summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/src/BulletCollision/NarrowPhaseCollision/btPolyhedralContactClipping.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/bullet/src/BulletCollision/NarrowPhaseCollision/btPolyhedralContactClipping.cpp')
-rw-r--r--thirdparty/bullet/src/BulletCollision/NarrowPhaseCollision/btPolyhedralContactClipping.cpp570
1 files changed, 570 insertions, 0 deletions
diff --git a/thirdparty/bullet/src/BulletCollision/NarrowPhaseCollision/btPolyhedralContactClipping.cpp b/thirdparty/bullet/src/BulletCollision/NarrowPhaseCollision/btPolyhedralContactClipping.cpp
new file mode 100644
index 0000000000..ea380bc5f1
--- /dev/null
+++ b/thirdparty/bullet/src/BulletCollision/NarrowPhaseCollision/btPolyhedralContactClipping.cpp
@@ -0,0 +1,570 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2011 Advanced Micro Devices, Inc. http://bulletphysics.org
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+
+///This file was written by Erwin Coumans
+///Separating axis rest based on work from Pierre Terdiman, see
+///And contact clipping based on work from Simon Hobbs
+
+
+#include "btPolyhedralContactClipping.h"
+#include "BulletCollision/CollisionShapes/btConvexPolyhedron.h"
+
+#include <float.h> //for FLT_MAX
+
+int gExpectedNbTests=0;
+int gActualNbTests = 0;
+bool gUseInternalObject = true;
+
+// Clips a face to the back of a plane
+void btPolyhedralContactClipping::clipFace(const btVertexArray& pVtxIn, btVertexArray& ppVtxOut, const btVector3& planeNormalWS,btScalar planeEqWS)
+{
+
+ int ve;
+ btScalar ds, de;
+ int numVerts = pVtxIn.size();
+ if (numVerts < 2)
+ return;
+
+ btVector3 firstVertex=pVtxIn[pVtxIn.size()-1];
+ btVector3 endVertex = pVtxIn[0];
+
+ ds = planeNormalWS.dot(firstVertex)+planeEqWS;
+
+ for (ve = 0; ve < numVerts; ve++)
+ {
+ endVertex=pVtxIn[ve];
+
+ de = planeNormalWS.dot(endVertex)+planeEqWS;
+
+ if (ds<0)
+ {
+ if (de<0)
+ {
+ // Start < 0, end < 0, so output endVertex
+ ppVtxOut.push_back(endVertex);
+ }
+ else
+ {
+ // Start < 0, end >= 0, so output intersection
+ ppVtxOut.push_back( firstVertex.lerp(endVertex,btScalar(ds * 1.f/(ds - de))));
+ }
+ }
+ else
+ {
+ if (de<0)
+ {
+ // Start >= 0, end < 0 so output intersection and end
+ ppVtxOut.push_back(firstVertex.lerp(endVertex,btScalar(ds * 1.f/(ds - de))));
+ ppVtxOut.push_back(endVertex);
+ }
+ }
+ firstVertex = endVertex;
+ ds = de;
+ }
+}
+
+
+static bool TestSepAxis(const btConvexPolyhedron& hullA, const btConvexPolyhedron& hullB, const btTransform& transA,const btTransform& transB, const btVector3& sep_axis, btScalar& depth, btVector3& witnessPointA, btVector3& witnessPointB)
+{
+ btScalar Min0,Max0;
+ btScalar Min1,Max1;
+ btVector3 witnesPtMinA,witnesPtMaxA;
+ btVector3 witnesPtMinB,witnesPtMaxB;
+
+ hullA.project(transA,sep_axis, Min0, Max0,witnesPtMinA,witnesPtMaxA);
+ hullB.project(transB, sep_axis, Min1, Max1,witnesPtMinB,witnesPtMaxB);
+
+ if(Max0<Min1 || Max1<Min0)
+ return false;
+
+ btScalar d0 = Max0 - Min1;
+ btAssert(d0>=0.0f);
+ btScalar d1 = Max1 - Min0;
+ btAssert(d1>=0.0f);
+ if (d0<d1)
+ {
+ depth = d0;
+ witnessPointA = witnesPtMaxA;
+ witnessPointB = witnesPtMinB;
+
+ } else
+ {
+ depth = d1;
+ witnessPointA = witnesPtMinA;
+ witnessPointB = witnesPtMaxB;
+ }
+
+ return true;
+}
+
+
+
+static int gActualSATPairTests=0;
+
+inline bool IsAlmostZero(const btVector3& v)
+{
+ if(btFabs(v.x())>1e-6 || btFabs(v.y())>1e-6 || btFabs(v.z())>1e-6) return false;
+ return true;
+}
+
+#ifdef TEST_INTERNAL_OBJECTS
+
+inline void BoxSupport(const btScalar extents[3], const btScalar sv[3], btScalar p[3])
+{
+ // This version is ~11.000 cycles (4%) faster overall in one of the tests.
