summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/src/BulletCollision/CollisionDispatch/btInternalEdgeUtility.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/bullet/src/BulletCollision/CollisionDispatch/btInternalEdgeUtility.cpp')
-rw-r--r--thirdparty/bullet/src/BulletCollision/CollisionDispatch/btInternalEdgeUtility.cpp838
1 files changed, 838 insertions, 0 deletions
diff --git a/thirdparty/bullet/src/BulletCollision/CollisionDispatch/btInternalEdgeUtility.cpp b/thirdparty/bullet/src/BulletCollision/CollisionDispatch/btInternalEdgeUtility.cpp
new file mode 100644
index 0000000000..6cba442ca5
--- /dev/null
+++ b/thirdparty/bullet/src/BulletCollision/CollisionDispatch/btInternalEdgeUtility.cpp
@@ -0,0 +1,838 @@
+#include "btInternalEdgeUtility.h"
+
+#include "BulletCollision/CollisionShapes/btBvhTriangleMeshShape.h"
+#include "BulletCollision/CollisionShapes/btScaledBvhTriangleMeshShape.h"
+#include "BulletCollision/CollisionShapes/btTriangleShape.h"
+#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
+#include "BulletCollision/NarrowPhaseCollision/btManifoldPoint.h"
+#include "LinearMath/btIDebugDraw.h"
+#include "BulletCollision/CollisionDispatch/btCollisionObjectWrapper.h"
+
+//#define DEBUG_INTERNAL_EDGE
+
+#ifdef DEBUG_INTERNAL_EDGE
+#include <stdio.h>
+#endif //DEBUG_INTERNAL_EDGE
+
+
+#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
+static btIDebugDraw* gDebugDrawer = 0;
+
+void btSetDebugDrawer(btIDebugDraw* debugDrawer)
+{
+ gDebugDrawer = debugDrawer;
+}
+
+static void btDebugDrawLine(const btVector3& from,const btVector3& to, const btVector3& color)
+{
+ if (gDebugDrawer)
+ gDebugDrawer->drawLine(from,to,color);
+}
+#endif //BT_INTERNAL_EDGE_DEBUG_DRAW
+
+
+static int btGetHash(int partId, int triangleIndex)
+{
+ int hash = (partId<<(31-MAX_NUM_PARTS_IN_BITS)) | triangleIndex;
+ return hash;
+}
+
+
+
+static btScalar btGetAngle(const btVector3& edgeA, const btVector3& normalA,const btVector3& normalB)
+{
+ const btVector3 refAxis0 = edgeA;
+ const btVector3 refAxis1 = normalA;
+ const btVector3 swingAxis = normalB;
+ btScalar angle = btAtan2(swingAxis.dot(refAxis0), swingAxis.dot(refAxis1));
+ return angle;
+}
+
+
+struct btConnectivityProcessor : public btTriangleCallback
+{
+ int m_partIdA;
+ int m_triangleIndexA;
+ btVector3* m_triangleVerticesA;
+ btTriangleInfoMap* m_triangleInfoMap;
+
+
+ virtual void processTriangle(btVector3* triangle, int partId, int triangleIndex)
+ {
+ //skip self-collisions
+ if ((m_partIdA == partId) && (m_triangleIndexA == triangleIndex))
+ return;
+
+ //skip duplicates (disabled for now)
+ //if ((m_partIdA <= partId) && (m_triangleIndexA <= triangleIndex))
+ // return;
+
+ //search for shared vertices and edges
+ int numshared = 0;
+ int sharedVertsA[3]={-1,-1,-1};
+ int sharedVertsB[3]={-1,-1,-1};
+
+ ///skip degenerate triangles
+ btScalar crossBSqr = ((triangle[1]-triangle[0]).cross(triangle[2]-triangle[0])).length2();
+ if (crossBSqr < m_triangleInfoMap->m_equalVertexThreshold)
+ return;
+
+
