diff options
Diffstat (limited to 'thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision')
34 files changed, 0 insertions, 25885 deletions
diff --git a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3BvhInfo.h b/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3BvhInfo.h deleted file mode 100644 index 872f039506..0000000000 --- a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3BvhInfo.h +++ /dev/null @@ -1,18 +0,0 @@ -#ifndef B3_BVH_INFO_H -#define B3_BVH_INFO_H - -#include "Bullet3Common/b3Vector3.h" - -struct b3BvhInfo -{ - b3Vector3 m_aabbMin; - b3Vector3 m_aabbMax; - b3Vector3 m_quantization; - int m_numNodes; - int m_numSubTrees; - int m_nodeOffset; - int m_subTreeOffset; - -}; - -#endif //B3_BVH_INFO_H
\ No newline at end of file diff --git a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3ContactCache.cpp b/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3ContactCache.cpp deleted file mode 100644 index cb30ee939b..0000000000 --- a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3ContactCache.cpp +++ /dev/null @@ -1,258 +0,0 @@ - -#if 0 -/* -Bullet Continuous Collision Detection and Physics Library -Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ - -This software is provided 'as-is', without any express or implied warranty. -In no event will the authors be held liable for any damages arising from the use of this software. -Permission is granted to anyone to use this software for any purpose, -including commercial applications, and to alter it and redistribute it freely, -subject to the following restrictions: - -1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. -2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. -3. This notice may not be removed or altered from any source distribution. -*/ - - -#include "b3ContactCache.h" -#include "Bullet3Common/b3Transform.h" - -#include "Bullet3Collision/NarrowPhaseCollision/shared/b3Contact4Data.h" - -b3Scalar gContactBreakingThreshold = b3Scalar(0.02); - -///gContactCalcArea3Points will approximate the convex hull area using 3 points -///when setting it to false, it will use 4 points to compute the area: it is more accurate but slower -bool gContactCalcArea3Points = true; - - - - -static inline b3Scalar calcArea4Points(const b3Vector3 &p0,const b3Vector3 &p1,const b3Vector3 &p2,const b3Vector3 &p3) -{ - // It calculates possible 3 area constructed from random 4 points and returns the biggest one. - - b3Vector3 a[3],b[3]; - a[0] = p0 - p1; - a[1] = p0 - p2; - a[2] = p0 - p3; - b[0] = p2 - p3; - b[1] = p1 - p3; - b[2] = p1 - p2; - - //todo: Following 3 cross production can be easily optimized by SIMD. - b3Vector3 tmp0 = a[0].cross(b[0]); - b3Vector3 tmp1 = a[1].cross(b[1]); - b3Vector3 tmp2 = a[2].cross(b[2]); - - return b3Max(b3Max(tmp0.length2(),tmp1.length2()),tmp2.length2()); -} -#if 0 - -//using localPointA for all points -int b3ContactCache::sortCachedPoints(const b3Vector3& pt) -{ - //calculate 4 possible cases areas, and take biggest area - //also need to keep 'deepest' - - int maxPenetrationIndex = -1; -#define KEEP_DEEPEST_POINT 1 -#ifdef KEEP_DEEPEST_POINT - b3Scalar maxPenetration = pt.getDistance(); - for (int i=0;i<4;i++) - { - if (m_pointCache[i].getDistance() < maxPenetration) - { - maxPenetrationIndex = i; - maxPenetration = m_pointCache[i].getDistance(); - } - } -#endif //KEEP_DEEPEST_POINT - - b3Scalar res0(b3Scalar(0.)),res1(b3Scalar(0.)),res2(b3Scalar(0.)),res3(b3Scalar(0.)); - - if (gContactCalcArea3Points) - { - if (maxPenetrationIndex != 0) - { - b3Vector3 a0 = pt.m_localPointA-m_pointCache[1].m_localPointA; - b3Vector3 b0 = m_pointCache[3].m_localPointA-m_pointCache[2].m_localPointA; - b3Vector3 cross = a0.cross(b0); - res0 = cross.length2(); - } - if (maxPenetrationIndex != 1) - { - b3Vector3 a1 = pt.m_localPointA-m_pointCache[0].m_localPointA; - b3Vector3 b1 = m_pointCache[3].m_localPointA-m_pointCache[2].m_localPointA; - b3Vector3 cross = a1.cross(b1); - res1 = cross.length2(); - } - - if (maxPenetrationIndex != 2) - { - b3Vector3 a2 = pt.m_localPointA-m_pointCache[0].m_localPointA; - b3Vector3 b2 = m_pointCache[3].m_localPointA-m_pointCache[1].m_localPointA; - b3Vector3 cross = a2.cross(b2); - res2 = cross.length2(); - } - - if (maxPenetrationIndex != 3) - { - b3Vector3 a3 = pt.m_localPointA-m_pointCache[0].m_localPointA; - b3Vector3 b3 = m_pointCache[2].m_localPointA-m_pointCache[1].m_localPointA; - b3Vector3 cross = a3.cross(b3); - res3 = cross.length2(); - } - } - else - { - if(maxPenetrationIndex != 0) { - res0 = calcArea4Points(pt.m_localPointA,m_pointCache[1].m_localPointA,m_pointCache[2].m_localPointA,m_pointCache[3].m_localPointA); - } - - if(maxPenetrationIndex != 1) { - res1 = calcArea4Points(pt.m_localPointA,m_pointCache[0].m_localPointA,m_pointCache[2].m_localPointA,m_pointCache[3].m_localPointA); - } - - if(maxPenetrationIndex != 2) { - res2 = calcArea4Points(pt.m_localPointA,m_pointCache[0].m_localPointA,m_pointCache[1].m_localPointA,m_pointCache[3].m_localPointA); - } - - if(maxPenetrationIndex != 3) { - res3 = calcArea4Points(pt.m_localPointA,m_pointCache[0].m_localPointA,m_pointCache[1].m_localPointA,m_pointCache[2].m_localPointA); - } - } - b3Vector4 maxvec(res0,res1,res2,res3); - int biggestarea = maxvec.closestAxis4(); - return biggestarea; - -} - - -int b3ContactCache::getCacheEntry(const b3Vector3& newPoint) const -{ - b3Scalar shortestDist = getContactBreakingThreshold() * getContactBreakingThreshold(); - int size = getNumContacts(); - int nearestPoint = -1; - for( int i = 0; i < size; i++ ) - { - const b3Vector3 &mp = m_pointCache[i]; - - b3Vector3 diffA = mp.m_localPointA- newPoint.m_localPointA; - const b3Scalar distToManiPoint = diffA.dot(diffA); - if( distToManiPoint < shortestDist ) - { - shortestDist = distToManiPoint; - nearestPoint = i; - } - } - return nearestPoint; -} - -int b3ContactCache::addManifoldPoint(const b3Vector3& newPoint) -{ - b3Assert(validContactDistance(newPoint)); - - int insertIndex = getNumContacts(); - if (insertIndex == MANIFOLD_CACHE_SIZE) - { -#if MANIFOLD_CACHE_SIZE >= 4 - //sort cache so best points come first, based on area - insertIndex = sortCachedPoints(newPoint); -#else - insertIndex = 0; -#endif - clearUserCache(m_pointCache[insertIndex]); - - } else - { - m_cachedPoints++; - - - } - if (insertIndex<0) - insertIndex=0; - - //b3Assert(m_pointCache[insertIndex].m_userPersistentData==0); - m_pointCache[insertIndex] = newPoint; - return insertIndex; -} - -#endif - -bool b3ContactCache::validContactDistance(const b3Vector3& pt) -{ - return pt.w <= gContactBreakingThreshold; -} - -void b3ContactCache::removeContactPoint(struct b3Contact4Data& newContactCache,int i) -{ - int numContacts = b3Contact4Data_getNumPoints(&newContactCache); - if (i!=(numContacts-1)) - { - b3Swap(newContactCache.m_localPosA[i],newContactCache.m_localPosA[numContacts-1]); - b3Swap(newContactCache.m_localPosB[i],newContactCache.m_localPosB[numContacts-1]); - b3Swap(newContactCache.m_worldPosB[i],newContactCache.m_worldPosB[numContacts-1]); - } - b3Contact4Data_setNumPoints(&newContactCache,numContacts-1); - -} - - -void b3ContactCache::refreshContactPoints(const b3Transform& trA,const b3Transform& trB, struct b3Contact4Data& contacts) -{ - - int numContacts = b3Contact4Data_getNumPoints(&contacts); - - - int i; - /// first refresh worldspace positions and distance - for (i=numContacts-1;i>=0;i--) - { - b3Vector3 worldPosA = trA( contacts.m_localPosA[i]); - b3Vector3 worldPosB = trB( contacts.m_localPosB[i]); - contacts.m_worldPosB[i] = worldPosB; - float distance = (worldPosA - worldPosB).dot(contacts.m_worldNormalOnB); - contacts.m_worldPosB[i].w = distance; - } - - /// then - b3Scalar distance2d; - b3Vector3 projectedDifference,projectedPoint; - for (i=numContacts-1;i>=0;i--) - { - b3Vector3 worldPosA = trA( contacts.m_localPosA[i]); - b3Vector3 worldPosB = trB( contacts.m_localPosB[i]); - b3Vector3&pt = contacts.m_worldPosB[i]; - //contact becomes invalid when signed distance exceeds margin (projected on contactnormal direction) - if (!validContactDistance(pt)) - { - removeContactPoint(contacts,i); - } else - { - //contact also becomes invalid when relative movement orthogonal to normal exceeds margin - projectedPoint = worldPosA - contacts.m_worldNormalOnB * contacts.m_worldPosB[i].w; - projectedDifference = contacts.m_worldPosB[i] - projectedPoint; - distance2d = projectedDifference.dot(projectedDifference); - if (distance2d > gContactBreakingThreshold*gContactBreakingThreshold ) - { - removeContactPoint(contacts,i); - } else - { - ////contact point processed callback - //if (gContactProcessedCallback) - // (*gContactProcessedCallback)(manifoldPoint,(void*)m_body0,(void*)m_body1); - } - } - } - - -} - - - - - -#endif diff --git a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3ContactCache.h b/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3ContactCache.h deleted file mode 100644 index d6c9b0a07e..0000000000 --- a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3ContactCache.h +++ /dev/null @@ -1,80 +0,0 @@ - -/* -Bullet Continuous Collision Detection and Physics Library -Copyright (c) 2003-2013 Erwin Coumans http://bulletphysics.org - -This software is provided 'as-is', without any express or implied warranty. -In no event will the authors be held liable for any damages arising from the use of this software. -Permission is granted to anyone to use this software for any purpose, -including commercial applications, and to alter it and redistribute it freely, -subject to the following restrictions: - -1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. -2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. -3. This notice may not be removed or altered from any source distribution. -*/ - -#ifndef B3_CONTACT_CACHE_H -#define B3_CONTACT_CACHE_H - - -#include "Bullet3Common/b3Vector3.h" -#include "Bullet3Common/b3Transform.h" -#include "Bullet3Common/b3AlignedAllocator.h" - - -///maximum contact breaking and merging threshold -extern b3Scalar gContactBreakingThreshold; - - - -#define MANIFOLD_CACHE_SIZE 4 - -///b3ContactCache is a contact point cache, it stays persistent as long as objects are overlapping in the broadphase. -///Those contact points are created by the collision narrow phase. -///The cache can be empty, or hold 1,2,3 or 4 points. Some collision algorithms (GJK) might only add one point at a time. -///updates/refreshes old contact points, and throw them away if necessary (distance becomes too large) -///reduces the cache to 4 points, when more then 4 points are added, using following rules: -///the contact point with deepest penetration is always kept, and it tries to maximuze the area covered by the points -///note that some pairs of objects might have more then one contact manifold. -B3_ATTRIBUTE_ALIGNED16( class) b3ContactCache -{ - - - - - /// sort cached points so most isolated points come first - int sortCachedPoints(const b3Vector3& pt); - - - -public: - - B3_DECLARE_ALIGNED_ALLOCATOR(); - - - - int addManifoldPoint( const b3Vector3& newPoint); - - /*void replaceContactPoint(const b3Vector3& newPoint,int insertIndex) - { - b3Assert(validContactDistance(newPoint)); - m_pointCache[insertIndex] = newPoint; - } - */ - - - - static bool validContactDistance(const b3Vector3& pt); - - /// calculated new worldspace coordinates and depth, and reject points that exceed the collision margin - static void refreshContactPoints( const b3Transform& trA,const b3Transform& trB, struct b3Contact4Data& newContactCache); - - static void removeContactPoint(struct b3Contact4Data& newContactCache,int i); - - -}; - - - -#endif //B3_CONTACT_CACHE_H diff --git a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3ConvexHullContact.cpp b/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3ConvexHullContact.cpp deleted file mode 100644 index fb435aa7fd..0000000000 --- a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3ConvexHullContact.cpp +++ /dev/null @@ -1,4733 +0,0 @@ -/* -Bullet Continuous Collision Detection and Physics Library -Copyright (c) 2011 Advanced Micro Devices, Inc. http://bulletphysics.org - -This software is provided 'as-is', without any express or implied warranty. -In no event will the authors be held liable for any damages arising from the use of this software. -Permission is granted to anyone to use this software for any purpose, -including commercial applications, and to alter it and redistribute it freely, -subject to the following restrictions: - -1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. -2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. -3. This notice may not be removed or altered from any source distribution. -*/ - -bool findSeparatingAxisOnGpu = true; -bool splitSearchSepAxisConcave = false; -bool splitSearchSepAxisConvex = true; -bool useMprGpu = true;//use mpr for edge-edge (+contact point) or sat. Needs testing on main OpenCL platforms, before enabling... -bool bvhTraversalKernelGPU = true; -bool findConcaveSeparatingAxisKernelGPU = true; -bool clipConcaveFacesAndFindContactsCPU = false;//false;//true; -bool clipConvexFacesAndFindContactsCPU = false;//false;//true; -bool reduceConcaveContactsOnGPU = true;//false; -bool reduceConvexContactsOnGPU = true;//false; -bool findConvexClippingFacesGPU = true; -bool useGjk = false;///option for CPU/host testing, when findSeparatingAxisOnGpu = false -bool useGjkContacts = false;//////option for CPU/host testing when findSeparatingAxisOnGpu = false - - -static int myframecount=0;///for testing - -///This file was written by Erwin Coumans -///Separating axis rest based on work from Pierre Terdiman, see -///And contact clipping based on work from Simon Hobbs - -//#define B3_DEBUG_SAT_FACE - -//#define CHECK_ON_HOST - -#ifdef CHECK_ON_HOST -//#define PERSISTENT_CONTACTS_HOST -#endif - -int b3g_actualSATPairTests=0; - -#include "b3ConvexHullContact.h" -#include <string.h>//memcpy -#include "Bullet3Collision/NarrowPhaseCollision/shared/b3ConvexPolyhedronData.h" -#include "Bullet3Collision/NarrowPhaseCollision/shared/b3MprPenetration.h" - -#include "Bullet3OpenCL/NarrowphaseCollision/b3ContactCache.h" -#include "Bullet3Geometry/b3AabbUtil.h" - -typedef b3AlignedObjectArray<b3Vector3> b3VertexArray; - - -#include <float.h> //for FLT_MAX -#include "Bullet3OpenCL/Initialize/b3OpenCLUtils.h" -#include "Bullet3OpenCL/ParallelPrimitives/b3LauncherCL.h" -//#include "AdlQuaternion.h" - -#include "kernels/satKernels.h" -#include "kernels/mprKernels.h" - -#include "kernels/satConcaveKernels.h" - -#include "kernels/satClipHullContacts.h" -#include "kernels/bvhTraversal.h" -#include "kernels/primitiveContacts.h" - - -#include "Bullet3Geometry/b3AabbUtil.h" - -#define BT_NARROWPHASE_SAT_PATH "src/Bullet3OpenCL/NarrowphaseCollision/kernels/sat.cl" -#define BT_NARROWPHASE_SAT_CONCAVE_PATH "src/Bullet3OpenCL/NarrowphaseCollision/kernels/satConcave.cl" - -#define BT_NARROWPHASE_MPR_PATH "src/Bullet3OpenCL/NarrowphaseCollision/kernels/mpr.cl" - - -#define BT_NARROWPHASE_CLIPHULL_PATH "src/Bullet3OpenCL/NarrowphaseCollision/kernels/satClipHullContacts.cl" -#define BT_NARROWPHASE_BVH_TRAVERSAL_PATH "src/Bullet3OpenCL/NarrowphaseCollision/kernels/bvhTraversal.cl" -#define BT_NARROWPHASE_PRIMITIVE_CONTACT_PATH "src/Bullet3OpenCL/NarrowphaseCollision/kernels/primitiveContacts.cl" - - -#ifndef __global -#define __global -#endif - -#ifndef __kernel -#define __kernel -#endif - - -#include "Bullet3Collision/NarrowPhaseCollision/shared/b3BvhTraversal.h" -#include "Bullet3Collision/NarrowPhaseCollision/shared/b3FindConcaveSatAxis.h" -#include "Bullet3Collision/NarrowPhaseCollision/shared/b3ClipFaces.h" -#include "Bullet3Collision/NarrowPhaseCollision/shared/b3NewContactReduction.h" - - - -#define dot3F4 b3Dot - -GpuSatCollision::GpuSatCollision(cl_context ctx,cl_device_id device, cl_command_queue q ) -:m_context(ctx), -m_device(device), -m_queue(q), - -m_findSeparatingAxisKernel(0), -m_findSeparatingAxisVertexFaceKernel(0), -m_findSeparatingAxisEdgeEdgeKernel(0), -m_unitSphereDirections(m_context,m_queue), - -m_totalContactsOut(m_context, m_queue), -m_sepNormals(m_context, m_queue), -m_dmins(m_context,m_queue), - -m_hasSeparatingNormals(m_context, m_queue), -m_concaveSepNormals(m_context, m_queue), -m_concaveHasSeparatingNormals(m_context,m_queue), -m_numConcavePairsOut(m_context, m_queue), - - -m_gpuCompoundPairs(m_context, m_queue), - - -m_gpuCompoundSepNormals(m_context, m_queue), -m_gpuHasCompoundSepNormals(m_context, m_queue), - -m_numCompoundPairsOut(m_context, m_queue) -{ - m_totalContactsOut.push_back(0); - - cl_int errNum=0; - - if (1) - { - const char* mprSrc = mprKernelsCL; - - const char* srcConcave = satConcaveKernelsCL; - char flags[1024]={0}; -//#ifdef CL_PLATFORM_INTEL -// sprintf(flags,"-g -s \"%s\"","C:/develop/bullet3_experiments2/opencl/gpu_narrowphase/kernels/sat.cl"); -//#endif - m_mprPenetrationKernel = 0; - m_findSeparatingAxisUnitSphereKernel = 0; - - if (useMprGpu) - { - cl_program mprProg = b3OpenCLUtils::compileCLProgramFromString(m_context,m_device,mprSrc,&errNum,flags,BT_NARROWPHASE_MPR_PATH); - b3Assert(errNum==CL_SUCCESS); - - m_mprPenetrationKernel = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device,mprSrc, "mprPenetrationKernel",&errNum,mprProg ); - b3Assert(m_mprPenetrationKernel); - b3Assert(errNum==CL_SUCCESS); - - m_findSeparatingAxisUnitSphereKernel = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device,mprSrc, "findSeparatingAxisUnitSphereKernel",&errNum,mprProg ); - b3Assert(m_findSeparatingAxisUnitSphereKernel); - b3Assert(errNum==CL_SUCCESS); - - - int numDirections = sizeof(unitSphere162)/sizeof(b3Vector3); - m_unitSphereDirections.resize(numDirections); - m_unitSphereDirections.copyFromHostPointer(unitSphere162,numDirections,0,true); - - - } - - - cl_program satProg = b3OpenCLUtils::compileCLProgramFromString(m_context,m_device,satKernelsCL,&errNum,flags,BT_NARROWPHASE_SAT_PATH); - b3Assert(errNum==CL_SUCCESS); - - cl_program satConcaveProg = b3OpenCLUtils::compileCLProgramFromString(m_context,m_device,srcConcave,&errNum,flags,BT_NARROWPHASE_SAT_CONCAVE_PATH); - b3Assert(errNum==CL_SUCCESS); - - m_findSeparatingAxisKernel = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device,satKernelsCL, "findSeparatingAxisKernel",&errNum,satProg ); - b3Assert(m_findSeparatingAxisKernel); - b3Assert(errNum==CL_SUCCESS); - - - m_findSeparatingAxisVertexFaceKernel = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device,satKernelsCL, "findSeparatingAxisVertexFaceKernel",&errNum,satProg ); - b3Assert(m_findSeparatingAxisVertexFaceKernel); - - m_findSeparatingAxisEdgeEdgeKernel = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device,satKernelsCL, "findSeparatingAxisEdgeEdgeKernel",&errNum,satProg ); - b3Assert(m_findSeparatingAxisVertexFaceKernel); - - - m_findConcaveSeparatingAxisKernel = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device,satKernelsCL, "findConcaveSeparatingAxisKernel",&errNum,satProg ); - b3Assert(m_findConcaveSeparatingAxisKernel); - b3Assert(errNum==CL_SUCCESS); - - m_findConcaveSeparatingAxisVertexFaceKernel = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device,srcConcave, "findConcaveSeparatingAxisVertexFaceKernel",&errNum,satConcaveProg ); - b3Assert(m_findConcaveSeparatingAxisVertexFaceKernel); - b3Assert(errNum==CL_SUCCESS); - - m_findConcaveSeparatingAxisEdgeEdgeKernel = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device,srcConcave, "findConcaveSeparatingAxisEdgeEdgeKernel",&errNum,satConcaveProg ); - b3Assert(m_findConcaveSeparatingAxisEdgeEdgeKernel); - b3Assert(errNum==CL_SUCCESS); - - - - - m_findCompoundPairsKernel = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device,satKernelsCL, "findCompoundPairsKernel",&errNum,satProg ); - b3Assert(m_findCompoundPairsKernel); - b3Assert(errNum==CL_SUCCESS); - m_processCompoundPairsKernel = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device,satKernelsCL, "processCompoundPairsKernel",&errNum,satProg ); - b3Assert(m_processCompoundPairsKernel); - b3Assert(errNum==CL_SUCCESS); - } - - if (1) - { - const char* srcClip = satClipKernelsCL; - - char flags[1024]={0}; -//#ifdef CL_PLATFORM_INTEL -// sprintf(flags,"-g -s \"%s\"","C:/develop/bullet3_experiments2/opencl/gpu_narrowphase/kernels/satClipHullContacts.cl"); -//#endif - - cl_program satClipContactsProg = b3OpenCLUtils::compileCLProgramFromString(m_context,m_device,srcClip,&errNum,flags,BT_NARROWPHASE_CLIPHULL_PATH); - b3Assert(errNum==CL_SUCCESS); - - m_clipHullHullKernel = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device,srcClip, "clipHullHullKernel",&errNum,satClipContactsProg); - b3Assert(errNum==CL_SUCCESS); - - m_clipCompoundsHullHullKernel = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device,srcClip, "clipCompoundsHullHullKernel",&errNum,satClipContactsProg); - b3Assert(errNum==CL_SUCCESS); - - - m_findClippingFacesKernel = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device,srcClip, "findClippingFacesKernel",&errNum,satClipContactsProg); - b3Assert(errNum==CL_SUCCESS); - - m_clipFacesAndFindContacts = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device,srcClip, "clipFacesAndFindContactsKernel",&errNum,satClipContactsProg); - b3Assert(errNum==CL_SUCCESS); - - m_clipHullHullConcaveConvexKernel = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device,srcClip, "clipHullHullConcaveConvexKernel",&errNum,satClipContactsProg); - b3Assert(errNum==CL_SUCCESS); - -// m_extractManifoldAndAddContactKernel = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device,srcClip, "extractManifoldAndAddContactKernel",&errNum,satClipContactsProg); - // b3Assert(errNum==CL_SUCCESS); - - m_newContactReductionKernel = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device,srcClip, - "newContactReductionKernel",&errNum,satClipContactsProg); - b3Assert(errNum==CL_SUCCESS); - } - else - { - m_clipHullHullKernel=0; - m_clipCompoundsHullHullKernel = 0; - m_findClippingFacesKernel = 0; - m_newContactReductionKernel=0; - m_clipFacesAndFindContacts = 0; - m_clipHullHullConcaveConvexKernel = 0; -// m_extractManifoldAndAddContactKernel = 0; - } - - if (1) - { - const char* srcBvh = bvhTraversalKernelCL; - cl_program bvhTraversalProg = b3OpenCLUtils::compileCLProgramFromString(m_context,m_device,srcBvh,&errNum,"",BT_NARROWPHASE_BVH_TRAVERSAL_PATH); - b3Assert(errNum==CL_SUCCESS); - - m_bvhTraversalKernel = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device,srcBvh, "bvhTraversalKernel",&errNum,bvhTraversalProg,""); - b3Assert(errNum==CL_SUCCESS); - - } - - { - const char* primitiveContactsSrc = primitiveContactsKernelsCL; - cl_program primitiveContactsProg = b3OpenCLUtils::compileCLProgramFromString(m_context,m_device,primitiveContactsSrc,&errNum,"",BT_NARROWPHASE_PRIMITIVE_CONTACT_PATH); - b3Assert(errNum==CL_SUCCESS); - - m_primitiveContactsKernel = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device,primitiveContactsSrc, "primitiveContactsKernel",&errNum,primitiveContactsProg,""); - b3Assert(errNum==CL_SUCCESS); - - m_findConcaveSphereContactsKernel = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device,primitiveContactsSrc, "findConcaveSphereContactsKernel",&errNum,primitiveContactsProg ); - b3Assert(errNum==CL_SUCCESS); - b3Assert(m_findConcaveSphereContactsKernel); - - m_processCompoundPairsPrimitivesKernel = b3OpenCLUtils::compileCLKernelFromString(m_context, m_device,primitiveContactsSrc, "processCompoundPairsPrimitivesKernel",&errNum,primitiveContactsProg,""); - b3Assert(errNum==CL_SUCCESS); - b3Assert(m_processCompoundPairsPrimitivesKernel); - - } - - -} - -GpuSatCollision::~GpuSatCollision() -{ - - if (m_findSeparatingAxisVertexFaceKernel) - clReleaseKernel(m_findSeparatingAxisVertexFaceKernel); - - if (m_findSeparatingAxisEdgeEdgeKernel) - clReleaseKernel(m_findSeparatingAxisEdgeEdgeKernel); - - if (m_findSeparatingAxisUnitSphereKernel) - clReleaseKernel(m_findSeparatingAxisUnitSphereKernel); - - if (m_mprPenetrationKernel) - clReleaseKernel(m_mprPenetrationKernel); - - - if (m_findSeparatingAxisKernel) - clReleaseKernel(m_findSeparatingAxisKernel); - - if (m_findConcaveSeparatingAxisVertexFaceKernel) - clReleaseKernel(m_findConcaveSeparatingAxisVertexFaceKernel); - - - if (m_findConcaveSeparatingAxisEdgeEdgeKernel) - clReleaseKernel(m_findConcaveSeparatingAxisEdgeEdgeKernel); - - if (m_findConcaveSeparatingAxisKernel) - clReleaseKernel(m_findConcaveSeparatingAxisKernel); - - if (m_findCompoundPairsKernel) - clReleaseKernel(m_findCompoundPairsKernel); - - if (m_processCompoundPairsKernel) - clReleaseKernel(m_processCompoundPairsKernel); - - if (m_findClippingFacesKernel) - clReleaseKernel(m_findClippingFacesKernel); - - if (m_clipFacesAndFindContacts) - clReleaseKernel(m_clipFacesAndFindContacts); - if (m_newContactReductionKernel) - clReleaseKernel(m_newContactReductionKernel); - if (m_primitiveContactsKernel) - clReleaseKernel(m_primitiveContactsKernel); - - if (m_findConcaveSphereContactsKernel) - clReleaseKernel(m_findConcaveSphereContactsKernel); - - if (m_processCompoundPairsPrimitivesKernel) - clReleaseKernel(m_processCompoundPairsPrimitivesKernel); - - if (m_clipHullHullKernel) - clReleaseKernel(m_clipHullHullKernel); - if (m_clipCompoundsHullHullKernel) - clReleaseKernel(m_clipCompoundsHullHullKernel); - - if (m_clipHullHullConcaveConvexKernel) - clReleaseKernel(m_clipHullHullConcaveConvexKernel); -// if (m_extractManifoldAndAddContactKernel) - // clReleaseKernel(m_extractManifoldAndAddContactKernel); - - if (m_bvhTraversalKernel) - clReleaseKernel(m_bvhTraversalKernel); - -} - -struct MyTriangleCallback : public b3NodeOverlapCallback -{ - int m_bodyIndexA; - int m_bodyIndexB; - - virtual void processNode(int subPart, int triangleIndex) - { - printf("bodyIndexA %d, bodyIndexB %d\n",m_bodyIndexA,m_bodyIndexB); - printf("triangleIndex %d\n", triangleIndex); - } -}; - - -#define float4 b3Vector3 -#define make_float4(x,y,z,w) b3MakeVector3(x,y,z,w) - -float signedDistanceFromPointToPlane(const float4& point, const float4& planeEqn, float4* closestPointOnFace) -{ - float4 n = planeEqn; - n[3] = 0.f; - float dist = dot3F4(n, point) + planeEqn[3]; - *closestPointOnFace = point - dist * n; - return dist; -} - - - -#define cross3(a,b) (a.cross(b)) -b3Vector3 transform(const b3Vector3* v, const b3Vector3* pos, const b3Quaternion* orn) -{ - b3Transform tr; - tr.setIdentity(); - tr.setOrigin(*pos); - tr.setRotation(*orn); - b3Vector3 res = tr(*v); - return res; -} - - -inline bool IsPointInPolygon(const float4& p, - const b3GpuFace* face, - const float4* baseVertex, - const int* convexIndices, - float4* out) -{ - float4 a; - float4 b; - float4 ab; - float4 ap; - float4 v; - - float4 plane = b3MakeVector3(face->m_plane.x,face->m_plane.y,face->m_plane.z,0.f); - - if (face->m_numIndices<2) - return false; - - - float4 v0 = baseVertex[convexIndices[face->m_indexOffset + face->m_numIndices-1]]; - b = v0; - - for(unsigned i=0; i != face->m_numIndices; ++i) - { - a = b; - float4 vi = baseVertex[convexIndices[face->m_indexOffset + i]]; - b = vi; - ab = b-a; - ap = p-a; - v = cross3(ab,plane); - - if (b3Dot(ap, v) > 0.f) - { - float ab_m2 = b3Dot(ab, ab); - float rt = ab_m2 != 0.f ? b3Dot(ab, ap) / ab_m2 : 0.f; - if (rt <= 0.f) - { - *out = a; - } - else if (rt >= 1.f) - { - *out = b; - } - else - { - float s = 1.f - rt; - out[0].x = s * a.x + rt * b.x; - out[0].y = s * a.y + rt * b.y; - out[0].z = s * a.z + rt * b.z; - } - return false; - } - } - return true; -} - -#define normalize3(a) (a.normalize()) - - -int extractManifoldSequentialGlobal( const float4* p, int nPoints, const float4& nearNormal, b3Int4* contactIdx) -{ - if( nPoints == 0 ) - return 0; - - if (nPoints <=4) - return nPoints; - - - if (nPoints >64) - nPoints = 64; - - float4 center = b3MakeVector3(0,0,0,0); - { - - for (int i=0;i<nPoints;i++) - center += p[i]; - center /= (float)nPoints; - } - - - - // sample 4 directions - - float4 aVector = p[0] - center; - float4 u = cross3( nearNormal, aVector ); - float4 v = cross3( nearNormal, u ); - u = normalize3( u ); - v = normalize3( v ); - - - //keep point with deepest penetration - float minW= FLT_MAX; - - int minIndex=-1; - - float4 maxDots; - maxDots.x = FLT_MIN; - maxDots.y = FLT_MIN; - maxDots.z = FLT_MIN; - maxDots.w = FLT_MIN; - - // idx, distance - for(int ie = 0; ie<nPoints; ie++ ) - { - if (p[ie].w<minW) - { - minW = p[ie].w; - minIndex=ie; - } - float f; - float4 r = p[ie]-center; - f = dot3F4( u, r ); - if (f<maxDots.x) - { - maxDots.x = f; - contactIdx[0].x = ie; - } - - f = dot3F4( -u, r ); - if (f<maxDots.y) - { - maxDots.y = f; - contactIdx[0].y = ie; - } - - - f = dot3F4( v, r ); - if (f<maxDots.z) - { - maxDots.z = f; - contactIdx[0].z = ie; - } - - f = dot3F4( -v, r ); - if (f<maxDots.w) - { - maxDots.w = f; - contactIdx[0].w = ie; - } - - } - - if (contactIdx[0].x != minIndex && contactIdx[0].y != minIndex && contactIdx[0].z != minIndex && contactIdx[0].w != minIndex) - { - //replace the first contact with minimum (todo: replace contact with least penetration) - contactIdx[0].x = minIndex; - } - - return 4; - -} - - - -#define MAX_VERTS 1024 - - -inline void project(const b3ConvexPolyhedronData& hull, const float4& pos, const b3Quaternion& orn, const float4& dir, const b3AlignedObjectArray<b3Vector3>& vertices, b3Scalar& min, b3Scalar& max) -{ - min = FLT_MAX; - max = -FLT_MAX; - int numVerts = hull.m_numVertices; - - const float4 localDir = b3QuatRotate(orn.inverse(),dir); - - b3Scalar offset = dot3F4(pos,dir); - - for(int i=0;i<numVerts;i++) - { - //b3Vector3 pt = trans * vertices[m_vertexOffset+i]; - //b3Scalar dp = pt.dot(dir); - //b3Vector3 vertex = vertices[hull.m_vertexOffset+i]; - b3Scalar dp = dot3F4((float4&)vertices[hull.m_vertexOffset+i],localDir); - //b3Assert(dp==dpL); - if(dp < min) min = dp; - if(dp > max) max = dp; - } - if(min>max) - { - b3Scalar tmp = min; - min = max; - max = tmp; - } - min += offset; - max += offset; -} - - -static bool TestSepAxis(const b3ConvexPolyhedronData& hullA, const b3ConvexPolyhedronData& hullB, - const float4& posA,const b3Quaternion& ornA, - const float4& posB,const b3Quaternion& ornB, - const float4& sep_axis, const b3AlignedObjectArray<b3Vector3>& verticesA,const b3AlignedObjectArray<b3Vector3>& verticesB,b3Scalar& depth) -{ - b3Scalar Min0,Max0; - b3Scalar Min1,Max1; - project(hullA,posA,ornA,sep_axis,verticesA, Min0, Max0); - project(hullB,posB,ornB, sep_axis,verticesB, Min1, Max1); - - if(Max0<Min1 || Max1<Min0) - return false; - - b3Scalar d0 = Max0 - Min1; - assert(d0>=0.0f); - b3Scalar d1 = Max1 - Min0; - assert(d1>=0.0f); - depth = d0<d1 ? d0:d1; - return true; -} - -inline bool IsAlmostZero(const b3Vector3& v) -{ - if(fabsf(v.x)>1e-6 || fabsf(v.y)>1e-6 || fabsf(v.z)>1e-6) return false; - return true; -} - - -static bool findSeparatingAxis( const b3ConvexPolyhedronData& hullA, const b3ConvexPolyhedronData& hullB, - const float4& posA1, - const b3Quaternion& ornA, - const float4& posB1, - const b3Quaternion& ornB, - const b3AlignedObjectArray<b3Vector3>& verticesA, - const b3AlignedObjectArray<b3Vector3>& uniqueEdgesA, - const b3AlignedObjectArray<b3GpuFace>& facesA, - const b3AlignedObjectArray<int>& indicesA, - const b3AlignedObjectArray<b3Vector3>& verticesB, - const b3AlignedObjectArray<b3Vector3>& uniqueEdgesB, - const b3AlignedObjectArray<b3GpuFace>& facesB, - const b3AlignedObjectArray<int>& indicesB, - - b3Vector3& sep) -{ - B3_PROFILE("findSeparatingAxis"); - - b3g_actualSATPairTests++; - float4 posA = posA1; - posA.w = 0.f; - float4 posB = posB1; - posB.w = 0.f; -//#ifdef TEST_INTERNAL_OBJECTS - float4 c0local = (float4&)hullA.m_localCenter; - float4 c0 = transform(&c0local, &posA, &ornA); - float4 c1local = (float4&)hullB.m_localCenter; - float4 c1 = transform(&c1local,&posB,&ornB); - const float4 deltaC2 = c0 - c1; -//#endif - - b3Scalar dmin = FLT_MAX; - int curPlaneTests=0; - - int numFacesA = hullA.m_numFaces; - // Test normals from hullA - for(int i=0;i<numFacesA;i++) - { - const float4& normal = (float4&)facesA[hullA.m_faceOffset+i].m_plane; - float4 faceANormalWS = b3QuatRotate(ornA,normal); - - if (dot3F4(deltaC2,faceANormalWS)<0) - faceANormalWS*=-1.f; - - curPlaneTests++; -#ifdef TEST_INTERNAL_OBJECTS - gExpectedNbTests++; - if(gUseInternalObject && !TestInternalObjects(transA,transB, DeltaC2, faceANormalWS, hullA, hullB, dmin)) - continue; - gActualNbTests++; -#endif - - - b3Scalar d; - if(!TestSepAxis( hullA, hullB, posA,ornA,posB,ornB,faceANormalWS, verticesA, verticesB,d)) - return false; - - if(d<dmin) - { - dmin = d; - sep = (b3Vector3&)faceANormalWS; - } - } - - int numFacesB = hullB.m_numFaces; - // Test normals from hullB - for(int i=0;i<numFacesB;i++) - { - float4 normal = (float4&)facesB[hullB.m_faceOffset+i].m_plane; - float4 WorldNormal = b3QuatRotate(ornB, normal); - - if (dot3F4(deltaC2,WorldNormal)<0) - { - WorldNormal*=-1.f; - } - curPlaneTests++; -#ifdef TEST_INTERNAL_OBJECTS - gExpectedNbTests++; - if(gUseInternalObject && !TestInternalObjects(transA,transB,DeltaC2, WorldNormal, hullA, hullB, dmin)) - continue; - gActualNbTests++; -#endif - - b3Scalar d; - if(!TestSepAxis(hullA, hullB,posA,ornA,posB,ornB,WorldNormal,verticesA,verticesB,d)) - return false; - - if(d<dmin) - { - dmin = d; - sep = (b3Vector3&)WorldNormal; - } - } - - int curEdgeEdge = 0; - // Test edges - for(int e0=0;e0<hullA.m_numUniqueEdges;e0++) - { - const float4& edge0 = (float4&) uniqueEdgesA[hullA.m_uniqueEdgesOffset+e0]; - float4 edge0World = b3QuatRotate(ornA,(float4&)edge0); - - for(int e1=0;e1<hullB.m_numUniqueEdges;e1++) - { - const b3Vector3 edge1 = uniqueEdgesB[hullB.m_uniqueEdgesOffset+e1]; - float4 edge1World = b3QuatRotate(ornB,(float4&)edge1); - - - float4 crossje = cross3(edge0World,edge1World); - - curEdgeEdge++; - if(!IsAlmostZero((b3Vector3&)crossje)) - { - crossje = normalize3(crossje); - if (dot3F4(deltaC2,crossje)<0) - crossje*=-1.f; - - -#ifdef TEST_INTERNAL_OBJECTS - gExpectedNbTests++; - if(gUseInternalObject && !TestInternalObjects(transA,transB,DeltaC2, Cross, hullA, hullB, dmin)) - continue; - gActualNbTests++; -#endif - - b3Scalar dist; - if(!TestSepAxis( hullA, hullB, posA,ornA,posB,ornB,crossje, verticesA,verticesB,dist)) - return false; - - if(dist<dmin) - { - dmin = dist; - sep = (b3Vector3&)crossje; - } - } - } - - } - - - if((dot3F4(-deltaC2,(float4&)sep))>0.0f) - sep = -sep; - - return true; -} - - -bool findSeparatingAxisEdgeEdge( __global const b3ConvexPolyhedronData* hullA, __global const b3ConvexPolyhedronData* hullB, - const b3Float4& posA1, - const b3Quat& ornA, - const b3Float4& posB1, - const b3Quat& ornB, - const b3Float4& DeltaC2, - __global const b3AlignedObjectArray<float4>& vertices, - __global const b3AlignedObjectArray<float4>& uniqueEdges, - __global const b3AlignedObjectArray<b3GpuFace>& faces, - __global const b3AlignedObjectArray<int>& indices, - float4* sep, - float* dmin) -{ -// int i = get_global_id(0); - - float4 posA = posA1; - posA.w = 0.f; - float4 posB = posB1; - posB.w = 0.f; - - //int curPlaneTests=0; - - int curEdgeEdge = 0; - // Test edges - for(int e0=0;e0<hullA->m_numUniqueEdges;e0++) - { - const float4 edge0 = uniqueEdges[hullA->m_uniqueEdgesOffset+e0]; - float4 edge0World = b3QuatRotate(ornA,edge0); - - for(int e1=0;e1<hullB->m_numUniqueEdges;e1++) - { - const float4 edge1 = uniqueEdges[hullB->m_uniqueEdgesOffset+e1]; - float4 edge1World = b3QuatRotate(ornB,edge1); - - - float4 crossje = cross3(edge0World,edge1World); - - curEdgeEdge++; - if(!IsAlmostZero(crossje)) - { - crossje = normalize3(crossje); - if (dot3F4(DeltaC2,crossje)<0) - crossje*=-1.f; - - float dist; - bool result = true; - { - float Min0,Max0; - float Min1,Max1; - project(*hullA,posA,ornA,crossje,vertices, Min0, Max0); - project(*hullB,posB,ornB,crossje,vertices, Min1, Max1); - - if(Max0<Min1 || Max1<Min0) - result = false; - - float d0 = Max0 - Min1; - float d1 = Max1 - Min0; - dist = d0<d1 ? d0:d1; - result = true; - - } - - - if(dist<*dmin) - { - *dmin = dist; - *sep = crossje; - } - } - } - - } - - - if((dot3F4(-DeltaC2,*sep))>0.0f) - { - *sep = -(*sep); - } - return true; -} - - -__inline float4 lerp3(const float4& a,const float4& b, float t) -{ - return b3MakeVector3( a.x + (b.x - a.x) * t, - a.y + (b.y - a.y) * t, - a.z + (b.z - a.z) * t, - 0.f); -} - - -// Clips a face to the back of a plane, return the number of vertices out, stored in ppVtxOut -int clipFace(const float4* pVtxIn, int numVertsIn, float4& planeNormalWS,float planeEqWS, float4* ppVtxOut) -{ - - int ve; - float ds, de; - int numVertsOut = 0; - if (numVertsIn < 2) - return 0; - - float4 firstVertex=pVtxIn[numVertsIn-1]; - float4 endVertex = pVtxIn[0]; - - ds = dot3F4(planeNormalWS,firstVertex)+planeEqWS; - - for (ve = 0; ve < numVertsIn; ve++) - { - endVertex=pVtxIn[ve]; - - de = dot3F4(planeNormalWS,endVertex)+planeEqWS; - - if (ds<0) - { - if (de<0) - { - // Start < 0, end < 0, so output endVertex - ppVtxOut[numVertsOut++] = endVertex; - } - else - { - // Start < 0, end >= 0, so output intersection - ppVtxOut[numVertsOut++] = lerp3(firstVertex, endVertex,(ds * 1.f/(ds - de)) ); - } - } - else - { - if (de<0) - { - // Start >= 0, end < 0 so output intersection and end - ppVtxOut[numVertsOut++] = lerp3(firstVertex, endVertex,(ds * 1.f/(ds - de)) ); - ppVtxOut[numVertsOut++] = endVertex; - } - } - firstVertex = endVertex; - ds = de; - } - return numVertsOut; -} - - -int clipFaceAgainstHull(const float4& separatingNormal, const b3ConvexPolyhedronData* hullA, - const float4& posA, const b3Quaternion& ornA, float4* worldVertsB1, int numWorldVertsB1, - float4* worldVertsB2, int capacityWorldVertsB2, - const float minDist, float maxDist, - const b3AlignedObjectArray<float4>& verticesA, const b3AlignedObjectArray<b3GpuFace>& facesA, const b3AlignedObjectArray<int>& indicesA, - //const float4* verticesB, const b3GpuFace* facesB, const int* indicesB, - float4* contactsOut, - int contactCapacity) -{ - int numContactsOut = 0; - - float4* pVtxIn = worldVertsB1; - float4* pVtxOut = worldVertsB2; - - int numVertsIn = numWorldVertsB1; - int numVertsOut = 0; - - int closestFaceA=-1; - { - float dmin = FLT_MAX; - for(int face=0;face<hullA->m_numFaces;face++) - { - const float4 Normal = b3MakeVector3( - facesA[hullA->m_faceOffset+face].m_plane.x, - facesA[hullA->m_faceOffset+face].m_plane.y, - facesA[hullA->m_faceOffset+face].m_plane.z,0.f); - const float4 faceANormalWS = b3QuatRotate(ornA,Normal); - - float d = dot3F4(faceANormalWS,separatingNormal); - if (d < dmin) - { - dmin = d; - closestFaceA = face; - } - } - } - if (closestFaceA<0) - return numContactsOut; - - b3GpuFace polyA = facesA[hullA->m_faceOffset+closestFaceA]; - - // clip polygon to back of planes of all faces of hull A that are adjacent to witness face -// int numContacts = numWorldVertsB1; - int numVerticesA = polyA.m_numIndices; - for(int e0=0;e0<numVerticesA;e0++) - { - const float4 a = verticesA[hullA->m_vertexOffset+indicesA[polyA.m_indexOffset+e0]]; - const float4 b = verticesA[hullA->m_vertexOffset+indicesA[polyA.m_indexOffset+((e0+1)%numVerticesA)]]; - const float4 edge0 = a - b; - const float4 WorldEdge0 = b3QuatRotate(ornA,edge0); - float4 planeNormalA = make_float4(polyA.m_plane.x,polyA.m_plane.y,polyA.m_plane.z,0.f); - float4 worldPlaneAnormal1 = b3QuatRotate(ornA,planeNormalA); - - float4 planeNormalWS1 = -cross3(WorldEdge0,worldPlaneAnormal1); - float4 worldA1 = transform(&a,&posA,&ornA); - float planeEqWS1 = -dot3F4(worldA1,planeNormalWS1); - - float4 planeNormalWS = planeNormalWS1; - float planeEqWS=planeEqWS1; - - //clip face - //clipFace(*pVtxIn, *pVtxOut,planeNormalWS,planeEqWS); - numVertsOut = clipFace(pVtxIn, numVertsIn, planeNormalWS,planeEqWS, pVtxOut); - - //btSwap(pVtxIn,pVtxOut); - float4* tmp = pVtxOut; - pVtxOut = pVtxIn; - pVtxIn = tmp; - numVertsIn = numVertsOut; - numVertsOut = 0; - } - - - // only keep points that are behind the witness face - { - float4 localPlaneNormal = make_float4(polyA.m_plane.x,polyA.m_plane.y,polyA.m_plane.z,0.f); - float localPlaneEq = polyA.m_plane.w; - float4 planeNormalWS = b3QuatRotate(ornA,localPlaneNormal); - float planeEqWS=localPlaneEq-dot3F4(planeNormalWS,posA); - for (int i=0;i<numVertsIn;i++) - { - float depth = dot3F4(planeNormalWS,pVtxIn[i])+planeEqWS; - if (depth <=minDist) - { - depth = minDist; - } - if (numContactsOut<contactCapacity) - { - if (depth <=maxDist) - { - float4 pointInWorld = pVtxIn[i]; - //resultOut.addContactPoint(separatingNormal,point,depth); - contactsOut[numContactsOut++] = b3MakeVector3(pointInWorld.x,pointInWorld.y,pointInWorld.z,depth); - //printf("depth=%f\n",depth); - } - } else - { - b3Error("exceeding contact capacity (%d,%df)\n", numContactsOut,contactCapacity); - } - } - } - - return numContactsOut; -} - - - -static int clipHullAgainstHull(const float4& separatingNormal, - const b3ConvexPolyhedronData& hullA, const b3ConvexPolyhedronData& hullB, - const float4& posA, const b3Quaternion& ornA,const float4& posB, const b3Quaternion& ornB, - float4* worldVertsB1, float4* worldVertsB2, int capacityWorldVerts, - const float minDist, float maxDist, - const b3AlignedObjectArray<float4>& verticesA, const b3AlignedObjectArray<b3GpuFace>& facesA, const b3AlignedObjectArray<int>& indicesA, - const b3AlignedObjectArray<float4>& verticesB, const b3AlignedObjectArray<b3GpuFace>& facesB, const b3AlignedObjectArray<int>& indicesB, - - float4* contactsOut, - int contactCapacity) -{ - int numContactsOut = 0; - int numWorldVertsB1= 0; - - B3_PROFILE("clipHullAgainstHull"); - -// float curMaxDist=maxDist; - int closestFaceB=-1; - float dmax = -FLT_MAX; - - { - //B3_PROFILE("closestFaceB"); - if (hullB.m_numFaces!