summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/src/BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.h
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/bullet/src/BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.h')
-rw-r--r--thirdparty/bullet/src/BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.h647
1 files changed, 0 insertions, 647 deletions
diff --git a/thirdparty/bullet/src/BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.h b/thirdparty/bullet/src/BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.h
deleted file mode 100644
index bea8629c32..0000000000
--- a/thirdparty/bullet/src/BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.h
+++ /dev/null
@@ -1,647 +0,0 @@
-/*
-Bullet Continuous Collision Detection and Physics Library
-Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
-
-This software is provided 'as-is', without any express or implied warranty.
-In no event will the authors be held liable for any damages arising from the use of this software.
-Permission is granted to anyone to use this software for any purpose,
-including commercial applications, and to alter it and redistribute it freely,
-subject to the following restrictions:
-
-1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
-2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
-3. This notice may not be removed or altered from any source distribution.
-*/
-
-/// 2009 March: btGeneric6DofConstraint refactored by Roman Ponomarev
-/// Added support for generic constraint solver through getInfo1/getInfo2 methods
-
-/*
-2007-09-09
-btGeneric6DofConstraint Refactored by Francisco Le?n
-email: projectileman@yahoo.com
-http://gimpact.sf.net
-*/
-
-
-#ifndef BT_GENERIC_6DOF_CONSTRAINT_H
-#define BT_GENERIC_6DOF_CONSTRAINT_H
-
-#include "LinearMath/btVector3.h"
-#include "btJacobianEntry.h"
-#include "btTypedConstraint.h"
-
-class btRigidBody;
-
-
-
-#ifdef BT_USE_DOUBLE_PRECISION
-#define btGeneric6DofConstraintData2 btGeneric6DofConstraintDoubleData2
-#define btGeneric6DofConstraintDataName "btGeneric6DofConstraintDoubleData2"
-#else
-#define btGeneric6DofConstraintData2 btGeneric6DofConstraintData
-#define btGeneric6DofConstraintDataName "btGeneric6DofConstraintData"
-#endif //BT_USE_DOUBLE_PRECISION
-
-
-//! Rotation Limit structure for generic joints
-class btRotationalLimitMotor
-{
-public:
- //! limit_parameters
- //!@{
- btScalar m_loLimit;//!< joint limit
- btScalar m_hiLimit;//!< joint limit
- btScalar m_targetVelocity;//!< target motor velocity
- btScalar m_maxMotorForce;//!< max force on motor
- btScalar m_maxLimitForce;//!< max force on limit
- btScalar m_damping;//!< Damping.
- btScalar m_limitSoftness;//! Relaxation factor
- btScalar m_normalCFM;//!< Constraint force mixing factor
- btScalar m_stopERP;//!< Error tolerance factor when joint is at limit
- btScalar m_stopCFM;//!< Constraint force mixing factor when joint is at limit
- btScalar m_bounce;//!< restitution factor
- bool m_enableMotor;
-
- //!@}
-
- //! temp_variables
- //!@{
- btScalar m_currentLimitError;//! How much is violated this limit
- btScalar m_currentPosition; //! current value of angle
- int m_currentLimit;//!< 0=free, 1=at lo limit, 2=at hi limit
- btScalar m_accumulatedImpulse;
- //!@}
-
- btRotationalLimitMotor()
- {
- m_accumulatedImpulse = 0.f;
- m_targetVelocity = 0;
- m_maxMotorForce = 0.1f;
- m_maxLimitForce = 300.0f;
- m_loLimit = 1.0f;
- m_hiLimit = -1.0f;
- m_normalCFM = 0.f;
- m_stopERP = 0.2f;
- m_stopCFM = 0.f;
- m_bounce = 0.0f;
- m_damping = 1.0f;
- m_limitSoftness = 0.5f;
- m_currentLimit = 0;
- m_currentLimitError = 0;
- m_enableMotor = false;
- }
-
- btRotationalLimitMotor(const btRotationalLimitMotor & limot)
- {
- m_targetVelocity = limot.m_targetVelocity;
- m_maxMotorForce = limot.m_maxMotorForce;
- m_limitSoftness = limot.m_limitSoftness;
- m_loLimit = limot.m_loLimit;
- m_hiLimit = limot.m_hiLimit;
- m_normalCFM = limot.m_normalCFM;
- m_stopERP = limot.m_stopERP;
- m_stopCFM = limot.m_stopCFM;
- m_bounce = limot.m_bounce;
- m_currentLimit = limot.m_currentLimit;
- m_currentLimitError = limot.m_currentLimitError;
- m_enableMotor = limot.m_enableMotor;
- }
-
-
-
- //! Is limited
- bool isLimited() const
- {
- if(m_loLimit > m_hiLimit) return false;
- return true;
- }
-
- //! Need apply correction
- bool needApplyTorques() const
- {
- if(m_currentLimit == 0 && m_enableMotor == false) return false;
- return true;
- }
-
- //! calculates error
- /*!
