diff options
Diffstat (limited to 'thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyConstraint.cpp')
-rw-r--r-- | thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyConstraint.cpp | 417 |
1 files changed, 417 insertions, 0 deletions
diff --git a/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyConstraint.cpp b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyConstraint.cpp new file mode 100644 index 0000000000..d52852dd8e --- /dev/null +++ b/thirdparty/bullet/src/BulletDynamics/Featherstone/btMultiBodyConstraint.cpp @@ -0,0 +1,417 @@ +#include "btMultiBodyConstraint.h" +#include "BulletDynamics/Dynamics/btRigidBody.h" +#include "btMultiBodyPoint2Point.h" //for testing (BTMBP2PCONSTRAINT_BLOCK_ANGULAR_MOTION_TEST macro) + + + +btMultiBodyConstraint::btMultiBodyConstraint(btMultiBody* bodyA,btMultiBody* bodyB,int linkA, int linkB, int numRows, bool isUnilateral) + :m_bodyA(bodyA), + m_bodyB(bodyB), + m_linkA(linkA), + m_linkB(linkB), + m_numRows(numRows), + m_jacSizeA(0), + m_jacSizeBoth(0), + m_isUnilateral(isUnilateral), + m_numDofsFinalized(-1), + m_maxAppliedImpulse(100) +{ + +} + +void btMultiBodyConstraint::updateJacobianSizes() +{ + if(m_bodyA) + { + m_jacSizeA = (6 + m_bodyA->getNumDofs()); + } + + if(m_bodyB) + { + m_jacSizeBoth = m_jacSizeA + 6 + m_bodyB->getNumDofs(); + } + else + m_jacSizeBoth = m_jacSizeA; +} + +void btMultiBodyConstraint::allocateJacobiansMultiDof() +{ + updateJacobianSizes(); + + m_posOffset = ((1 + m_jacSizeBoth)*m_numRows); + m_data.resize((2 + m_jacSizeBoth) * m_numRows); +} + +btMultiBodyConstraint::~btMultiBodyConstraint() +{ +} + +void btMultiBodyConstraint::applyDeltaVee(btMultiBodyJacobianData& data, btScalar* delta_vee, btScalar impulse, int velocityIndex, int ndof) +{ + for (int i = 0; i < ndof; ++i) + data.m_deltaVelocities[velocityIndex+i] += delta_vee[i] * impulse; +} + +btScalar btMultiBodyConstraint::fillMultiBodyConstraint( btMultiBodySolverConstraint& solverConstraint, + btMultiBodyJacobianData& data, + btScalar* jacOrgA, btScalar* jacOrgB, + const btVector3& constraintNormalAng, + const btVector3& constraintNormalLin, + const btVector3& posAworld, const btVector3& posBworld, + btScalar posError, + const btContactSolverInfo& infoGlobal, + btScalar lowerLimit, btScalar upperLimit, + bool angConstraint, + btScalar relaxation, + bool isFriction, btScalar desiredVelocity, btScalar cfmSlip) +{ + solverConstraint.m_multiBodyA = m_bodyA; + solverConstraint.m_multiBodyB = m_bodyB; + solverConstraint.m_linkA = m_linkA; + solverConstraint.m_linkB = m_linkB; + + btMultiBody* multiBodyA = solverConstraint.m_multiBodyA; + btMultiBody* multiBodyB = solverConstraint.m_multiBodyB; + + btSolverBody* bodyA = multiBodyA ? 0 : &data.m_solverBodyPool->at(solverConstraint.m_solverBodyIdA); + btSolverBody* bodyB = multiBodyB ? 0 : &data.m_solverBodyPool->at(solverConstraint.m_solverBodyIdB); + + btRigidBody* rb0 = multiBodyA ? 0 : bodyA->m_originalBody; + btRigidBody* rb1 = multiBodyB ? 0 : bodyB->m_originalBody; + + btVector3 rel_pos1, rel_pos2; //these two used to be inited to posAworld and posBworld (respectively) but it does not seem necessary + if (bodyA) + rel_pos1 = posAworld - bodyA->getWorldTransform().getOrigin(); + if (bodyB) + rel_pos2 = posBworld - bodyB->getWorldTransform().getOrigin(); + + if (multiBodyA) + { + if (solverConstraint.m_linkA<0) + { + rel_pos1 = posAworld - multiBodyA->getBasePos(); + } else + { + rel_pos1 = posAworld - multiBodyA->getLink(solverConstraint.m_linkA).m_cachedWorldTransform.getOrigin(); + } + + const