summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/src/BulletDynamics/ConstraintSolver/btConeTwistConstraint.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/bullet/src/BulletDynamics/ConstraintSolver/btConeTwistConstraint.cpp')
-rw-r--r--thirdparty/bullet/src/BulletDynamics/ConstraintSolver/btConeTwistConstraint.cpp1143
1 files changed, 0 insertions, 1143 deletions
diff --git a/thirdparty/bullet/src/BulletDynamics/ConstraintSolver/btConeTwistConstraint.cpp b/thirdparty/bullet/src/BulletDynamics/ConstraintSolver/btConeTwistConstraint.cpp
deleted file mode 100644
index 0572256f74..0000000000
--- a/thirdparty/bullet/src/BulletDynamics/ConstraintSolver/btConeTwistConstraint.cpp
+++ /dev/null
@@ -1,1143 +0,0 @@
-/*
-Bullet Continuous Collision Detection and Physics Library
-btConeTwistConstraint is Copyright (c) 2007 Starbreeze Studios
-
-This software is provided 'as-is', without any express or implied warranty.
-In no event will the authors be held liable for any damages arising from the use of this software.
-Permission is granted to anyone to use this software for any purpose,
-including commercial applications, and to alter it and redistribute it freely,
-subject to the following restrictions:
-
-1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
-2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
-3. This notice may not be removed or altered from any source distribution.
-
-Written by: Marcus Hennix
-*/
-
-
-#include "btConeTwistConstraint.h"
-#include "BulletDynamics/Dynamics/btRigidBody.h"
-#include "LinearMath/btTransformUtil.h"
-#include "LinearMath/btMinMax.h"
-#include <new>
-
-
-
-//#define CONETWIST_USE_OBSOLETE_SOLVER true
-#define CONETWIST_USE_OBSOLETE_SOLVER false
-#define CONETWIST_DEF_FIX_THRESH btScalar(.05f)
-
-
-SIMD_FORCE_INLINE btScalar computeAngularImpulseDenominator(const btVector3& axis, const btMatrix3x3& invInertiaWorld)
-{
- btVector3 vec = axis * invInertiaWorld;
- return axis.dot(vec);
-}
-
-
-
-
-btConeTwistConstraint::btConeTwistConstraint(btRigidBody& rbA,btRigidBody& rbB,
- const btTransform& rbAFrame,const btTransform& rbBFrame)
- :btTypedConstraint(CONETWIST_CONSTRAINT_TYPE, rbA,rbB),m_rbAFrame(rbAFrame),m_rbBFrame(rbBFrame),
- m_angularOnly(false),
- m_useSolveConstraintObsolete(CONETWIST_USE_OBSOLETE_SOLVER)
-{
- init();
-}
-
-btConeTwistConstraint::btConeTwistConstraint(btRigidBody& rbA,const btTransform& rbAFrame)
- :btTypedConstraint(CONETWIST_CONSTRAINT_TYPE,rbA),m_rbAFrame(rbAFrame),
- m_angularOnly(false),
- m_useSolveConstraintObsolete(CONETWIST_USE_OBSOLETE_SOLVER)
-{
- m_rbBFrame = m_rbAFrame;
- m_rbBFrame.setOrigin(btVector3(0., 0., 0.));
- init();
-}
-
-
-void btConeTwistConstraint::init()
-{
- m_angularOnly = false;
- m_solveTwistLimit = false;
- m_solveSwingLimit = false;
- m_bMotorEnabled = false;
- m_maxMotorImpulse = btScalar(-1);
-
- setLimit(btScalar(BT_LARGE_FLOAT), btScalar(BT_LARGE_FLOAT), btScalar(BT_LARGE_FLOAT));
- m_damping = btScalar(0.01);
- m_fixThresh = CONETWIST_DEF_FIX_THRESH;
- m_flags = 0;
- m_linCFM = btScalar(0.f);
- m_linERP = btScalar(0.7f);
- m_angCFM = btScalar(0.f);
-}
-
-
-void btConeTwistConstraint::getInfo1 (btConstraintInfo1* info)
-{
- if (m_useSolveConstraintObsolete)
- {
- info->m_numConstraintRows = 0;
- info->nub = 0;
- }
- else
- {
- info->m_numConstraintRows = 3;
- info->nub = 3;
- calcAngleInfo2(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform(),m_rbA.getInvInertiaTensorWorld(),m_rbB.getInvInertiaTensorWorld());
- if(m_solveSwingLimit)
- {
- info->m_numConstraintRows++;
- info->nub--;
- if((m_swingSpan1 < m_fixThresh) && (m_swingSpan2 < m_fixThresh))
- {
- info->m_numConstraintRows++;
- info->nub--;
- }
- }
- if(m_solveTwistLimit)
- {
- info->m_numConstraintRows++;
- info->nub--;
- }
- }
-}
-
-void btConeTwistConstraint::getInfo1NonVirtual (btConstraintInfo1* info)
-{
- //always reserve 6 rows: object transform is not available on SPU
- info->m_numConstraintRows = 6;
- info->nub = 0;
-
-}
-
-
-void btConeTwistConstraint::getInfo2 (btConstraintInfo2* info)
-{
- getInfo2NonVirtual(info,m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform(),m_rbA.getInvInertiaTensorWorld(),m_rbB.getInvInertiaTensorWorld());
-}
-
-void btConeTwistConstraint::getInfo2NonVirtual (btConstraintInfo2* info,const btTransform& transA,const btTransform& transB,const btMatrix3x3& invInertiaWorldA,const btMatrix3x3& invInertiaWorldB)
-{
- calcAngleInfo2(transA,transB,invInertiaWorldA,invInertiaWorldB);
-