- calculates m_currentLimit and m_currentLimitError.
- */
- int testLimitValue(btScalar test_value);
-
- //! apply the correction impulses for two bodies
- btScalar solveAngularLimits(btScalar timeStep,btVector3& axis, btScalar jacDiagABInv,btRigidBody * body0, btRigidBody * body1);
-
-};
-
-
-
-class btTranslationalLimitMotor
-{
-public:
- btVector3 m_lowerLimit;//!< the constraint lower limits
- btVector3 m_upperLimit;//!< the constraint upper limits
- btVector3 m_accumulatedImpulse;
- //! Linear_Limit_parameters
- //!@{
- btScalar m_limitSoftness;//!< Softness for linear limit
- btScalar m_damping;//!< Damping for linear limit
- btScalar m_restitution;//! Bounce parameter for linear limit
- btVector3 m_normalCFM;//!< Constraint force mixing factor
- btVector3 m_stopERP;//!< Error tolerance factor when joint is at limit
- btVector3 m_stopCFM;//!< Constraint force mixing factor when joint is at limit
- //!@}
- bool m_enableMotor[3];
- btVector3 m_targetVelocity;//!< target motor velocity
- btVector3 m_maxMotorForce;//!< max force on motor
- btVector3 m_currentLimitError;//! How much is violated this limit
- btVector3 m_currentLinearDiff;//! Current relative offset of constraint frames
- int m_currentLimit[3];//!< 0=free, 1=at lower limit, 2=at upper limit
-
- btTranslationalLimitMotor()
- {
- m_lowerLimit.setValue(0.f,0.f,0.f);
- m_upperLimit.setValue(0.f,0.f,0.f);
- m_accumulatedImpulse.setValue(0.f,0.f,0.f);
- m_normalCFM.setValue(0.f, 0.f, 0.f);
- m_stopERP.setValue(0.2f, 0.2f, 0.2f);
- m_stopCFM.setValue(0.f, 0.f, 0.f);
-
- m_limitSoftness = 0.7f;
- m_damping = btScalar(1.0f);
- m_restitution = btScalar(0.5f);
- for(int i=0; i < 3; i++)
- {
- m_enableMotor[i] = false;
- m_targetVelocity[i] = btScalar(0.f);
- m_maxMotorForce[i] = btScalar(0.f);
- }
- }
-
- btTranslationalLimitMotor(const btTranslationalLimitMotor & other )
- {
- m_lowerLimit = other.m_lowerLimit;
- m_upperLimit = other.m_upperLimit;
- m_accumulatedImpulse = other.m_accumulatedImpulse;
-
- m_limitSoftness = other.m_limitSoftness ;
- m_damping = other.m_damping;
- m_restitution = other.m_restitution;
- m_normalCFM = other.m_normalCFM;
- m_stopERP = other.m_stopERP;
- m_stopCFM = other.m_stopCFM;
-
- for(int i=0; i < 3; i++)
- {
- m_enableMotor[i] = other.m_enableMotor[i];
- m_targetVelocity[i] = other.m_targetVelocity[i];
- m_maxMotorForce[i] = other.m_maxMotorForce[i];
- }
- }
-
- //! Test limit
- /*!