+// IR(p[0]) = IR(extents[0])|(IR(sv[0])&SIGN_BITMASK);
+// IR(p[1]) = IR(extents[1])|(IR(sv[1])&SIGN_BITMASK);
+// IR(p[2]) = IR(extents[2])|(IR(sv[2])&SIGN_BITMASK);
+ p[0] = sv[0] < 0.0f ? -extents[0] : extents[0];
+ p[1] = sv[1] < 0.0f ? -extents[1] : extents[1];
+ p[2] = sv[2] < 0.0f ? -extents[2] : extents[2];
+}
+
+void InverseTransformPoint3x3(btVector3& out, const btVector3& in, const btTransform& tr)
+{
+ const btMatrix3x3& rot = tr.getBasis();
+ const btVector3& r0 = rot[0];
+ const btVector3& r1 = rot[1];
+ const btVector3& r2 = rot[2];
+
+ const btScalar x = r0.x()*in.x() + r1.x()*in.y() + r2.x()*in.z();
+ const btScalar y = r0.y()*in.x() + r1.y()*in.y() + r2.y()*in.z();
+ const btScalar z = r0.z()*in.x() + r1.z()*in.y() + r2.z()*in.z();
+
+ out.setValue(x, y, z);
+}
+
+ bool TestInternalObjects( const btTransform& trans0, const btTransform& trans1, const btVector3& delta_c, const btVector3& axis, const btConvexPolyhedron& convex0, const btConvexPolyhedron& convex1, btScalar dmin)
+{
+ const btScalar dp = delta_c.dot(axis);
+
+ btVector3 localAxis0;
+ InverseTransformPoint3x3(localAxis0, axis,trans0);
+ btVector3 localAxis1;
+ InverseTransformPoint3x3(localAxis1, axis,trans1);
+
+ btScalar p0[3];
+ BoxSupport(convex0.m_extents, localAxis0, p0);
+ btScalar p1[3];
+ BoxSupport(convex1.m_extents, localAxis1, p1);
+
+ const btScalar Radius0 = p0[0]*localAxis0.x() + p0[1]*localAxis0.y() + p0[2]*localAxis0.z();
+ const btScalar Radius1 = p1[0]*localAxis1.x() + p1[1]*localAxis1.y() + p1[2]*localAxis1.z();
+
+ const btScalar MinRadius = Radius0>convex0.m_radius ? Radius0 : convex0.m_radius;
+ const btScalar MaxRadius = Radius1>convex1.m_radius ? Radius1 : convex1.m_radius;
+
+ const btScalar MinMaxRadius = MaxRadius + MinRadius;
+ const btScalar d0 = MinMaxRadius + dp;
+ const btScalar d1 = MinMaxRadius - dp;
+
+ const btScalar depth = d0<d1 ? d0:d1;
+ if(depth>dmin)
+ return false;
+ return true;
+}
+#endif //TEST_INTERNAL_OBJECTS
+
+
+
+ SIMD_FORCE_INLINE void btSegmentsClosestPoints(
+ btVector3& ptsVector,
+ btVector3& offsetA,
+ btVector3& offsetB,
+ btScalar& tA, btScalar& tB,
+ const btVector3& translation,
+ const btVector3& dirA, btScalar hlenA,
+ const btVector3& dirB, btScalar hlenB )
+{
+ // compute the parameters of the closest points on each line segment
+
+ btScalar dirA_dot_dirB = btDot(dirA,dirB);
+ btScalar dirA_dot_trans = btDot(dirA,translation);
+ btScalar dirB_dot_trans = btDot(dirB,translation);