+ btScalar crossASqr = ((m_triangleVerticesA[1]-m_triangleVerticesA[0]).cross(m_triangleVerticesA[2]-m_triangleVerticesA[0])).length2();
+ ///skip degenerate triangles
+ if (crossASqr< m_triangleInfoMap->m_equalVertexThreshold)
+ return;
+
+#if 0
+ printf("triangle A[0] = (%f,%f,%f)\ntriangle A[1] = (%f,%f,%f)\ntriangle A[2] = (%f,%f,%f)\n",
+ m_triangleVerticesA[0].getX(),m_triangleVerticesA[0].getY(),m_triangleVerticesA[0].getZ(),
+ m_triangleVerticesA[1].getX(),m_triangleVerticesA[1].getY(),m_triangleVerticesA[1].getZ(),
+ m_triangleVerticesA[2].getX(),m_triangleVerticesA[2].getY(),m_triangleVerticesA[2].getZ());
+
+ printf("partId=%d, triangleIndex=%d\n",partId,triangleIndex);
+ printf("triangle B[0] = (%f,%f,%f)\ntriangle B[1] = (%f,%f,%f)\ntriangle B[2] = (%f,%f,%f)\n",
+ triangle[0].getX(),triangle[0].getY(),triangle[0].getZ(),
+ triangle[1].getX(),triangle[1].getY(),triangle[1].getZ(),
+ triangle[2].getX(),triangle[2].getY(),triangle[2].getZ());
+#endif
+
+ for (int i=0;i<3;i++)
+ {
+ for (int j=0;j<3;j++)
+ {
+ if ( (m_triangleVerticesA[i]-triangle[j]).length2() < m_triangleInfoMap->m_equalVertexThreshold)
+ {
+ sharedVertsA[numshared] = i;
+ sharedVertsB[numshared] = j;
+ numshared++;
+ ///degenerate case
+ if(numshared >= 3)
+ return;
+ }
+ }
+ ///degenerate case
+ if(numshared >= 3)
+ return;
+ }
+ switch (numshared)
+ {
+ case 0:
+ {
+ break;
+ }
+ case 1:
+ {
+ //shared vertex
+ break;
+ }
+ case 2:
+ {
+ //shared edge
+ //we need to make sure the edge is in the order V2V0 and not V0V2 so that the signs are correct
+ if (sharedVertsA[0] == 0 && sharedVertsA[1] == 2)
+ {
+ sharedVertsA[0] = 2;
+ sharedVertsA[1] = 0;
+ int tmp = sharedVertsB[1];
+ sharedVertsB[1] = sharedVertsB[0];
+ sharedVertsB[0] = tmp;
+ }
+
+ int hash = btGetHash(m_partIdA,m_triangleIndexA);
+
+ btTriangleInfo* info = m_triangleInfoMap->find(hash);
+ if (!info)
+ {
+ btTriangleInfo tmp;
+ m_triangleInfoMap->insert(hash,tmp);
+ info = m_triangleInfoMap->find(hash);
+ }
+
+ int sumvertsA = sharedVertsA[0]+sharedVertsA[1];
+ int otherIndexA = 3-sumvertsA;
+
+
+ btVector3 edge(m_triangleVerticesA[sharedVertsA[1]]-m_triangleVerticesA[sharedVertsA[0]]);
+
+ btTriangleShape tA(m_triangleVerticesA[0],m_triangleVerticesA[1],m_triangleVerticesA[2]);
+ int otherIndexB = 3-(sharedVertsB[0]+sharedVertsB[1]);
+
+ btTriangleShape tB(triangle[sharedVertsB[1]],triangle[sharedVertsB[0]],triangle[otherIndexB]);
+ //btTriangleShape tB(triangle[0],triangle[1],triangle[2]);
+
+ btVector3 normalA;
+ btVector3 normalB;
+ tA.calcNormal(normalA);
+ tB.calcNormal(normalB);
+ edge.normalize();
+ btVector3 edgeCrossA = edge.cross(normalA).normalize();
+
+ {
+ btVector3 tmp = m_triangleVerticesA[otherIndexA]-m_triangleVerticesA[sharedVertsA[0]];
+ if (edgeCrossA.dot(tmp) < 0)
+ {
+ edgeCrossA*=-1;
+ }
+ }
+
+ btVector3 edgeCrossB = edge.cross(normalB).normalize();
+
+ {
+ btVector3 tmp = triangle[otherIndexB]-triangle[sharedVertsB[0]];
+ if (edgeCrossB.dot(tmp) < 0)
+ {
+ edgeCrossB*=-1;
+ }
+ }
+
+ btScalar angle2 = 0;