int ndofA = multiBodyA->getNumDofs() + 6; + + solverConstraint.m_deltaVelAindex = multiBodyA->getCompanionId(); + + if (solverConstraint.m_deltaVelAindex <0) + { + solverConstraint.m_deltaVelAindex = data.m_deltaVelocities.size(); + multiBodyA->setCompanionId(solverConstraint.m_deltaVelAindex); + data.m_deltaVelocities.resize(data.m_deltaVelocities.size()+ndofA); + } else + { + btAssert(data.m_deltaVelocities.size() >= solverConstraint.m_deltaVelAindex+ndofA); + } + + //determine jacobian of this 1D constraint in terms of multibodyA's degrees of freedom + //resize.. + solverConstraint.m_jacAindex = data.m_jacobians.size(); + data.m_jacobians.resize(data.m_jacobians.size()+ndofA); + //copy/determine + if(jacOrgA) + { + for (int i=0;i<ndofA;i++) + data.m_jacobians[solverConstraint.m_jacAindex+i] = jacOrgA[i]; + } + else + { + btScalar* jac1=&data.m_jacobians[solverConstraint.m_jacAindex]; + //multiBodyA->fillContactJacobianMultiDof(solverConstraint.m_linkA, posAworld, constraintNormalLin, jac1, data.scratch_r, data.scratch_v, data.scratch_m); + multiBodyA->fillConstraintJacobianMultiDof(solverConstraint.m_linkA, posAworld, constraintNormalAng, constraintNormalLin, jac1, data.scratch_r, data.scratch_v, data.scratch_m); + } + + //determine the velocity response of multibodyA to reaction impulses of this constraint (i.e. A[i,i] for i=1,...n_con: multibody's inverse inertia with respect to this 1D constraint) + //resize.. + data.m_deltaVelocitiesUnitImpulse.resize(data.m_deltaVelocitiesUnitImpulse.size()+ndofA); //=> each constraint row has the constrained tree dofs allocated in m_deltaVelocitiesUnitImpulse + btAssert(data.m_jacobians.size() == data.m_deltaVelocitiesUnitImpulse.size()); + btScalar* delta = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex]; + //determine.. + multiBodyA->calcAccelerationDeltasMultiDof(&data.m_jacobians[solverConstraint.m_jacAindex],delta,data.scratch_r, data.scratch_v); + + btVector3 torqueAxis0; + if (angConstraint) { + torqueAxis0 = constraintNormalAng; + } + else { + torqueAxis0 = rel_pos1.cross(constraintNormalLin); + + } + solverConstraint.m_relpos1CrossNormal = torqueAxis0; + solverConstraint.m_contactNormal1 = constraintNormalLin; + } + else //if(rb0) + { + btVector3 torqueAxis0; + if (angConstraint) { + torqueAxis0 = constraintNormalAng; + } + else { + torqueAxis0 = rel_pos1.cross(constraintNormalLin); + } + solverConstraint.m_angularComponentA = rb0 ? rb0->getInvInertiaTensorWorld()*torqueAxis0*rb0->getAngularFactor() : btVector3(0,0,0); + solverConstraint.m_relpos1CrossNormal = torqueAxis0; + solverConstraint.m_contactNormal1 = constraintNormalLin; + } + + if (multiBodyB) + { + if (solverConstraint.m_linkB<0) + { + rel_pos2 = posBworld - multiBodyB->getBasePos(); + } else + { + rel_pos2 = posBworld - multiBodyB->getLink(solverConstraint.m_linkB).m_cachedWorldTransform.getOrigin(); + } + + const int ndofB = multiBodyB->getNumDofs() + 6; + + solverConstraint.m_deltaVelBindex = multiBodyB->getCompanionId(); + if (solverConstraint.m_deltaVelBindex <0) + { + solverConstraint.m_deltaVelBindex = data.m_deltaVelocities.size(); + multiBodyB->setCompanionId(solverConstraint.m_deltaVelBindex); + data.m_deltaVelocities.resize(data.m_deltaVelocities.size()+ndofB); + } + + //determine jacobian of this 1D constraint in terms of multibodyB's degrees of freedom + //resize.. + solverConstraint.m_jacBindex = data.m_jacobians.size(); + data.m_jacobians.resize(data.m_jacobians.size()+ndofB); + //copy/determine.. + if(jacOrgB) + { + for (int i=0;i<ndofB;i++) + data.m_jacobians[solverConstraint.m_jacBindex+i] = jacOrgB[i]; + } + else + { + //multiBodyB->fillContactJacobianMultiDof(solverConstraint.m_linkB, posBworld, -constraintNormalLin, &data.m_jacobians[solverConstraint.m_jacBindex], data.scratch_r, data.scratch_v, data.scratch_m); + multiBodyB->fillConstraintJacobianMultiDof(solverConstraint.m_linkB, posBworld, -constraintNormalAng, -constraintNormalLin, &data.m_jacobians[solverConstraint.m_jacBindex], data.scratch_r, data.scratch_v, data.scratch_m); + } + + //determine velocity response of multibodyB to reaction impulses of this constraint (i.e. A[i,i] for i=1,...n_con: multibody's inverse inertia with respect to this 1D constraint) + //resize.. + data.m_deltaVelocitiesUnitImpulse.resize(data.m_deltaVelocitiesUnitImpulse.size()+ndofB); + btAssert(data.m_jacobians.size() == data.m_deltaVelocitiesUnitImpulse.size()); + btScalar* delta = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex]; + //determine.. + multiBodyB->calcAccelerationDeltasMultiDof(&data.m_jacobians[solverConstraint.m_jacBindex],delta,data.scratch_r, data.scratch_v); + + btVector3 torqueAxis1; + if (angConstraint) { + torqueAxis1 = constraintNormalAng; + } + else { + torqueAxis1 = rel_pos2.cross(constraintNormalLin); + } + solverConstraint.m_relpos2CrossNormal = -torqueAxis1; + solverConstraint.m_contactNormal2 = -constraintNormalLin; + } + else //if(rb1) + { + btVector3 torqueAxis1; + if (angConstraint) { + torqueAxis1 = constraintNormalAng; + } + else { + torqueAxis1 = rel_pos2.cross(constraintNormalLin); + } + solverConstraint.m_angularComponentB = rb1 ? rb1->getInvInertiaTensorWorld()*-torqueAxis1*rb1->getAngularFactor() : btVector3(0,0,0); + solverConstraint.m_relpos2CrossNormal = -torqueAxis1; + solverConstraint.m_contactNormal2 = -constraintNormalLin; + } + { + + btVector3 vec; + btScalar denom0 = 0.f; + btScalar denom1 = 0.f; + btScalar* jacB = 0; + btScalar* jacA = 0; + btScalar* deltaVelA = 0; + btScalar* deltaVelB = 0; + int ndofA = 0; + //determine the "effective mass" of the constrained multibodyA with respect to this 1D constraint (i.e. 1/A[i,i]) + if (multiBodyA) + { + ndofA = multiBodyA->getNumDofs() + 6; + jacA = &data.m_jacobians[solverConstraint.m_jacAindex]; + deltaVelA = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex]; + for (int i = 0; i < ndofA; ++i) + { + btScalar j = jacA[i] ; + btScalar l = deltaVelA[i]; + denom0 += j*l; + } + } + else if(rb0) + { + vec = ( solverConstraint.m_angularComponentA).cross(rel_pos1); + if (angConstraint) { + denom0 = rb0->getInvMass() + constraintNormalAng.dot(vec); + } + else { + denom0 = rb0->getInvMass() + constraintNormalLin.dot(vec); + } + } + // + if (multiBodyB) + { + const int ndofB = multiBodyB->getNumDofs() + 6; + jacB = &data.m_jacobians[solverConstraint.m_jacBindex]; + deltaVelB = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex]; + for (int i = 0; i < ndofB; ++i) + { + btScalar j = jacB[i] ; + btScalar l = deltaVelB[i]; + denom1 += j*l; + } + + } + else if(rb1) + { + vec = ( -solverConstraint.m_angularComponentB).cross(rel_pos2); + if (angConstraint) { + denom1 = rb1->getInvMass() + constraintNormalAng.dot(vec); + } + else { + denom1 = rb1->getInvMass() + constraintNormalLin.dot(vec); + } + } + + // + btScalar d = denom0+denom1; + if (d>SIMD_EPSILON) + { + solverConstraint.m_jacDiagABInv = relaxation/(d); + } + else + { + //disable the constraint row to handle singularity/redundant constraint + solverConstraint.m_jacDiagABInv = 0.f; + } + } + + + //compute rhs and remaining solverConstraint fields + btScalar penetration = isFriction? 