+
+ btScalar denom = 1.0f - dirA_dot_dirB * dirA_dot_dirB;
+
+ if ( denom == 0.0f ) {
+ tA = 0.0f;
+ } else {
+ tA = ( dirA_dot_trans - dirB_dot_trans * dirA_dot_dirB ) / denom;
+ if ( tA < -hlenA )
+ tA = -hlenA;
+ else if ( tA > hlenA )
+ tA = hlenA;
+ }
+
+ tB = tA * dirA_dot_dirB - dirB_dot_trans;
+
+ if ( tB < -hlenB ) {
+ tB = -hlenB;
+ tA = tB * dirA_dot_dirB + dirA_dot_trans;
+
+ if ( tA < -hlenA )
+ tA = -hlenA;
+ else if ( tA > hlenA )
+ tA = hlenA;
+ } else if ( tB > hlenB ) {
+ tB = hlenB;
+ tA = tB * dirA_dot_dirB + dirA_dot_trans;
+
+ if ( tA < -hlenA )
+ tA = -hlenA;
+ else if ( tA > hlenA )
+ tA = hlenA;
+ }
+
+ // compute the closest points relative to segment centers.
+
+ offsetA = dirA * tA;
+ offsetB = dirB * tB;
+
+ ptsVector = translation - offsetA + offsetB;
+}
+
+
+
+bool btPolyhedralContactClipping::findSeparatingAxis( const btConvexPolyhedron& hullA, const btConvexPolyhedron& hullB, const btTransform& transA,const btTransform& transB, btVector3& sep, btDiscreteCollisionDetectorInterface::Result& resultOut)
+{
+ gActualSATPairTests++;
+
+//#ifdef TEST_INTERNAL_OBJECTS
+ const btVector3 c0 = transA * hullA.m_localCenter;
+ const btVector3 c1 = transB * hullB.m_localCenter;
+ const btVector3 DeltaC2 = c0 - c1;
+//#endif
+
+ btScalar dmin = FLT_MAX;
+ int curPlaneTests=0;
+
+ int numFacesA = hullA.m_faces.size();
+ // Test normals from hullA
+ for(int i=0;i<numFacesA;i++)
+ {
+ const btVector3 Normal(hullA.m_faces[i].m_plane[0], hullA.m_faces[i].m_plane[1], hullA.m_faces[i].m_plane[2]);
+ btVector3 faceANormalWS = transA.getBasis() * Normal;
+ if (DeltaC2.dot(faceANormalWS)<0)
+ faceANormalWS*=-1.f;
+
+ curPlaneTests++;
+#ifdef TEST_INTERNAL_OBJECTS
+ gExpectedNbTests++;
+ if(gUseInternalObject && !TestInternalObjects(transA,transB, DeltaC2, faceANormalWS, hullA, hullB, dmin))
+ continue;
+ gActualNbTests++;
+#endif
+
+ btScalar d;
+ btVector3 wA,wB;
+ if(!TestSepAxis( hullA, hullB, transA,transB, faceANormalWS, d,wA,wB))
+ return false;
+
+ if(d<dmin)
+ {
+ dmin = d;
+ sep = faceANormalWS;
+ }
+ }
+
+ int numFacesB = hullB.m_faces.size();
+ // Test normals from hullB
+ for(int i=0;i<numFacesB;i++)
+ {
+ const btVector3 Normal(hullB.m_faces[i].m_plane[0], hullB.m_faces[i].m_plane[1], hullB.m_faces[i].m_plane[2]);
+ btVector3 WorldNormal = transB.getBasis() * Normal;
+ if (DeltaC2.dot(WorldNormal)<0)
+ WorldNormal *=-1.f;
+
+ curPlaneTests++;
+#ifdef TEST_INTERNAL_OBJECTS