+ btScalar ang4 = 0.f;
+
+
+ btVector3 calculatedEdge = edgeCrossA.cross(edgeCrossB);
+ btScalar len2 = calculatedEdge.length2();
+
+ btScalar correctedAngle(0);
+ //btVector3 calculatedNormalB = normalA;
+ bool isConvex = false;
+
+ if (len2<m_triangleInfoMap->m_planarEpsilon)
+ {
+ angle2 = 0.f;
+ ang4 = 0.f;
+ } else
+ {
+
+ calculatedEdge.normalize();
+ btVector3 calculatedNormalA = calculatedEdge.cross(edgeCrossA);
+ calculatedNormalA.normalize();
+ angle2 = btGetAngle(calculatedNormalA,edgeCrossA,edgeCrossB);
+ ang4 = SIMD_PI-angle2;
+ btScalar dotA = normalA.dot(edgeCrossB);
+ ///@todo: check if we need some epsilon, due to floating point imprecision
+ isConvex = (dotA<0.);
+
+ correctedAngle = isConvex ? ang4 : -ang4;
+ }
+
+
+
+
+
+ //alternatively use
+ //btVector3 calculatedNormalB2 = quatRotate(orn,normalA);
+
+
+ switch (sumvertsA)
+ {
+ case 1:
+ {
+ btVector3 edge = m_triangleVerticesA[0]-m_triangleVerticesA[1];
+ btQuaternion orn(edge,-correctedAngle);
+ btVector3 computedNormalB = quatRotate(orn,normalA);
+ btScalar bla = computedNormalB.dot(normalB);
+ if (bla<0)
+ {
+ computedNormalB*=-1;
+ info->m_flags |= TRI_INFO_V0V1_SWAP_NORMALB;
+ }
+#ifdef DEBUG_INTERNAL_EDGE
+ if ((computedNormalB-normalB).length()>0.0001)
+ {
+ printf("warning: normals not identical\n");
+ }
+#endif//DEBUG_INTERNAL_EDGE
+
+ info->m_edgeV0V1Angle = -correctedAngle;
+
+ if (isConvex)
+ info->m_flags |= TRI_INFO_V0V1_CONVEX;
+ break;
+ }
+ case 2:
+ {
+ btVector3 edge = m_triangleVerticesA[2]-m_triangleVerticesA[0];
+ btQuaternion orn(edge,-correctedAngle);
+ btVector3 computedNormalB = quatRotate(orn,normalA);
+ if (computedNormalB.dot(normalB)<0)
+ {
+ computedNormalB*=-1;
+ info->m_flags |= TRI_INFO_V2V0_SWAP_NORMALB;
+ }
+
+#ifdef DEBUG_INTERNAL_EDGE
+ if ((computedNormalB-normalB).length()>0.0001)
+ {
+ printf("warning: normals not identical\n");
+ }
+#endif //DEBUG_INTERNAL_EDGE
+ info->m_edgeV2V0Angle = -correctedAngle;
+ if (isConvex)
+ info->m_flags |= TRI_INFO_V2V0_CONVEX;
+ break;
+ }
+ case 3:
+ {
+ btVector3 edge = m_triangleVerticesA[1]-m_triangleVerticesA[2];
+ btQuaternion orn(edge,-correctedAngle);
+ btVector3 computedNormalB = quatRotate(orn,normalA);
+ if (computedNormalB.dot(normalB)<0)
+ {
+ info->m_flags |= TRI_INFO_V1V2_SWAP_NORMALB;
+ computedNormalB*=-1;
+ }
+#ifdef DEBUG_INTERNAL_EDGE
+ if ((computedNormalB-normalB).length()>0.0001)
+ {
+ printf("warning: normals not identical\n");
+ }
+#endif //DEBUG_INTERNAL_EDGE
+ info->m_edgeV1V2Angle = -correctedAngle;
+
+ if (isConvex)
+ info->m_flags |= TRI_INFO_V1V2_CONVEX;
+ break;
+ }
+ }
+
+ break;
+ }
+ default:
+ {
+ // printf("warning: duplicate triangle\n");
+ }
+
+ }
+ }
+};
+/////////////////////////////////////////////////////////
+/////////////////////////////////////////////////////////
+
+void btGenerateInternalEdgeInfo (btBvhTriangleMeshShape*trimeshShape, btTriangleInfoMap* triangleInfoMap)
+{
+ //the user pointer shouldn't already be used for other purposes, we intend to store connectivity info there!