=1) - { - //printf("wtf\n"); - } - static bool once = true; - //printf("separatingNormal=%f,%f,%f\n",separatingNormal.x,separatingNormal.y,separatingNormal.z); - - for(int face=0;face<hullB.m_numFaces;face++) - { -#ifdef BT_DEBUG_SAT_FACE - if (once) - printf("face %d\n",face); - const b3GpuFace* faceB = &facesB[hullB.m_faceOffset+face]; - if (once) - { - for (int i=0;i<faceB->m_numIndices;i++) - { - float4 vert = verticesB[hullB.m_vertexOffset+indicesB[faceB->m_indexOffset+i]]; - printf("vert[%d] = %f,%f,%f\n",i,vert.x,vert.y,vert.z); - } - } -#endif //BT_DEBUG_SAT_FACE - //if (facesB[hullB.m_faceOffset+face].m_numIndices>2) - { - const float4 Normal = b3MakeVector3(facesB[hullB.m_faceOffset+face].m_plane.x, - facesB[hullB.m_faceOffset+face].m_plane.y, facesB[hullB.m_faceOffset+face].m_plane.z,0.f); - const float4 WorldNormal = b3QuatRotate(ornB, Normal); -#ifdef BT_DEBUG_SAT_FACE - if (once) - printf("faceNormal = %f,%f,%f\n",Normal.x,Normal.y,Normal.z); -#endif - float d = dot3F4(WorldNormal,separatingNormal); - if (d > dmax) - { - dmax = d; - closestFaceB = face; - } - } - } - once = false; - } - - - b3Assert(closestFaceB>=0); - { - //B3_PROFILE("worldVertsB1"); - const b3GpuFace& polyB = facesB[hullB.m_faceOffset+closestFaceB]; - const int numVertices = polyB.m_numIndices; - for(int e0=0;e0<numVertices;e0++) - { - const float4& b = verticesB[hullB.m_vertexOffset+indicesB[polyB.m_indexOffset+e0]]; - worldVertsB1[numWorldVertsB1++] = transform(&b,&posB,&ornB); - } - } - - if (closestFaceB>=0) - { - //B3_PROFILE("clipFaceAgainstHull"); - numContactsOut = clipFaceAgainstHull((float4&)separatingNormal, &hullA, - posA,ornA, - worldVertsB1,numWorldVertsB1,worldVertsB2,capacityWorldVerts, minDist, maxDist, - verticesA, facesA, indicesA, - contactsOut,contactCapacity); - } - - return numContactsOut; -} - - - - - - -#define PARALLEL_SUM(v, n) for(int j=1; j<n; j++) v[0] += v[j]; -#define PARALLEL_DO(execution, n) for(int ie=0; ie<n; ie++){execution;} -#define REDUCE_MAX(v, n) {int i=0;\ -for(int offset=0; offset<n; offset++) v[i] = (v[i].y > v[i+offset].y)? v[i]: v[i+offset]; } -#define REDUCE_MIN(v, n) {int i=0;\ -for(int offset=0; offset<n; offset++) v[i] = (v[i].y < v[i+offset].y)? v[i]: v[i+offset]; } - -int extractManifold(const float4* p, int nPoints, const float4& nearNormal, b3Int4* contactIdx) -{ - if( nPoints == 0 ) - return 0; - - if (nPoints <=4) - return nPoints; - - - if (nPoints >64) - nPoints = 64; - - float4 center = make_float4(0,0,0,0); - { - - for (int i=0;i<nPoints;i++) - center += p[i]; - center /= (float)nPoints; - } - - - - // sample 4 directions - - float4 aVector = p[0] - center; - float4 u = cross3( nearNormal, aVector ); - float4 v = cross3( nearNormal, u ); - u = normalize3( u ); - v = normalize3( v ); - - - //keep point with deepest penetration - float minW= FLT_MAX; - - int minIndex=-1; - - float4 maxDots; - maxDots.x = FLT_MIN; - maxDots.y = FLT_MIN; - maxDots.z = FLT_MIN; - maxDots.w = FLT_MIN; - - // idx, distance - for(int ie = 0; ie<nPoints; ie++ ) - { - if (p[ie].w<minW) - { - minW = p[ie].w; - minIndex=ie; - } - float f; - float4 r = p[ie]-center; - f = dot3F4( u, r ); - if (f<maxDots.x) - { - maxDots.x = f; - contactIdx[0].x = ie; - } - - f = dot3F4( -u, r ); - if (f<maxDots.y) - { - maxDots.y = f; - contactIdx[0].y = ie; - } - - - f = dot3F4( v, r ); - if (f<maxDots.z) - { - maxDots.z = f; - contactIdx[0].z = ie; - } - - f = dot3F4( -v, r ); - if (f<maxDots.w) - { - maxDots.w = f; - contactIdx[0].w = ie; - } - - } - - if (contactIdx[0].x != minIndex && contactIdx[0].y != minIndex && contactIdx[0].z != minIndex && contactIdx[0].w != minIndex) - { - //replace the first contact with minimum (todo: replace contact with least penetration) - contactIdx[0].x = minIndex; - } - - return 4; - -} - - - - -int clipHullHullSingle( - int bodyIndexA, int bodyIndexB, - const float4& posA, - const b3Quaternion& ornA, - const float4& posB, - const b3Quaternion& ornB, - - int collidableIndexA, int collidableIndexB, - - const b3AlignedObjectArray<b3RigidBodyData>* bodyBuf, - b3AlignedObjectArray<b3Contact4>* globalContactOut, - int& nContacts, - - const b3AlignedObjectArray<b3ConvexPolyhedronData>& hostConvexDataA, - const b3AlignedObjectArray<b3ConvexPolyhedronData>& hostConvexDataB, - - const b3AlignedObjectArray<b3Vector3>& verticesA, - const b3AlignedObjectArray<b3Vector3>& uniqueEdgesA, - const b3AlignedObjectArray<b3GpuFace>& facesA, - const b3AlignedObjectArray<int>& indicesA, - - const b3AlignedObjectArray<b3Vector3>& verticesB, - const b3AlignedObjectArray<b3Vector3>& uniqueEdgesB, - const b3AlignedObjectArray<b3GpuFace>& facesB, - const b3AlignedObjectArray<int>& indicesB, - - const b3AlignedObjectArray<b3Collidable>& hostCollidablesA, - const b3AlignedObjectArray<b3Collidable>& hostCollidablesB, - const b3Vector3& sepNormalWorldSpace, - int maxContactCapacity ) -{ - int contactIndex = -1; - b3ConvexPolyhedronData hullA, hullB; - - b3Collidable colA = hostCollidablesA[collidableIndexA]; - hullA = hostConvexDataA[colA.m_shapeIndex]; - //printf("numvertsA = %d\n",hullA.m_numVertices); - - - b3Collidable colB = hostCollidablesB[collidableIndexB]; - hullB = hostConvexDataB[colB.m_shapeIndex]; - //printf("numvertsB = %d\n",hullB.m_numVertices); - - - float4 contactsOut[MAX_VERTS]; - int localContactCapacity = MAX_VERTS; - -#ifdef _WIN32 - b3Assert(_finite(bodyBuf->at(bodyIndexA).m_pos.x)); - b3Assert(_finite(bodyBuf->at(bodyIndexB).m_pos.x)); -#endif - - - { - - float4 worldVertsB1[MAX_VERTS]; - float4 worldVertsB2[MAX_VERTS]; - int capacityWorldVerts = MAX_VERTS; - - float4 hostNormal = make_float4(sepNormalWorldSpace.x,sepNormalWorldSpace.y,sepNormalWorldSpace.z,0.f); - int shapeA = hostCollidablesA[collidableIndexA].m_shapeIndex; - int shapeB = hostCollidablesB[collidableIndexB].m_shapeIndex; - - b3Scalar minDist = -1; - b3Scalar maxDist = 0.; - - - - b3Transform trA,trB; - { - //B3_PROFILE("transform computation"); - //trA.setIdentity(); - trA.setOrigin(b3MakeVector3(posA.x,posA.y,posA.z)); - trA.setRotation(b3Quaternion(ornA.x,ornA.y,ornA.z,ornA.w)); - - //trB.setIdentity(); - trB.setOrigin(b3MakeVector3(posB.x,posB.y,posB.z)); - trB.setRotation(b3Quaternion(ornB.x,ornB.y,ornB.z,ornB.w)); - } - - b3Quaternion trAorn = trA.getRotation(); - b3Quaternion trBorn = trB.getRotation(); - - int numContactsOut = clipHullAgainstHull(hostNormal, - hostConvexDataA.at(shapeA), - hostConvexDataB.at(shapeB), - (float4&)trA.getOrigin(), (b3Quaternion&)trAorn, - (float4&)trB.getOrigin(), (b3Quaternion&)trBorn, - worldVertsB1,worldVertsB2,capacityWorldVerts, - minDist, maxDist, - verticesA, facesA,indicesA, - verticesB, facesB,indicesB, - - contactsOut,localContactCapacity); - - if (numContactsOut>0) - { - B3_PROFILE("overlap"); - - float4 normalOnSurfaceB = (float4&)hostNormal; - - b3Int4 contactIdx; - contactIdx.x = 0; - contactIdx.y = 1; - contactIdx.z = 2; - contactIdx.w = 3; - - int numPoints = 0; - - { - // B3_PROFILE("extractManifold"); - numPoints = extractManifold(contactsOut, numContactsOut, normalOnSurfaceB, &contactIdx); - } - - b3Assert(numPoints); - - if (nContacts<maxContactCapacity) - { - contactIndex = nContacts; - globalContactOut->expand(); - b3Contact4& contact = globalContactOut->at(nContacts); - contact.m_batchIdx = 0;//i; - contact.m_bodyAPtrAndSignBit = (bodyBuf->at(bodyIndexA).m_invMass==0)? -bodyIndexA:bodyIndexA; - contact.m_bodyBPtrAndSignBit = (bodyBuf->at(bodyIndexB).m_invMass==0)? -bodyIndexB:bodyIndexB; - - contact.m_frictionCoeffCmp = 45874; - contact.m_restituitionCoeffCmp = 0; - - // float distance = 0.f; - for (int p=0;p<numPoints;p++) - { - contact.m_worldPosB[p] = contactsOut[contactIdx.s[p]];//check if it is actually on B - contact.m_worldNormalOnB = normalOnSurfaceB; - } - //printf("bodyIndexA %d,bodyIndexB %d,normal=%f,%f,%f numPoints %d\n",bodyIndexA,bodyIndexB,normalOnSurfaceB.x,normalOnSurfaceB.y,normalOnSurfaceB.z,numPoints); - contact.m_worldNormalOnB.w = (b3Scalar)numPoints; - nContacts++; - } else - { - b3Error("Error: exceeding contact capacity (%d/%d)\n", nContacts,maxContactCapacity); - } - } - } - return contactIndex; -} - - - - - -void computeContactPlaneConvex(int pairIndex, - int bodyIndexA, int bodyIndexB, - int collidableIndexA, int collidableIndexB, - const b3RigidBodyData* rigidBodies, - const b3Collidable* collidables, - const b3ConvexPolyhedronData* convexShapes, - const b3Vector3* convexVertices, - const int* convexIndices, - const b3GpuFace* faces, - b3Contact4* globalContactsOut, - int& nGlobalContactsOut, - int maxContactCapacity) -{ - - int shapeIndex = collidables[collidableIndexB].m_shapeIndex; - const b3ConvexPolyhedronData* hullB = &convexShapes[shapeIndex]; - - b3Vector3 posB = rigidBodies[bodyIndexB].m_pos; - b3Quaternion ornB = rigidBodies[bodyIndexB].m_quat; - b3Vector3 posA = rigidBodies[bodyIndexA].m_pos; - b3Quaternion ornA = rigidBodies[bodyIndexA].m_quat; - -// int numContactsOut = 0; -// int numWorldVertsB1= 0; - - b3Vector3 planeEq = faces[collidables[collidableIndexA].m_shapeIndex].m_plane; - b3Vector3 planeNormal=b3MakeVector3(planeEq.x,planeEq.y,planeEq.z); - b3Vector3 planeNormalWorld = b3QuatRotate(ornA,planeNormal); - float planeConstant = planeEq.w; - b3Transform convexWorldTransform; - convexWorldTransform.setIdentity(); - convexWorldTransform.setOrigin(posB); - convexWorldTransform.setRotation(ornB); - b3Transform planeTransform; - planeTransform.setIdentity(); - planeTransform.setOrigin(posA); - planeTransform.setRotation(ornA); - - b3Transform planeInConvex; - planeInConvex= convexWorldTransform.inverse() * planeTransform; - b3Transform convexInPlane; - convexInPlane = planeTransform.inverse() * convexWorldTransform; - - b3Vector3 planeNormalInConvex = planeInConvex.getBasis()*-planeNormal; - float maxDot = -1e30; - int hitVertex=-1; - b3Vector3 hitVtx; - -#define MAX_PLANE_CONVEX_POINTS 64 - - b3Vector3 contactPoints[MAX_PLANE_CONVEX_POINTS]; - int numPoints = 0; - - b3Int4 contactIdx; - contactIdx.s[0] = 0; - contactIdx.s[1] = 1; - contactIdx.s[2] = 2; - contactIdx.s[3] = 3; - - for (int i=0;i<hullB->m_numVertices;i++) - { - b3Vector3 vtx = convexVertices[hullB->m_vertexOffset+i]; - float curDot = vtx.dot(planeNormalInConvex); - - - if (curDot>maxDot) - { - hitVertex=i; - maxDot=curDot; - hitVtx = vtx; - //make sure the deepest points is always included - if (numPoints==MAX_PLANE_CONVEX_POINTS) - numPoints--; - } - - if (numPoints<MAX_PLANE_CONVEX_POINTS) - { - b3Vector3 vtxWorld = convexWorldTransform*vtx; - b3Vector3 vtxInPlane = planeTransform.inverse()*vtxWorld; - float dist = planeNormal.dot(vtxInPlane)-planeConstant; - if (dist<0.f) - { - vtxWorld.w = dist; - contactPoints[numPoints] = vtxWorld; - numPoints++; - } - } - - } - - int numReducedPoints = 0; - - numReducedPoints = numPoints; - - if (numPoints>4) - { - numReducedPoints = extractManifoldSequentialGlobal( contactPoints, numPoints, planeNormalInConvex, &contactIdx); - } - int dstIdx; -// dstIdx = nGlobalContactsOut++;//AppendInc( nGlobalContactsOut, dstIdx ); - - if (numReducedPoints>0) - { - if (nGlobalContactsOut < maxContactCapacity) - { - dstIdx=nGlobalContactsOut; - nGlobalContactsOut++; - - b3Contact4* c = &globalContactsOut[dstIdx]; - c->m_worldNormalOnB = -planeNormalWorld; - c->setFrictionCoeff(0.7); - c->setRestituitionCoeff(0.f); - - c->m_batchIdx = pairIndex; - c->m_bodyAPtrAndSignBit = rigidBodies[bodyIndexA].m_invMass==0?-bodyIndexA:bodyIndexA; - c->m_bodyBPtrAndSignBit = rigidBodies[bodyIndexB].m_invMass==0?-bodyIndexB:bodyIndexB; - for (int i=0;i<numReducedPoints;i++) - { - b3Vector3 pOnB1 = contactPoints[contactIdx.s[i]]; - c->m_worldPosB[i] = pOnB1; - } - c->m_worldNormalOnB.w = (b3Scalar)numReducedPoints; - }//if (dstIdx < numPairs) - } - - - -// printf("computeContactPlaneConvex\n"); -} - - - -B3_FORCE_INLINE b3Vector3 MyUnQuantize(const unsigned short* vecIn, const b3Vector3& quantization, const b3Vector3& bvhAabbMin) - { - b3Vector3 vecOut; - vecOut.setValue( - (b3Scalar)(vecIn[0]) / (quantization.x), - (b3Scalar)(vecIn[1]) / (quantization.y), - (b3Scalar)(vecIn[2]) / (quantization.z)); - vecOut += bvhAabbMin; - return vecOut; - } - -void traverseTreeTree() -{ - -} - -#include "Bullet3Common/shared/b3Mat3x3.h" - -int numAabbChecks = 0; -int maxNumAabbChecks = 0; -int maxDepth = 0; - -// work-in-progress -__kernel void findCompoundPairsKernel( - int pairIndex, - int bodyIndexA, - int bodyIndexB, - int collidableIndexA, - int collidableIndexB, - __global const b3RigidBodyData* rigidBodies, - __global const b3Collidable* collidables, - __global const b3ConvexPolyhedronData* convexShapes, - __global const b3AlignedObjectArray<b3Float4>& vertices, - __global const b3AlignedObjectArray<b3Aabb>& aabbsWorldSpace, - __global const b3AlignedObjectArray<b3Aabb>& aabbsLocalSpace, - __global const b3GpuChildShape* gpuChildShapes, - __global b3Int4* gpuCompoundPairsOut, - __global int* numCompoundPairsOut, - int maxNumCompoundPairsCapacity, - b3AlignedObjectArray<b3QuantizedBvhNode>& treeNodesCPU, - b3AlignedObjectArray<b3BvhSubtreeInfo>& subTreesCPU, - b3AlignedObjectArray<b3BvhInfo>& bvhInfoCPU - ) -{ - numAabbChecks=0; - maxNumAabbChecks=0; -// int i = pairIndex; - { - - - int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; - int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; - - - //once the broadphase avoids static-static pairs, we can remove this test - if ((rigidBodies[bodyIndexA].m_invMass==0) &&(rigidBodies[bodyIndexB].m_invMass==0)) - { - return; - } - - if ((collidables[collidableIndexA].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) &&(collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)) - { - int bvhA = collidables[collidableIndexA].m_compoundBvhIndex; - int bvhB = collidables[collidableIndexB].m_compoundBvhIndex; - int numSubTreesA = bvhInfoCPU[bvhA].m_numSubTrees; - int subTreesOffsetA = bvhInfoCPU[bvhA].m_subTreeOffset; - int subTreesOffsetB = bvhInfoCPU[bvhB].m_subTreeOffset; - - - int numSubTreesB = bvhInfoCPU[bvhB].m_numSubTrees; - - float4 posA = rigidBodies[bodyIndexA].m_pos; - b3Quat ornA = rigidBodies[bodyIndexA].m_quat; - - b3Transform transA; - transA.setIdentity(); - transA.setOrigin(posA); - transA.setRotation(ornA); - - b3Quat ornB = rigidBodies[bodyIndexB].m_quat; - float4 posB = rigidBodies[bodyIndexB].m_pos; - - b3Transform transB; - transB.setIdentity(); - transB.setOrigin(posB); - transB.setRotation(ornB); - - - - for (int p=0;p<numSubTreesA;p++) - { - b3BvhSubtreeInfo subtreeA = subTreesCPU[subTreesOffsetA+p]; - //bvhInfoCPU[bvhA].m_quantization - b3Vector3 treeAminLocal = MyUnQuantize(subtreeA.m_quantizedAabbMin,bvhInfoCPU[bvhA].m_quantization,bvhInfoCPU[bvhA].m_aabbMin); - b3Vector3 treeAmaxLocal = MyUnQuantize(subtreeA.m_quantizedAabbMax,bvhInfoCPU[bvhA].m_quantization,bvhInfoCPU[bvhA].m_aabbMin); - - b3Vector3 aabbAMinOut,aabbAMaxOut; - float margin=0.f; - b3TransformAabb2(treeAminLocal,treeAmaxLocal, margin,transA.getOrigin(),transA.getRotation(),&aabbAMinOut,&aabbAMaxOut); - - for (int q=0;q<numSubTreesB;q++) - { - b3BvhSubtreeInfo subtreeB = subTreesCPU[subTreesOffsetB+q]; - - b3Vector3 treeBminLocal = MyUnQuantize(subtreeB.m_quantizedAabbMin,bvhInfoCPU[bvhB].m_quantization,bvhInfoCPU[bvhB].m_aabbMin); - b3Vector3 treeBmaxLocal = MyUnQuantize(subtreeB.m_quantizedAabbMax,bvhInfoCPU[bvhB].m_quantization,bvhInfoCPU[bvhB].m_aabbMin); - - b3Vector3 aabbBMinOut,aabbBMaxOut; - float margin=0.f; - b3TransformAabb2(treeBminLocal,treeBmaxLocal, margin,transB.getOrigin(),transB.getRotation(),&aabbBMinOut,&aabbBMaxOut); - - - numAabbChecks=0; - bool aabbOverlap = b3TestAabbAgainstAabb(aabbAMinOut,aabbAMaxOut,aabbBMinOut,aabbBMaxOut); - if (aabbOverlap) - { - - int startNodeIndexA = subtreeA.m_rootNodeIndex+bvhInfoCPU[bvhA].m_nodeOffset; - // int endNodeIndexA = startNodeIndexA+subtreeA.m_subtreeSize; - - int startNodeIndexB = subtreeB.m_rootNodeIndex+bvhInfoCPU[bvhB].m_nodeOffset; - // int endNodeIndexB = startNodeIndexB+subtreeB.m_subtreeSize; - - b3AlignedObjectArray<b3Int2> nodeStack; - b3Int2 node0; - node0.x = startNodeIndexA; - node0.y = startNodeIndexB; - - int maxStackDepth = 1024; - nodeStack.resize(maxStackDepth); - int depth=0; - nodeStack[depth++]=node0; - - do - { - if (depth > maxDepth) - { - maxDepth=depth; - printf("maxDepth=%d\n",maxDepth); - } - b3Int2 node = nodeStack[--depth]; - - b3Vector3 aMinLocal = MyUnQuantize(treeNodesCPU[node.x].m_quantizedAabbMin,bvhInfoCPU[bvhA].m_quantization,bvhInfoCPU[bvhA].m_aabbMin); - b3Vector3 aMaxLocal = MyUnQuantize(treeNodesCPU[node.x].m_quantizedAabbMax,bvhInfoCPU[bvhA].m_quantization,bvhInfoCPU[bvhA].m_aabbMin); - - b3Vector3 bMinLocal = MyUnQuantize(treeNodesCPU[node.y].m_quantizedAabbMin,bvhInfoCPU[bvhB].m_quantization,bvhInfoCPU[bvhB].m_aabbMin); - b3Vector3 bMaxLocal = MyUnQuantize(treeNodesCPU[node.y].m_quantizedAabbMax,bvhInfoCPU[bvhB].m_quantization,bvhInfoCPU[bvhB].m_aabbMin); - - float margin=0.f; - b3Vector3 aabbAMinOut,aabbAMaxOut; - b3TransformAabb2(aMinLocal,aMaxLocal, margin,transA.getOrigin(),transA.getRotation(),&aabbAMinOut,&aabbAMaxOut); - - b3Vector3 aabbBMinOut,aabbBMaxOut; - b3TransformAabb2(bMinLocal,bMaxLocal, margin,transB.getOrigin(),transB.getRotation(),&aabbBMinOut,&aabbBMaxOut); - - numAabbChecks++; - bool nodeOverlap = b3TestAabbAgainstAabb(aabbAMinOut,aabbAMaxOut,aabbBMinOut,aabbBMaxOut); - if (nodeOverlap) - { - bool isLeafA = treeNodesCPU[node.x].isLeafNode(); - bool isLeafB = treeNodesCPU[node.y].isLeafNode(); - bool isInternalA = !isLeafA; - bool isInternalB = !isLeafB; - - //fail, even though it might hit two leaf nodes - if (depth+4>maxStackDepth && !(isLeafA && isLeafB)) - { - b3Error("Error: traversal exceeded maxStackDepth\n"); - continue; - } - - if(isInternalA) - { - int nodeAleftChild = node.x+1; - bool isNodeALeftChildLeaf = treeNodesCPU[node.x+1].isLeafNode(); - int nodeArightChild = isNodeALeftChildLeaf? node.x+2 : node.x+1 + treeNodesCPU[node.x+1].getEscapeIndex(); - - if(isInternalB) - { - int nodeBleftChild = node.y+1; - bool isNodeBLeftChildLeaf = treeNodesCPU[node.y+1].isLeafNode(); - int nodeBrightChild = isNodeBLeftChildLeaf? node.y+2 : node.y+1 + treeNodesCPU[node.y+1].getEscapeIndex(); - - nodeStack[depth++] = b3MakeInt2(nodeAleftChild, nodeBleftChild); - nodeStack[depth++] = b3MakeInt2(nodeArightChild, nodeBleftChild); - nodeStack[depth++] = b3MakeInt2(nodeAleftChild, nodeBrightChild); - nodeStack[depth++] = b3MakeInt2(nodeArightChild, nodeBrightChild); - } - else - { - nodeStack[depth++] = b3MakeInt2(nodeAleftChild,node.y); - nodeStack[depth++] = b3MakeInt2(nodeArightChild,node.y); - } - } - else - { - if(isInternalB) - { - int nodeBleftChild = node.y+1; - bool isNodeBLeftChildLeaf = treeNodesCPU[node.y+1].isLeafNode(); - int nodeBrightChild = isNodeBLeftChildLeaf? node.y+2 : node.y+1 + treeNodesCPU[node.y+1].getEscapeIndex(); - nodeStack[depth++] = b3MakeInt2(node.x,nodeBleftChild); - nodeStack[depth++] = b3MakeInt2(node.x,nodeBrightChild); - } - else - { - int compoundPairIdx = b3AtomicInc(numCompoundPairsOut); - if (compoundPairIdx<maxNumCompoundPairsCapacity) - { - int childShapeIndexA = treeNodesCPU[node.x].getTriangleIndex(); - int childShapeIndexB = treeNodesCPU[node.y].getTriangleIndex(); - gpuCompoundPairsOut[compoundPairIdx] = b3MakeInt4(bodyIndexA,bodyIndexB,childShapeIndexA,childShapeIndexB); - } - } - } - } - } while (depth); - maxNumAabbChecks = b3Max(numAabbChecks,maxNumAabbChecks); - } - } - } - - return; - } - - if ((collidables[collidableIndexA].