+ gExpectedNbTests++;
+ if(gUseInternalObject && !TestInternalObjects(transA,transB,DeltaC2, WorldNormal, hullA, hullB, dmin))
+ continue;
+ gActualNbTests++;
+#endif
+
+ btScalar d;
+ btVector3 wA,wB;
+ if(!TestSepAxis(hullA, hullB,transA,transB, WorldNormal,d,wA,wB))
+ return false;
+
+ if(d<dmin)
+ {
+ dmin = d;
+ sep = WorldNormal;
+ }
+ }
+
+ btVector3 edgeAstart,edgeAend,edgeBstart,edgeBend;
+ int edgeA=-1;
+ int edgeB=-1;
+ btVector3 worldEdgeA;
+ btVector3 worldEdgeB;
+ btVector3 witnessPointA(0,0,0),witnessPointB(0,0,0);
+
+
+ int curEdgeEdge = 0;
+ // Test edges
+ for(int e0=0;e0<hullA.m_uniqueEdges.size();e0++)
+ {
+ const btVector3 edge0 = hullA.m_uniqueEdges[e0];
+ const btVector3 WorldEdge0 = transA.getBasis() * edge0;
+ for(int e1=0;e1<hullB.m_uniqueEdges.size();e1++)
+ {
+ const btVector3 edge1 = hullB.m_uniqueEdges[e1];
+ const btVector3 WorldEdge1 = transB.getBasis() * edge1;
+
+ btVector3 Cross = WorldEdge0.cross(WorldEdge1);
+ curEdgeEdge++;
+ if(!IsAlmostZero(Cross))
+ {
+ Cross = Cross.normalize();
+ if (DeltaC2.dot(Cross)<0)
+ Cross *= -1.f;
+
+
+#ifdef TEST_INTERNAL_OBJECTS
+ gExpectedNbTests++;
+ if(gUseInternalObject && !TestInternalObjects(transA,transB,DeltaC2, Cross, hullA, hullB, dmin))
+ continue;
+ gActualNbTests++;
+#endif
+
+ btScalar dist;
+ btVector3 wA,wB;
+ if(!TestSepAxis( hullA, hullB, transA,transB, Cross, dist,wA,wB))
+ return false;
+
+ if(dist<dmin)
+ {
+ dmin = dist;
+ sep = Cross;
+ edgeA=e0;
+ edgeB=e1;
+ worldEdgeA = WorldEdge0;
+ worldEdgeB = WorldEdge1;
+ witnessPointA=wA;
+ witnessPointB=wB;
+ }
+ }
+ }
+
+ }
+
+ if (edgeA>=0&&edgeB>=0)
+ {
+// printf("edge-edge\n");
+ //add an edge-edge contact
+
+ btVector3 ptsVector;
+ btVector3 offsetA;
+ btVector3 offsetB;
+ btScalar tA;
+ btScalar tB;
+
+ btVector3 translation = witnessPointB-witnessPointA;
+
+ btVector3 dirA = worldEdgeA;
+ btVector3 dirB = worldEdgeB;
+
+ btScalar hlenB = 1e30f;
+ btScalar hlenA = 1e30f;
+
+ btSegmentsClosestPoints(ptsVector,offsetA,offsetB,tA,tB,
+ translation,
+ dirA, hlenA,
+ dirB,hlenB);
+
+ btScalar nlSqrt = ptsVector.length2();
+ if (nlSqrt>SIMD_EPSILON)
+ {
+ btScalar nl = btSqrt(nlSqrt);
+ ptsVector *= 1.f/nl;
+ if (ptsVector.dot(DeltaC2)<0.f)
+ {
+ ptsVector*=-1.f;
+ }
+ btVector3 ptOnB = witnessPointB + offsetB;
+ btScalar distance = nl;
+ resultOut.addContactPoint(ptsVector, ptOnB,-distance);
+ }
+
+ }
+
+
+ if((DeltaC2.dot(sep))<0.0f)
+ sep = -sep;
+
+ return true;
+}
+