+ if (trimeshShape->getTriangleInfoMap())
+ return;
+
+ trimeshShape->setTriangleInfoMap(triangleInfoMap);
+
+ btStridingMeshInterface* meshInterface = trimeshShape->getMeshInterface();
+ const btVector3& meshScaling = meshInterface->getScaling();
+
+ for (int partId = 0; partId< meshInterface->getNumSubParts();partId++)
+ {
+ const unsigned char *vertexbase = 0;
+ int numverts = 0;
+ PHY_ScalarType type = PHY_INTEGER;
+ int stride = 0;
+ const unsigned char *indexbase = 0;
+ int indexstride = 0;
+ int numfaces = 0;
+ PHY_ScalarType indicestype = PHY_INTEGER;
+ //PHY_ScalarType indexType=0;
+
+ btVector3 triangleVerts[3];
+ meshInterface->getLockedReadOnlyVertexIndexBase(&vertexbase,numverts, type,stride,&indexbase,indexstride,numfaces,indicestype,partId);
+ btVector3 aabbMin,aabbMax;
+
+ for (int triangleIndex = 0 ; triangleIndex < numfaces;triangleIndex++)
+ {
+ unsigned int* gfxbase = (unsigned int*)(indexbase+triangleIndex*indexstride);
+
+ for (int j=2;j>=0;j--)
+ {
+
+ int graphicsindex = indicestype==PHY_SHORT?((unsigned short*)gfxbase)[j]:gfxbase[j];
+ if (type == PHY_FLOAT)
+ {
+ float* graphicsbase = (float*)(vertexbase+graphicsindex*stride);
+ triangleVerts[j] = btVector3(
+ graphicsbase[0]*meshScaling.getX(),
+ graphicsbase[1]*meshScaling.getY(),
+ graphicsbase[2]*meshScaling.getZ());
+ }
+ else
+ {
+ double* graphicsbase = (double*)(vertexbase+graphicsindex*stride);
+ triangleVerts[j] = btVector3( btScalar(graphicsbase[0]*meshScaling.getX()), btScalar(graphicsbase[1]*meshScaling.getY()), btScalar(graphicsbase[2]*meshScaling.getZ()));
+ }
+ }
+ aabbMin.setValue(btScalar(BT_LARGE_FLOAT),btScalar(BT_LARGE_FLOAT),btScalar(BT_LARGE_FLOAT));
+ aabbMax.setValue(btScalar(-BT_LARGE_FLOAT),btScalar(-BT_LARGE_FLOAT),btScalar(-BT_LARGE_FLOAT));
+ aabbMin.setMin(triangleVerts[0]);
+ aabbMax.setMax(triangleVerts[0]);
+ aabbMin.setMin(triangleVerts[1]);
+ aabbMax.setMax(triangleVerts[1]);
+ aabbMin.setMin(triangleVerts[2]);
+ aabbMax.setMax(triangleVerts[2]);
+
+ btConnectivityProcessor connectivityProcessor;
+ connectivityProcessor.m_partIdA = partId;
+ connectivityProcessor.m_triangleIndexA = triangleIndex;
+ connectivityProcessor.m_triangleVerticesA = &triangleVerts[0];
+ connectivityProcessor.m_triangleInfoMap = triangleInfoMap;
+
+ trimeshShape->processAllTriangles(&connectivityProcessor,aabbMin,aabbMax);
+ }
+
+ }
+
+}
+
+
+
+
+// Given a point and a line segment (defined by two points), compute the closest point
+// in the line. Cap the point at the endpoints of the line segment.
+void btNearestPointInLineSegment(const btVector3 &point, const btVector3& line0, const btVector3& line1, btVector3& nearestPoint)
+{
+ btVector3 lineDelta = line1 - line0;
+
+ // Handle degenerate lines
+ if ( lineDelta.fuzzyZero())
+ {
+ nearestPoint = line0;
+ }
+ else
+ {
+ btScalar delta = (point-line0).dot(lineDelta) / (lineDelta).dot(lineDelta);
+
+ // Clamp the point to conform to the segment's endpoints
+ if ( delta < 0 )
+ delta = 0;
+ else if ( delta > 1 )
+ delta = 1;
+
+ nearestPoint = line0 + lineDelta*delta;
+ }
+}
+
+
+
+
+bool btClampNormal(const btVector3& edge,const btVector3& tri_normal_org,const btVector3& localContactNormalOnB, btScalar correctedEdgeAngle, btVector3 & clampedLocalNormal)
+{
+ btVector3 tri_normal = tri_normal_org;
+ //we only have a local triangle normal, not a local contact normal -> only normal in world space...
+ //either compute the current angle all in local space, or all in world space
+
+ btVector3 edgeCross = edge.cross(tri_normal).normalize();
+ btScalar curAngle = btGetAngle(edgeCross,tri_normal,localContactNormalOnB);
+
+ if (correctedEdgeAngle<0)
+ {
+ if (curAngle < correctedEdgeAngle)
+ {
+ btScalar diffAngle = correctedEdgeAngle-curAngle;
+ btQuaternion rotation(edge,diffAngle );
+ clampedLocalNormal = btMatrix3x3(rotation)*localContactNormalOnB;
+ return true;
+ }
+ }
+
+ if (correctedEdgeAngle>=0)
+ {
+ if (curAngle > correctedEdgeAngle)
+ {
+ btScalar diffAngle = correctedEdgeAngle-curAngle;
+ btQuaternion rotation(edge,diffAngle );
+ clampedLocalNormal = btMatrix3x3(rotation)*localContactNormalOnB;
+ return true;
+ }
+ }
+ return false;
+}
+
+
+
+/// Changes a btManifoldPoint collision normal to the normal from the mesh.