- btAssert(!m_useSolveConstraintObsolete);
- // set jacobian
- info->m_J1linearAxis[0] = 1;
- info->m_J1linearAxis[info->rowskip+1] = 1;
- info->m_J1linearAxis[2*info->rowskip+2] = 1;
- btVector3 a1 = transA.getBasis() * m_rbAFrame.getOrigin();
- {
- btVector3* angular0 = (btVector3*)(info->m_J1angularAxis);
- btVector3* angular1 = (btVector3*)(info->m_J1angularAxis+info->rowskip);
- btVector3* angular2 = (btVector3*)(info->m_J1angularAxis+2*info->rowskip);
- btVector3 a1neg = -a1;
- a1neg.getSkewSymmetricMatrix(angular0,angular1,angular2);
- }
- info->m_J2linearAxis[0] = -1;
- info->m_J2linearAxis[info->rowskip+1] = -1;
- info->m_J2linearAxis[2*info->rowskip+2] = -1;
- btVector3 a2 = transB.getBasis() * m_rbBFrame.getOrigin();
- {
- btVector3* angular0 = (btVector3*)(info->m_J2angularAxis);
- btVector3* angular1 = (btVector3*)(info->m_J2angularAxis+info->rowskip);
- btVector3* angular2 = (btVector3*)(info->m_J2angularAxis+2*info->rowskip);
- a2.getSkewSymmetricMatrix(angular0,angular1,angular2);
- }
- // set right hand side
- btScalar linERP = (m_flags & BT_CONETWIST_FLAGS_LIN_ERP) ? m_linERP : info->erp;
- btScalar k = info->fps * linERP;
- int j;
- for (j=0; j<3; j++)
- {
- info->m_constraintError[j*info->rowskip] = k * (a2[j] + transB.getOrigin()[j] - a1[j] - transA.getOrigin()[j]);
- info->m_lowerLimit[j*info->rowskip] = -SIMD_INFINITY;
- info->m_upperLimit[j*info->rowskip] = SIMD_INFINITY;
- if(m_flags & BT_CONETWIST_FLAGS_LIN_CFM)
- {
- info->cfm[j*info->rowskip] = m_linCFM;
- }
- }
- int row = 3;
- int srow = row * info->rowskip;
- btVector3 ax1;
- // angular limits
- if(m_solveSwingLimit)
- {
- btScalar *J1 = info->m_J1angularAxis;
- btScalar *J2 = info->m_J2angularAxis;
- if((m_swingSpan1 < m_fixThresh) && (m_swingSpan2 < m_fixThresh))
- {
- btTransform trA = transA*m_rbAFrame;
- btVector3 p = trA.getBasis().getColumn(1);
- btVector3 q = trA.getBasis().getColumn(2);
- int srow1 = srow + info->rowskip;
- J1[srow+0] = p[0];
- J1[srow+1] = p[1];
- J1[srow+2] = p[2];
- J1[srow1+0] = q[0];
- J1[srow1+1] = q[1];
- J1[srow1+2] = q[2];
- J2[srow+0] = -p[0];
- J2[srow+1] = -p[1];
- J2[srow+2] = -p[2];
- J2[srow1+0] = -q[0];
- J2[srow1+1] = -q[1];
- J2[srow1+2] = -q[2];
- btScalar fact = info->fps * m_relaxationFactor;
- info->m_constraintError[srow] = fact * m_swingAxis.dot(p);
- info->m_constraintError[srow1] = fact * m_swingAxis.dot(q);
- info->m_lowerLimit[srow] = -SIMD_INFINITY;
- info->m_upperLimit[srow] = SIMD_INFINITY;
- info->m_lowerLimit[srow1] = -SIMD_INFINITY;
- info->m_upperLimit[srow1] = SIMD_INFINITY;
- srow = srow1 + info->rowskip;
- }
- else
- {
- ax1 = m_swingAxis * m_relaxationFactor * m_relaxationFactor;
- J1[srow+0] = ax1[0];
- J1[srow+1] = ax1[1];
- J1[srow+2] = ax1[2];
- J2[srow+0] = -ax1[0];
- J2[srow+1] = -ax1[1];
- J2[srow+2] = -ax1[2];
- btScalar k = info->fps * m_biasFactor;
-
- info->m_constraintError[srow] = k * m_swingCorrection;
- if(m_flags & BT_CONETWIST_FLAGS_ANG_CFM)
- {
- info->cfm[srow] = m_angCFM;
- }
- // m_swingCorrection is always positive or 0
- info->m_lowerLimit[srow] = 0;
- info->m_upperLimit[srow] = (m_bMotorEnabled && m_maxMotorImpulse >= 0.0f) ? m_maxMotorImpulse : SIMD_INFINITY;
- srow += info->rowskip;
- }
- }
- if(m_solveTwistLimit)
- {
- ax1 = m_twistAxis * m_relaxationFactor * m_relaxationFactor;
- btScalar *J1 = info->m_J1angularAxis;
- btScalar *J2 = info->m_J2angularAxis;
- J1[srow+0] = ax1[0];
- J1[srow+1] = ax1[1];
- J1[srow+2] = ax1[2];
- J2[srow+0] = -ax1[0];
- J2[srow+1] = -ax1[1];
- J2[srow+2] = -ax1[2];
- btScalar k = info->fps * m_biasFactor;
- info->m_constraintError[srow] = k * m_twistCorrection;
- if(m_flags & BT_CONETWIST_FLAGS_ANG_CFM)
- {
- info->cfm[srow] = m_angCFM;
- }
- if(m_twistSpan > 0.0f)
- {
-
- if(m_twistCorrection > 0.0f)
- {
- info->m_lowerLimit[srow] = 0;
- info->m_upperLimit[srow] = SIMD_INFINITY;
- }
- else
- {
- info->m_lowerLimit[srow] = -SIMD_INFINITY;
- info->m_upperLimit[srow] = 0;
- }
- }
- else
- {
- info->m_lowerLimit[srow] = -SIMD_INFINITY;
- info->m_upperLimit[srow] = SIMD_INFINITY;
- }
- srow += info->rowskip;
- }
-}
-
-
-
-void btConeTwistConstraint::buildJacobian()
-{
- if (m_useSolveConstraintObsolete)
- {
- m_appliedImpulse = btScalar(0.);
- m_accTwistLimitImpulse = btScalar(0.);
- m_accSwingLimitImpulse = btScalar(0.);
- m_accMotorImpulse = btVector3(0.,0.,0.);
-
- if (!m_angularOnly)
- {
- btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_rbAFrame.getOrigin();
- btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_rbBFrame.getOrigin();
- btVector3 relPos = pivotBInW - pivotAInW;
-
- btVector3 normal[3];
- if (relPos.length2() > SIMD_EPSILON)
- {
- normal[0] = relPos.normalized();
- }
- else
- {
- normal[0].setValue(btScalar(1.0),0,0);
- }
-
- btPlaneSpace1(normal[0], normal[1], normal[2]);
-
- for (int i=0;i<3;i++)
- {
- new (&m_jac[i]) btJacobianEntry(
- m_rbA.getCenterOfMassTransform().getBasis().transpose(),
- m_rbB.getCenterOfMassTransform().getBasis().transpose(),
- pivotAInW - m_rbA.getCenterOfMassPosition(),
- pivotBInW - m_rbB.getCenterOfMassPosition(),
- normal[i],
- m_rbA.getInvInertiaDiagLocal(),
- m_rbA.getInvMass(),
- m_rbB.getInvInertiaDiagLocal(),
- m_rbB.getInvMass());
- }
- }
-
- calcAngleInfo2(m_rbA.getCenterOfMassTransform(),m_rbB.getCenterOfMassTransform(),m_rbA.getInvInertiaTensorWorld(),m_rbB.getInvInertiaTensorWorld());
- }
-}
-
-
-
-void btConeTwistConstraint::solveConstraintObsolete(btSolverBody& bodyA,btSolverBody& bodyB,btScalar timeStep)
-{
- #ifndef __SPU__
- if (m_useSolveConstraintObsolete)
- {
- btVector3 pivotAInW = m_rbA.getCenterOfMassTransform()*m_rbAFrame.getOrigin();
- btVector3 pivotBInW = m_rbB.getCenterOfMassTransform()*m_rbBFrame.getOrigin();
-
- btScalar tau = btScalar(0.3);
-
- //linear part
- if (!m_angularOnly)
- {
- btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition();
- btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition();
-
- btVector3 vel1;
- bodyA.internalGetVelocityInLocalPointObsolete(rel_pos1,vel1);
- btVector3 vel2;
- bodyB.internalGetVelocityInLocalPointObsolete(rel_pos2,vel2);
- btVector3 vel = vel1 - vel2;
-
- for (int i=0;i<3;i++)
- {
- const btVector3& normal = m_jac[i].m_linearJointAxis;
- btScalar jacDiagABInv = btScalar(1.) / m_jac[i].getDiagonal();
-
- btScalar rel_vel;
- rel_vel = normal.dot(vel);
- //positional error (zeroth order error)
- btScalar depth = -(pivotAInW - pivotBInW).dot(normal); //this is the error projected on the normal
- btScalar impulse = depth*tau/timeStep * jacDiagABInv - rel_vel * jacDiagABInv;
- m_appliedImpulse += impulse;
-
- btVector3 ftorqueAxis1 = rel_pos1.cross(normal);
- btVector3 ftorqueAxis2 = rel_pos2.cross(normal);
- bodyA.internalApplyImpulse(normal*m_rbA.getInvMass(), m_rbA.getInvInertiaTensorWorld()*ftorqueAxis1,impulse);
- bodyB.internalApplyImpulse(normal*m_rbB.getInvMass(), m_rbB.getInvInertiaTensorWorld()*ftorqueAxis2,-impulse);
-
- }
- }
-
- // apply motor
- if (m_bMotorEnabled)
- {
- // compute current and predicted transforms
- btTransform trACur = m_rbA.getCenterOfMassTransform();
- btTransform trBCur = m_rbB.getCenterOfMassTransform();
- btVector3 omegaA; bodyA.internalGetAngularVelocity(omegaA);
- btVector3 omegaB; bodyB.internalGetAngularVelocity(omegaB);
- btTransform trAPred; trAPred.setIdentity();
- btVector3 zerovec(0,0,0);
- btTransformUtil::integrateTransform(
- trACur, zerovec, omegaA, timeStep, trAPred);
- btTransform trBPred; trBPred.setIdentity();
- btTransformUtil::integrateTransform(
- trBCur, zerovec, omegaB, timeStep, trBPred);
-
- // compute desired transforms in world
- btTransform trPose(m_qTarget);
- btTransform trABDes = m_rbBFrame * trPose * m_rbAFrame.inverse();
- btTransform trADes = trBPred * trABDes;
- btTransform trBDes = trAPred * trABDes.inverse();
-
- // compute desired omegas in world
- btVector3 omegaADes, omegaBDes;
-
- btTransformUtil::calculateVelocity(trACur, trADes, timeStep, zerovec, omegaADes);
- btTransformUtil::calculateVelocity(trBCur, trBDes, timeStep, zerovec, omegaBDes);
-
- // compute delta omegas
- btVector3 dOmegaA = omegaADes - omegaA;
- btVector3 dOmegaB = omegaBDes - omegaB;
-
- // compute weighted avg axis of dOmega (weighting based on inertias)
- btVector3 axisA, axisB;
- btScalar kAxisAInv = 0, kAxisBInv = 0;
-
- if (dOmegaA.length2() > SIMD_EPSILON)
- {
- axisA = dOmegaA.normalized();
- kAxisAInv = getRigidBodyA().computeAngularImpulseDenominator(axisA);
- }
-
- if (dOmegaB.length2() > SIMD_EPSILON)
- {
- axisB = dOmegaB.normalized();
- kAxisBInv = getRigidBodyB().computeAngularImpulseDenominator(axisB);
- }
-
- btVector3 avgAxis = kAxisAInv * axisA + kAxisBInv * axisB;
-
- static bool bDoTorque = true;
- if (bDoTorque && avgAxis.length2() > SIMD_EPSILON)
- {
- avgAxis.normalize();
- kAxisAInv = getRigidBodyA().computeAngularImpulseDenominator(avgAxis);
- kAxisBInv = getRigidBodyB().computeAngularImpulseDenominator(avgAxis);
- btScalar kInvCombined = kAxisAInv + kAxisBInv;
-