+void btPolyhedralContactClipping::clipFaceAgainstHull(const btVector3& separatingNormal, const btConvexPolyhedron& hullA, const btTransform& transA, btVertexArray& worldVertsB1,btVertexArray& worldVertsB2, const btScalar minDist, btScalar maxDist,btDiscreteCollisionDetectorInterface::Result& resultOut)
+{
+ worldVertsB2.resize(0);
+ btVertexArray* pVtxIn = &worldVertsB1;
+ btVertexArray* pVtxOut = &worldVertsB2;
+ pVtxOut->reserve(pVtxIn->size());
+
+ int closestFaceA=-1;
+ {
+ btScalar dmin = FLT_MAX;
+ for(int face=0;face<hullA.m_faces.size();face++)
+ {
+ const btVector3 Normal(hullA.m_faces[face].m_plane[0], hullA.m_faces[face].m_plane[1], hullA.m_faces[face].m_plane[2]);
+ const btVector3 faceANormalWS = transA.getBasis() * Normal;
+
+ btScalar d = faceANormalWS.dot(separatingNormal);
+ if (d < dmin)
+ {
+ dmin = d;
+ closestFaceA = face;
+ }
+ }
+ }
+ if (closestFaceA<0)
+ return;
+
+ const btFace& polyA = hullA.m_faces[closestFaceA];
+
+ // clip polygon to back of planes of all faces of hull A that are adjacent to witness face
+ int numVerticesA = polyA.m_indices.size();
+ for(int e0=0;e0<numVerticesA;e0++)
+ {
+ const btVector3& a = hullA.m_vertices[polyA.m_indices[e0]];
+ const btVector3& b = hullA.m_vertices[polyA.m_indices[(e0+1)%numVerticesA]];
+ const btVector3 edge0 = a - b;
+ const btVector3 WorldEdge0 = transA.getBasis() * edge0;
+ btVector3 worldPlaneAnormal1 = transA.getBasis()* btVector3(polyA.m_plane[0],polyA.m_plane[1],polyA.m_plane[2]);
+
+ btVector3 planeNormalWS1 = -WorldEdge0.cross(worldPlaneAnormal1);//.cross(WorldEdge0);
+ btVector3 worldA1 = transA*a;
+ btScalar planeEqWS1 = -worldA1.dot(planeNormalWS1);
+
+//int otherFace=0;
+#ifdef BLA1
+ int otherFace = polyA.m_connectedFaces[e0];
+ btVector3 localPlaneNormal (hullA.m_faces[otherFace].m_plane[0],hullA.m_faces[otherFace].m_plane[1],hullA.m_faces[otherFace].m_plane[2]);
+ btScalar localPlaneEq = hullA.m_faces[otherFace].m_plane[3];
+
+ btVector3 planeNormalWS = transA.getBasis()*localPlaneNormal;
+ btScalar planeEqWS=localPlaneEq-planeNormalWS.dot(transA.getOrigin());
+#else
+ btVector3 planeNormalWS = planeNormalWS1;
+ btScalar planeEqWS=planeEqWS1;
+
+#endif
+ //clip face
+
+ clipFace(*pVtxIn, *pVtxOut,planeNormalWS,planeEqWS);
+ btSwap(pVtxIn,pVtxOut);
+ pVtxOut->resize(0);
+ }
+
+
+
+//#define ONLY_REPORT_DEEPEST_POINT
+
+ btVector3 point;
+
+
+ // only keep points that are behind the witness face
+ {