+void btAdjustInternalEdgeContacts(btManifoldPoint& cp, const btCollisionObjectWrapper* colObj0Wrap,const btCollisionObjectWrapper* colObj1Wrap, int partId0, int index0, int normalAdjustFlags)
+{
+ //btAssert(colObj0->getCollisionShape()->getShapeType() == TRIANGLE_SHAPE_PROXYTYPE);
+ if (colObj0Wrap->getCollisionShape()->getShapeType() != TRIANGLE_SHAPE_PROXYTYPE)
+ return;
+
+ btBvhTriangleMeshShape* trimesh = 0;
+
+ if( colObj0Wrap->getCollisionObject()->getCollisionShape()->getShapeType() == SCALED_TRIANGLE_MESH_SHAPE_PROXYTYPE )
+ trimesh = ((btScaledBvhTriangleMeshShape*)colObj0Wrap->getCollisionObject()->getCollisionShape())->getChildShape();
+ else
+ trimesh = (btBvhTriangleMeshShape*)colObj0Wrap->getCollisionObject()->getCollisionShape();
+
+ btTriangleInfoMap* triangleInfoMapPtr = (btTriangleInfoMap*) trimesh->getTriangleInfoMap();
+ if (!triangleInfoMapPtr)
+ return;
+
+ int hash = btGetHash(partId0,index0);
+
+
+ btTriangleInfo* info = triangleInfoMapPtr->find(hash);
+ if (!info)
+ return;
+
+ btScalar frontFacing = (normalAdjustFlags & BT_TRIANGLE_CONVEX_BACKFACE_MODE)==0? 1.f : -1.f;
+
+ const btTriangleShape* tri_shape = static_cast<const btTriangleShape*>(colObj0Wrap->getCollisionShape());
+ btVector3 v0,v1,v2;
+ tri_shape->getVertex(0,v0);
+ tri_shape->getVertex(1,v1);
+ tri_shape->getVertex(2,v2);
+
+ //btVector3 center = (v0+v1+v2)*btScalar(1./3.);
+
+ btVector3 red(1,0,0), green(0,1,0),blue(0,0,1),white(1,1,1),black(0,0,0);
+ btVector3 tri_normal;
+ tri_shape->calcNormal(tri_normal);
+
+ //btScalar dot = tri_normal.dot(cp.m_normalWorldOnB);
+ btVector3 nearest;
+ btNearestPointInLineSegment(cp.m_localPointB,v0,v1,nearest);
+
+ btVector3 contact = cp.m_localPointB;
+#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
+ const btTransform& tr = colObj0->getWorldTransform();
+ btDebugDrawLine(tr*nearest,tr*cp.m_localPointB,red);
+#endif //BT_INTERNAL_EDGE_DEBUG_DRAW
+
+
+
+ bool isNearEdge = false;
+
+ int numConcaveEdgeHits = 0;
+ int numConvexEdgeHits = 0;
+
+ btVector3 localContactNormalOnB = colObj0Wrap->getWorldTransform().getBasis().transpose() * cp.m_normalWorldOnB;
+ localContactNormalOnB.normalize();//is this necessary?
+
+ // Get closest edge
+ int bestedge=-1;
+ btScalar disttobestedge=BT_LARGE_FLOAT;
+ //
+ // Edge 0 -> 1
+ if (btFabs(info->m_edgeV0V1Angle)< triangleInfoMapPtr->m_maxEdgeAngleThreshold)
+ {
+ btVector3 nearest;
+ btNearestPointInLineSegment( cp.m_localPointB, v0, v1, nearest );
+ btScalar len=(contact-nearest).length();
+ //
+ if( len < disttobestedge )
+ {
+ bestedge=0;
+ disttobestedge=len;
+ }
+ }
+ // Edge 1 -> 2
+ if (btFabs(info->m_edgeV1V2Angle)< triangleInfoMapPtr->m_maxEdgeAngleThreshold)
+ {
+ btVector3 nearest;
+ btNearestPointInLineSegment( cp.m_localPointB, v1, v2, nearest );