- btVector3 impulse = (kAxisAInv * dOmegaA - kAxisBInv * dOmegaB) /
- (kInvCombined * kInvCombined);
-
- if (m_maxMotorImpulse >= 0)
- {
- btScalar fMaxImpulse = m_maxMotorImpulse;
- if (m_bNormalizedMotorStrength)
- fMaxImpulse = fMaxImpulse/kAxisAInv;
-
- btVector3 newUnclampedAccImpulse = m_accMotorImpulse + impulse;
- btScalar newUnclampedMag = newUnclampedAccImpulse.length();
- if (newUnclampedMag > fMaxImpulse)
- {
- newUnclampedAccImpulse.normalize();
- newUnclampedAccImpulse *= fMaxImpulse;
- impulse = newUnclampedAccImpulse - m_accMotorImpulse;
- }
- m_accMotorImpulse += impulse;
- }
-
- btScalar impulseMag = impulse.length();
- btVector3 impulseAxis = impulse / impulseMag;
-
- bodyA.internalApplyImpulse(btVector3(0,0,0), m_rbA.getInvInertiaTensorWorld()*impulseAxis, impulseMag);
- bodyB.internalApplyImpulse(btVector3(0,0,0), m_rbB.getInvInertiaTensorWorld()*impulseAxis, -impulseMag);
-
- }
- }
- else if (m_damping > SIMD_EPSILON) // no motor: do a little damping
- {
- btVector3 angVelA; bodyA.internalGetAngularVelocity(angVelA);
- btVector3 angVelB; bodyB.internalGetAngularVelocity(angVelB);
- btVector3 relVel = angVelB - angVelA;
- if (relVel.length2() > SIMD_EPSILON)
- {
- btVector3 relVelAxis = relVel.normalized();
- btScalar m_kDamping = btScalar(1.) /
- (getRigidBodyA().computeAngularImpulseDenominator(relVelAxis) +
- getRigidBodyB().computeAngularImpulseDenominator(relVelAxis));
- btVector3 impulse = m_damping * m_kDamping * relVel;
-
- btScalar impulseMag = impulse.length();
- btVector3 impulseAxis = impulse / impulseMag;
- bodyA.internalApplyImpulse(btVector3(0,0,0), m_rbA.getInvInertiaTensorWorld()*impulseAxis, impulseMag);
- bodyB.internalApplyImpulse(btVector3(0,0,0), m_rbB.getInvInertiaTensorWorld()*impulseAxis, -impulseMag);
- }
- }
-
- // joint limits
- {
- ///solve angular part
- btVector3 angVelA;
- bodyA.internalGetAngularVelocity(angVelA);
- btVector3 angVelB;
- bodyB.internalGetAngularVelocity(angVelB);
-
- // solve swing limit
- if (m_solveSwingLimit)
- {
- btScalar amplitude = m_swingLimitRatio * m_swingCorrection*m_biasFactor/timeStep;
- btScalar relSwingVel = (angVelB - angVelA).dot(m_swingAxis);
- if (relSwingVel > 0)
- amplitude += m_swingLimitRatio * relSwingVel * m_relaxationFactor;
- btScalar impulseMag = amplitude * m_kSwing;
-
- // Clamp the accumulated impulse
- btScalar temp = m_accSwingLimitImpulse;
- m_accSwingLimitImpulse = btMax(m_accSwingLimitImpulse + impulseMag, btScalar(0.0) );
- impulseMag = m_accSwingLimitImpulse - temp;
-
- btVector3 impulse = m_swingAxis * impulseMag;
-
- // don't let cone response affect twist
- // (this can happen since body A's twist doesn't match body B's AND we use an elliptical cone limit)
- {
- btVector3 impulseTwistCouple = impulse.dot(m_twistAxisA) * m_twistAxisA;
- btVector3 impulseNoTwistCouple = impulse - impulseTwistCouple;
- impulse = impulseNoTwistCouple;
- }
-
- impulseMag = impulse.length();
- btVector3 noTwistSwingAxis = impulse / impulseMag;
-
- bodyA.internalApplyImpulse(btVector3(0,0,0), m_rbA.getInvInertiaTensorWorld()*noTwistSwingAxis, impulseMag);
- bodyB.internalApplyImpulse(btVector3(0,0,0), m_rbB.getInvInertiaTensorWorld()*noTwistSwingAxis, -impulseMag);
- }
-
-
- // solve twist limit
- if (m_solveTwistLimit)
- {
- btScalar amplitude = m_twistLimitRatio * m_twistCorrection*m_biasFactor/timeStep;
- btScalar relTwistVel = (angVelB - angVelA).dot( m_twistAxis );
- if (relTwistVel > 0) // only damp when moving towards limit (m_twistAxis flipping is important)
- amplitude += m_twistLimitRatio * relTwistVel * m_relaxationFactor;
- btScalar impulseMag = amplitude * m_kTwist;
-
- // Clamp the accumulated impulse
- btScalar temp = m_accTwistLimitImpulse;
- m_accTwistLimitImpulse = btMax(m_accTwistLimitImpulse + impulseMag, btScalar(0.0) );
- impulseMag = m_accTwistLimitImpulse - temp;
-
- // btVector3 impulse = m_twistAxis * impulseMag;
-
- bodyA.internalApplyImpulse(btVector3(0,0,0), m_rbA.getInvInertiaTensorWorld()*m_twistAxis,impulseMag);
- bodyB.internalApplyImpulse(btVector3(0,0,0), m_rbB.getInvInertiaTensorWorld()*m_twistAxis,-impulseMag);
- }
- }
- }
-#else
-btAssert(0);
-#endif //__SPU__
-}
-
-
-
-
-void btConeTwistConstraint::updateRHS(btScalar timeStep)
-{
- (void)timeStep;
-
-}
-
-
-#ifndef __SPU__
-void btConeTwistConstraint::calcAngleInfo()
-{
- m_swingCorrection = btScalar(0.);
- m_twistLimitSign = btScalar(0.);
- m_solveTwistLimit = false;
- m_solveSwingLimit = false;
-
- btVector3 b1Axis1(0,0,0),b1Axis2(0,0,0),b1Axis3(0,0,0);