0 : posError; + + btScalar rel_vel = 0.f; + int ndofA = 0; + int ndofB = 0; + { + btVector3 vel1,vel2; + if (multiBodyA) + { + ndofA = multiBodyA->getNumDofs() + 6; + btScalar* jacA = &data.m_jacobians[solverConstraint.m_jacAindex]; + for (int i = 0; i < ndofA ; ++i) + rel_vel += multiBodyA->getVelocityVector()[i] * jacA[i]; + } + else if(rb0) + { + rel_vel += rb0->getVelocityInLocalPoint(rel_pos1).dot(solverConstraint.m_contactNormal1); + } + if (multiBodyB) + { + ndofB = multiBodyB->getNumDofs() + 6; + btScalar* jacB = &data.m_jacobians[solverConstraint.m_jacBindex]; + for (int i = 0; i < ndofB ; ++i) + rel_vel += multiBodyB->getVelocityVector()[i] * jacB[i]; + + } + else if(rb1) + { + rel_vel += rb1->getVelocityInLocalPoint(rel_pos2).dot(solverConstraint.m_contactNormal2); + } + + solverConstraint.m_friction = 0.f;//cp.m_combinedFriction; + } + + + ///warm starting (or zero if disabled) + /* + if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING) + { + solverConstraint.m_appliedImpulse = isFriction ? 0 : cp.m_appliedImpulse * infoGlobal.m_warmstartingFactor; + + if (solverConstraint.m_appliedImpulse) + { + if (multiBodyA) + { + btScalar impulse = solverConstraint.m_appliedImpulse; + btScalar* deltaV = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex]; + multiBodyA->applyDeltaVee(deltaV,impulse); + applyDeltaVee(data,deltaV,impulse,solverConstraint.m_deltaVelAindex,ndofA); + } else + { + if (rb0) + bodyA->internalApplyImpulse(solverConstraint.m_contactNormal1*bodyA->internalGetInvMass()*rb0->getLinearFactor(),solverConstraint.m_angularComponentA,solverConstraint.m_appliedImpulse); + } + if (multiBodyB) + { + btScalar impulse = solverConstraint.m_appliedImpulse; + btScalar* deltaV = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex]; + multiBodyB->applyDeltaVee(deltaV,impulse); + applyDeltaVee(data,deltaV,impulse,solverConstraint.m_deltaVelBindex,ndofB); + } else + { + if (rb1) + bodyB->internalApplyImpulse(-solverConstraint.m_contactNormal2*bodyB->internalGetInvMass()*rb1->getLinearFactor(),-solverConstraint.m_angularComponentB,-(btScalar)solverConstraint.m_appliedImpulse); + } + } + } else + */ + + solverConstraint.m_appliedImpulse = 0.f; + solverConstraint.m_appliedPushImpulse = 0.f; + + { + + btScalar positionalError = 0.f; + btScalar velocityError = desiredVelocity - rel_vel;// * damping; + + + btScalar erp = infoGlobal.m_erp2; + + //split impulse is not implemented yet for btMultiBody* + //if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold)) + { + erp = infoGlobal.m_erp; + } + + positionalError = -penetration * erp/infoGlobal.m_timeStep; + + btScalar penetrationImpulse = positionalError*solverConstraint.m_jacDiagABInv; + btScalar velocityImpulse = velocityError *solverConstraint.m_jacDiagABInv; + + //split impulse is not implemented yet for btMultiBody* + + // if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold)) + { + //combine position and velocity into rhs + solverConstraint.m_rhs = penetrationImpulse+velocityImpulse; + solverConstraint.m_rhsPenetration = 0.f; + + } + /*else + { + //split position and velocity into rhs and m_rhsPenetration + solverConstraint.m_rhs = velocityImpulse; + solverConstraint.m_rhsPenetration = penetrationImpulse; + } + */ + + solverConstraint.m_cfm = 0.f; + solverConstraint.m_lowerLimit = lowerLimit; + solverConstraint.m_upperLimit = upperLimit; + } + + return rel_vel; + +} |