+ btScalar len=(contact-nearest).length();
+ //
+ if( len < disttobestedge )
+ {
+ bestedge=1;
+ disttobestedge=len;
+ }
+ }
+ // Edge 2 -> 0
+ if (btFabs(info->m_edgeV2V0Angle)< triangleInfoMapPtr->m_maxEdgeAngleThreshold)
+ {
+ btVector3 nearest;
+ btNearestPointInLineSegment( cp.m_localPointB, v2, v0, nearest );
+ btScalar len=(contact-nearest).length();
+ //
+ if( len < disttobestedge )
+ {
+ bestedge=2;
+ disttobestedge=len;
+ }
+ }
+
+#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
+ btVector3 upfix=tri_normal * btVector3(0.1f,0.1f,0.1f);
+ btDebugDrawLine(tr * v0 + upfix, tr * v1 + upfix, red );
+#endif
+ if (btFabs(info->m_edgeV0V1Angle)< triangleInfoMapPtr->m_maxEdgeAngleThreshold)
+ {
+#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
+ btDebugDrawLine(tr*contact,tr*(contact+cp.m_normalWorldOnB*10),black);
+#endif
+ btScalar len = (contact-nearest).length();
+ if(len<triangleInfoMapPtr->m_edgeDistanceThreshold)
+ if( bestedge==0 )
+ {
+ btVector3 edge(v0-v1);
+ isNearEdge = true;
+
+ if (info->m_edgeV0V1Angle==btScalar(0))
+ {
+ numConcaveEdgeHits++;
+ } else
+ {
+
+ bool isEdgeConvex = (info->m_flags & TRI_INFO_V0V1_CONVEX);
+ btScalar swapFactor = isEdgeConvex ? btScalar(1) : btScalar(-1);
+ #ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
+ btDebugDrawLine(tr*nearest,tr*(nearest+swapFactor*tri_normal*10),white);
+ #endif //BT_INTERNAL_EDGE_DEBUG_DRAW
+
+ btVector3 nA = swapFactor * tri_normal;
+
+ btQuaternion orn(edge,info->m_edgeV0V1Angle);
+ btVector3 computedNormalB = quatRotate(orn,tri_normal);
+ if (info->m_flags & TRI_INFO_V0V1_SWAP_NORMALB)
+ computedNormalB*=-1;
+ btVector3 nB = swapFactor*computedNormalB;
+
+ btScalar NdotA = localContactNormalOnB.dot(nA);
+ btScalar NdotB = localContactNormalOnB.dot(nB);
+ bool backFacingNormal = (NdotA< triangleInfoMapPtr->m_convexEpsilon) && (NdotB<triangleInfoMapPtr->m_convexEpsilon);
+
+#ifdef DEBUG_INTERNAL_EDGE
+ {
+
+ btDebugDrawLine(cp.getPositionWorldOnB(),cp.getPositionWorldOnB()+tr.getBasis()*(nB*20),red);
+ }
+#endif //DEBUG_INTERNAL_EDGE
+
+
+ if (backFacingNormal)
+ {
+ numConcaveEdgeHits++;
+ }
+ else
+ {
+ numConvexEdgeHits++;
+ btVector3 clampedLocalNormal;
+ bool isClamped = btClampNormal(edge,swapFactor*tri_normal,localContactNormalOnB, info->m_edgeV0V1Angle,clampedLocalNormal);
+ if (isClamped)
+ {
+ if (((normalAdjustFlags & BT_TRIANGLE_CONVEX_DOUBLE_SIDED)!=0) || (clampedLocalNormal.dot(frontFacing*tri_normal)>0))
+ {
+ btVector3 newNormal = colObj0Wrap->getWorldTransform().getBasis() * clampedLocalNormal;
+ // cp.m_distance1 = cp.m_distance1 * newNormal.dot(cp.m_normalWorldOnB);
+ cp.m_normalWorldOnB = newNormal;
+ // Reproject collision point along normal. (what about cp.m_distance1?)