- btVector3 b2Axis1(0,0,0),b2Axis2(0,0,0);
-
- b1Axis1 = getRigidBodyA().getCenterOfMassTransform().getBasis() * this->m_rbAFrame.getBasis().getColumn(0);
- b2Axis1 = getRigidBodyB().getCenterOfMassTransform().getBasis() * this->m_rbBFrame.getBasis().getColumn(0);
-
- btScalar swing1=btScalar(0.),swing2 = btScalar(0.);
-
- btScalar swx=btScalar(0.),swy = btScalar(0.);
- btScalar thresh = btScalar(10.);
- btScalar fact;
-
- // Get Frame into world space
- if (m_swingSpan1 >= btScalar(0.05f))
- {
- b1Axis2 = getRigidBodyA().getCenterOfMassTransform().getBasis() * this->m_rbAFrame.getBasis().getColumn(1);
- swx = b2Axis1.dot(b1Axis1);
- swy = b2Axis1.dot(b1Axis2);
- swing1 = btAtan2Fast(swy, swx);
- fact = (swy*swy + swx*swx) * thresh * thresh;
- fact = fact / (fact + btScalar(1.0));
- swing1 *= fact;
- }
-
- if (m_swingSpan2 >= btScalar(0.05f))
- {
- b1Axis3 = getRigidBodyA().getCenterOfMassTransform().getBasis() * this->m_rbAFrame.getBasis().getColumn(2);
- swx = b2Axis1.dot(b1Axis1);
- swy = b2Axis1.dot(b1Axis3);
- swing2 = btAtan2Fast(swy, swx);
- fact = (swy*swy + swx*swx) * thresh * thresh;
- fact = fact / (fact + btScalar(1.0));
- swing2 *= fact;
- }
-
- btScalar RMaxAngle1Sq = 1.0f / (m_swingSpan1*m_swingSpan1);
- btScalar RMaxAngle2Sq = 1.0f / (m_swingSpan2*m_swingSpan2);
- btScalar EllipseAngle = btFabs(swing1*swing1)* RMaxAngle1Sq + btFabs(swing2*swing2) * RMaxAngle2Sq;
-
- if (EllipseAngle > 1.0f)
- {
- m_swingCorrection = EllipseAngle-1.0f;
- m_solveSwingLimit = true;
- // Calculate necessary axis & factors
- m_swingAxis = b2Axis1.cross(b1Axis2* b2Axis1.dot(b1Axis2) + b1Axis3* b2Axis1.dot(b1Axis3));
- m_swingAxis.normalize();
- btScalar swingAxisSign = (b2Axis1.dot(b1Axis1) >= 0.0f) ? 1.0f : -1.0f;
- m_swingAxis *= swingAxisSign;
- }
-
- // Twist limits
- if (m_twistSpan >= btScalar(0.))
- {
- btVector3 b2Axis2 = getRigidBodyB().getCenterOfMassTransform().getBasis() * this->m_rbBFrame.getBasis().getColumn(1);
- btQuaternion rotationArc = shortestArcQuat(b2Axis1,b1Axis1);
- btVector3 TwistRef = quatRotate(rotationArc,b2Axis2);
- btScalar twist = btAtan2Fast( TwistRef.dot(b1Axis3), TwistRef.dot(b1Axis2) );
- m_twistAngle = twist;
-
-// btScalar lockedFreeFactor = (m_twistSpan > btScalar(0.05f)) ? m_limitSoftness : btScalar(0.);
- btScalar lockedFreeFactor = (m_twistSpan > btScalar(0.05f)) ? btScalar(1.0f) : btScalar(0.);
- if (twist <= -m_twistSpan*lockedFreeFactor)
- {
- m_twistCorrection = -(twist + m_twistSpan);
- m_solveTwistLimit = true;
- m_twistAxis = (b2Axis1 + b1Axis1) * 0.5f;
- m_twistAxis.normalize();
- m_twistAxis *= -1.0f;
- }
- else if (twist > m_twistSpan*lockedFreeFactor)
- {
- m_twistCorrection = (twist - m_twistSpan);
- m_solveTwistLimit = true;
- m_twistAxis = (b2Axis1 + b1Axis1) * 0.5f;
- m_twistAxis.normalize();
- }
- }
-}
-#endif //__SPU__
-
-static btVector3 vTwist(1,0,0); // twist axis in constraint's space
-
-
-
-void btConeTwistConstraint::calcAngleInfo2(const btTransform& transA, const btTransform& transB, const btMatrix3x3& invInertiaWorldA,const btMatrix3x3& invInertiaWorldB)
-{
- m_swingCorrection = btScalar(0.);
- m_twistLimitSign = btScalar(0.);
- m_solveTwistLimit = false;
- m_solveSwingLimit = false;
- // compute rotation of A wrt B (in constraint space)
- if (m_bMotorEnabled && (!m_useSolveConstraintObsolete))
- { // it is assumed that setMotorTarget() was alredy called
- // and motor target m_qTarget is within constraint limits
- // TODO : split rotation to pure swing and pure twist
- // compute desired transforms in world
- btTransform trPose(m_qTarget);
- btTransform trA = transA * m_rbAFrame;
- btTransform trB = transB * m_rbBFrame;
- btTransform trDeltaAB = trB * trPose * trA.inverse();
- btQuaternion qDeltaAB = trDeltaAB.getRotation();
- btVector3 swingAxis = btVector3(qDeltaAB.x(), qDeltaAB.y(), qDeltaAB.z());
- btScalar swingAxisLen2 = swingAxis.length2();
- if(btFuzzyZero(swingAxisLen2))
- {
- return;
- }
- m_swingAxis = swingAxis;
- m_swingAxis.normalize();
- m_swingCorrection = qDeltaAB.getAngle();
- if(!btFuzzyZero(m_swingCorrection))
- {
- m_solveSwingLimit = true;
- }
- return;
- }
-
-
- {
- // compute rotation of A wrt B (in constraint space)
- btQuaternion qA = transA.getRotation() * m_rbAFrame.getRotation();
- btQuaternion qB = transB.getRotation() * m_rbBFrame.getRotation();
- btQuaternion qAB = qB.inverse() * qA;
- // split rotation into cone and twist
- // (all this is done from B's perspective. Maybe I should be averaging axes...)