- - free means upper < lower,
- - locked means upper == lower
- - limited means upper > lower
- - limitIndex: first 3 are linear, next 3 are angular
- */
- inline bool isLimited(int limitIndex) const
- {
- return (m_upperLimit[limitIndex] >= m_lowerLimit[limitIndex]);
- }
- inline bool needApplyForce(int limitIndex) const
- {
- if(m_currentLimit[limitIndex] == 0 && m_enableMotor[limitIndex] == false) return false;
- return true;
- }
- int testLimitValue(int limitIndex, btScalar test_value);
-
-
- btScalar solveLinearAxis(
- btScalar timeStep,
- btScalar jacDiagABInv,
- btRigidBody& body1,const btVector3 &pointInA,
- btRigidBody& body2,const btVector3 &pointInB,
- int limit_index,
- const btVector3 & axis_normal_on_a,
- const btVector3 & anchorPos);
-
-
-};
-
-enum bt6DofFlags
-{
- BT_6DOF_FLAGS_CFM_NORM = 1,
- BT_6DOF_FLAGS_CFM_STOP = 2,
- BT_6DOF_FLAGS_ERP_STOP = 4
-};
-#define BT_6DOF_FLAGS_AXIS_SHIFT 3 // bits per axis
-
-
-/// btGeneric6DofConstraint between two rigidbodies each with a pivotpoint that descibes the axis location in local space
-/*!
-btGeneric6DofConstraint can leave any of the 6 degree of freedom 'free' or 'locked'.
-currently this limit supports rotational motors<br>
-<ul>
-<li> For Linear limits, use btGeneric6DofConstraint.setLinearUpperLimit, btGeneric6DofConstraint.setLinearLowerLimit. You can set the parameters with the btTranslationalLimitMotor structure accsesible through the btGeneric6DofConstraint.getTranslationalLimitMotor method.
-At this moment translational motors are not supported. May be in the future. </li>
-
-<li> For Angular limits, use the btRotationalLimitMotor structure for configuring the limit.
-This is accessible through btGeneric6DofConstraint.getLimitMotor method,
-This brings support for limit parameters and motors. </li>
-
-<li> Angulars limits have these possible ranges:
-<table border=1 >
-<tr>
- <td><b>AXIS</b></td>
- <td><b>MIN ANGLE</b></td>
- <td><b>MAX ANGLE</b></td>
-</tr><tr>
- <td>X</td>
- <td>-PI</td>
- <td>PI</td>
-</tr><tr>
- <td>Y</td>
- <td>-PI/2</td>
- <td>PI/2</td>
-</tr><tr>
- <td>Z</td>
- <td>-PI</td>
- <td>PI</td>
-</tr>
-</table>
-</li>
-</ul>
-
-*/
-ATTRIBUTE_ALIGNED16(class) btGeneric6DofConstraint : public btTypedConstraint
-{
-protected:
-
- //! relative_frames
- //!@{
- btTransform m_frameInA;//!< the constraint space w.r.t body A
- btTransform m_frameInB;//!< the constraint space w.r.t body B
- //!@}
-
- //! Jacobians
- //!@{
- btJacobianEntry m_jacLinear[3];//!< 3 orthogonal linear constraints
- btJacobianEntry m_jacAng[3];//!< 3 orthogonal angular constraints
- //!@}
-
- //! Linear_Limit_parameters
- //!@{
- btTranslationalLimitMotor m_linearLimits;
- //!@}
-
-
- //! hinge_parameters
- //!@{
- btRotationalLimitMotor m_angularLimits[3];
- //!@}
-
-
-protected:
- //! temporal variables
- //!@{
- btScalar m_timeStep;
- btTransform m_calculatedTransformA;
- btTransform m_calculatedTransformB;
- btVector3 m_calculatedAxisAngleDiff;
- btVector3 m_calculatedAxis[3];
- btVector3 m_calculatedLinearDiff;
- btScalar m_factA;
- btScalar m_factB;
- bool m_hasStaticBody;
-