+ cp.m_positionWorldOnB = cp.m_positionWorldOnA - cp.m_normalWorldOnB * cp.m_distance1;
+ cp.m_localPointB = colObj0Wrap->getWorldTransform().invXform(cp.m_positionWorldOnB);
+
+ }
+ }
+ }
+ }
+ }
+ }
+
+ btNearestPointInLineSegment(contact,v1,v2,nearest);
+#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
+ btDebugDrawLine(tr*nearest,tr*cp.m_localPointB,green);
+#endif //BT_INTERNAL_EDGE_DEBUG_DRAW
+
+#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
+ btDebugDrawLine(tr * v1 + upfix, tr * v2 + upfix , green );
+#endif
+
+ if (btFabs(info->m_edgeV1V2Angle)< triangleInfoMapPtr->m_maxEdgeAngleThreshold)
+ {
+#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
+ btDebugDrawLine(tr*contact,tr*(contact+cp.m_normalWorldOnB*10),black);
+#endif //BT_INTERNAL_EDGE_DEBUG_DRAW
+
+
+
+ btScalar len = (contact-nearest).length();
+ if(len<triangleInfoMapPtr->m_edgeDistanceThreshold)
+ if( bestedge==1 )
+ {
+ isNearEdge = true;
+#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
+ btDebugDrawLine(tr*nearest,tr*(nearest+tri_normal*10),white);
+#endif //BT_INTERNAL_EDGE_DEBUG_DRAW
+
+ btVector3 edge(v1-v2);
+
+ isNearEdge = true;
+
+ if (info->m_edgeV1V2Angle == btScalar(0))
+ {
+ numConcaveEdgeHits++;
+ } else
+ {
+ bool isEdgeConvex = (info->m_flags & TRI_INFO_V1V2_CONVEX)!=0;
+ btScalar swapFactor = isEdgeConvex ? btScalar(1) : btScalar(-1);
+ #ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
+ btDebugDrawLine(tr*nearest,tr*(nearest+swapFactor*tri_normal*10),white);
+ #endif //BT_INTERNAL_EDGE_DEBUG_DRAW
+
+ btVector3 nA = swapFactor * tri_normal;
+
+ btQuaternion orn(edge,info->m_edgeV1V2Angle);
+ btVector3 computedNormalB = quatRotate(orn,tri_normal);
+ if (info->m_flags & TRI_INFO_V1V2_SWAP_NORMALB)
+ computedNormalB*=-1;
+ btVector3 nB = swapFactor*computedNormalB;
+
+#ifdef DEBUG_INTERNAL_EDGE
+ {
+ btDebugDrawLine(cp.getPositionWorldOnB(),cp.getPositionWorldOnB()+tr.getBasis()*(nB*20),red);
+ }
+#endif //DEBUG_INTERNAL_EDGE
+
+
+ btScalar NdotA = localContactNormalOnB.dot(nA);
+ btScalar NdotB = localContactNormalOnB.dot(nB);
+ bool backFacingNormal = (NdotA< triangleInfoMapPtr->m_convexEpsilon) && (NdotB<triangleInfoMapPtr->m_convexEpsilon);
+
+ if (backFacingNormal)
+ {
+ numConcaveEdgeHits++;
+ }
+ else
+ {
+ numConvexEdgeHits++;
+ btVector3 localContactNormalOnB = colObj0Wrap->getWorldTransform().getBasis().transpose() * cp.m_normalWorldOnB;
+ btVector3 clampedLocalNormal;
+ bool isClamped = btClampNormal(edge,swapFactor*tri_normal,localContactNormalOnB, info->m_edgeV1V2Angle,clampedLocalNormal);
+ if (isClamped)
+ {
+ if (((normalAdjustFlags & BT_TRIANGLE_CONVEX_DOUBLE_SIDED)!=0) || (clampedLocalNormal.dot(frontFacing*tri_normal)>0))
+ {
+ btVector3 newNormal = colObj0Wrap->getWorldTransform().getBasis() * clampedLocalNormal;
+ // cp.m_distance1 = cp.m_distance1 * newNormal.dot(cp.m_normalWorldOnB);
+ cp.m_normalWorldOnB = newNormal;
+ // Reproject collision point along normal.
+ cp.m_positionWorldOnB = cp.m_positionWorldOnA - cp.m_normalWorldOnB * cp.m_distance1;
+ cp.m_localPointB = colObj0Wrap->getWorldTransform().invXform(cp.m_positionWorldOnB);
+ }
+ }
+ }
+ }
+ }
+ }
+
+ btNearestPointInLineSegment(contact,v2,v0,nearest);
+#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
+ btDebugDrawLine(tr*nearest,tr*cp.m_localPointB,blue);
+#endif //BT_INTERNAL_EDGE_DEBUG_DRAW
+#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
+ btDebugDrawLine(tr * v2 + upfix, tr * v0 + upfix , blue );
+#endif
+
+ if (btFabs(info->m_edgeV2V0Angle)< triangleInfoMapPtr->m_maxEdgeAngleThreshold)
+ {
+
+#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