- btVector3 vConeNoTwist = quatRotate(qAB, vTwist); vConeNoTwist.normalize();
- btQuaternion qABCone = shortestArcQuat(vTwist, vConeNoTwist); qABCone.normalize();
- btQuaternion qABTwist = qABCone.inverse() * qAB; qABTwist.normalize();
-
- if (m_swingSpan1 >= m_fixThresh && m_swingSpan2 >= m_fixThresh)
- {
- btScalar swingAngle, swingLimit = 0; btVector3 swingAxis;
- computeConeLimitInfo(qABCone, swingAngle, swingAxis, swingLimit);
-
- if (swingAngle > swingLimit * m_limitSoftness)
- {
- m_solveSwingLimit = true;
-
- // compute limit ratio: 0->1, where
- // 0 == beginning of soft limit
- // 1 == hard/real limit
- m_swingLimitRatio = 1.f;
- if (swingAngle < swingLimit && m_limitSoftness < 1.f - SIMD_EPSILON)
- {
- m_swingLimitRatio = (swingAngle - swingLimit * m_limitSoftness)/
- (swingLimit - swingLimit * m_limitSoftness);
- }
-
- // swing correction tries to get back to soft limit
- m_swingCorrection = swingAngle - (swingLimit * m_limitSoftness);
-
- // adjustment of swing axis (based on ellipse normal)
- adjustSwingAxisToUseEllipseNormal(swingAxis);
-
- // Calculate necessary axis & factors
- m_swingAxis = quatRotate(qB, -swingAxis);
-
- m_twistAxisA.setValue(0,0,0);
-
- m_kSwing = btScalar(1.) /
- (computeAngularImpulseDenominator(m_swingAxis,invInertiaWorldA) +
- computeAngularImpulseDenominator(m_swingAxis,invInertiaWorldB));
- }
- }
- else
- {
- // you haven't set any limits;
- // or you're trying to set at least one of the swing limits too small. (if so, do you really want a conetwist constraint?)
- // anyway, we have either hinge or fixed joint
- btVector3 ivA = transA.getBasis() * m_rbAFrame.getBasis().getColumn(0);
- btVector3 jvA = transA.getBasis() * m_rbAFrame.getBasis().getColumn(1);
- btVector3 kvA = transA.getBasis() * m_rbAFrame.getBasis().getColumn(2);
- btVector3 ivB = transB.getBasis() * m_rbBFrame.getBasis().getColumn(0);
- btVector3 target;
- btScalar x = ivB.dot(ivA);
- btScalar y = ivB.dot(jvA);
- btScalar z = ivB.dot(kvA);
- if((m_swingSpan1 < m_fixThresh) && (m_swingSpan2 < m_fixThresh))
- { // fixed. We'll need to add one more row to constraint
- if((!btFuzzyZero(y)) || (!(btFuzzyZero(z))))
- {
- m_solveSwingLimit = true;
- m_swingAxis = -ivB.cross(ivA);
- }
- }
- else
- {
- if(m_swingSpan1 < m_fixThresh)
- { // hinge around Y axis
-// if(!(btFuzzyZero(y)))
- if((!(btFuzzyZero(x))) || (!(btFuzzyZero(z))))
- {
- m_solveSwingLimit = true;
- if(m_swingSpan2 >= m_fixThresh)
- {
- y = btScalar(0.f);
- btScalar span2 = btAtan2(z, x);
- if(span2 > m_swingSpan2)
- {
- x = btCos(m_swingSpan2);
- z = btSin(m_swingSpan2);
- }
- else if(span2 < -m_swingSpan2)
- {
- x = btCos(m_swingSpan2);
- z = -btSin(m_swingSpan2);
- }
- }
- }
- }
- else
- { // hinge around Z axis
-// if(!btFuzzyZero(z))
- if((!(btFuzzyZero(x))) || (!(btFuzzyZero(y))))
- {
- m_solveSwingLimit = true;
- if(m_swingSpan1 >= m_fixThresh)
- {
- z = btScalar(0.f);
- btScalar span1 = btAtan2(y, x);
- if(span1 > m_swingSpan1)
- {
- x = btCos(m_swingSpan1);
- y = btSin(m_swingSpan1);
- }
- else if(span1 < -m_swingSpan1)
- {
- x = btCos(m_swingSpan1);
- y = -btSin(m_swingSpan1);
- }
- }
- }
- }
- target[0] = x * ivA[0] + y * jvA[0] + z * kvA[0];
- target[1] = x * ivA[1] + y * jvA[1] + z * kvA[1];
- target[2] = x * ivA[2] + y * jvA[2] + z * kvA[2];
- target.normalize();
- m_swingAxis = -ivB.cross(target);
- m_swingCorrection = m_swingAxis.length();
-
- if (!btFuzzyZero(m_swingCorrection))
- m_swingAxis.normalize();
- }
- }
-
- if (m_twistSpan >= btScalar(0.f))
- {
- btVector3 twistAxis;
- computeTwistLimitInfo(qABTwist, m_twistAngle, twistAxis);
-
- if (m_twistAngle > m_twistSpan*m_limitSoftness)
- {
- m_solveTwistLimit = true;
-
- m_twistLimitRatio = 1.f;
- if (m_twistAngle < m_twistSpan && m_limitSoftness < 1.f - SIMD_EPSILON)
- {
- m_twistLimitRatio = (m_twistAngle - m_twistSpan * m_limitSoftness)/
- (m_twistSpan - m_twistSpan * m_limitSoftness);
- }
-
- // twist correction tries to get back to soft limit
- m_twistCorrection = m_twistAngle - (m_twistSpan * m_limitSoftness);
-
- m_twistAxis = quatRotate(qB, -twistAxis);
-
- m_kTwist = btScalar(1.) /
- (computeAngularImpulseDenominator(m_twistAxis,invInertiaWorldA) +
- computeAngularImpulseDenominator(m_twistAxis,invInertiaWorldB));
- }
-
- if (m_solveSwingLimit)
- m_twistAxisA = quatRotate(qA, -twistAxis);
- }
- else
- {
- m_twistAngle = btScalar(0.f);
- }
- }
-}
-
-
-
-// given a cone rotation in constraint space, (pre: twist must already be removed)
-// this method computes its corresponding swing angle and axis.