- btVector3 m_AnchorPos; // point betwen pivots of bodies A and B to solve linear axes
-
- bool m_useLinearReferenceFrameA;
- bool m_useOffsetForConstraintFrame;
-
- int m_flags;
-
- //!@}
-
- btGeneric6DofConstraint& operator=(btGeneric6DofConstraint& other)
- {
- btAssert(0);
- (void) other;
- return *this;
- }
-
-
- int setAngularLimits(btConstraintInfo2 *info, int row_offset,const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB);
-
- int setLinearLimits(btConstraintInfo2 *info, int row, const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB);
-
- void buildLinearJacobian(
- btJacobianEntry & jacLinear,const btVector3 & normalWorld,
- const btVector3 & pivotAInW,const btVector3 & pivotBInW);
-
- void buildAngularJacobian(btJacobianEntry & jacAngular,const btVector3 & jointAxisW);
-
- // tests linear limits
- void calculateLinearInfo();
-
- //! calcs the euler angles between the two bodies.
- void calculateAngleInfo();
-
-
-
-public:
-
- BT_DECLARE_ALIGNED_ALLOCATOR();
-
- ///for backwards compatibility during the transition to 'getInfo/getInfo2'
- bool m_useSolveConstraintObsolete;
-
- btGeneric6DofConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB ,bool useLinearReferenceFrameA);
- btGeneric6DofConstraint(btRigidBody& rbB, const btTransform& frameInB, bool useLinearReferenceFrameB);
-
- //! Calcs global transform of the offsets
- /*!
- Calcs the global transform for the joint offset for body A an B, and also calcs the agle differences between the bodies.
- \sa btGeneric6DofConstraint.getCalculatedTransformA , btGeneric6DofConstraint.getCalculatedTransformB, btGeneric6DofConstraint.calculateAngleInfo
- */
- void calculateTransforms(const btTransform& transA,const btTransform& transB);
-
- void calculateTransforms();
-
- //! Gets the global transform of the offset for body A
- /*!
- \sa btGeneric6DofConstraint.getFrameOffsetA, btGeneric6DofConstraint.getFrameOffsetB, btGeneric6DofConstraint.calculateAngleInfo.
- */
- const btTransform & getCalculatedTransformA() const
- {
- return m_calculatedTransformA;
- }
-
- //! Gets the global transform of the offset for body B
- /*!
- \sa btGeneric6DofConstraint.getFrameOffsetA, btGeneric6DofConstraint.getFrameOffsetB, btGeneric6DofConstraint.calculateAngleInfo.
- */
- const btTransform & getCalculatedTransformB() const
- {
- return m_calculatedTransformB;
- }
-
- const btTransform & getFrameOffsetA() const
- {
- return m_frameInA;
- }
-
- const btTransform & getFrameOffsetB() const
- {
- return m_frameInB;
- }
-
-
- btTransform & getFrameOffsetA()
- {
- return m_frameInA;
- }
-
- btTransform & getFrameOffsetB()
- {
- return m_frameInB;
- }
-
-
- //! performs Jacobian calculation, and also calculates angle differences and axis
- virtual void buildJacobian();
-
- virtual void getInfo1 (btConstraintInfo1* info);
-
- void getInfo1NonVirtual (btConstraintInfo1* info);
-
- virtual void getInfo2 (btConstraintInfo2* info);
-
- void getInfo2NonVirtual (btConstraintInfo2* info,const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB);
-
-
- void updateRHS(btScalar timeStep);
-
- //! Get the rotation axis in global coordinates
- /*!