+ btDebugDrawLine(tr*contact,tr*(contact+cp.m_normalWorldOnB*10),black);
+#endif //BT_INTERNAL_EDGE_DEBUG_DRAW
+
+ btScalar len = (contact-nearest).length();
+ if(len<triangleInfoMapPtr->m_edgeDistanceThreshold)
+ if( bestedge==2 )
+ {
+ isNearEdge = true;
+#ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
+ btDebugDrawLine(tr*nearest,tr*(nearest+tri_normal*10),white);
+#endif //BT_INTERNAL_EDGE_DEBUG_DRAW
+
+ btVector3 edge(v2-v0);
+
+ if (info->m_edgeV2V0Angle==btScalar(0))
+ {
+ numConcaveEdgeHits++;
+ } else
+ {
+
+ bool isEdgeConvex = (info->m_flags & TRI_INFO_V2V0_CONVEX)!=0;
+ btScalar swapFactor = isEdgeConvex ? btScalar(1) : btScalar(-1);
+ #ifdef BT_INTERNAL_EDGE_DEBUG_DRAW
+ btDebugDrawLine(tr*nearest,tr*(nearest+swapFactor*tri_normal*10),white);
+ #endif //BT_INTERNAL_EDGE_DEBUG_DRAW
+
+ btVector3 nA = swapFactor * tri_normal;
+ btQuaternion orn(edge,info->m_edgeV2V0Angle);
+ btVector3 computedNormalB = quatRotate(orn,tri_normal);
+ if (info->m_flags & TRI_INFO_V2V0_SWAP_NORMALB)
+ computedNormalB*=-1;
+ btVector3 nB = swapFactor*computedNormalB;
+
+#ifdef DEBUG_INTERNAL_EDGE
+ {
+ btDebugDrawLine(cp.getPositionWorldOnB(),cp.getPositionWorldOnB()+tr.getBasis()*(nB*20),red);
+ }
+#endif //DEBUG_INTERNAL_EDGE
+
+ btScalar NdotA = localContactNormalOnB.dot(nA);
+ btScalar NdotB = localContactNormalOnB.dot(nB);
+ bool backFacingNormal = (NdotA< triangleInfoMapPtr->m_convexEpsilon) && (NdotB<triangleInfoMapPtr->m_convexEpsilon);
+
+ if (backFacingNormal)
+ {
+ numConcaveEdgeHits++;
+ }
+ else
+ {
+ numConvexEdgeHits++;
+ // printf("hitting convex edge\n");
+
+
+ btVector3 localContactNormalOnB = colObj0Wrap->getWorldTransform().getBasis().transpose() * cp.m_normalWorldOnB;
+ btVector3 clampedLocalNormal;
+ bool isClamped = btClampNormal(edge,swapFactor*tri_normal,localContactNormalOnB,info->m_edgeV2V0Angle,clampedLocalNormal);
+ if (isClamped)
+ {
+ if (((normalAdjustFlags & BT_TRIANGLE_CONVEX_DOUBLE_SIDED)!=0) || (clampedLocalNormal.dot(frontFacing*tri_normal)>0))
+ {
+ btVector3 newNormal = colObj0Wrap->getWorldTransform().getBasis() * clampedLocalNormal;
+ // cp.m_distance1 = cp.m_distance1 * newNormal.dot(cp.m_normalWorldOnB);
+ cp.m_normalWorldOnB = newNormal;
+ // Reproject collision point along normal.
+ cp.m_positionWorldOnB = cp.m_positionWorldOnA - cp.m_normalWorldOnB * cp.m_distance1;
+ cp.m_localPointB = colObj0Wrap->getWorldTransform().invXform(cp.m_positionWorldOnB);
+ }
+ }
+ }
+ }
+
+
+ }
+ }
+
+#ifdef DEBUG_INTERNAL_EDGE
+ {
+ btVector3 color(0,1,1);
+ btDebugDrawLine(cp.getPositionWorldOnB(),cp.getPositionWorldOnB()+cp.m_normalWorldOnB*10,color);
+ }
+#endif //DEBUG_INTERNAL_EDGE
+
+ if (isNearEdge)
+ {
+
+ if (numConcaveEdgeHits>0)
+ {
+ if ((normalAdjustFlags & BT_TRIANGLE_CONCAVE_DOUBLE_SIDED)!=0)
+ {
+ //fix tri_normal so it pointing the same direction as the current local contact normal
+ if (tri_normal.dot(localContactNormalOnB) < 0)
+ {
+ tri_normal *= -1;
+ }
+ cp.m_normalWorldOnB = colObj0Wrap->getWorldTransform().getBasis()*tri_normal;
+ } else
+ {
+ btVector3 newNormal = tri_normal *frontFacing;
+ //if the tri_normal is pointing opposite direction as the current local contact normal, skip it
+ btScalar d = newNormal.dot(localContactNormalOnB) ;
+ if (d< 0)
+ {
+ return;
+ }
+ //modify the normal to be the triangle normal (or backfacing normal)
+ cp.m_normalWorldOnB = colObj0Wrap->getWorldTransform().getBasis() *newNormal;
+ }
+
+ // Reproject collision point along normal.
+ cp.m_positionWorldOnB = cp.m_positionWorldOnA - cp.m_normalWorldOnB * cp.m_distance1;
+ cp.m_localPointB = colObj0Wrap->getWorldTransform().invXform(cp.m_positionWorldOnB);
+ }
+ }
+}