-// more interestingly, it computes the cone/swing limit (angle) for this cone "pose".
-void btConeTwistConstraint::computeConeLimitInfo(const btQuaternion& qCone,
- btScalar& swingAngle, // out
- btVector3& vSwingAxis, // out
- btScalar& swingLimit) // out
-{
- swingAngle = qCone.getAngle();
- if (swingAngle > SIMD_EPSILON)
- {
- vSwingAxis = btVector3(qCone.x(), qCone.y(), qCone.z());
- vSwingAxis.normalize();
-#if 0
- // non-zero twist?! this should never happen.
- btAssert(fabs(vSwingAxis.x()) <= SIMD_EPSILON));
-#endif
-
- // Compute limit for given swing. tricky:
- // Given a swing axis, we're looking for the intersection with the bounding cone ellipse.
- // (Since we're dealing with angles, this ellipse is embedded on the surface of a sphere.)
-
- // For starters, compute the direction from center to surface of ellipse.
- // This is just the perpendicular (ie. rotate 2D vector by PI/2) of the swing axis.
- // (vSwingAxis is the cone rotation (in z,y); change vars and rotate to (x,y) coords.)
- btScalar xEllipse = vSwingAxis.y();
- btScalar yEllipse = -vSwingAxis.z();
-
- // Now, we use the slope of the vector (using x/yEllipse) and find the length
- // of the line that intersects the ellipse:
- // x^2 y^2
- // --- + --- = 1, where a and b are semi-major axes 2 and 1 respectively (ie. the limits)
- // a^2 b^2
- // Do the math and it should be clear.
-
- swingLimit = m_swingSpan1; // if xEllipse == 0, we have a pure vSwingAxis.z rotation: just use swingspan1
- if (fabs(xEllipse) > SIMD_EPSILON)
- {
- btScalar surfaceSlope2 = (yEllipse*yEllipse)/(xEllipse*xEllipse);
- btScalar norm = 1 / (m_swingSpan2 * m_swingSpan2);
- norm += surfaceSlope2 / (m_swingSpan1 * m_swingSpan1);
- btScalar swingLimit2 = (1 + surfaceSlope2) / norm;
- swingLimit = sqrt(swingLimit2);
- }
-
- // test!
- /*swingLimit = m_swingSpan2;
- if (fabs(vSwingAxis.z()) > SIMD_EPSILON)
- {
- btScalar mag_2 = m_swingSpan1*m_swingSpan1 + m_swingSpan2*m_swingSpan2;
- btScalar sinphi = m_swingSpan2 / sqrt(mag_2);
- btScalar phi = asin(sinphi);
- btScalar theta = atan2(fabs(vSwingAxis.y()),fabs(vSwingAxis.z()));
- btScalar alpha = 3.14159f - theta - phi;
- btScalar sinalpha = sin(alpha);
- swingLimit = m_swingSpan1 * sinphi/sinalpha;
- }*/
- }
- else if (swingAngle < 0)
- {
- // this should never happen!
-#if 0
- btAssert(0);
-#endif
- }
-}
-
-btVector3 btConeTwistConstraint::GetPointForAngle(btScalar fAngleInRadians, btScalar fLength) const
-{
- // compute x/y in ellipse using cone angle (0 -> 2*PI along surface of cone)
- btScalar xEllipse = btCos(fAngleInRadians);
- btScalar yEllipse = btSin(fAngleInRadians);
-
- // Use the slope of the vector (using x/yEllipse) and find the length
- // of the line that intersects the ellipse:
- // x^2 y^2
- // --- + --- = 1, where a and b are semi-major axes 2 and 1 respectively (ie. the limits)
- // a^2 b^2
- // Do the math and it should be clear.
-
- btScalar swingLimit = m_swingSpan1; // if xEllipse == 0, just use axis b (1)
- if (fabs(xEllipse) > SIMD_EPSILON)
- {
- btScalar surfaceSlope2 = (yEllipse*yEllipse)/(xEllipse*xEllipse);
- btScalar norm = 1 / (m_swingSpan2 * m_swingSpan2);
- norm += surfaceSlope2 / (m_swingSpan1 * m_swingSpan1);
- btScalar swingLimit2 = (1 + surfaceSlope2) / norm;
- swingLimit = sqrt(swingLimit2);
- }
-
- // convert into point in constraint space:
- // note: twist is x-axis, swing 1 and 2 are along the z and y axes respectively
- btVector3 vSwingAxis(0, xEllipse, -yEllipse);
- btQuaternion qSwing(vSwingAxis, swingLimit);
- btVector3 vPointInConstraintSpace(fLength,0,0);
- return quatRotate(qSwing, vPointInConstraintSpace);
-}
-
-// given a twist rotation in constraint space, (pre: cone must already be removed)
-// this method computes its corresponding angle and axis.
-void btConeTwistConstraint::computeTwistLimitInfo(const btQuaternion& qTwist,
- btScalar& twistAngle, // out
- btVector3& vTwistAxis) // out
-{
- btQuaternion qMinTwist = qTwist;
- twistAngle = qTwist.getAngle();
-
- if (twistAngle > SIMD_PI) // long way around. flip quat and recalculate.
- {
- qMinTwist = -(qTwist);
- twistAngle = qMinTwist.getAngle();
- }
- if (twistAngle < 0)
- {
- // this should never happen
-#if 0
- btAssert(0);
-#endif
- }
-
- vTwistAxis = btVector3(qMinTwist.x(), qMinTwist.y(), qMinTwist.z());
- if (twistAngle > SIMD_EPSILON)
- vTwistAxis.normalize();
-}
-
-
-void btConeTwistConstraint::adjustSwingAxisToUseEllipseNormal(btVector3& vSwingAxis) const
-{
- // the swing axis is computed as the "twist-free" cone rotation,
- // but the cone limit is not circular, but elliptical (if swingspan1 != swingspan2).
- // so, if we're outside the limits, the closest way back inside the cone isn't
- // along the vector back to the center. better (and more stable) to use the ellipse normal.