- \pre btGeneric6DofConstraint.buildJacobian must be called previously.
- */
- btVector3 getAxis(int axis_index) const;
-
- //! Get the relative Euler angle
- /*!
- \pre btGeneric6DofConstraint::calculateTransforms() must be called previously.
- */
- btScalar getAngle(int axis_index) const;
-
- //! Get the relative position of the constraint pivot
- /*!
- \pre btGeneric6DofConstraint::calculateTransforms() must be called previously.
- */
- btScalar getRelativePivotPosition(int axis_index) const;
-
- void setFrames(const btTransform & frameA, const btTransform & frameB);
-
- //! Test angular limit.
- /*!
- Calculates angular correction and returns true if limit needs to be corrected.
- \pre btGeneric6DofConstraint::calculateTransforms() must be called previously.
- */
- bool testAngularLimitMotor(int axis_index);
-
- void setLinearLowerLimit(const btVector3& linearLower)
- {
- m_linearLimits.m_lowerLimit = linearLower;
- }
-
- void getLinearLowerLimit(btVector3& linearLower) const
- {
- linearLower = m_linearLimits.m_lowerLimit;
- }
-
- void setLinearUpperLimit(const btVector3& linearUpper)
- {
- m_linearLimits.m_upperLimit = linearUpper;
- }
-
- void getLinearUpperLimit(btVector3& linearUpper) const
- {
- linearUpper = m_linearLimits.m_upperLimit;
- }
-
- void setAngularLowerLimit(const btVector3& angularLower)
- {
- for(int i = 0; i < 3; i++)
- m_angularLimits[i].m_loLimit = btNormalizeAngle(angularLower[i]);
- }
-
- void getAngularLowerLimit(btVector3& angularLower) const
- {
- for(int i = 0; i < 3; i++)
- angularLower[i] = m_angularLimits[i].m_loLimit;
- }
-
- void setAngularUpperLimit(const btVector3& angularUpper)
- {
- for(int i = 0; i < 3; i++)
- m_angularLimits[i].m_hiLimit = btNormalizeAngle(angularUpper[i]);
- }
-
- void getAngularUpperLimit(btVector3& angularUpper) const
- {
- for(int i = 0; i < 3; i++)
- angularUpper[i] = m_angularLimits[i].m_hiLimit;
- }
-
- //! Retrieves the angular limit informacion
- btRotationalLimitMotor * getRotationalLimitMotor(int index)
- {
- return &m_angularLimits[index];
- }
-
- //! Retrieves the limit informacion
- btTranslationalLimitMotor * getTranslationalLimitMotor()
- {
- return &m_linearLimits;
- }
-
- //first 3 are linear, next 3 are angular
- void setLimit(int axis, btScalar lo, btScalar hi)
- {
- if(axis<3)
- {
- m_linearLimits.m_lowerLimit[axis] = lo;
- m_linearLimits.m_upperLimit[axis] = hi;
- }
- else
- {
- lo = btNormalizeAngle(lo);
- hi = btNormalizeAngle(hi);
- m_angularLimits[axis-3].m_loLimit = lo;
- m_angularLimits[axis-3].m_hiLimit = hi;
- }
- }
-
- //! Test limit
- /*!
- - free means upper < lower,
- - locked means upper == lower
- - limited means upper > lower
- - limitIndex: first 3 are linear, next 3 are angular
- */
- bool isLimited(int limitIndex) const
- {
- if(limitIndex<3)
- {
- return m_linearLimits.isLimited(limitIndex);
-
- }
- return m_angularLimits[limitIndex-3].isLimited();
- }
-
- virtual void calcAnchorPos(void); // overridable
-
- int get_limit_motor_info2( btRotationalLimitMotor * limot,
- const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB,
- btConstraintInfo2 *info, int row, btVector3& ax1, int rotational, int rotAllowed = false);
-
- // access for UseFrameOffset
- bool getUseFrameOffset() const { return m_useOffsetForConstraintFrame; }
- void setUseFrameOffset(bool frameOffsetOnOff) { m_useOffsetForConstraintFrame = frameOffsetOnOff; }
-
- bool getUseLinearReferenceFrameA() const { return m_useLinearReferenceFrameA; }
- void setUseLinearReferenceFrameA(bool linearReferenceFrameA) { m_useLinearReferenceFrameA = linearReferenceFrameA; }
-
- ///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5).