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) ||(collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)) - { - - if (collidables[collidableIndexA].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) - { - - int numChildrenA = collidables[collidableIndexA].m_numChildShapes; - for (int c=0;c<numChildrenA;c++) - { - int childShapeIndexA = collidables[collidableIndexA].m_shapeIndex+c; - int childColIndexA = gpuChildShapes[childShapeIndexA].m_shapeIndex; - - float4 posA = rigidBodies[bodyIndexA].m_pos; - b3Quat ornA = rigidBodies[bodyIndexA].m_quat; - float4 childPosA = gpuChildShapes[childShapeIndexA].m_childPosition; - b3Quat childOrnA = gpuChildShapes[childShapeIndexA].m_childOrientation; - float4 newPosA = b3QuatRotate(ornA,childPosA)+posA; - b3Quat newOrnA = b3QuatMul(ornA,childOrnA); - - - - b3Aabb aabbA = aabbsLocalSpace[childColIndexA]; - - - b3Transform transA; - transA.setIdentity(); - transA.setOrigin(newPosA); - transA.setRotation(newOrnA); - b3Scalar margin=0.0f; - - b3Vector3 aabbAMinOut,aabbAMaxOut; - - b3TransformAabb2((const b3Float4&)aabbA.m_min,(const b3Float4&)aabbA.m_max, margin,transA.getOrigin(),transA.getRotation(),&aabbAMinOut,&aabbAMaxOut); - - if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) - { - int numChildrenB = collidables[collidableIndexB].m_numChildShapes; - for (int b=0;b<numChildrenB;b++) - { - int childShapeIndexB = collidables[collidableIndexB].m_shapeIndex+b; - int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex; - b3Quat ornB = rigidBodies[bodyIndexB].m_quat; - float4 posB = rigidBodies[bodyIndexB].m_pos; - float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition; - b3Quat childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation; - float4 newPosB = transform(&childPosB,&posB,&ornB); - b3Quat newOrnB = b3QuatMul(ornB,childOrnB); - - - - b3Aabb aabbB = aabbsLocalSpace[childColIndexB]; - - b3Transform transB; - transB.setIdentity(); - transB.setOrigin(newPosB); - transB.setRotation(newOrnB); - - b3Vector3 aabbBMinOut,aabbBMaxOut; - b3TransformAabb2((const b3Float4&)aabbB.m_min,(const b3Float4&)aabbB.m_max, margin,transB.getOrigin(),transB.getRotation(),&aabbBMinOut,&aabbBMaxOut); - - numAabbChecks++; - bool aabbOverlap = b3TestAabbAgainstAabb(aabbAMinOut,aabbAMaxOut,aabbBMinOut,aabbBMaxOut); - if (aabbOverlap) - { - /* - int numFacesA = convexShapes[shapeIndexA].m_numFaces; - float dmin = FLT_MAX; - float4 posA = newPosA; - posA.w = 0.f; - float4 posB = newPosB; - posB.w = 0.f; - float4 c0local = convexShapes[shapeIndexA].m_localCenter; - b3Quat ornA = newOrnA; - float4 c0 = transform(&c0local, &posA, &ornA); - float4 c1local = convexShapes[shapeIndexB].m_localCenter; - b3Quat ornB =newOrnB; - float4 c1 = transform(&c1local,&posB,&ornB); - const float4 DeltaC2 = c0 - c1; - */ - {// - int compoundPairIdx = b3AtomicInc(numCompoundPairsOut); - if (compoundPairIdx<maxNumCompoundPairsCapacity) - { - gpuCompoundPairsOut[compoundPairIdx] = b3MakeInt4(bodyIndexA,bodyIndexB,childShapeIndexA,childShapeIndexB); - } - }// - }//fi(1) - } //for (int b=0 - }//if (collidables[collidableIndexB]. - else//if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) - { - if (1) - { - // int numFacesA = convexShapes[shapeIndexA].m_numFaces; - // float dmin = FLT_MAX; - float4 posA = newPosA; - posA.w = 0.f; - float4 posB = rigidBodies[bodyIndexB].m_pos; - posB.w = 0.f; - float4 c0local = convexShapes[shapeIndexA].m_localCenter; - b3Quat ornA = newOrnA; - float4 c0; - c0 = transform(&c0local, &posA, &ornA); - float4 c1local = convexShapes[shapeIndexB].m_localCenter; - b3Quat ornB = rigidBodies[bodyIndexB].m_quat; - float4 c1; - c1 = transform(&c1local,&posB,&ornB); - // const float4 DeltaC2 = c0 - c1; - - { - int compoundPairIdx = b3AtomicInc(numCompoundPairsOut); - if (compoundPairIdx<maxNumCompoundPairsCapacity) - { - gpuCompoundPairsOut[compoundPairIdx] = b3MakeInt4(bodyIndexA,bodyIndexB,childShapeIndexA,-1); - }//if (compoundPairIdx<maxNumCompoundPairsCapacity) - }// - }//fi (1) - }//if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) - }//for (int b=0;b<numChildrenB;b++) - return; - }//if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) - if ((collidables[collidableIndexA].m_shapeType!=SHAPE_CONCAVE_TRIMESH) - && (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)) - { - int numChildrenB = collidables[collidableIndexB].m_numChildShapes; - for (int b=0;b<numChildrenB;b++) - { - int childShapeIndexB = collidables[collidableIndexB].m_shapeIndex+b; - int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex; - b3Quat ornB = rigidBodies[bodyIndexB].m_quat; - float4 posB = rigidBodies[bodyIndexB].m_pos; - float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition; - b3Quat childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation; - float4 newPosB = b3QuatRotate(ornB,childPosB)+posB; - b3Quat newOrnB = b3QuatMul(ornB,childOrnB); - - int shapeIndexB = collidables[childColIndexB].m_shapeIndex; - - - ////////////////////////////////////// - - if (1) - { - // int numFacesA = convexShapes[shapeIndexA].m_numFaces; - // float dmin = FLT_MAX; - float4 posA = rigidBodies[bodyIndexA].m_pos; - posA.w = 0.f; - float4 posB = newPosB; - posB.w = 0.f; - float4 c0local = convexShapes[shapeIndexA].m_localCenter; - b3Quat ornA = rigidBodies[bodyIndexA].m_quat; - float4 c0; - c0 = transform(&c0local, &posA, &ornA); - float4 c1local = convexShapes[shapeIndexB].m_localCenter; - b3Quat ornB =newOrnB; - float4 c1; - c1 = transform(&c1local,&posB,&ornB); - // const float4 DeltaC2 = c0 - c1; - {// - int compoundPairIdx = b3AtomicInc(numCompoundPairsOut); - if (compoundPairIdx<maxNumCompoundPairsCapacity) - { - gpuCompoundPairsOut[compoundPairIdx] = b3MakeInt4(bodyIndexA,bodyIndexB,-1,childShapeIndexB); - }//fi (compoundPairIdx<maxNumCompoundPairsCapacity) - }// - }//fi (1) - }//for (int b=0;b<numChildrenB;b++) - return; - }//if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) - return; - }//fi ((collidables[collidableIndexA].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) ||(collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)) - }//i<numPairs -} - - - -__kernel void processCompoundPairsKernel( __global const b3Int4* gpuCompoundPairs, - __global const b3RigidBodyData* rigidBodies, - __global const b3Collidable* collidables, - __global const b3ConvexPolyhedronData* convexShapes, - __global const b3AlignedObjectArray<b3Float4>& vertices, - __global const b3AlignedObjectArray<b3Float4>& uniqueEdges, - __global const b3AlignedObjectArray<b3GpuFace>& faces, - __global const b3AlignedObjectArray<int>& indices, - __global b3Aabb* aabbs, - __global const b3GpuChildShape* gpuChildShapes, - __global b3AlignedObjectArray<b3Float4>& gpuCompoundSepNormalsOut, - __global b3AlignedObjectArray<int>& gpuHasCompoundSepNormalsOut, - int numCompoundPairs, - int i - ) -{ - -// int i = get_global_id(0); - if (i<numCompoundPairs) - { - int bodyIndexA = gpuCompoundPairs[i].x; - int bodyIndexB = gpuCompoundPairs[i].y; - - int childShapeIndexA = gpuCompoundPairs[i].z; - int childShapeIndexB = gpuCompoundPairs[i].w; - - int collidableIndexA = -1; - int collidableIndexB = -1; - - b3Quat ornA = rigidBodies[bodyIndexA].m_quat; - float4 posA = rigidBodies[bodyIndexA].m_pos; - - b3Quat ornB = rigidBodies[bodyIndexB].m_quat; - float4 posB = rigidBodies[bodyIndexB].m_pos; - - if (childShapeIndexA >= 0) - { - collidableIndexA = gpuChildShapes[childShapeIndexA].m_shapeIndex; - float4 childPosA = gpuChildShapes[childShapeIndexA].m_childPosition; - b3Quat childOrnA = gpuChildShapes[childShapeIndexA].m_childOrientation; - float4 newPosA = b3QuatRotate(ornA,childPosA)+posA; - b3Quat newOrnA = b3QuatMul(ornA,childOrnA); - posA = newPosA; - ornA = newOrnA; - } else - { - collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; - } - - if (childShapeIndexB>=0) - { - collidableIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex; - float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition; - b3Quat childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation; - float4 newPosB = b3QuatRotate(ornB,childPosB)+posB; - b3Quat newOrnB = b3QuatMul(ornB,childOrnB); - posB = newPosB; - ornB = newOrnB; - } else - { - collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; - } - - gpuHasCompoundSepNormalsOut[i] = 0; - - int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; - int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; - - int shapeTypeA = collidables[collidableIndexA].m_shapeType; - int shapeTypeB = collidables[collidableIndexB].m_shapeType; - - - if ((shapeTypeA != SHAPE_CONVEX_HULL) || (shapeTypeB != SHAPE_CONVEX_HULL)) - { - return; - } - - int hasSeparatingAxis = 5; - - // int numFacesA = convexShapes[shapeIndexA].m_numFaces; - float dmin = FLT_MAX; - posA.w = 0.f; - posB.w = 0.f; - float4 c0local = convexShapes[shapeIndexA].m_localCenter; - float4 c0 = transform(&c0local, &posA, &ornA); - float4 c1local = convexShapes[shapeIndexB].m_localCenter; - float4 c1 = transform(&c1local,&posB,&ornB); - const float4 DeltaC2 = c0 - c1; - float4 sepNormal = make_float4(1,0,0,0); -// bool sepA = findSeparatingAxis( convexShapes[shapeIndexA], convexShapes[shapeIndexB],posA,ornA,posB,ornB,DeltaC2,vertices,uniqueEdges,faces,indices,&sepNormal,&dmin); - bool sepA = findSeparatingAxis( convexShapes[shapeIndexA], convexShapes[shapeIndexB],posA,ornA,posB,ornB,vertices,uniqueEdges,faces,indices,vertices,uniqueEdges,faces,indices,sepNormal);//,&dmin); - - hasSeparatingAxis = 4; - if (!sepA) - { - hasSeparatingAxis = 0; - } else - { - bool sepB = findSeparatingAxis( convexShapes[shapeIndexB],convexShapes[shapeIndexA],posB,ornB,posA,ornA,vertices,uniqueEdges,faces,indices,vertices,uniqueEdges,faces,indices,sepNormal);//,&dmin); - - if (!sepB) - { - hasSeparatingAxis = 0; - } else//(!sepB) - { - bool sepEE = findSeparatingAxisEdgeEdge( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA,posB,ornB,DeltaC2,vertices,uniqueEdges,faces,indices,&sepNormal,&dmin); - if (sepEE) - { - gpuCompoundSepNormalsOut[i] = sepNormal;//fastNormalize4(sepNormal); - gpuHasCompoundSepNormalsOut[i] = 1; - }//sepEE - }//(!sepB) - }//(!sepA) - - - } - -} - - -__kernel void clipCompoundsHullHullKernel( __global const b3Int4* gpuCompoundPairs, - __global const b3RigidBodyData* rigidBodies, - __global const b3Collidable* collidables, - __global const b3ConvexPolyhedronData* convexShapes, - __global const b3AlignedObjectArray<b3Float4>& vertices, - __global const b3AlignedObjectArray<b3Float4>& uniqueEdges, - __global const b3AlignedObjectArray<b3GpuFace>& faces, - __global const b3AlignedObjectArray<int>& indices, - __global const b3GpuChildShape* gpuChildShapes, - __global const b3AlignedObjectArray<b3Float4>& gpuCompoundSepNormalsOut, - __global const b3AlignedObjectArray<int>& gpuHasCompoundSepNormalsOut, - __global struct b3Contact4Data* globalContactsOut, - int* nGlobalContactsOut, - int numCompoundPairs, int maxContactCapacity, int i) -{ - -// int i = get_global_id(0); - int pairIndex = i; - - float4 worldVertsB1[64]; - float4 worldVertsB2[64]; - int capacityWorldVerts = 64; - - float4 localContactsOut[64]; - int localContactCapacity=64; - - float minDist = -1e30f; - float maxDist = 0.0f; - - if (i<numCompoundPairs) - { - - if (gpuHasCompoundSepNormalsOut[i]) - { - - int bodyIndexA = gpuCompoundPairs[i].x; - int bodyIndexB = gpuCompoundPairs[i].y; - - int childShapeIndexA = gpuCompoundPairs[i].z; - int childShapeIndexB = gpuCompoundPairs[i].w; - - int collidableIndexA = -1; - int collidableIndexB = -1; - - b3Quat ornA = rigidBodies[bodyIndexA].m_quat; - float4 posA = rigidBodies[bodyIndexA].m_pos; - - b3Quat ornB = rigidBodies[bodyIndexB].m_quat; - float4 posB = rigidBodies[bodyIndexB].m_pos; - - if (childShapeIndexA >= 0) - { - collidableIndexA = gpuChildShapes[childShapeIndexA].m_shapeIndex; - float4 childPosA = gpuChildShapes[childShapeIndexA].m_childPosition; - b3Quat childOrnA = gpuChildShapes[childShapeIndexA].m_childOrientation; - float4 newPosA = b3QuatRotate(ornA,childPosA)+posA; - b3Quat newOrnA = b3QuatMul(ornA,childOrnA); - posA = newPosA; - ornA = newOrnA; - } else - { - collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; - } - - if (childShapeIndexB>=0) - { - collidableIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex; - float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition; - b3Quat childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation; - float4 newPosB = b3QuatRotate(ornB,childPosB)+posB; - b3Quat newOrnB = b3QuatMul(ornB,childOrnB); - posB = newPosB; - ornB = newOrnB; - } else - { - collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; - } - - int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; - int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; - - int numLocalContactsOut = clipHullAgainstHull(gpuCompoundSepNormalsOut[i], - convexShapes[shapeIndexA], convexShapes[shapeIndexB], - posA,ornA, - posB,ornB, - worldVertsB1,worldVertsB2,capacityWorldVerts, - minDist, maxDist, - vertices,faces,indices, - vertices,faces,indices, - localContactsOut,localContactCapacity); - - if (numLocalContactsOut>0) - { - float4 normal = -gpuCompoundSepNormalsOut[i]; - int nPoints = numLocalContactsOut; - float4* pointsIn = localContactsOut; - b3Int4 contactIdx;// = {-1,-1,-1,-1}; - - contactIdx.s[0] = 0; - contactIdx.s[1] = 1; - contactIdx.s[2] = 2; - contactIdx.s[3] = 3; - - int nReducedContacts = extractManifoldSequentialGlobal(pointsIn, nPoints, normal, &contactIdx); - - int dstIdx; - dstIdx = b3AtomicInc( nGlobalContactsOut); - if ((dstIdx+nReducedContacts) < maxContactCapacity) - { - __global struct b3Contact4Data* c = globalContactsOut+ dstIdx; - c->m_worldNormalOnB = -normal; - c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff); - c->m_batchIdx = pairIndex; - int bodyA = gpuCompoundPairs[pairIndex].x; - int bodyB = gpuCompoundPairs[pairIndex].y; - c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0?-bodyA:bodyA; - c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0?-bodyB:bodyB; - c->m_childIndexA = childShapeIndexA; - c->m_childIndexB = childShapeIndexB; - for (int i=0;i<nReducedContacts;i++) - { - c->m_worldPosB[i] = pointsIn[contactIdx.s[i]]; - } - b3Contact4Data_setNumPoints(c,nReducedContacts); - } - - }// if (numContactsOut>0) - }// if (gpuHasCompoundSepNormalsOut[i]) - }// if (i<numCompoundPairs) - -} - - -void computeContactCompoundCompound(int pairIndex, - int bodyIndexA, int bodyIndexB, - int collidableIndexA, int collidableIndexB, - const b3RigidBodyData* rigidBodies, - const b3Collidable* collidables, - const b3ConvexPolyhedronData* convexShapes, - const b3GpuChildShape* cpuChildShapes, - const b3AlignedObjectArray<b3Aabb>& hostAabbsWorldSpace, - const b3AlignedObjectArray<b3Aabb>& hostAabbsLocalSpace, - - const b3AlignedObjectArray<b3Vector3>& convexVertices, - const b3AlignedObjectArray<b3Vector3>& hostUniqueEdges, - const b3AlignedObjectArray<int>& convexIndices, - const b3AlignedObjectArray<b3GpuFace>& faces, - - b3Contact4* globalContactsOut, - int& nGlobalContactsOut, - int maxContactCapacity, - b3AlignedObjectArray<b3QuantizedBvhNode>& treeNodesCPU, - b3AlignedObjectArray<b3BvhSubtreeInfo>& subTreesCPU, - b3AlignedObjectArray<b3BvhInfo>& bvhInfoCPU - ) -{ - - int shapeTypeB = collidables[collidableIndexB].m_shapeType; - b3Assert(shapeTypeB == SHAPE_COMPOUND_OF_CONVEX_HULLS); - - b3AlignedObjectArray<b3Int4> cpuCompoundPairsOut; - int numCompoundPairsOut=0; - int maxNumCompoundPairsCapacity = 8192;//1024; - cpuCompoundPairsOut.resize(maxNumCompoundPairsCapacity); - - // work-in-progress - findCompoundPairsKernel( - pairIndex, - bodyIndexA,bodyIndexB, - collidableIndexA,collidableIndexB, - rigidBodies, - collidables, - convexShapes, - convexVertices, - hostAabbsWorldSpace, - hostAabbsLocalSpace, - cpuChildShapes, - &cpuCompoundPairsOut[0], - &numCompoundPairsOut, - maxNumCompoundPairsCapacity , - treeNodesCPU, - subTreesCPU, - bvhInfoCPU - ); - - printf("maxNumAabbChecks=%d\n",maxNumAabbChecks); - if (numCompoundPairsOut>maxNumCompoundPairsCapacity) - { - b3Error("numCompoundPairsOut exceeded maxNumCompoundPairsCapacity (%d)\n",maxNumCompoundPairsCapacity); - numCompoundPairsOut=maxNumCompoundPairsCapacity; - } - b3AlignedObjectArray<b3Float4> cpuCompoundSepNormalsOut; - b3AlignedObjectArray<int> cpuHasCompoundSepNormalsOut; - cpuCompoundSepNormalsOut.resize(numCompoundPairsOut); - cpuHasCompoundSepNormalsOut.resize(numCompoundPairsOut); - - for (int i=0;i<numCompoundPairsOut;i++) - { - - processCompoundPairsKernel(&cpuCompoundPairsOut[0],rigidBodies,collidables,convexShapes,convexVertices,hostUniqueEdges,faces,convexIndices,0,cpuChildShapes, - cpuCompoundSepNormalsOut,cpuHasCompoundSepNormalsOut,numCompoundPairsOut,i); - } - - for (int i=0;i<numCompoundPairsOut;i++) - { - clipCompoundsHullHullKernel(&cpuCompoundPairsOut[0],rigidBodies,collidables,convexShapes,convexVertices,hostUniqueEdges,faces,convexIndices,cpuChildShapes, - cpuCompoundSepNormalsOut,cpuHasCompoundSepNormalsOut,globalContactsOut,&nGlobalContactsOut,numCompoundPairsOut,maxContactCapacity,i); - } - /* - int childColIndexA = gpuChildShapes[childShapeIndexA].m_shapeIndex; - - float4 posA = rigidBodies[bodyIndexA].m_pos; - b3Quat ornA = rigidBodies[bodyIndexA].m_quat; - float4 childPosA = gpuChildShapes[childShapeIndexA].m_childPosition; - b3Quat childOrnA = gpuChildShapes[childShapeIndexA].m_childOrientation; - float4 newPosA = b3QuatRotate(ornA,childPosA)+posA; - b3Quat newOrnA = b3QuatMul(ornA,childOrnA); - - int shapeIndexA = collidables[childColIndexA].m_shapeIndex; - - - bool foundSepAxis = findSeparatingAxis(hullA,hullB, - posA, - ornA, - posB, - ornB, - - convexVertices,uniqueEdges,faces,convexIndices, - convexVertices,uniqueEdges,faces,convexIndices, - - sepNormalWorldSpace - ); - */ - - - /* - if (foundSepAxis) - { - - - contactIndex = clipHullHullSingle( - bodyIndexA, bodyIndexB, - posA,ornA, - posB,ornB, - collidableIndexA, collidableIndexB, - &rigidBodies, - &globalContactsOut, - nGlobalContactsOut, - - convexShapes, - convexShapes, - - convexVertices, - uniqueEdges, - faces, - convexIndices, - - convexVertices, - uniqueEdges, - faces, - convexIndices, - - collidables, - collidables, - sepNormalWorldSpace, - maxContactCapacity); - - } - */ - -// return contactIndex; - - /* - - int numChildrenB = collidables[collidableIndexB].m_numChildShapes; - for (int c=0;c<numChildrenB;c++) - { - int childShapeIndexB = collidables[collidableIndexB].m_shapeIndex+c; - int childColIndexB = cpuChildShapes[childShapeIndexB].m_shapeIndex; - - float4 rootPosB = rigidBodies[bodyIndexB].m_pos; - b3Quaternion rootOrnB = rigidBodies[bodyIndexB].m_quat; - b3Vector3 childPosB = cpuChildShapes[childShapeIndexB].m_childPosition; - b3Quaternion childOrnB = cpuChildShapes[childShapeIndexB].m_childOrientation; - float4 posB = b3QuatRotate(rootOrnB,childPosB)+rootPosB; - b3Quaternion ornB = b3QuatMul(rootOrnB,childOrnB);//b3QuatMul(ornB,childOrnB); - - int shapeIndexB = collidables[childColIndexB].m_shapeIndex; - - const b3ConvexPolyhedronData* hullB = &convexShapes[shapeIndexB]; - - } - */ - -} - -void computeContactPlaneCompound(int pairIndex, - int bodyIndexA, int bodyIndexB, - int collidableIndexA, int collidableIndexB, - const b3RigidBodyData* rigidBodies, - const b3Collidable* collidables, - const b3ConvexPolyhedronData* convexShapes, - const b3GpuChildShape* cpuChildShapes, - const b3Vector3* convexVertices, - const int* convexIndices, - const b3GpuFace* faces, - - b3Contact4* globalContactsOut, - int& nGlobalContactsOut, - int maxContactCapacity) -{ - - int shapeTypeB = collidables[collidableIndexB].m_shapeType; - b3Assert(shapeTypeB == SHAPE_COMPOUND_OF_CONVEX_HULLS); - - - int numChildrenB = collidables[collidableIndexB].m_numChildShapes; - for (int c=0;c<numChildrenB;c++) - { - int childShapeIndexB = collidables[collidableIndexB].m_shapeIndex+c; - int childColIndexB = cpuChildShapes[childShapeIndexB].m_shapeIndex; - - float4 rootPosB = rigidBodies[bodyIndexB].m_pos; - b3Quaternion rootOrnB = rigidBodies[bodyIndexB].m_quat; - b3Vector3 childPosB = cpuChildShapes[childShapeIndexB].m_childPosition; - b3Quaternion childOrnB = cpuChildShapes[childShapeIndexB].m_childOrientation; - float4 posB = b3QuatRotate(rootOrnB,childPosB)+rootPosB; - b3Quaternion ornB = rootOrnB*childOrnB;//b3QuatMul(ornB,childOrnB); - - int shapeIndexB = collidables[childColIndexB].m_shapeIndex; - - const b3ConvexPolyhedronData* hullB = &convexShapes[shapeIndexB]; - - - b3Vector3 posA = rigidBodies[bodyIndexA].m_pos; - b3Quaternion ornA = rigidBodies[bodyIndexA].m_quat; - - // int numContactsOut = 0; - // int numWorldVertsB1= 0; - - b3Vector3 planeEq = faces[collidables[collidableIndexA].m_shapeIndex].m_plane; - b3Vector3 planeNormal=b3MakeVector3(planeEq.x,planeEq.y,planeEq.z); - b3Vector3 planeNormalWorld = b3QuatRotate(ornA,planeNormal); - float planeConstant = planeEq.w; - b3Transform convexWorldTransform; - convexWorldTransform.setIdentity(); - convexWorldTransform.setOrigin(posB); - convexWorldTransform.setRotation(ornB); - b3Transform planeTransform; - planeTransform.setIdentity(); - planeTransform.setOrigin(posA); - planeTransform.setRotation(ornA); - - b3Transform planeInConvex; - planeInConvex= convexWorldTransform.inverse() * planeTransform; - b3Transform convexInPlane; - convexInPlane = planeTransform.inverse() * convexWorldTransform; - - b3Vector3 planeNormalInConvex = planeInConvex.getBasis()*-planeNormal; - float maxDot = -1e30; - int hitVertex=-1; - b3Vector3 hitVtx; - - #define MAX_PLANE_CONVEX_POINTS 64 - - b3Vector3 contactPoints[MAX_PLANE_CONVEX_POINTS]; - int numPoints = 0; - - b3Int4 contactIdx; - contactIdx.s[0] = 0; - contactIdx.s[1] = 1; - contactIdx.s[2] = 2; - contactIdx.s[3] = 3; - - for (int i=0;i<hullB->m_numVertices;i++) - { - b3Vector3 vtx = convexVertices[hullB->m_vertexOffset+i]; - float curDot = vtx.dot(planeNormalInConvex); - - - if (curDot>maxDot) - { - hitVertex=i; - maxDot=curDot; - hitVtx = vtx; - //make sure the deepest points is always included - if (numPoints==MAX_PLANE_CONVEX_POINTS) - numPoints--; - } - - if (numPoints<MAX_PLANE_CONVEX_POINTS) - { - b3Vector3 vtxWorld = convexWorldTransform*vtx; - b3Vector3 vtxInPlane = planeTransform.inverse()*vtxWorld; - float dist = planeNormal.dot(vtxInPlane)-planeConstant; - if (dist<0.f) - { - vtxWorld.w = dist; - contactPoints[numPoints] = vtxWorld; - numPoints++; - } - } - - } - - int numReducedPoints = 0; - - numReducedPoints = numPoints; - - if (numPoints>4) - { - numReducedPoints = extractManifoldSequentialGlobal( contactPoints, numPoints, planeNormalInConvex, &contactIdx); - } - int dstIdx; - // dstIdx = nGlobalContactsOut++;//AppendInc( nGlobalContactsOut, dstIdx ); - - if (numReducedPoints>0) - { - if (nGlobalContactsOut < maxContactCapacity) - { - dstIdx=nGlobalContactsOut; - nGlobalContactsOut++; - - b3Contact4* c = &globalContactsOut[dstIdx]; - c->m_worldNormalOnB = -planeNormalWorld; - c->setFrictionCoeff(0.7); - c->setRestituitionCoeff(0.f); - - c->m_batchIdx = pairIndex; - c->m_bodyAPtrAndSignBit = rigidBodies[bodyIndexA].m_invMass==0?