-
- // convert swing axis to direction from center to surface of ellipse
- // (ie. rotate 2D vector by PI/2)
- btScalar y = -vSwingAxis.z();
- btScalar z = vSwingAxis.y();
-
- // do the math...
- if (fabs(z) > SIMD_EPSILON) // avoid division by 0. and we don't need an update if z == 0.
- {
- // compute gradient/normal of ellipse surface at current "point"
- btScalar grad = y/z;
- grad *= m_swingSpan2 / m_swingSpan1;
-
- // adjust y/z to represent normal at point (instead of vector to point)
- if (y > 0)
- y = fabs(grad * z);
- else
- y = -fabs(grad * z);
-
- // convert ellipse direction back to swing axis
- vSwingAxis.setZ(-y);
- vSwingAxis.setY( z);
- vSwingAxis.normalize();
- }
-}
-
-
-
-void btConeTwistConstraint::setMotorTarget(const btQuaternion &q)
-{
- //btTransform trACur = m_rbA.getCenterOfMassTransform();
- //btTransform trBCur = m_rbB.getCenterOfMassTransform();
-// btTransform trABCur = trBCur.inverse() * trACur;
-// btQuaternion qABCur = trABCur.getRotation();
-// btTransform trConstraintCur = (trBCur * m_rbBFrame).inverse() * (trACur * m_rbAFrame);
- //btQuaternion qConstraintCur = trConstraintCur.getRotation();
-
- btQuaternion qConstraint = m_rbBFrame.getRotation().inverse() * q * m_rbAFrame.getRotation();
- setMotorTargetInConstraintSpace(qConstraint);
-}
-
-
-void btConeTwistConstraint::setMotorTargetInConstraintSpace(const btQuaternion &q)
-{
- m_qTarget = q;
-
- // clamp motor target to within limits
- {
- btScalar softness = 1.f;//m_limitSoftness;
-
- // split into twist and cone
- btVector3 vTwisted = quatRotate(m_qTarget, vTwist);
- btQuaternion qTargetCone = shortestArcQuat(vTwist, vTwisted); qTargetCone.normalize();
- btQuaternion qTargetTwist = qTargetCone.inverse() * m_qTarget; qTargetTwist.normalize();
-
- // clamp cone
- if (m_swingSpan1 >= btScalar(0.05f) && m_swingSpan2 >= btScalar(0.05f))
- {
- btScalar swingAngle, swingLimit; btVector3 swingAxis;
- computeConeLimitInfo(qTargetCone, swingAngle, swingAxis, swingLimit);
-
- if (fabs(swingAngle) > SIMD_EPSILON)
- {
- if (swingAngle > swingLimit*softness)
- swingAngle = swingLimit*softness;
- else if (swingAngle < -swingLimit*softness)
- swingAngle = -swingLimit*softness;
- qTargetCone = btQuaternion(swingAxis, swingAngle);
- }
- }
-
- // clamp twist
- if (m_twistSpan >= btScalar(0.05f))
- {
- btScalar twistAngle; btVector3 twistAxis;
- computeTwistLimitInfo(qTargetTwist, twistAngle, twistAxis);
-
- if (fabs(twistAngle) > SIMD_EPSILON)
- {
- // eddy todo: limitSoftness used here???
- if (twistAngle > m_twistSpan*softness)
- twistAngle = m_twistSpan*softness;
- else if (twistAngle < -m_twistSpan*softness)
- twistAngle = -m_twistSpan*softness;
- qTargetTwist = btQuaternion(twistAxis, twistAngle);
- }
- }
-
- m_qTarget = qTargetCone * qTargetTwist;
- }
-}
-
-///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5).
-///If no axis is provided, it uses the default axis for this constraint.
-void btConeTwistConstraint::setParam(int num, btScalar value, int axis)
-{
- switch(num)
- {
- case BT_CONSTRAINT_ERP :
- case BT_CONSTRAINT_STOP_ERP :
- if((axis >= 0) && (axis < 3))
- {
- m_linERP = value;
- m_flags |= BT_CONETWIST_FLAGS_LIN_ERP;
- }
- else
- {
- m_biasFactor = value;
- }
- break;
- case BT_CONSTRAINT_CFM :
- case BT_CONSTRAINT_STOP_CFM :
- if((axis >= 0) && (axis < 3))
- {
- m_linCFM = value;
- m_flags |= BT_CONETWIST_FLAGS_LIN_CFM;
- }
- else
- {
- m_angCFM = value;
- m_flags |= BT_CONETWIST_FLAGS_ANG_CFM;
- }
- break;
- default:
- btAssertConstrParams(0);
- break;
- }
-}
-
-///return the local value of parameter
-btScalar btConeTwistConstraint::getParam(int num, int axis) const
-{
- btScalar retVal = 0;
- switch(num)
- {
- case BT_CONSTRAINT_ERP :
- case BT_CONSTRAINT_STOP_ERP :
- if((axis >= 0) && (axis < 3))
- {
- btAssertConstrParams(m_flags & BT_CONETWIST_FLAGS_LIN_ERP);
- retVal = m_linERP;
- }
- else if((axis >= 3) && (axis < 6))
- {
- retVal = m_biasFactor;
- }
- else
- {
- btAssertConstrParams(0);
- }
- break;
- case BT_CONSTRAINT_CFM :
- case BT_CONSTRAINT_STOP_CFM :
- if((axis >= 0) && (axis < 3))
- {
- btAssertConstrParams(m_flags & BT_CONETWIST_FLAGS_LIN_CFM);
- retVal = m_linCFM;
- }
- else if((axis >= 3) && (axis < 6))
- {
- btAssertConstrParams(m_flags & BT_CONETWIST_FLAGS_ANG_CFM);
- retVal = m_angCFM;
- }
- else
- {
- btAssertConstrParams(0);
- }
- break;
- default :
- btAssertConstrParams(0);
- }
- return retVal;
-}
-
-
-void btConeTwistConstraint::setFrames(const btTransform & frameA, const btTransform & frameB)
-{
- m_rbAFrame = frameA;
- m_rbBFrame = frameB;
- buildJacobian();
- //calculateTransforms();
-}
-
-
-
-