+ btVector3 localPlaneNormal (polyA.m_plane[0],polyA.m_plane[1],polyA.m_plane[2]);
+ btScalar localPlaneEq = polyA.m_plane[3];
+ btVector3 planeNormalWS = transA.getBasis()*localPlaneNormal;
+ btScalar planeEqWS=localPlaneEq-planeNormalWS.dot(transA.getOrigin());
+ for (int i=0;i<pVtxIn->size();i++)
+ {
+ btVector3 vtx = pVtxIn->at(i);
+ btScalar depth = planeNormalWS.dot(vtx)+planeEqWS;
+ if (depth <=minDist)
+ {
+// printf("clamped: depth=%f to minDist=%f\n",depth,minDist);
+ depth = minDist;
+ }
+
+ if (depth <=maxDist)
+ {
+ btVector3 point = pVtxIn->at(i);
+#ifdef ONLY_REPORT_DEEPEST_POINT
+ curMaxDist = depth;
+#else
+#if 0
+ if (depth<-3)
+ {
+ printf("error in btPolyhedralContactClipping depth = %f\n", depth);
+ printf("likely wrong separatingNormal passed in\n");
+ }
+#endif
+ resultOut.addContactPoint(separatingNormal,point,depth);
+#endif
+ }
+ }
+ }
+#ifdef ONLY_REPORT_DEEPEST_POINT
+ if (curMaxDist<maxDist)
+ {
+ resultOut.addContactPoint(separatingNormal,point,curMaxDist);
+ }
+#endif //ONLY_REPORT_DEEPEST_POINT
+
+}
+
+
+
+
+
+void btPolyhedralContactClipping::clipHullAgainstHull(const btVector3& separatingNormal1, const btConvexPolyhedron& hullA, const btConvexPolyhedron& hullB, const btTransform& transA,const btTransform& transB, const btScalar minDist, btScalar maxDist,btVertexArray& worldVertsB1,btVertexArray& worldVertsB2,btDiscreteCollisionDetectorInterface::Result& resultOut)
+{
+
+ btVector3 separatingNormal = separatingNormal1.normalized();
+// const btVector3 c0 = transA * hullA.m_localCenter;
+// const btVector3 c1 = transB * hullB.m_localCenter;
+ //const btVector3 DeltaC2 = c0 - c1;
+
+
+
+ int closestFaceB=-1;
+ btScalar dmax = -FLT_MAX;
+ {
+ for(int face=0;face<hullB.m_faces.size();face++)
+ {
+ const btVector3 Normal(hullB.m_faces[face].m_plane[0], hullB.m_faces[face].m_plane[1], hullB.m_faces[face].m_plane[2]);
+ const btVector3 WorldNormal = transB.getBasis() * Normal;
+ btScalar d = WorldNormal.dot(separatingNormal);
+ if (d > dmax)
+ {
+ dmax = d;
+ closestFaceB = face;
+ }
+ }
+ }
+ worldVertsB1.resize(0);
+ {
+ const btFace& polyB = hullB.m_faces[closestFaceB];
+ const int numVertices = polyB.m_indices.size();
+ for(int e0=0;e0<numVertices;e0++)
+ {
+ const btVector3& b = hullB.m_vertices[polyB.m_indices[e0]];
+ worldVertsB1.push_back(transB*b);
+ }
+ }
+
+
+ if (closestFaceB>=0)
+ clipFaceAgainstHull(separatingNormal, hullA, transA,worldVertsB1, worldVertsB2,minDist, maxDist,resultOut);
+
+}