- ///If no axis is provided, it uses the default axis for this constraint.
- virtual void setParam(int num, btScalar value, int axis = -1);
- ///return the local value of parameter
- virtual btScalar getParam(int num, int axis = -1) const;
-
- void setAxis( const btVector3& axis1, const btVector3& axis2);
-
- virtual int getFlags() const
- {
- return m_flags;
- }
-
- virtual int calculateSerializeBufferSize() const;
-
- ///fills the dataBuffer and returns the struct name (and 0 on failure)
- virtual const char* serialize(void* dataBuffer, btSerializer* serializer) const;
-
-
-};
-
-
-struct btGeneric6DofConstraintData
-{
- btTypedConstraintData m_typeConstraintData;
- btTransformFloatData m_rbAFrame; // constraint axii. Assumes z is hinge axis.
- btTransformFloatData m_rbBFrame;
-
- btVector3FloatData m_linearUpperLimit;
- btVector3FloatData m_linearLowerLimit;
-
- btVector3FloatData m_angularUpperLimit;
- btVector3FloatData m_angularLowerLimit;
-
- int m_useLinearReferenceFrameA;
- int m_useOffsetForConstraintFrame;
-};
-
-struct btGeneric6DofConstraintDoubleData2
-{
- btTypedConstraintDoubleData m_typeConstraintData;
- btTransformDoubleData m_rbAFrame; // constraint axii. Assumes z is hinge axis.
- btTransformDoubleData m_rbBFrame;
-
- btVector3DoubleData m_linearUpperLimit;
- btVector3DoubleData m_linearLowerLimit;
-
- btVector3DoubleData m_angularUpperLimit;
- btVector3DoubleData m_angularLowerLimit;
-
- int m_useLinearReferenceFrameA;
- int m_useOffsetForConstraintFrame;
-};
-
-SIMD_FORCE_INLINE int btGeneric6DofConstraint::calculateSerializeBufferSize() const
-{
- return sizeof(btGeneric6DofConstraintData2);
-}
-
- ///fills the dataBuffer and returns the struct name (and 0 on failure)
-SIMD_FORCE_INLINE const char* btGeneric6DofConstraint::serialize(void* dataBuffer, btSerializer* serializer) const
-{
-
- btGeneric6DofConstraintData2* dof = (btGeneric6DofConstraintData2*)dataBuffer;
- btTypedConstraint::serialize(&dof->m_typeConstraintData,serializer);
-
- m_frameInA.serialize(dof->m_rbAFrame);
- m_frameInB.serialize(dof->m_rbBFrame);
-
-
- int i;
- for (i=0;i<3;i++)
- {
- dof->m_angularLowerLimit.m_floats[i] = m_angularLimits[i].m_loLimit;
- dof->m_angularUpperLimit.m_floats[i] = m_angularLimits[i].m_hiLimit;
- dof->m_linearLowerLimit.m_floats[i] = m_linearLimits.m_lowerLimit[i];
- dof->m_linearUpperLimit.m_floats[i] = m_linearLimits.m_upperLimit[i];
- }
-
- dof->m_useLinearReferenceFrameA = m_useLinearReferenceFrameA? 1 : 0;
- dof->m_useOffsetForConstraintFrame = m_useOffsetForConstraintFrame ? 1 : 0;
-
- return btGeneric6DofConstraintDataName;
-}
-
-
-
-
-
-#endif //BT_GENERIC_6DOF_CONSTRAINT_H