_tmpNumMultiBodyConstraints = 0;
-
-
-}