-bodyIndexA:bodyIndexA; - c->m_bodyBPtrAndSignBit = rigidBodies[bodyIndexB].m_invMass==0?-bodyIndexB:bodyIndexB; - for (int i=0;i<numReducedPoints;i++) - { - b3Vector3 pOnB1 = contactPoints[contactIdx.s[i]]; - c->m_worldPosB[i] = pOnB1; - } - c->m_worldNormalOnB.w = (b3Scalar)numReducedPoints; - }//if (dstIdx < numPairs) - } - - } - - -} - - - - - -void computeContactSphereConvex(int pairIndex, - int bodyIndexA, int bodyIndexB, - int collidableIndexA, int collidableIndexB, - const b3RigidBodyData* rigidBodies, - const b3Collidable* collidables, - const b3ConvexPolyhedronData* convexShapes, - const b3Vector3* convexVertices, - const int* convexIndices, - const b3GpuFace* faces, - b3Contact4* globalContactsOut, - int& nGlobalContactsOut, - int maxContactCapacity) -{ - - float radius = collidables[collidableIndexA].m_radius; - float4 spherePos1 = rigidBodies[bodyIndexA].m_pos; - b3Quaternion sphereOrn = rigidBodies[bodyIndexA].m_quat; - - - - float4 pos = rigidBodies[bodyIndexB].m_pos; - - - b3Quaternion quat = rigidBodies[bodyIndexB].m_quat; - - b3Transform tr; - tr.setIdentity(); - tr.setOrigin(pos); - tr.setRotation(quat); - b3Transform trInv = tr.inverse(); - - float4 spherePos = trInv(spherePos1); - - int collidableIndex = rigidBodies[bodyIndexB].m_collidableIdx; - int shapeIndex = collidables[collidableIndex].m_shapeIndex; - int numFaces = convexShapes[shapeIndex].m_numFaces; - float4 closestPnt = b3MakeVector3(0, 0, 0, 0); -// float4 hitNormalWorld = b3MakeVector3(0, 0, 0, 0); - float minDist = -1000000.f; // TODO: What is the largest/smallest float? - bool bCollide = true; - int region = -1; - float4 localHitNormal; - for ( int f = 0; f < numFaces; f++ ) - { - b3GpuFace face = faces[convexShapes[shapeIndex].m_faceOffset+f]; - float4 planeEqn; - float4 localPlaneNormal = b3MakeVector3(face.m_plane.x,face.m_plane.y,face.m_plane.z,0.f); - float4 n1 = localPlaneNormal;//quatRotate(quat,localPlaneNormal); - planeEqn = n1; - planeEqn[3] = face.m_plane.w; - - float4 pntReturn; - float dist = signedDistanceFromPointToPlane(spherePos, planeEqn, &pntReturn); - - if ( dist > radius) - { - bCollide = false; - break; - } - - if ( dist > 0 ) - { - //might hit an edge or vertex - b3Vector3 out; - - bool isInPoly = IsPointInPolygon(spherePos, - &face, - &convexVertices[convexShapes[shapeIndex].m_vertexOffset], - convexIndices, - &out); - if (isInPoly) - { - if (dist>minDist) - { - minDist = dist; - closestPnt = pntReturn; - localHitNormal = planeEqn; - region=1; - } - } else - { - b3Vector3 tmp = spherePos-out; - b3Scalar l2 = tmp.length2(); - if (l2<radius*radius) - { - dist = b3Sqrt(l2); - if (dist>minDist) - { - minDist = dist; - closestPnt = out; - localHitNormal = tmp/dist; - region=2; - } - - } else - { - bCollide = false; - break; - } - } - } - else - { - if ( dist > minDist ) - { - minDist = dist; - closestPnt = pntReturn; - localHitNormal = planeEqn; - region=3; - } - } - } - static int numChecks = 0; - numChecks++; - - if (bCollide && minDist > -10000) - { - - float4 normalOnSurfaceB1 = tr.getBasis()*localHitNormal;//-hitNormalWorld; - float4 pOnB1 = tr(closestPnt); - //printf("dist ,%f,",minDist); - float actualDepth = minDist-radius; - if (actualDepth<0) - { - //printf("actualDepth = ,%f,", actualDepth); - //printf("normalOnSurfaceB1 = ,%f,%f,%f,", normalOnSurfaceB1.x,normalOnSurfaceB1.y,normalOnSurfaceB1.z); - //printf("region=,%d,\n", region); - pOnB1[3] = actualDepth; - - int dstIdx; -// dstIdx = nGlobalContactsOut++;//AppendInc( nGlobalContactsOut, dstIdx ); - - if (nGlobalContactsOut < maxContactCapacity) - { - dstIdx=nGlobalContactsOut; - nGlobalContactsOut++; - - b3Contact4* c = &globalContactsOut[dstIdx]; - c->m_worldNormalOnB = normalOnSurfaceB1; - c->setFrictionCoeff(0.7); - c->setRestituitionCoeff(0.f); - - c->m_batchIdx = pairIndex; - c->m_bodyAPtrAndSignBit = rigidBodies[bodyIndexA].m_invMass==0?-bodyIndexA:bodyIndexA; - c->m_bodyBPtrAndSignBit = rigidBodies[bodyIndexB].m_invMass==0?-bodyIndexB:bodyIndexB; - c->m_worldPosB[0] = pOnB1; - int numPoints = 1; - c->m_worldNormalOnB.w = (b3Scalar)numPoints; - }//if (dstIdx < numPairs) - } - }//if (hasCollision) - -} - - - - -int computeContactConvexConvex2( - int pairIndex, - int bodyIndexA, int bodyIndexB, - int collidableIndexA, int collidableIndexB, - const b3AlignedObjectArray<b3RigidBodyData>& rigidBodies, - const b3AlignedObjectArray<b3Collidable>& collidables, - const b3AlignedObjectArray<b3ConvexPolyhedronData>& convexShapes, - const b3AlignedObjectArray<b3Vector3>& convexVertices, - const b3AlignedObjectArray<b3Vector3>& uniqueEdges, - const b3AlignedObjectArray<int>& convexIndices, - const b3AlignedObjectArray<b3GpuFace>& faces, - b3AlignedObjectArray<b3Contact4>& globalContactsOut, - int& nGlobalContactsOut, - int maxContactCapacity, - const b3AlignedObjectArray<b3Contact4>& oldContacts - ) -{ - int contactIndex = -1; - b3Vector3 posA = rigidBodies[bodyIndexA].m_pos; - b3Quaternion ornA = rigidBodies[bodyIndexA].m_quat; - b3Vector3 posB = rigidBodies[bodyIndexB].m_pos; - b3Quaternion ornB = rigidBodies[bodyIndexB].m_quat; - - - b3ConvexPolyhedronData hullA, hullB; - - b3Vector3 sepNormalWorldSpace; - - - - b3Collidable colA = collidables[collidableIndexA]; - hullA = convexShapes[colA.m_shapeIndex]; - //printf("numvertsA = %d\n",hullA.m_numVertices); - - - b3Collidable colB = collidables[collidableIndexB]; - hullB = convexShapes[colB.m_shapeIndex]; - //printf("numvertsB = %d\n",hullB.m_numVertices); - -// int contactCapacity = MAX_VERTS; - //int numContactsOut=0; - - -#ifdef _WIN32 - b3Assert(_finite(rigidBodies[bodyIndexA].m_pos.x)); - b3Assert(_finite(rigidBodies[bodyIndexB].m_pos.x)); -#endif - - bool foundSepAxis = findSeparatingAxis(hullA,hullB, - posA, - ornA, - posB, - ornB, - - convexVertices,uniqueEdges,faces,convexIndices, - convexVertices,uniqueEdges,faces,convexIndices, - - sepNormalWorldSpace - ); - - - if (foundSepAxis) - { - - - contactIndex = clipHullHullSingle( - bodyIndexA, bodyIndexB, - posA,ornA, - posB,ornB, - collidableIndexA, collidableIndexB, - &rigidBodies, - &globalContactsOut, - nGlobalContactsOut, - - convexShapes, - convexShapes, - - convexVertices, - uniqueEdges, - faces, - convexIndices, - - convexVertices, - uniqueEdges, - faces, - convexIndices, - - collidables, - collidables, - sepNormalWorldSpace, - maxContactCapacity); - - } - - return contactIndex; -} - - - - - - - -void GpuSatCollision::computeConvexConvexContactsGPUSAT( b3OpenCLArray<b3Int4>* pairs, int nPairs, - const b3OpenCLArray<b3RigidBodyData>* bodyBuf, - b3OpenCLArray<b3Contact4>* contactOut, int& nContacts, - const b3OpenCLArray<b3Contact4>* oldContacts, - int maxContactCapacity, - int compoundPairCapacity, - const b3OpenCLArray<b3ConvexPolyhedronData>& convexData, - const b3OpenCLArray<b3Vector3>& gpuVertices, - const b3OpenCLArray<b3Vector3>& gpuUniqueEdges, - const b3OpenCLArray<b3GpuFace>& gpuFaces, - const b3OpenCLArray<int>& gpuIndices, - const b3OpenCLArray<b3Collidable>& gpuCollidables, - const b3OpenCLArray<b3GpuChildShape>& gpuChildShapes, - - const b3OpenCLArray<b3Aabb>& clAabbsWorldSpace, - const b3OpenCLArray<b3Aabb>& clAabbsLocalSpace, - - b3OpenCLArray<b3Vector3>& worldVertsB1GPU, - b3OpenCLArray<b3Int4>& clippingFacesOutGPU, - b3OpenCLArray<b3Vector3>& worldNormalsAGPU, - b3OpenCLArray<b3Vector3>& worldVertsA1GPU, - b3OpenCLArray<b3Vector3>& worldVertsB2GPU, - b3AlignedObjectArray<class b3OptimizedBvh*>& bvhDataUnused, - b3OpenCLArray<b3QuantizedBvhNode>* treeNodesGPU, - b3OpenCLArray<b3BvhSubtreeInfo>* subTreesGPU, - b3OpenCLArray<b3BvhInfo>* bvhInfo, - - int numObjects, - int maxTriConvexPairCapacity, - b3OpenCLArray<b3Int4>& triangleConvexPairsOut, - int& numTriConvexPairsOut - ) -{ - myframecount++; - - if (!nPairs) - return; - -#ifdef CHECK_ON_HOST - - - b3AlignedObjectArray<b3QuantizedBvhNode> treeNodesCPU; - treeNodesGPU->copyToHost(treeNodesCPU); - - b3AlignedObjectArray<b3BvhSubtreeInfo> subTreesCPU; - subTreesGPU->copyToHost(subTreesCPU); - - b3AlignedObjectArray<b3BvhInfo> bvhInfoCPU; - bvhInfo->copyToHost(bvhInfoCPU); - - b3AlignedObjectArray<b3Aabb> hostAabbsWorldSpace; - clAabbsWorldSpace.copyToHost(hostAabbsWorldSpace); - - b3AlignedObjectArray<b3Aabb> hostAabbsLocalSpace; - clAabbsLocalSpace.copyToHost(hostAabbsLocalSpace); - - b3AlignedObjectArray<b3Int4> hostPairs; - pairs->copyToHost(hostPairs); - - b3AlignedObjectArray<b3RigidBodyData> hostBodyBuf; - bodyBuf->copyToHost(hostBodyBuf); - - - - b3AlignedObjectArray<b3ConvexPolyhedronData> hostConvexData; - convexData.copyToHost(hostConvexData); - - b3AlignedObjectArray<b3Vector3> hostVertices; - gpuVertices.copyToHost(hostVertices); - - b3AlignedObjectArray<b3Vector3> hostUniqueEdges; - gpuUniqueEdges.copyToHost(hostUniqueEdges); - b3AlignedObjectArray<b3GpuFace> hostFaces; - gpuFaces.copyToHost(hostFaces); - b3AlignedObjectArray<int> hostIndices; - gpuIndices.copyToHost(hostIndices); - b3AlignedObjectArray<b3Collidable> hostCollidables; - gpuCollidables.copyToHost(hostCollidables); - - b3AlignedObjectArray<b3GpuChildShape> cpuChildShapes; - gpuChildShapes.copyToHost(cpuChildShapes); - - - b3AlignedObjectArray<b3Int4> hostTriangleConvexPairs; - - b3AlignedObjectArray<b3Contact4> hostContacts; - if (nContacts) - { - contactOut->copyToHost(hostContacts); - } - - b3AlignedObjectArray<b3Contact4> oldHostContacts; - - if (oldContacts->size()) - { - oldContacts->copyToHost(oldHostContacts); - } - - - hostContacts.resize(maxContactCapacity); - - for (int i=0;i<nPairs;i++) - { - int bodyIndexA = hostPairs[i].x; - int bodyIndexB = hostPairs[i].y; - int collidableIndexA = hostBodyBuf[bodyIndexA].m_collidableIdx; - int collidableIndexB = hostBodyBuf[bodyIndexB].m_collidableIdx; - - if (hostCollidables[collidableIndexA].m_shapeType == SHAPE_SPHERE && - hostCollidables[collidableIndexB].m_shapeType == SHAPE_CONVEX_HULL) - { - computeContactSphereConvex(i,bodyIndexA,bodyIndexB,collidableIndexA,collidableIndexB,&hostBodyBuf[0], - &hostCollidables[0],&hostConvexData[0],&hostVertices[0],&hostIndices[0],&hostFaces[0],&hostContacts[0],nContacts,maxContactCapacity); - } - - if (hostCollidables[collidableIndexA].m_shapeType == SHAPE_CONVEX_HULL && - hostCollidables[collidableIndexB].m_shapeType == SHAPE_SPHERE) - { - computeContactSphereConvex(i,bodyIndexB,bodyIndexA,collidableIndexB,collidableIndexA,&hostBodyBuf[0], - &hostCollidables[0],&hostConvexData[0],&hostVertices[0],&hostIndices[0],&hostFaces[0],&hostContacts[0],nContacts,maxContactCapacity); - //printf("convex-sphere\n"); - - } - - if (hostCollidables[collidableIndexA].m_shapeType == SHAPE_CONVEX_HULL && - hostCollidables[collidableIndexB].m_shapeType == SHAPE_PLANE) - { - computeContactPlaneConvex(i,bodyIndexB,bodyIndexA,collidableIndexB,collidableIndexA,&hostBodyBuf[0], - &hostCollidables[0],&hostConvexData[0],&hostVertices[0],&hostIndices[0],&hostFaces[0],&hostContacts[0],nContacts,maxContactCapacity); -// printf("convex-plane\n"); - - } - - if (hostCollidables[collidableIndexA].m_shapeType == SHAPE_PLANE && - hostCollidables[collidableIndexB].m_shapeType == SHAPE_CONVEX_HULL) - { - computeContactPlaneConvex(i,bodyIndexA,bodyIndexB,collidableIndexA,collidableIndexB,&hostBodyBuf[0], - &hostCollidables[0],&hostConvexData[0],&hostVertices[0],&hostIndices[0],&hostFaces[0],&hostContacts[0],nContacts,maxContactCapacity); -// printf("plane-convex\n"); - - } - - if (hostCollidables[collidableIndexA].m_shapeType == SHAPE_COMPOUND_OF_CONVEX_HULLS && - hostCollidables[collidableIndexB].m_shapeType == SHAPE_COMPOUND_OF_CONVEX_HULLS) - { - computeContactCompoundCompound(i,bodyIndexB,bodyIndexA,collidableIndexB,collidableIndexA,&hostBodyBuf[0], - &hostCollidables[0],&hostConvexData[0],&cpuChildShapes[0], hostAabbsWorldSpace,hostAabbsLocalSpace,hostVertices,hostUniqueEdges,hostIndices,hostFaces,&hostContacts[0], - nContacts,maxContactCapacity,treeNodesCPU,subTreesCPU,bvhInfoCPU); -// printf("convex-plane\n"); - - } - - - if (hostCollidables[collidableIndexA].m_shapeType == SHAPE_COMPOUND_OF_CONVEX_HULLS && - hostCollidables[collidableIndexB].m_shapeType == SHAPE_PLANE) - { - computeContactPlaneCompound(i,bodyIndexB,bodyIndexA,collidableIndexB,collidableIndexA,&hostBodyBuf[0], - &hostCollidables[0],&hostConvexData[0],&cpuChildShapes[0], &hostVertices[0],&hostIndices[0],&hostFaces[0],&hostContacts[0],nContacts,maxContactCapacity); -// printf("convex-plane\n"); - - } - - if (hostCollidables[collidableIndexA].m_shapeType == SHAPE_PLANE && - hostCollidables[collidableIndexB].m_shapeType == SHAPE_COMPOUND_OF_CONVEX_HULLS) - { - computeContactPlaneCompound(i,bodyIndexA,bodyIndexB,collidableIndexA,collidableIndexB,&hostBodyBuf[0], - &hostCollidables[0],&hostConvexData[0],&cpuChildShapes[0],&hostVertices[0],&hostIndices[0],&hostFaces[0],&hostContacts[0],nContacts,maxContactCapacity); -// printf("plane-convex\n"); - - } - - if (hostCollidables[collidableIndexA].m_shapeType == SHAPE_CONVEX_HULL && - hostCollidables[collidableIndexB].m_shapeType == SHAPE_CONVEX_HULL) - { - //printf("hostPairs[i].z=%d\n",hostPairs[i].z); - int contactIndex = computeContactConvexConvex2( i,bodyIndexA,bodyIndexB,collidableIndexA,collidableIndexB,hostBodyBuf, hostCollidables,hostConvexData,hostVertices,hostUniqueEdges,hostIndices,hostFaces,hostContacts,nContacts,maxContactCapacity,oldHostContacts); - //int contactIndex = computeContactConvexConvex(hostPairs,i,bodyIndexA,bodyIndexB,collidableIndexA,collidableIndexB,hostBodyBuf,hostCollidables,hostConvexData,hostVertices,hostUniqueEdges,hostIndices,hostFaces,hostContacts,nContacts,maxContactCapacity,oldHostContacts); - - - if (contactIndex>=0) - { -// printf("convex convex contactIndex = %d\n",contactIndex); - hostPairs[i].z = contactIndex; - } -// printf("plane-convex\n"); - - } - - - } - - if (hostPairs.size()) - { - pairs->copyFromHost(hostPairs); - } - - hostContacts.resize(nContacts); - if (nContacts) - { - - contactOut->copyFromHost(hostContacts); - } else - { - contactOut->resize(0); - } - - m_totalContactsOut.copyFromHostPointer(&nContacts,1,0,true); - //printf("(HOST) nContacts = %d\n",nContacts); - -#else - - { - if (nPairs) - { - m_totalContactsOut.copyFromHostPointer(&nContacts,1,0,true); - - B3_PROFILE("primitiveContactsKernel"); - b3BufferInfoCL bInfo[] = { - b3BufferInfoCL( pairs->getBufferCL(), true ), - b3BufferInfoCL( bodyBuf->getBufferCL(),true), - b3BufferInfoCL( gpuCollidables.getBufferCL(),true), - b3BufferInfoCL( convexData.getBufferCL(),true), - b3BufferInfoCL( gpuVertices.getBufferCL(),true), - b3BufferInfoCL( gpuUniqueEdges.getBufferCL(),true), - b3BufferInfoCL( gpuFaces.getBufferCL(),true), - b3BufferInfoCL( gpuIndices.getBufferCL(),true), - b3BufferInfoCL( contactOut->getBufferCL()), - b3BufferInfoCL( m_totalContactsOut.getBufferCL()) - }; - - b3LauncherCL launcher(m_queue, m_primitiveContactsKernel,"m_primitiveContactsKernel"); - launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(b3BufferInfoCL) ); - launcher.setConst( nPairs ); - launcher.setConst(maxContactCapacity); - int num = nPairs; - launcher.launch1D( num); - clFinish(m_queue); - - nContacts = m_totalContactsOut.at(0); - contactOut->resize(nContacts); - } - } - - -#endif//CHECK_ON_HOST - - B3_PROFILE("computeConvexConvexContactsGPUSAT"); - // printf("nContacts = %d\n",nContacts); - - - m_sepNormals.resize(nPairs); - m_hasSeparatingNormals.resize(nPairs); - - int concaveCapacity=maxTriConvexPairCapacity; - m_concaveSepNormals.resize(concaveCapacity); - m_concaveHasSeparatingNormals.resize(concaveCapacity); - m_numConcavePairsOut.resize(0); - m_numConcavePairsOut.push_back(0); - - - m_gpuCompoundPairs.resize(compoundPairCapacity); - - m_gpuCompoundSepNormals.resize(compoundPairCapacity); - - - m_gpuHasCompoundSepNormals.resize(compoundPairCapacity); - - m_numCompoundPairsOut.resize(0); - m_numCompoundPairsOut.push_back(0); - - int numCompoundPairs = 0; - - int numConcavePairs =0; - - { - clFinish(m_queue); - if (findSeparatingAxisOnGpu) - { - m_dmins.resize(nPairs); - if (splitSearchSepAxisConvex) - { - - - if (useMprGpu) - { - nContacts = m_totalContactsOut.at(0); - { - B3_PROFILE("mprPenetrationKernel"); - b3BufferInfoCL bInfo[] = { - b3BufferInfoCL( pairs->getBufferCL(), true ), - b3BufferInfoCL( bodyBuf->getBufferCL(),true), - b3BufferInfoCL( gpuCollidables.getBufferCL(),true), - b3BufferInfoCL( convexData.getBufferCL(),true), - b3BufferInfoCL( gpuVertices.getBufferCL(),true), - b3BufferInfoCL( m_sepNormals.getBufferCL()), - b3BufferInfoCL( m_hasSeparatingNormals.getBufferCL()), - b3BufferInfoCL( contactOut->getBufferCL()), - b3BufferInfoCL( m_totalContactsOut.getBufferCL()) - }; - - b3LauncherCL launcher(m_queue, m_mprPenetrationKernel,"mprPenetrationKernel"); - launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(b3BufferInfoCL) ); - - launcher.setConst(maxContactCapacity); - launcher.setConst( nPairs ); - - int num = nPairs; - launcher.launch1D( num); - clFinish(m_queue); - /* - b3AlignedObjectArray<int>hostHasSepAxis; - m_hasSeparatingNormals.copyToHost(hostHasSepAxis); - b3AlignedObjectArray<b3Vector3>hostSepAxis; - m_sepNormals.copyToHost(hostSepAxis); - */ - nContacts = m_totalContactsOut.at(0); - contactOut->resize(nContacts); - // printf("nContacts (after mprPenetrationKernel) = %d\n",nContacts); - if (nContacts>maxContactCapacity) - { - - b3Error("Error: contacts exceeds capacity (%d/%d)\n", nContacts, maxContactCapacity); - nContacts = maxContactCapacity; - } - - } - } - - if (1) - { - - if (1) - { - { - B3_PROFILE("findSeparatingAxisVertexFaceKernel"); - b3BufferInfoCL bInfo[] = { - b3BufferInfoCL( pairs->getBufferCL(), true ), - b3BufferInfoCL( bodyBuf->getBufferCL(),true), - b3BufferInfoCL( gpuCollidables.getBufferCL(),true), - b3BufferInfoCL( convexData.getBufferCL(),true), - b3BufferInfoCL( gpuVertices.getBufferCL(),true), - b3BufferInfoCL( gpuUniqueEdges.getBufferCL(),true), - b3BufferInfoCL( gpuFaces.getBufferCL(),true), - b3BufferInfoCL( gpuIndices.getBufferCL(),true), - b3BufferInfoCL( clAabbsWorldSpace.getBufferCL(),true), - b3BufferInfoCL( m_sepNormals.getBufferCL()), - b3BufferInfoCL( m_hasSeparatingNormals.getBufferCL()), - b3BufferInfoCL( m_dmins.getBufferCL()) - }; - - b3LauncherCL launcher(m_queue, m_findSeparatingAxisVertexFaceKernel,"findSeparatingAxisVertexFaceKernel"); - launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(b3BufferInfoCL) ); - launcher.setConst( nPairs ); - - int num = nPairs; - launcher.launch1D( num); - clFinish(m_queue); - } - - - int numDirections = sizeof(unitSphere162)/sizeof(b3Vector3); - - { - B3_PROFILE("findSeparatingAxisEdgeEdgeKernel"); - b3BufferInfoCL bInfo[] = { - b3BufferInfoCL( pairs->getBufferCL(), true ), - b3BufferInfoCL( bodyBuf->getBufferCL(),true), - b3BufferInfoCL( gpuCollidables.getBufferCL(),true), - b3BufferInfoCL( convexData.getBufferCL(),true), - b3BufferInfoCL( gpuVertices.getBufferCL(),true), - b3BufferInfoCL( gpuUniqueEdges.getBufferCL(),true), - b3BufferInfoCL( gpuFaces.getBufferCL(),true), - b3BufferInfoCL( gpuIndices.getBufferCL(),true), - b3BufferInfoCL( clAabbsWorldSpace.getBufferCL(),true), - b3BufferInfoCL( m_sepNormals.getBufferCL()), - b3BufferInfoCL( m_hasSeparatingNormals.getBufferCL()), - b3BufferInfoCL( m_dmins.getBufferCL()), - b3BufferInfoCL( m_unitSphereDirections.getBufferCL(),true) - - }; - - b3LauncherCL launcher(m_queue, m_findSeparatingAxisEdgeEdgeKernel,"findSeparatingAxisEdgeEdgeKernel"); - launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(b3BufferInfoCL) ); - launcher.setConst( numDirections); - launcher.setConst( nPairs ); - int num = nPairs; - launcher.launch1D( num); - clFinish(m_queue); - - } - } - if (useMprGpu) - { - B3_PROFILE("findSeparatingAxisUnitSphereKernel"); - b3BufferInfoCL bInfo[] = { - b3BufferInfoCL( pairs->getBufferCL(), true ), - b3BufferInfoCL( bodyBuf->getBufferCL(),true), - b3BufferInfoCL( gpuCollidables.getBufferCL(),true), - b3BufferInfoCL( convexData.getBufferCL(),true), - b3BufferInfoCL( gpuVertices.getBufferCL(),true), - b3BufferInfoCL( m_unitSphereDirections.getBufferCL(),true), - b3BufferInfoCL( m_sepNormals.getBufferCL()), - b3BufferInfoCL( m_hasSeparatingNormals.getBufferCL()), - b3BufferInfoCL( m_dmins.getBufferCL()) - }; - - b3LauncherCL launcher(m_queue, m_findSeparatingAxisUnitSphereKernel,"findSeparatingAxisUnitSphereKernel"); - launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(b3BufferInfoCL) ); - int numDirections = sizeof(unitSphere162)/sizeof(b3Vector3); - launcher.setConst( numDirections); - - launcher.setConst( nPairs ); - - int num = nPairs; - launcher.launch1D( num); - clFinish(m_queue); - } - } - - - } else - { - B3_PROFILE("findSeparatingAxisKernel"); - b3BufferInfoCL bInfo[] = { - b3BufferInfoCL( pairs->getBufferCL(), true ), - b3BufferInfoCL( bodyBuf->getBufferCL(),true), - b3BufferInfoCL( gpuCollidables.getBufferCL(),true), - b3BufferInfoCL( convexData.getBufferCL(),true), - b3BufferInfoCL( gpuVertices.getBufferCL(),true), - b3BufferInfoCL( gpuUniqueEdges.getBufferCL(),true), - b3BufferInfoCL( gpuFaces.getBufferCL(),true), - b3BufferInfoCL( gpuIndices.getBufferCL(),true), - b3BufferInfoCL( clAabbsWorldSpace.getBufferCL(),true), - b3BufferInfoCL( m_sepNormals.getBufferCL()), - b3BufferInfoCL( m_hasSeparatingNormals.getBufferCL()) - }; - - b3LauncherCL launcher(m_queue, m_findSeparatingAxisKernel,"m_findSeparatingAxisKernel"); - launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(b3BufferInfoCL) ); - launcher.setConst( nPairs ); - - int num = nPairs; - launcher.launch1D( num); - clFinish(m_queue); - } - - - } - else - { - - B3_PROFILE("findSeparatingAxisKernel CPU"); - - - b3AlignedObjectArray<b3Int4> hostPairs; - pairs->copyToHost(hostPairs); - b3AlignedObjectArray<b3RigidBodyData> hostBodyBuf; - bodyBuf->copyToHost(hostBodyBuf); - - b3AlignedObjectArray<b3Collidable> hostCollidables; - gpuCollidables.copyToHost(hostCollidables); - - b3AlignedObjectArray<b3GpuChildShape> cpuChildShapes; - gpuChildShapes.copyToHost(cpuChildShapes); - - b3AlignedObjectArray<b3ConvexPolyhedronData> hostConvexShapeData; - convexData.copyToHost(hostConvexShapeData); - - b3AlignedObjectArray<b3Vector3> hostVertices; - gpuVertices.copyToHost(hostVertices); - - b3AlignedObjectArray<int> hostHasSepAxis; - hostHasSepAxis.resize(nPairs); - b3AlignedObjectArray<b3Vector3> hostSepAxis; - hostSepAxis.resize(nPairs); - - b3AlignedObjectArray<b3Vector3> hostUniqueEdges; - gpuUniqueEdges.copyToHost(hostUniqueEdges); - b3AlignedObjectArray<b3GpuFace> hostFaces; - gpuFaces.copyToHost(hostFaces); - - b3AlignedObjectArray<int> hostIndices; - gpuIndices.copyToHost(hostIndices); - - b3AlignedObjectArray<b3Contact4> hostContacts; - if (nContacts) - { - contactOut->copyToHost(hostContacts); - } - hostContacts.resize(maxContactCapacity); - int nGlobalContactsOut = nContacts; - - - for (int i=0;i<nPairs;i++) - { - - int bodyIndexA = hostPairs[i].x; - int bodyIndexB = hostPairs[i].y; - int collidableIndexA = hostBodyBuf[bodyIndexA].m_collidableIdx; - int collidableIndexB = hostBodyBuf[bodyIndexB].m_collidableIdx; - - int shapeIndexA = hostCollidables[collidableIndexA].m_shapeIndex; - int shapeIndexB = hostCollidables[collidableIndexB].m_shapeIndex; - - hostHasSepAxis[i] = 0; - - //once the broadphase avoids static-static pairs, we can remove this test - if ((hostBodyBuf[bodyIndexA].m_invMass==0) &&(hostBodyBuf[bodyIndexB].m_invMass==0)) - { - continue; - } - - - if ((hostCollidables[collidableIndexA].m_shapeType!=SHAPE_CONVEX_HULL) ||(hostCollidables[collidableIndexB].m_shapeType!=SHAPE_CONVEX_HULL)) - { - continue; - } - - float dmin = FLT_MAX; - - b3ConvexPolyhedronData* convexShapeA = &hostConvexShapeData[shapeIndexA]; - b3ConvexPolyhedronData* convexShapeB = &hostConvexShapeData[shapeIndexB]; - b3Vector3 posA = hostBodyBuf[bodyIndexA].m_pos; - b3Vector3 posB = hostBodyBuf[bodyIndexB].m_pos; - b3Quaternion ornA =hostBodyBuf[bodyIndexA].m_quat; - b3Quaternion ornB =hostBodyBuf[bodyIndexB].m_quat; - - - if (useGjk) - { - - //first approximate the separating axis, to 'fail-proof' GJK+EPA or MPR - { - b3Vector3 c0local = hostConvexShapeData[shapeIndexA].m_localCenter; - b3Vector3 c0 = b3TransformPoint(c0local, posA, ornA); - b3Vector3 c1local = hostConvexShapeData[shapeIndexB].m_localCenter; - b3Vector3 c1 = b3TransformPoint(c1local,posB,ornB); - b3Vector3 DeltaC2 = c0 - c1; - - b3Vector3 sepAxis; - - bool hasSepAxisA = b3FindSeparatingAxis(convexShapeA, convexShapeB, posA, ornA, posB, ornB, DeltaC2, - &hostVertices.at(0), &hostUniqueEdges.at(0), &hostFaces.at(0), &hostIndices.at(0), - &hostVertices.at(0), &hostUniqueEdges.at(0), &hostFaces.at(0), &hostIndices.at(0), - &sepAxis, &dmin); - - if (hasSepAxisA) - { - bool hasSepAxisB = b3FindSeparatingAxis(convexShapeB, convexShapeA, posB, ornB, posA, ornA, DeltaC2, - &hostVertices.at(0), &hostUniqueEdges.at(0), &hostFaces.at(0), &hostIndices.at(0), - &hostVertices.at(0), &hostUniqueEdges.at(0), &hostFaces.at(0), &hostIndices.at(0), - &sepAxis, &dmin); - if (hasSepAxisB) - { - bool hasEdgeEdge =b3FindSeparatingAxisEdgeEdge(convexShapeA, convexShapeB, posA, ornA, posB, ornB, DeltaC2, - &hostVertices.at(0), &hostUniqueEdges.at(0), &hostFaces.at(0), &hostIndices.at(0), - &hostVertices.at(0), &hostUniqueEdges.at(0), &hostFaces.at(0), &hostIndices.at(0), - &sepAxis, &dmin,false); - - if (hasEdgeEdge) - { - hostHasSepAxis[i] = 1; - hostSepAxis[i] = sepAxis; - hostSepAxis[i].w = dmin; - } - } - } - } - - if (hostHasSepAxis[i]) - { - int pairIndex = i; - - bool useMpr = true; - if (useMpr) - { - int res=0; - float depth = 0.f; - b3Vector3 sepAxis2 = b3MakeVector3(1,0,0); - b3Vector3 resultPointOnBWorld = b3MakeVector3(0,0,0); - - float depthOut; - b3Vector3 dirOut; - b3Vector3 posOut; - - - //res = b3MprPenetration(bodyIndexA,bodyIndexB,hostBodyBuf,hostConvexShapeData,hostCollidables,hostVertices,&mprConfig,&depthOut,&dirOut,&posOut); - res = b3MprPenetration(pairIndex,bodyIndexA,bodyIndexB,&hostBodyBuf[0],&hostConvexShapeData[0],&hostCollidables[0],&hostVertices[0],&hostSepAxis[0],&hostHasSepAxis[0],&depthOut,&dirOut,&posOut); - depth = depthOut; - sepAxis2 = b3MakeVector3(-dirOut.x,-dirOut.y,-dirOut.z); - resultPointOnBWorld = posOut; - //hostHasSepAxis[i] = 0; - - - if (res==0) - { - //add point? - //printf("depth = %f\n",depth); - //printf("normal = %f,%f,%f\n",dir.v[0],dir.v[1],dir.v[2]); - //qprintf("pos = %f,%f,%f\n",pos.v[0],pos.v[1],pos.v[2]); - - - - float dist=0.f; - - const b3ConvexPolyhedronData& hullA = hostConvexShapeData[hostCollidables[hostBodyBuf[bodyIndexA].m_collidableIdx].m_shapeIndex]; - const b3ConvexPolyhedronData& hullB = hostConvexShapeData[hostCollidables[hostBodyBuf[bodyIndexB].m_collidableIdx].m_shapeIndex]; - - if(b3TestSepAxis( &hullA, &hullB, posA,ornA,posB,ornB,&sepAxis2, &hostVertices[0], &hostVertices[0],&dist)) - { - if (depth > dist) - { - float diff = depth - dist; - - static float maxdiff = 0.f; - if (maxdiff < diff) - { - maxdiff = diff; - printf("maxdiff = %20.10f\n",maxdiff); - } - } - } - if (depth > dmin) - { - b3Vector3 oldAxis = hostSepAxis[i]; - depth = dmin; - sepAxis2 = oldAxis; - } - - - - if(b3TestSepAxis( &hullA, &hullB, posA,ornA,posB,ornB,&sepAxis2, &hostVertices[0], &hostVertices[0],&dist)) - { - if (depth > dist) - { - float diff = depth - dist; - //printf("?diff = %f\n",diff ); - static float maxdiff = 0.f; - if (maxdiff < diff) - { - maxdiff = diff; - printf("maxdiff = %20.10f\n",maxdiff); - } - } - //this is used for SAT - //hostHasSepAxis[i] = 1; - //hostSepAxis[i] = sepAxis2; - - //add contact point - - //int contactIndex = nGlobalContactsOut; - b3Contact4& newContact = hostContacts.at(nGlobalContactsOut); - nGlobalContactsOut++; - newContact.m_batchIdx = 0;//i; - newContact.m_bodyAPtrAndSignBit = (hostBodyBuf.at(bodyIndexA).m_invMass==0)? -bodyIndexA:bodyIndexA; - newContact.m_bodyBPtrAndSignBit = (hostBodyBuf.at(bodyIndexB).m_invMass==0)? -bodyIndexB:bodyIndexB; - - newContact.m_frictionCoeffCmp = 45874; - newContact.m_restituitionCoeffCmp = 0; - - - static float maxDepth = 0.f; - - if (depth > maxDepth) - { - maxDepth = depth; - printf("MPR maxdepth = %f\n",maxDepth ); - - } - - - resultPointOnBWorld.w = -depth; - newContact.m_worldPosB[0] = resultPointOnBWorld; - //b3Vector3 resultPointOnAWorld = resultPointOnBWorld+depth*sepAxis2; - newContact.m_worldNormalOnB = sepAxis2; - newContact.m_worldNormalOnB.w = (b3Scalar)1; - } else - { - printf("rejected\n"); - } - - - } - } else - { - - - - //int contactIndex = computeContactConvexConvex2( i,bodyIndexA,bodyIndexB,collidableIndexA,collidableIndexB,hostBodyBuf, hostCollidables,hostConvexData,hostVertices,hostUniqueEdges,hostIndices,hostFaces,hostContacts,nContacts,maxContactCapacity,oldHostContacts); - b3AlignedObjectArray<b3Contact4> oldHostContacts; - int result; - result = computeContactConvexConvex2( //hostPairs, - pairIndex, - bodyIndexA, bodyIndexB, - collidableIndexA, collidableIndexB, - hostBodyBuf, - hostCollidables, - hostConvexShapeData, - hostVertices, - hostUniqueEdges, - hostIndices, - hostFaces, - hostContacts, - nGlobalContactsOut, - maxContactCapacity, - oldHostContacts - //hostHasSepAxis, - //hostSepAxis - - ); - }//mpr - }//hostHasSepAxis[i] = 1; - - } else - { - - b3Vector3 c0local = hostConvexShapeData[shapeIndexA].m_localCenter; - b3Vector3 c0 = b3TransformPoint(c0local, posA, ornA); - b3Vector3 c1local = hostConvexShapeData[shapeIndexB].m_localCenter; - b3Vector3 c1 = b3TransformPoint(c1local,posB,ornB); - b3Vector3 DeltaC2 = c0 - c1; - - b3Vector3 sepAxis; - - bool hasSepAxisA = b3FindSeparatingAxis(convexShapeA, convexShapeB, posA, ornA, posB, ornB, DeltaC2, - &hostVertices.at(0), &hostUniqueEdges.at(0), &hostFaces.at(0), &hostIndices.at(0), - &hostVertices.at(0), &hostUniqueEdges.at(0), &hostFaces.at(0), &hostIndices.at(0), - &sepAxis, &dmin); - - if (hasSepAxisA) - { - bool hasSepAxisB = b3FindSeparatingAxis(convexShapeB, convexShapeA, posB, ornB, posA, ornA, DeltaC2, - &hostVertices.at(0), &hostUniqueEdges.at(0), &hostFaces.at(0), &hostIndices.at(0), - &hostVertices.at(0), &hostUniqueEdges.at(0), &hostFaces.at(0), &hostIndices.at(0), - &sepAxis, &dmin); - if (hasSepAxisB) - { - bool hasEdgeEdge =b3FindSeparatingAxisEdgeEdge(convexShapeA, convexShapeB, posA, ornA, posB, ornB, DeltaC2, - &hostVertices.at(0), &hostUniqueEdges.at(0), &hostFaces.at(0), &hostIndices.at(0), - &hostVertices.at(0), &hostUniqueEdges.at(0), &hostFaces.at(0), &hostIndices.at(0), - &sepAxis, &dmin,true); - - if (hasEdgeEdge) - { - hostHasSepAxis[i] = 1; - hostSepAxis[i] = sepAxis; - } - } - } - } - } - - if (useGjkContacts)//nGlobalContactsOut>0) - { - //printf("nGlobalContactsOut=%d\n",nGlobalContactsOut); - nContacts = nGlobalContactsOut; - contactOut->copyFromHost(hostContacts); - - m_totalContactsOut.copyFromHostPointer(&nContacts,1,0,true); - } - - m_hasSeparatingNormals.copyFromHost(hostHasSepAxis); - m_sepNormals.copyFromHost(hostSepAxis); - - /* - //double-check results from GPU (comment-out the 'else' so both paths are executed - b3AlignedObjectArray<int> checkHasSepAxis; - m_hasSeparatingNormals.copyToHost(checkHasSepAxis); - static int frameCount = 0; - frameCount++; - for (int i=0;i<nPairs;i++) - { - if (hostHasSepAxis[i] != checkHasSepAxis[i]) - { - printf("at frameCount %d hostHasSepAxis[%d] = %d but checkHasSepAxis[i] = %d\n", - frameCount,i,hostHasSepAxis[i],checkHasSepAxis[i]); - } - } - //m_hasSeparatingNormals.copyFromHost(hostHasSepAxis); - // m_sepNormals.copyFromHost(hostSepAxis); - */ - } - - - numCompoundPairs = m_numCompoundPairsOut.at(0); - bool useGpuFindCompoundPairs=true; - if (useGpuFindCompoundPairs) - { - B3_PROFILE("findCompoundPairsKernel"); - b3BufferInfoCL bInfo[] = - { - b3BufferInfoCL( pairs->getBufferCL(), true ), - b3BufferInfoCL( bodyBuf->getBufferCL(),true), - b3BufferInfoCL( gpuCollidables.getBufferCL(),true), - b3BufferInfoCL( convexData.getBufferCL(),true), - b3BufferInfoCL( gpuVertices.getBufferCL(),true), - b3BufferInfoCL( gpuUniqueEdges.getBufferCL(),true), - b3BufferInfoCL( gpuFaces.getBufferCL(),true), - b3BufferInfoCL( gpuIndices.getBufferCL(),true), - b3BufferInfoCL( clAabbsLocalSpace.getBufferCL(),true), - b3BufferInfoCL( gpuChildShapes.getBufferCL(),true), - b3BufferInfoCL( m_gpuCompoundPairs.getBufferCL()), - b3BufferInfoCL( m_numCompoundPairsOut.getBufferCL()), - b3BufferInfoCL(subTreesGPU->getBufferCL()), - b3BufferInfoCL(treeNodesGPU->getBufferCL()), - b3BufferInfoCL(bvhInfo->getBufferCL()) - }; - - b3LauncherCL launcher(m_queue, m_findCompoundPairsKernel,"m_findCompoundPairsKernel"); - launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(b3BufferInfoCL) ); - launcher.setConst( nPairs ); - launcher.setConst( compoundPairCapacity); - - int num = nPairs; - launcher.launch1D( num); - clFinish(m_queue); - - numCompoundPairs = m_numCompoundPairsOut.at(0); - //printf("numCompoundPairs =%d\n",numCompoundPairs ); - if (numCompoundPairs) - { - //printf("numCompoundPairs=%d\n",numCompoundPairs); - } - - - } else - { - - - b3AlignedObjectArray<b3QuantizedBvhNode> treeNodesCPU; - treeNodesGPU->copyToHost(treeNodesCPU); - - b3AlignedObjectArray<b3BvhSubtreeInfo> subTreesCPU; - subTreesGPU->copyToHost(subTreesCPU); - - b3AlignedObjectArray<b3BvhInfo> bvhInfoCPU; - bvhInfo->copyToHost(bvhInfoCPU); - - b3AlignedObjectArray<b3Aabb> hostAabbsWorldSpace; - clAabbsWorldSpace.copyToHost(hostAabbsWorldSpace); - - b3AlignedObjectArray<b3Aabb> hostAabbsLocalSpace; - clAabbsLocalSpace.copyToHost(hostAabbsLocalSpace); - - b3AlignedObjectArray<b3Int4> hostPairs; - pairs->copyToHost(hostPairs); - - b3AlignedObjectArray<b3RigidBodyData> hostBodyBuf; - bodyBuf->copyToHost(hostBodyBuf); - - - b3AlignedObjectArray<b3Int4> cpuCompoundPairsOut; - cpuCompoundPairsOut.resize(compoundPairCapacity); - - b3AlignedObjectArray<b3Collidable> hostCollidables; - gpuCollidables.copyToHost(hostCollidables); - - b3AlignedObjectArray<b3GpuChildShape> cpuChildShapes; - gpuChildShapes.copyToHost(cpuChildShapes); - - b3AlignedObjectArray<b3ConvexPolyhedronData> hostConvexData; - convexData.copyToHost(hostConvexData); - - b3AlignedObjectArray<b3Vector3> hostVertices; - gpuVertices.copyToHost(hostVertices); - - - - - for (int pairIndex=0;pairIndex<nPairs;pairIndex++) - { - int bodyIndexA = hostPairs[pairIndex].x; - int bodyIndexB = hostPairs[pairIndex].y; - int collidableIndexA = hostBodyBuf[bodyIndexA].m_collidableIdx; - int collidableIndexB = hostBodyBuf[bodyIndexB].m_collidableIdx; - if (cpuChildShapes.size()) - { - findCompoundPairsKernel( - pairIndex, - bodyIndexA, - bodyIndexB, - collidableIndexA, - collidableIndexB, - &hostBodyBuf[0], - &hostCollidables[0], - &hostConvexData[0], - hostVertices, - hostAabbsWorldSpace, - hostAabbsLocalSpace, - &cpuChildShapes[0], - &cpuCompoundPairsOut[0], - &numCompoundPairs, - compoundPairCapacity, - treeNodesCPU, - subTreesCPU, - bvhInfoCPU - ); - } - } - - - m_numCompoundPairsOut.copyFromHostPointer(&numCompoundPairs,1,0,true); - if (numCompoundPairs) - { - b3CompoundOverlappingPair* ptr = (b3CompoundOverlappingPair*)&cpuCompoundPairsOut[0]; - m_gpuCompoundPairs.copyFromHostPointer(ptr,numCompoundPairs,0,true); - } - //cpuCompoundPairsOut - - } - if (numCompoundPairs) - { - printf("numCompoundPairs=%d\n",numCompoundPairs); - } - - if (numCompoundPairs > compoundPairCapacity) - { - b3Error("Exceeded compound pair capacity (%d/%d)\n", numCompoundPairs, compoundPairCapacity); - numCompoundPairs = compoundPairCapacity; - } - - - - m_gpuCompoundPairs.resize(numCompoundPairs); - m_gpuHasCompoundSepNormals.resize(numCompoundPairs); - m_gpuCompoundSepNormals.resize(numCompoundPairs); - - - if (numCompoundPairs) - { - B3_PROFILE("processCompoundPairsPrimitivesKernel"); - b3BufferInfoCL bInfo[] = - { - b3BufferInfoCL( m_gpuCompoundPairs.getBufferCL(), true ), - b3BufferInfoCL( bodyBuf->getBufferCL(),true), - b3BufferInfoCL( gpuCollidables.getBufferCL(),true), - b3BufferInfoCL( convexData.getBufferCL(),true), - b3BufferInfoCL( gpuVertices.getBufferCL(),true), - b3BufferInfoCL( gpuUniqueEdges.getBufferCL(),true), - b3BufferInfoCL( gpuFaces.getBufferCL(),true), - b3BufferInfoCL( gpuIndices.getBufferCL(),true), - b3BufferInfoCL( clAabbsWorldSpace.getBufferCL(),true), - b3BufferInfoCL( gpuChildShapes.getBufferCL(),true), - b3BufferInfoCL( contactOut->getBufferCL()), - b3BufferInfoCL( m_totalContactsOut.getBufferCL()) - }; - - b3LauncherCL launcher(m_queue, m_processCompoundPairsPrimitivesKernel,"m_processCompoundPairsPrimitivesKernel"); - launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(b3BufferInfoCL) ); - launcher.setConst( numCompoundPairs ); - launcher.setConst(maxContactCapacity); - - int num = numCompoundPairs; - launcher.launch1D( num); - clFinish(m_queue); - nContacts = m_totalContactsOut.at(0); - //printf("nContacts (after processCompoundPairsPrimitivesKernel) = %d\n",nContacts); - if (nContacts>maxContactCapacity) - { - - b3Error("Error: contacts exceeds capacity (%d/%d)\n", nContacts, maxContactCapacity); - nContacts = maxContactCapacity; - } - } - - - if (numCompoundPairs) - { - B3_PROFILE("processCompoundPairsKernel"); - b3BufferInfoCL bInfo[] = - { - b3BufferInfoCL( m_gpuCompoundPairs.getBufferCL(), true ), - b3BufferInfoCL( bodyBuf->getBufferCL(),true), - b3BufferInfoCL( gpuCollidables.getBufferCL(),true), - b3BufferInfoCL( convexData.getBufferCL(),true), - b3BufferInfoCL( gpuVertices.getBufferCL(),true), - b3BufferInfoCL( gpuUniqueEdges.getBufferCL(),true), - b3BufferInfoCL( gpuFaces.getBufferCL(),true), - b3BufferInfoCL( gpuIndices.getBufferCL(),true), - b3BufferInfoCL( clAabbsWorldSpace.getBufferCL(),true), - b3BufferInfoCL( gpuChildShapes.getBufferCL(),true), - b3BufferInfoCL( m_gpuCompoundSepNormals.getBufferCL()), - b3BufferInfoCL( m_gpuHasCompoundSepNormals.getBufferCL()) - }; - - b3LauncherCL launcher(m_queue, m_processCompoundPairsKernel,"m_processCompoundPairsKernel"); - launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(b3BufferInfoCL) ); - launcher.setConst( numCompoundPairs ); - - int num = numCompoundPairs; - launcher.launch1D( num); - clFinish(m_queue); - - } - - - //printf("numConcave = %d\n",numConcave); - - - -// printf("hostNormals.size()=%d\n",hostNormals.size()); - //int numPairs = pairCount.at(0); - - - - } - int vertexFaceCapacity = 64; - - - - { - //now perform the tree query on GPU - - - - - if (treeNodesGPU->size() && treeNodesGPU->size()) - { - if (bvhTraversalKernelGPU) - { - - B3_PROFILE("m_bvhTraversalKernel"); - - - numConcavePairs = m_numConcavePairsOut.at(0); - - b3LauncherCL launcher(m_queue, m_bvhTraversalKernel,"m_bvhTraversalKernel"); - launcher.setBuffer( pairs->getBufferCL()); - launcher.setBuffer( bodyBuf->getBufferCL()); - launcher.setBuffer( gpuCollidables.getBufferCL()); - launcher.setBuffer( clAabbsWorldSpace.getBufferCL()); - launcher.setBuffer( triangleConvexPairsOut.getBufferCL()); - launcher.setBuffer( m_numConcavePairsOut.getBufferCL()); - launcher.setBuffer( subTreesGPU->getBufferCL()); - launcher.setBuffer( treeNodesGPU->getBufferCL()); - launcher.setBuffer( bvhInfo->getBufferCL()); - - launcher.setConst( nPairs ); - launcher.setConst( maxTriConvexPairCapacity); - int num = nPairs; - launcher.launch1D( num); - clFinish(m_queue); - numConcavePairs = m_numConcavePairsOut.at(0); - } else - { - b3AlignedObjectArray<b3Int4> hostPairs; - pairs->copyToHost(hostPairs); - b3AlignedObjectArray<b3RigidBodyData> hostBodyBuf; - bodyBuf->copyToHost(hostBodyBuf); - b3AlignedObjectArray<b3Collidable> hostCollidables; - gpuCollidables.copyToHost(hostCollidables); - b3AlignedObjectArray<b3Aabb> hostAabbsWorldSpace; - clAabbsWorldSpace.copyToHost(hostAabbsWorldSpace); - - //int maxTriConvexPairCapacity, - b3AlignedObjectArray<b3Int4> triangleConvexPairsOutHost; - triangleConvexPairsOutHost.resize(maxTriConvexPairCapacity); - - //int numTriConvexPairsOutHost=0; - numConcavePairs = 0; - //m_numConcavePairsOut - - b3AlignedObjectArray<b3QuantizedBvhNode> treeNodesCPU; - treeNodesGPU->copyToHost(treeNodesCPU); - b3AlignedObjectArray<b3BvhSubtreeInfo> subTreesCPU; - subTreesGPU->copyToHost(subTreesCPU); - b3AlignedObjectArray<b3BvhInfo> bvhInfoCPU; - bvhInfo->copyToHost(bvhInfoCPU); - //compute it... - - volatile int hostNumConcavePairsOut=0; - - // - for (int i=0;i<nPairs;i++) - { - b3BvhTraversal( &hostPairs.at(0), - &hostBodyBuf.at(0), - &hostCollidables.at(0), - &hostAabbsWorldSpace.at(0), - &triangleConvexPairsOutHost.at(0), - &hostNumConcavePairsOut, - &subTreesCPU.at(0), - &treeNodesCPU.at(0), - &bvhInfoCPU.at(0), - nPairs, - maxTriConvexPairCapacity, - i); - } - numConcavePairs = hostNumConcavePairsOut; - - if (hostNumConcavePairsOut) - { - triangleConvexPairsOutHost.resize(hostNumConcavePairsOut); - triangleConvexPairsOut.copyFromHost(triangleConvexPairsOutHost); - } - // - - m_numConcavePairsOut.resize(0); - m_numConcavePairsOut.push_back(numConcavePairs); - } - - //printf("numConcavePairs=%d (max = %d\n",numConcavePairs,maxTriConvexPairCapacity); - - if (numConcavePairs > maxTriConvexPairCapacity) - { - static int exceeded_maxTriConvexPairCapacity_count = 0; - b3Error("Exceeded the maxTriConvexPairCapacity (found %d but max is %d, it happened %d times)\n", - numConcavePairs,maxTriConvexPairCapacity,exceeded_maxTriConvexPairCapacity_count++); - numConcavePairs = maxTriConvexPairCapacity; - } - triangleConvexPairsOut.resize(numConcavePairs); - - if (numConcavePairs) - { - - - - - clippingFacesOutGPU.resize(numConcavePairs); - worldNormalsAGPU.resize(numConcavePairs); - worldVertsA1GPU.resize(vertexFaceCapacity*(numConcavePairs)); - worldVertsB1GPU.resize(vertexFaceCapacity*(numConcavePairs)); - - - if (findConcaveSeparatingAxisKernelGPU) - { - - /* - m_concaveHasSeparatingNormals.copyFromHost(concaveHasSeparatingNormalsCPU); - clippingFacesOutGPU.copyFromHost(clippingFacesOutCPU); - worldVertsA1GPU.copyFromHost(worldVertsA1CPU); - worldNormalsAGPU.copyFromHost(worldNormalsACPU); - worldVertsB1GPU.copyFromHost(worldVertsB1CPU); - */ - - //now perform a SAT test for each triangle-convex element (stored in triangleConvexPairsOut) - if (splitSearchSepAxisConcave) - { - //printf("numConcavePairs = %d\n",numConcavePairs); - m_dmins.resize(numConcavePairs); - { - B3_PROFILE("findConcaveSeparatingAxisVertexFaceKernel"); - b3BufferInfoCL bInfo[] = { - b3BufferInfoCL( triangleConvexPairsOut.getBufferCL() ), - b3BufferInfoCL( bodyBuf->getBufferCL(),true), - b3BufferInfoCL( gpuCollidables.getBufferCL(),true), - b3BufferInfoCL( convexData.getBufferCL(),true), - b3BufferInfoCL( gpuVertices.getBufferCL(),true), - b3BufferInfoCL( gpuUniqueEdges.getBufferCL(),true), - b3BufferInfoCL( gpuFaces.getBufferCL(),true), - b3BufferInfoCL( gpuIndices.getBufferCL(),true), - b3BufferInfoCL( gpuChildShapes.getBufferCL(),true), - b3BufferInfoCL( clAabbsWorldSpace.getBufferCL(),true), - b3BufferInfoCL( m_concaveSepNormals.getBufferCL()), - b3BufferInfoCL( m_concaveHasSeparatingNormals.getBufferCL()), - b3BufferInfoCL( clippingFacesOutGPU.getBufferCL()), - b3BufferInfoCL( worldVertsA1GPU.getBufferCL()), - b3BufferInfoCL(worldNormalsAGPU.getBufferCL()), - b3BufferInfoCL(worldVertsB1GPU.getBufferCL()), - b3BufferInfoCL(m_dmins.getBufferCL()) - }; - - b3LauncherCL launcher(m_queue, m_findConcaveSeparatingAxisVertexFaceKernel,"m_findConcaveSeparatingAxisVertexFaceKernel"); - launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(b3BufferInfoCL) ); - launcher.setConst(vertexFaceCapacity); - launcher.setConst( numConcavePairs ); - - int num = numConcavePairs; - launcher.launch1D( num); - clFinish(m_queue); - - - } -// numConcavePairs = 0; - if (1) - { - B3_PROFILE("findConcaveSeparatingAxisEdgeEdgeKernel"); - b3BufferInfoCL bInfo[] = { - b3BufferInfoCL( triangleConvexPairsOut.getBufferCL() ), - b3BufferInfoCL( bodyBuf->getBufferCL(),true), - b3BufferInfoCL( gpuCollidables.getBufferCL(),true), - b3BufferInfoCL( convexData.getBufferCL(),true), - b3BufferInfoCL( gpuVertices.getBufferCL(),true), - b3BufferInfoCL( gpuUniqueEdges.getBufferCL(),true), - b3BufferInfoCL( gpuFaces.getBufferCL(),true), - b3BufferInfoCL( gpuIndices.getBufferCL(),true), - b3BufferInfoCL( gpuChildShapes.getBufferCL(),true), - b3BufferInfoCL( clAabbsWorldSpace.getBufferCL(),true), - b3BufferInfoCL( m_concaveSepNormals.getBufferCL()), - b3BufferInfoCL( m_concaveHasSeparatingNormals.getBufferCL()), - b3BufferInfoCL( clippingFacesOutGPU.getBufferCL()), - b3BufferInfoCL( worldVertsA1GPU.getBufferCL()), - b3BufferInfoCL(worldNormalsAGPU.getBufferCL()), - b3BufferInfoCL(worldVertsB1GPU.getBufferCL()), - b3BufferInfoCL(m_dmins.getBufferCL()) - }; - - b3LauncherCL launcher(m_queue, m_findConcaveSeparatingAxisEdgeEdgeKernel,"m_findConcaveSeparatingAxisEdgeEdgeKernel"); - launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(b3BufferInfoCL) ); - launcher.setConst(vertexFaceCapacity); - launcher.setConst( numConcavePairs ); - - int num = numConcavePairs; - launcher.launch1D( num); - clFinish(m_queue); - } - - - // numConcavePairs = 0; - - - - - - - } else - { - B3_PROFILE("findConcaveSeparatingAxisKernel"); - b3BufferInfoCL bInfo[] = { - b3BufferInfoCL( triangleConvexPairsOut.getBufferCL() ), - b3BufferInfoCL( bodyBuf->getBufferCL(),true), - b3BufferInfoCL( gpuCollidables.getBufferCL(),true), - b3BufferInfoCL( convexData.getBufferCL(),true), - b3BufferInfoCL( gpuVertices.getBufferCL(),true), - b3BufferInfoCL( gpuUniqueEdges.getBufferCL(),true), - b3BufferInfoCL( gpuFaces.getBufferCL(),true), - b3BufferInfoCL( gpuIndices.getBufferCL(),true), - b3BufferInfoCL( gpuChildShapes.getBufferCL(),true), - b3BufferInfoCL( clAabbsWorldSpace.getBufferCL(),true), - b3BufferInfoCL( m_concaveSepNormals.getBufferCL()), - b3BufferInfoCL( m_concaveHasSeparatingNormals.getBufferCL()), - b3BufferInfoCL( clippingFacesOutGPU.getBufferCL()), - b3BufferInfoCL( worldVertsA1GPU.getBufferCL()), - b3BufferInfoCL(worldNormalsAGPU.getBufferCL()), - b3BufferInfoCL(worldVertsB1GPU.getBufferCL()) - }; - - b3LauncherCL launcher(m_queue, m_findConcaveSeparatingAxisKernel,"m_findConcaveSeparatingAxisKernel"); - launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(b3BufferInfoCL) ); - launcher.setConst(vertexFaceCapacity); - launcher.setConst( numConcavePairs ); - - int num = numConcavePairs; - launcher.launch1D( num); - clFinish(m_queue); - } - - - } else - { - - b3AlignedObjectArray<b3Int4> clippingFacesOutCPU; - b3AlignedObjectArray<b3Vector3> worldVertsA1CPU; - b3AlignedObjectArray<b3Vector3> worldNormalsACPU; - b3AlignedObjectArray<b3Vector3> worldVertsB1CPU; - b3AlignedObjectArray<int>concaveHasSeparatingNormalsCPU; - - b3AlignedObjectArray<b3Int4> triangleConvexPairsOutHost; - triangleConvexPairsOut.copyToHost(triangleConvexPairsOutHost); - //triangleConvexPairsOutHost.resize(maxTriConvexPairCapacity); - b3AlignedObjectArray<b3RigidBodyData> hostBodyBuf; - bodyBuf->copyToHost(hostBodyBuf); - b3AlignedObjectArray<b3Collidable> hostCollidables; - gpuCollidables.copyToHost(hostCollidables); - b3AlignedObjectArray<b3Aabb> hostAabbsWorldSpace; - clAabbsWorldSpace.copyToHost(hostAabbsWorldSpace); - - b3AlignedObjectArray<b3ConvexPolyhedronData> hostConvexData; - convexData.copyToHost(hostConvexData); - - b3AlignedObjectArray<b3Vector3> hostVertices; - gpuVertices.copyToHost(hostVertices); - - b3AlignedObjectArray<b3Vector3> hostUniqueEdges; - gpuUniqueEdges.copyToHost(hostUniqueEdges); - b3AlignedObjectArray<b3GpuFace> hostFaces; - gpuFaces.copyToHost(hostFaces); - b3AlignedObjectArray<int> hostIndices; - gpuIndices.copyToHost(hostIndices); - b3AlignedObjectArray<b3GpuChildShape> cpuChildShapes; - gpuChildShapes.copyToHost(cpuChildShapes); - - - - b3AlignedObjectArray<b3Vector3> concaveSepNormalsHost; - m_concaveSepNormals.copyToHost(concaveSepNormalsHost); - concaveHasSeparatingNormalsCPU.resize(concaveSepNormalsHost.size()); - - b3GpuChildShape* childShapePointerCPU = 0; - if (cpuChildShapes.size()) - childShapePointerCPU = &cpuChildShapes.at(0); - - clippingFacesOutCPU.resize(clippingFacesOutGPU.size()); - worldVertsA1CPU.resize(worldVertsA1GPU.size()); - worldNormalsACPU.resize(worldNormalsAGPU.size()); - worldVertsB1CPU.resize(worldVertsB1GPU.size()); - - for (int i=0;i<numConcavePairs;i++) - { - b3FindConcaveSeparatingAxisKernel(&triangleConvexPairsOutHost.at(0), - &hostBodyBuf.at(0), - &hostCollidables.at(0), - &hostConvexData.at(0), &hostVertices.at(0),&hostUniqueEdges.at(0), - &hostFaces.at(0),&hostIndices.at(0),childShapePointerCPU, - &hostAabbsWorldSpace.at(0), - &concaveSepNormalsHost.at(0), - &clippingFacesOutCPU.at(0), - &worldVertsA1CPU.at(0), - &worldNormalsACPU.at(0), - &worldVertsB1CPU.at(0), - &concaveHasSeparatingNormalsCPU.at(0), - vertexFaceCapacity, - numConcavePairs,i); - }; - - m_concaveSepNormals.copyFromHost(concaveSepNormalsHost); - m_concaveHasSeparatingNormals.copyFromHost(concaveHasSeparatingNormalsCPU); - clippingFacesOutGPU.copyFromHost(clippingFacesOutCPU); - worldVertsA1GPU.copyFromHost(worldVertsA1CPU); - worldNormalsAGPU.copyFromHost(worldNormalsACPU); - worldVertsB1GPU.copyFromHost(worldVertsB1CPU); - - - - } -// b3AlignedObjectArray<b3Vector3> cpuCompoundSepNormals; -// m_concaveSepNormals.copyToHost(cpuCompoundSepNormals); -// b3AlignedObjectArray<b3Int4> cpuConcavePairs; -// triangleConvexPairsOut.copyToHost(cpuConcavePairs); - - - } - } - - - } - - if (numConcavePairs) - { - if (numConcavePairs) - { - B3_PROFILE("findConcaveSphereContactsKernel"); - nContacts = m_totalContactsOut.at(0); -// printf("nContacts1 = %d\n",nContacts); - b3BufferInfoCL bInfo[] = { - b3BufferInfoCL( triangleConvexPairsOut.getBufferCL() ), - b3BufferInfoCL( bodyBuf->getBufferCL(),true), - b3BufferInfoCL( gpuCollidables.getBufferCL(),true), - b3BufferInfoCL( convexData.getBufferCL(),true), - b3BufferInfoCL( gpuVertices.getBufferCL(),true), - b3BufferInfoCL( gpuUniqueEdges.getBufferCL(),true), - b3BufferInfoCL( gpuFaces.getBufferCL(),true), - b3BufferInfoCL( gpuIndices.getBufferCL(),true), - b3BufferInfoCL( clAabbsWorldSpace.getBufferCL(),true), - b3BufferInfoCL( contactOut->getBufferCL()), - b3BufferInfoCL( m_totalContactsOut.getBufferCL()) - }; - - b3LauncherCL launcher(m_queue, m_findConcaveSphereContactsKernel,"m_findConcaveSphereContactsKernel"); - launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(b3BufferInfoCL) ); - - launcher.setConst( numConcavePairs ); - launcher.setConst(maxContactCapacity); - - int num = numConcavePairs; - launcher.launch1D( num); - clFinish(m_queue); - nContacts = m_totalContactsOut.at(0); - //printf("nContacts (after findConcaveSphereContactsKernel) = %d\n",nContacts); - - //printf("nContacts2 = %d\n",nContacts); - - if (nContacts >= maxContactCapacity) - { - b3Error("Error: contacts exceeds capacity (%d/%d)\n", nContacts, maxContactCapacity); - nContacts = maxContactCapacity; - } - } - - } - - - -#ifdef __APPLE__ - bool contactClippingOnGpu = true; -#else - bool contactClippingOnGpu = true; -#endif - - if (contactClippingOnGpu) - { - m_totalContactsOut.copyFromHostPointer(&nContacts,1,0,true); -// printf("nContacts3 = %d\n",nContacts); - - - //B3_PROFILE("clipHullHullKernel"); - - bool breakupConcaveConvexKernel = true; - -#ifdef __APPLE__ - //actually, some Apple OpenCL platform/device combinations work fine... - breakupConcaveConvexKernel = true; -#endif - //concave-convex contact clipping - if (numConcavePairs) - { - // printf("numConcavePairs = %d\n", numConcavePairs); - // nContacts = m_totalContactsOut.at(0); - // printf("nContacts before = %d\n", nContacts); - - if (breakupConcaveConvexKernel) - { - - worldVertsB2GPU.resize(vertexFaceCapacity*numConcavePairs); - - - //clipFacesAndFindContacts - - if (clipConcaveFacesAndFindContactsCPU) - { - - b3AlignedObjectArray<b3Int4> clippingFacesOutCPU; - b3AlignedObjectArray<b3Vector3> worldVertsA1CPU; - b3AlignedObjectArray<b3Vector3> worldNormalsACPU; - b3AlignedObjectArray<b3Vector3> worldVertsB1CPU; - - clippingFacesOutGPU.copyToHost(clippingFacesOutCPU); - worldVertsA1GPU.copyToHost(worldVertsA1CPU); - worldNormalsAGPU.copyToHost(worldNormalsACPU); - worldVertsB1GPU.copyToHost(worldVertsB1CPU); - - - - b3AlignedObjectArray<int>concaveHasSeparatingNormalsCPU; - m_concaveHasSeparatingNormals.copyToHost(concaveHasSeparatingNormalsCPU); - - b3AlignedObjectArray<b3Vector3> concaveSepNormalsHost; - m_concaveSepNormals.copyToHost(concaveSepNormalsHost); - - b3AlignedObjectArray<b3Vector3> worldVertsB2CPU; - worldVertsB2CPU.resize(worldVertsB2GPU.size()); - - - for (int i=0;i<numConcavePairs;i++) - { - - clipFacesAndFindContactsKernel( &concaveSepNormalsHost.at(0), - &concaveHasSeparatingNormalsCPU.at(0), - &clippingFacesOutCPU.at(0), - &worldVertsA1CPU.at(0), - &worldNormalsACPU.at(0), - &worldVertsB1CPU.at(0), - &worldVertsB2CPU.at(0), - vertexFaceCapacity, - i); - } - - clippingFacesOutGPU.copyFromHost(clippingFacesOutCPU); - worldVertsB2GPU.copyFromHost(worldVertsB2CPU); - - - } else - { - - if (1) - { - - - - B3_PROFILE("clipFacesAndFindContacts"); - //nContacts = m_totalContactsOut.at(0); - //int h = m_hasSeparatingNormals.at(0); - //int4 p = clippingFacesOutGPU.at(0); - b3BufferInfoCL bInfo[] = { - b3BufferInfoCL( m_concaveSepNormals.getBufferCL()), - b3BufferInfoCL( m_concaveHasSeparatingNormals.getBufferCL()), - b3BufferInfoCL( clippingFacesOutGPU.getBufferCL()), - b3BufferInfoCL( worldVertsA1GPU.getBufferCL()), - b3BufferInfoCL( worldNormalsAGPU.getBufferCL()), - b3BufferInfoCL( worldVertsB1GPU.getBufferCL()), - b3BufferInfoCL( worldVertsB2GPU.getBufferCL()) - }; - b3LauncherCL launcher(m_queue, m_clipFacesAndFindContacts,"m_clipFacesAndFindContacts"); - launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(b3BufferInfoCL) ); - launcher.setConst(vertexFaceCapacity); - - launcher.setConst( numConcavePairs ); - int debugMode = 0; - launcher.setConst( debugMode); - int num = numConcavePairs; - launcher.launch1D( num); - clFinish(m_queue); - //int bla = m_totalContactsOut.at(0); - } - } - //contactReduction - { - int newContactCapacity=nContacts+numConcavePairs; - contactOut->reserve(newContactCapacity); - if (reduceConcaveContactsOnGPU) - { -// printf("newReservation = %d\n",newReservation); - { - B3_PROFILE("newContactReductionKernel"); - b3BufferInfoCL bInfo[] = - { - b3BufferInfoCL( triangleConvexPairsOut.getBufferCL(), true ), - b3BufferInfoCL( bodyBuf->getBufferCL(),true), - b3BufferInfoCL( m_concaveSepNormals.getBufferCL()), - b3BufferInfoCL( m_concaveHasSeparatingNormals.getBufferCL()), - b3BufferInfoCL( contactOut->getBufferCL()), - b3BufferInfoCL( clippingFacesOutGPU.getBufferCL()), - b3BufferInfoCL( worldVertsB2GPU.getBufferCL()), - b3BufferInfoCL( m_totalContactsOut.getBufferCL()) - }; - - b3LauncherCL launcher(m_queue, m_newContactReductionKernel,"m_newContactReductionKernel"); - launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(b3BufferInfoCL) ); - launcher.setConst(vertexFaceCapacity); - launcher.setConst(newContactCapacity); - launcher.setConst( numConcavePairs ); - int num = numConcavePairs; - - launcher.launch1D( num); - } - nContacts = m_totalContactsOut.at(0); - contactOut->resize(nContacts); - - //printf("contactOut4 (after newContactReductionKernel) = %d\n",nContacts); - }else - { - - volatile int nGlobalContactsOut = nContacts; - b3AlignedObjectArray<b3Int4> triangleConvexPairsOutHost; - triangleConvexPairsOut.copyToHost(triangleConvexPairsOutHost); - b3AlignedObjectArray<b3RigidBodyData> hostBodyBuf; - bodyBuf->copyToHost(hostBodyBuf); - - b3AlignedObjectArray<int>concaveHasSeparatingNormalsCPU; - m_concaveHasSeparatingNormals.copyToHost(concaveHasSeparatingNormalsCPU); - - b3AlignedObjectArray<b3Vector3> concaveSepNormalsHost; - m_concaveSepNormals.copyToHost(concaveSepNormalsHost); - - - b3AlignedObjectArray<b3Contact4> hostContacts; - if (nContacts) - { - contactOut->copyToHost(hostContacts); - } - hostContacts.resize(newContactCapacity); - - b3AlignedObjectArray<b3Int4> clippingFacesOutCPU; - b3AlignedObjectArray<b3Vector3> worldVertsB2CPU; - - clippingFacesOutGPU.copyToHost(clippingFacesOutCPU); - worldVertsB2GPU.copyToHost(worldVertsB2CPU); - - - - for (int i=0;i<numConcavePairs;i++) - { - b3NewContactReductionKernel( &triangleConvexPairsOutHost.at(0), - &hostBodyBuf.at(0), - &concaveSepNormalsHost.at(0), - &concaveHasSeparatingNormalsCPU.at(0), - &hostContacts.at(0), - &clippingFacesOutCPU.at(0), - &worldVertsB2CPU.at(0), - &nGlobalContactsOut, - vertexFaceCapacity, - newContactCapacity, - numConcavePairs, - i - ); - - } - - - nContacts = nGlobalContactsOut; - m_totalContactsOut.copyFromHostPointer(&nContacts,1,0,true); -// nContacts = m_totalContactsOut.at(0); - //contactOut->resize(nContacts); - hostContacts.resize(nContacts); - //printf("contactOut4 (after newContactReductionKernel) = %d\n",nContacts); - contactOut->copyFromHost(hostContacts); - } - - } - //re-use? - - - } else - { - B3_PROFILE("clipHullHullConcaveConvexKernel"); - nContacts = m_totalContactsOut.at(0); - int newContactCapacity = contactOut->capacity(); - - //printf("contactOut5 = %d\n",nContacts); - b3BufferInfoCL bInfo[] = { - b3BufferInfoCL( triangleConvexPairsOut.getBufferCL(), true ), - b3BufferInfoCL( bodyBuf->getBufferCL(),true), - b3BufferInfoCL( gpuCollidables.getBufferCL(),true), - b3BufferInfoCL( convexData.getBufferCL(),true), - b3BufferInfoCL( gpuVertices.getBufferCL(),true), - b3BufferInfoCL( gpuUniqueEdges.getBufferCL(),true), - b3BufferInfoCL( gpuFaces.getBufferCL(),true), - b3BufferInfoCL( gpuIndices.getBufferCL(),true), - b3BufferInfoCL( gpuChildShapes.getBufferCL(),true), - b3BufferInfoCL( m_concaveSepNormals.getBufferCL()), - b3BufferInfoCL( contactOut->getBufferCL()), - b3BufferInfoCL( m_totalContactsOut.getBufferCL()) - }; - b3LauncherCL launcher(m_queue, m_clipHullHullConcaveConvexKernel,"m_clipHullHullConcaveConvexKernel"); - launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(b3BufferInfoCL) ); - launcher.setConst(newContactCapacity); - launcher.setConst( numConcavePairs ); - int num = numConcavePairs; - launcher.launch1D( num); - clFinish(m_queue); - nContacts = m_totalContactsOut.at(0); - contactOut->resize(nContacts); - //printf("contactOut6 = %d\n",nContacts); - b3AlignedObjectArray<b3Contact4> cpuContacts; - contactOut->copyToHost(cpuContacts); - } - // printf("nContacts after = %d\n", nContacts); - }//numConcavePairs - - - - //convex-convex contact clipping - - bool breakupKernel = false; - -#ifdef __APPLE__ - breakupKernel = true; -#endif - -#ifdef CHECK_ON_HOST - bool computeConvexConvex = false; -#else - bool computeConvexConvex = true; -#endif//CHECK_ON_HOST - if (computeConvexConvex) - { - B3_PROFILE("clipHullHullKernel"); - if (breakupKernel) - { - - - - - worldVertsB1GPU.resize(vertexFaceCapacity*nPairs); - clippingFacesOutGPU.resize(nPairs); - worldNormalsAGPU.resize(nPairs); - worldVertsA1GPU.resize(vertexFaceCapacity*nPairs); - worldVertsB2GPU.resize(vertexFaceCapacity*nPairs); - - if (findConvexClippingFacesGPU) - { - B3_PROFILE("findClippingFacesKernel"); - b3BufferInfoCL bInfo[] = { - b3BufferInfoCL( pairs->getBufferCL(), true ), - b3BufferInfoCL( bodyBuf->getBufferCL(),true), - b3BufferInfoCL( gpuCollidables.getBufferCL(),true), - b3BufferInfoCL( convexData.getBufferCL(),true), - b3BufferInfoCL( gpuVertices.getBufferCL(),true), - b3BufferInfoCL( gpuUniqueEdges.getBufferCL(),true), - b3BufferInfoCL( gpuFaces.getBufferCL(),true), - b3BufferInfoCL( gpuIndices.getBufferCL(),true), - b3BufferInfoCL( m_sepNormals.getBufferCL()), - b3BufferInfoCL( m_hasSeparatingNormals.getBufferCL()), - b3BufferInfoCL( clippingFacesOutGPU.getBufferCL()), - b3BufferInfoCL( worldVertsA1GPU.getBufferCL()), - b3BufferInfoCL( worldNormalsAGPU.getBufferCL()), - b3BufferInfoCL( worldVertsB1GPU.getBufferCL()) - }; - - b3LauncherCL launcher(m_queue, m_findClippingFacesKernel,"m_findClippingFacesKernel"); - launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(b3BufferInfoCL) ); - launcher.setConst( vertexFaceCapacity); - launcher.setConst( nPairs ); - int num = nPairs; - launcher.launch1D( num); - clFinish(m_queue); - - } else - { - - float minDist = -1e30f; - float maxDist = 0.02f; - - b3AlignedObjectArray<b3ConvexPolyhedronData> hostConvexData; - convexData.copyToHost(hostConvexData); - b3AlignedObjectArray<b3Collidable> hostCollidables; - gpuCollidables.copyToHost(hostCollidables); - - b3AlignedObjectArray<int> hostHasSepNormals; - m_hasSeparatingNormals.copyToHost(hostHasSepNormals); - b3AlignedObjectArray<b3Vector3> cpuSepNormals; - m_sepNormals.copyToHost(cpuSepNormals); - - b3AlignedObjectArray<b3Int4> hostPairs; - pairs->copyToHost(hostPairs); - b3AlignedObjectArray<b3RigidBodyData> hostBodyBuf; - bodyBuf->copyToHost(hostBodyBuf); - - - //worldVertsB1GPU.resize(vertexFaceCapacity*nPairs); - b3AlignedObjectArray<b3Vector3> worldVertsB1CPU; - worldVertsB1GPU.copyToHost(worldVertsB1CPU); - - b3AlignedObjectArray<b3Int4> clippingFacesOutCPU; - clippingFacesOutGPU.copyToHost(clippingFacesOutCPU); - - b3AlignedObjectArray<b3Vector3> worldNormalsACPU; - worldNormalsACPU.resize(nPairs); - - b3AlignedObjectArray<b3Vector3> worldVertsA1CPU; - worldVertsA1CPU.resize(worldVertsA1GPU.size()); - - - b3AlignedObjectArray<b3Vector3> hostVertices; - gpuVertices.copyToHost(hostVertices); - b3AlignedObjectArray<b3GpuFace> hostFaces; - gpuFaces.copyToHost(hostFaces); - b3AlignedObjectArray<int> hostIndices; - gpuIndices.copyToHost(hostIndices); - - - for (int i=0;i<nPairs;i++) - { - - int bodyIndexA = hostPairs[i].x; - int bodyIndexB = hostPairs[i].y; - - int collidableIndexA = hostBodyBuf[bodyIndexA].m_collidableIdx; - int collidableIndexB = hostBodyBuf[bodyIndexB].m_collidableIdx; - - int shapeIndexA = hostCollidables[collidableIndexA].m_shapeIndex; - int shapeIndexB = hostCollidables[collidableIndexB].m_shapeIndex; - - - if (hostHasSepNormals[i]) - { - b3FindClippingFaces(cpuSepNormals[i], - &hostConvexData[shapeIndexA], - &hostConvexData[shapeIndexB], - hostBodyBuf[bodyIndexA].m_pos,hostBodyBuf[bodyIndexA].m_quat, - hostBodyBuf[bodyIndexB].m_pos,hostBodyBuf[bodyIndexB].m_quat, - &worldVertsA1CPU.at(0),&worldNormalsACPU.at(0), - &worldVertsB1CPU.at(0), - vertexFaceCapacity,minDist,maxDist, - &hostVertices.at(0),&hostFaces.at(0), - &hostIndices.at(0), - &hostVertices.at(0),&hostFaces.at(0), - &hostIndices.at(0),&clippingFacesOutCPU.at(0),i); - } - } - - clippingFacesOutGPU.copyFromHost(clippingFacesOutCPU); - worldVertsA1GPU.copyFromHost(worldVertsA1CPU); - worldNormalsAGPU.copyFromHost(worldNormalsACPU); - worldVertsB1GPU.copyFromHost(worldVertsB1CPU); - - } - - - - - - ///clip face B against face A, reduce contacts and append them to a global contact array - if (1) - { - if (clipConvexFacesAndFindContactsCPU) - { - - //b3AlignedObjectArray<b3Int4> hostPairs; - //pairs->copyToHost(hostPairs); - - b3AlignedObjectArray<b3Vector3> hostSepNormals; - m_sepNormals.copyToHost(hostSepNormals); - b3AlignedObjectArray<int> hostHasSepAxis; - m_hasSeparatingNormals.copyToHost(hostHasSepAxis); - - b3AlignedObjectArray<b3Int4> hostClippingFaces; - clippingFacesOutGPU.copyToHost(hostClippingFaces); - b3AlignedObjectArray<b3Vector3> worldVertsB2CPU; - worldVertsB2CPU.resize(vertexFaceCapacity*nPairs); - - b3AlignedObjectArray<b3Vector3>worldVertsA1CPU; - worldVertsA1GPU.copyToHost(worldVertsA1CPU); - b3AlignedObjectArray<b3Vector3> worldNormalsACPU; - worldNormalsAGPU.copyToHost(worldNormalsACPU); - - b3AlignedObjectArray<b3Vector3> worldVertsB1CPU; - worldVertsB1GPU.copyToHost(worldVertsB1CPU); - - /* - __global const b3Float4* separatingNormals, - __global const int* hasSeparatingAxis, - __global b3Int4* clippingFacesOut, - __global b3Float4* worldVertsA1, - __global b3Float4* worldNormalsA1, - __global b3Float4* worldVertsB1, - __global b3Float4* worldVertsB2, - int vertexFaceCapacity, - int pairIndex - */ - for (int i=0;i<nPairs;i++) - { - clipFacesAndFindContactsKernel( - &hostSepNormals.at(0), - &hostHasSepAxis.at(0), - &hostClippingFaces.at(0), - &worldVertsA1CPU.at(0), - &worldNormalsACPU.at(0), - &worldVertsB1CPU.at(0), - &worldVertsB2CPU.at(0), - - vertexFaceCapacity, - i); - } - - clippingFacesOutGPU.copyFromHost(hostClippingFaces); - worldVertsB2GPU.copyFromHost(worldVertsB2CPU); - - } else - { - B3_PROFILE("clipFacesAndFindContacts"); - //nContacts = m_totalContactsOut.at(0); - //int h = m_hasSeparatingNormals.at(0); - //int4 p = clippingFacesOutGPU.at(0); - b3BufferInfoCL bInfo[] = { - b3BufferInfoCL( m_sepNormals.getBufferCL()), - b3BufferInfoCL( m_hasSeparatingNormals.getBufferCL()), - b3BufferInfoCL( clippingFacesOutGPU.getBufferCL()), - b3BufferInfoCL( worldVertsA1GPU.getBufferCL()), - b3BufferInfoCL( worldNormalsAGPU.getBufferCL()), - b3BufferInfoCL( worldVertsB1GPU.getBufferCL()), - b3BufferInfoCL( worldVertsB2GPU.getBufferCL()) - }; - - b3LauncherCL launcher(m_queue, m_clipFacesAndFindContacts,"m_clipFacesAndFindContacts"); - launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(b3BufferInfoCL) ); - launcher.setConst(vertexFaceCapacity); - - launcher.setConst( nPairs ); - int debugMode = 0; - launcher.setConst( debugMode); - int num = nPairs; - launcher.launch1D( num); - clFinish(m_queue); - } - - { - nContacts = m_totalContactsOut.at(0); - //printf("nContacts = %d\n",nContacts); - - int newContactCapacity = nContacts+nPairs; - contactOut->reserve(newContactCapacity); - - if (reduceConvexContactsOnGPU) - { - { - B3_PROFILE("newContactReductionKernel"); - b3BufferInfoCL bInfo[] = - { - b3BufferInfoCL( pairs->getBufferCL(), true ), - b3BufferInfoCL( bodyBuf->getBufferCL(),true), - b3BufferInfoCL( m_sepNormals.getBufferCL()), - b3BufferInfoCL( m_hasSeparatingNormals.getBufferCL()), - b3BufferInfoCL( contactOut->getBufferCL()), - b3BufferInfoCL( clippingFacesOutGPU.getBufferCL()), - b3BufferInfoCL( worldVertsB2GPU.getBufferCL()), - b3BufferInfoCL( m_totalContactsOut.getBufferCL()) - }; - - b3LauncherCL launcher(m_queue, m_newContactReductionKernel,"m_newContactReductionKernel"); - launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(b3BufferInfoCL) ); - launcher.setConst(vertexFaceCapacity); - launcher.setConst(newContactCapacity); - launcher.setConst( nPairs ); - int num = nPairs; - - launcher.launch1D( num); - } - nContacts = m_totalContactsOut.at(0); - contactOut->resize(nContacts); - } else - { - - volatile int nGlobalContactsOut = nContacts; - b3AlignedObjectArray<b3Int4> hostPairs; - pairs->copyToHost(hostPairs); - b3AlignedObjectArray<b3RigidBodyData> hostBodyBuf; - bodyBuf->copyToHost(hostBodyBuf); - b3AlignedObjectArray<b3Vector3> hostSepNormals; - m_sepNormals.copyToHost(hostSepNormals); - b3AlignedObjectArray<int> hostHasSepAxis; - m_hasSeparatingNormals.copyToHost(hostHasSepAxis); - b3AlignedObjectArray<b3Contact4> hostContactsOut; - contactOut->copyToHost(hostContactsOut); - hostContactsOut.resize(newContactCapacity); - - b3AlignedObjectArray<b3Int4> hostClippingFaces; - clippingFacesOutGPU.copyToHost(hostClippingFaces); - b3AlignedObjectArray<b3Vector3> worldVertsB2CPU; - worldVertsB2GPU.copyToHost(worldVertsB2CPU); - - for (int i=0;i<nPairs;i++) - { - b3NewContactReductionKernel(&hostPairs.at(0), - &hostBodyBuf.at(0), - &hostSepNormals.at(0), - &hostHasSepAxis.at(0), - &hostContactsOut.at(0), - &hostClippingFaces.at(0), - &worldVertsB2CPU.at(0), - &nGlobalContactsOut, - vertexFaceCapacity, - newContactCapacity, - nPairs, - i); - } - - nContacts = nGlobalContactsOut; - m_totalContactsOut.copyFromHostPointer(&nContacts,1,0,true); - hostContactsOut.resize(nContacts); - //printf("contactOut4 (after newContactReductionKernel) = %d\n",nContacts); - contactOut->copyFromHost(hostContactsOut); - } - // b3Contact4 pt = contactOut->at(0); - // printf("nContacts = %d\n",nContacts); - } - } - } - else//breakupKernel - { - - if (nPairs) - { - b3BufferInfoCL bInfo[] = { - b3BufferInfoCL( pairs->getBufferCL(), true ), - b3BufferInfoCL( bodyBuf->getBufferCL(),true), - b3BufferInfoCL( gpuCollidables.getBufferCL(),true), - b3BufferInfoCL( convexData.getBufferCL(),true), - b3BufferInfoCL( gpuVertices.getBufferCL(),true), - b3BufferInfoCL( gpuUniqueEdges.getBufferCL(),true), - b3BufferInfoCL( gpuFaces.getBufferCL(),true), - b3BufferInfoCL( gpuIndices.getBufferCL(),true), - b3BufferInfoCL( m_sepNormals.getBufferCL()), - b3BufferInfoCL( m_hasSeparatingNormals.getBufferCL()), - b3BufferInfoCL( contactOut->getBufferCL()), - b3BufferInfoCL( m_totalContactsOut.getBufferCL()) - }; - b3LauncherCL launcher(m_queue, m_clipHullHullKernel,"m_clipHullHullKernel"); - launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(b3BufferInfoCL) ); - launcher.setConst( nPairs ); - launcher.setConst(maxContactCapacity); - - int num = nPairs; - launcher.launch1D( num); - clFinish(m_queue); - - nContacts = m_totalContactsOut.at(0); - if (nContacts >= maxContactCapacity) - { - b3Error("Exceeded contact capacity (%d/%d)\n",nContacts,maxContactCapacity); - nContacts = maxContactCapacity; - } - contactOut->resize(nContacts); - } - } - - - int nCompoundsPairs = m_gpuCompoundPairs.size(); - - if (nCompoundsPairs) - { - b3BufferInfoCL bInfo[] = { - b3BufferInfoCL( m_gpuCompoundPairs.getBufferCL(), true ), - b3BufferInfoCL( bodyBuf->getBufferCL(),true), - b3BufferInfoCL( gpuCollidables.getBufferCL(),true), - b3BufferInfoCL( convexData.getBufferCL(),true), - b3BufferInfoCL( gpuVertices.getBufferCL(),true), - b3BufferInfoCL( gpuUniqueEdges.getBufferCL(),true), - b3BufferInfoCL( gpuFaces.getBufferCL(),true), - b3BufferInfoCL( gpuIndices.getBufferCL(),true), - b3BufferInfoCL( gpuChildShapes.getBufferCL(),true), - b3BufferInfoCL( m_gpuCompoundSepNormals.getBufferCL(),true), - b3BufferInfoCL( m_gpuHasCompoundSepNormals.getBufferCL(),true), - b3BufferInfoCL( contactOut->getBufferCL()), - b3BufferInfoCL( m_totalContactsOut.getBufferCL()) - }; - b3LauncherCL launcher(m_queue, m_clipCompoundsHullHullKernel,"m_clipCompoundsHullHullKernel"); - launcher.setBuffers( bInfo, sizeof(bInfo)/sizeof(b3BufferInfoCL) ); - launcher.setConst( nCompoundsPairs ); - launcher.setConst(maxContactCapacity); - - int num = nCompoundsPairs; - launcher.launch1D( num); - clFinish(m_queue); - - nContacts = m_totalContactsOut.at(0); - if (nContacts>maxContactCapacity) - { - - b3Error("Error: contacts exceeds capacity (%d/%d)\n", nContacts, maxContactCapacity); - nContacts = maxContactCapacity; - } - contactOut->resize(nContacts); - }//if nCompoundsPairs - } - }//contactClippingOnGpu - - //printf("nContacts end = %d\n",nContacts); - - //printf("frameCount = %d\n",frameCount++); -} diff --git a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3ConvexHullContact.h b/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3ConvexHullContact.h deleted file mode 100644 index e24c1579c6..0000000000 --- a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3ConvexHullContact.h +++ /dev/null @@ -1,118 +0,0 @@ - -#ifndef _CONVEX_HULL_CONTACT_H -#define _CONVEX_HULL_CONTACT_H - -#include "Bullet3OpenCL/ParallelPrimitives/b3OpenCLArray.h" -#include "Bullet3Collision/NarrowPhaseCollision/shared/b3RigidBodyData.h" -#include "Bullet3Common/b3AlignedObjectArray.h" - -#include "Bullet3Collision/NarrowPhaseCollision/shared/b3ConvexPolyhedronData.h" -#include "Bullet3Collision/NarrowPhaseCollision/shared/b3Collidable.h" -#include "Bullet3Collision/NarrowPhaseCollision/b3Contact4.h" -#include "Bullet3Common/shared/b3Int2.h" -#include "Bullet3Common/shared/b3Int4.h" -#include "b3OptimizedBvh.h" -#include "b3BvhInfo.h" -#include "Bullet3Collision/BroadPhaseCollision/shared/b3Aabb.h" - -//#include "../../dynamics/basic_demo/Stubs/ChNarrowPhase.h" - - - - -struct GpuSatCollision -{ - cl_context m_context; - cl_device_id m_device; - cl_command_queue m_queue; - cl_kernel m_findSeparatingAxisKernel; - cl_kernel m_mprPenetrationKernel; - cl_kernel m_findSeparatingAxisUnitSphereKernel; - - - cl_kernel m_findSeparatingAxisVertexFaceKernel; - cl_kernel m_findSeparatingAxisEdgeEdgeKernel; - - cl_kernel m_findConcaveSeparatingAxisKernel; - cl_kernel m_findConcaveSeparatingAxisVertexFaceKernel; - cl_kernel m_findConcaveSeparatingAxisEdgeEdgeKernel; - - - - - cl_kernel m_findCompoundPairsKernel; - cl_kernel m_processCompoundPairsKernel; - - cl_kernel m_clipHullHullKernel; - cl_kernel m_clipCompoundsHullHullKernel; - - cl_kernel m_clipFacesAndFindContacts; - cl_kernel m_findClippingFacesKernel; - - cl_kernel m_clipHullHullConcaveConvexKernel; -// cl_kernel m_extractManifoldAndAddContactKernel; - cl_kernel m_newContactReductionKernel; - - cl_kernel m_bvhTraversalKernel; - cl_kernel m_primitiveContactsKernel; - cl_kernel m_findConcaveSphereContactsKernel; - - cl_kernel m_processCompoundPairsPrimitivesKernel; - - b3OpenCLArray<b3Vector3> m_unitSphereDirections; - - b3OpenCLArray<int> m_totalContactsOut; - - b3OpenCLArray<b3Vector3> m_sepNormals; - b3OpenCLArray<float> m_dmins; - - b3OpenCLArray<int> m_hasSeparatingNormals; - b3OpenCLArray<b3Vector3> m_concaveSepNormals; - b3OpenCLArray<int> m_concaveHasSeparatingNormals; - b3OpenCLArray<int> m_numConcavePairsOut; - b3OpenCLArray<b3CompoundOverlappingPair> m_gpuCompoundPairs; - b3OpenCLArray<b3Vector3> m_gpuCompoundSepNormals; - b3OpenCLArray<int> m_gpuHasCompoundSepNormals; - b3OpenCLArray<int> m_numCompoundPairsOut; - - - GpuSatCollision(cl_context ctx,cl_device_id device, cl_command_queue q ); - virtual ~GpuSatCollision(); - - - void computeConvexConvexContactsGPUSAT( b3OpenCLArray<b3Int4>* pairs, int nPairs, - const b3OpenCLArray<b3RigidBodyData>* bodyBuf, - b3OpenCLArray<b3Contact4>* contactOut, int& nContacts, - const b3OpenCLArray<b3Contact4>* oldContacts, - int maxContactCapacity, - int compoundPairCapacity, - const b3OpenCLArray<b3ConvexPolyhedronData>& hostConvexData, - const b3OpenCLArray<b3Vector3>& vertices, - const b3OpenCLArray<b3Vector3>& uniqueEdges, - const b3OpenCLArray<b3GpuFace>& faces, - const b3OpenCLArray<int>& indices, - const b3OpenCLArray<b3Collidable>& gpuCollidables, - const b3OpenCLArray<b3GpuChildShape>& gpuChildShapes, - - const b3OpenCLArray<b3Aabb>& clAabbsWorldSpace, - const b3OpenCLArray<b3Aabb>& clAabbsLocalSpace, - - b3OpenCLArray<b3Vector3>& worldVertsB1GPU, - b3OpenCLArray<b3Int4>& clippingFacesOutGPU, - b3OpenCLArray<b3Vector3>& worldNormalsAGPU, - b3OpenCLArray<b3Vector3>& worldVertsA1GPU, - b3OpenCLArray<b3Vector3>& worldVertsB2GPU, - b3AlignedObjectArray<class b3OptimizedBvh*>& bvhData, - b3OpenCLArray<b3QuantizedBvhNode>* treeNodesGPU, - b3OpenCLArray<b3BvhSubtreeInfo>* subTreesGPU, - b3OpenCLArray<b3BvhInfo>* bvhInfo, - int numObjects, - int maxTriConvexPairCapacity, - b3OpenCLArray<b3Int4>& triangleConvexPairs, - int& numTriConvexPairsOut - ); - - -}; - -#endif //_CONVEX_HULL_CONTACT_H diff --git a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3ConvexPolyhedronCL.h b/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3ConvexPolyhedronCL.h deleted file mode 100644 index 337100fb1a..0000000000 --- a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3ConvexPolyhedronCL.h +++ /dev/null @@ -1,9 +0,0 @@ -#ifndef CONVEX_POLYHEDRON_CL -#define CONVEX_POLYHEDRON_CL - -#include "Bullet3Common/b3Transform.h" -#include "Bullet3Collision/NarrowPhaseCollision/shared/b3ConvexPolyhedronData.h" - - - -#endif //CONVEX_POLYHEDRON_CL diff --git a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3GjkEpa.cpp b/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3GjkEpa.cpp deleted file mode 100644 index d636f983c6..0000000000 --- a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3GjkEpa.cpp +++ /dev/null @@ -1,1014 +0,0 @@ -/* -Bullet Continuous Collision Detection and Physics Library -Copyright (c) 2003-2008 Erwin Coumans http://continuousphysics.com/Bullet/ - -This software is provided 'as-is', without any express or implied warranty. -In no event will the authors be held liable for any damages arising from the -use of this software. -Permission is granted to anyone to use this software for any purpose, -including commercial applications, and to alter it and redistribute it -freely, -subject to the following restrictions: - -1. The origin of this software must not be misrepresented; you must not -claim that you wrote the original software. If you use this software in a -product, an acknowledgment in the product documentation would be appreciated -but is not required. -2. Altered source versions must be plainly marked as such, and must not be -misrepresented as being the original software. -3. This notice may not be removed or altered from any source distribution. -*/ - -/* -GJK-EPA collision solver by Nathanael Presson, 2008 -*/ - -#include "b3GjkEpa.h" - -#include "b3SupportMappings.h" - -namespace gjkepa2_impl2 -{ - - // Config - - /* GJK */ -#define GJK_MAX_ITERATIONS 128 -#define GJK_ACCURACY ((b3Scalar)0.0001) -#define GJK_MIN_DISTANCE ((b3Scalar)0.0001) -#define GJK_DUPLICATED_EPS ((b3Scalar)0.0001) -#define GJK_SIMPLEX2_EPS ((b3Scalar)0.0) -#define GJK_SIMPLEX3_EPS ((b3Scalar)0.0) -#define GJK_SIMPLEX4_EPS ((b3Scalar)0.0) - - /* EPA */ -#define EPA_MAX_VERTICES 64 -#define EPA_MAX_FACES (EPA_MAX_VERTICES*2) -#define EPA_MAX_ITERATIONS 255 -#define EPA_ACCURACY ((b3Scalar)0.0001) -#define EPA_FALLBACK (10*EPA_ACCURACY) -#define EPA_PLANE_EPS ((b3Scalar)0.00001) -#define EPA_INSIDE_EPS ((b3Scalar)0.01) - - - // Shorthands - - - // MinkowskiDiff - struct b3MinkowskiDiff - { - - - const b3ConvexPolyhedronData* m_shapes[2]; - - - b3Matrix3x3 m_toshape1; - b3Transform m_toshape0; - - bool m_enableMargin; - - - void EnableMargin(bool enable) - { - m_enableMargin = enable; - } - inline b3Vector3 Support0(const b3Vector3& d, const b3AlignedObjectArray<b3Vector3>& verticesA) const - { - if (m_enableMargin) - { - return localGetSupportVertexWithMargin(d,m_shapes[0],verticesA,0.f); - } else - { - return localGetSupportVertexWithoutMargin(d,m_shapes[0],verticesA); - } - } - inline b3Vector3 Support1(const b3Vector3& d, const b3AlignedObjectArray<b3Vector3>& verticesB) const - { - if (m_enableMargin) - { - return m_toshape0*(localGetSupportVertexWithMargin(m_toshape1*d,m_shapes[1],verticesB,0.f)); - } else - { - return m_toshape0*(localGetSupportVertexWithoutMargin(m_toshape1*d,m_shapes[1],verticesB)); - } - } - - inline b3Vector3 Support(const b3Vector3& d, const b3AlignedObjectArray<b3Vector3>& verticesA, const b3AlignedObjectArray<b3Vector3>& verticesB) const - { - return(Support0(d,verticesA)-Support1(-d,verticesB)); - } - b3Vector3 Support(const b3Vector3& d,unsigned int index,const b3AlignedObjectArray<b3Vector3>& verticesA, const b3AlignedObjectArray<b3Vector3>& verticesB) const - { - if(index) - return(Support1(d,verticesA)); - else - return(Support0(d,verticesB)); - } - }; - - typedef b3MinkowskiDiff tShape; - - - // GJK - struct b3GJK - { - /* Types */ - struct sSV - { - b3Vector3 d,w; - }; - struct sSimplex - { - sSV* c[4]; - b3Scalar p[4]; - unsigned int rank; - }; - struct eStatus { enum _ { - Valid, - Inside, - Failed };}; - /* Fields */ - tShape m_shape; - const b3AlignedObjectArray<b3Vector3>& m_verticesA; - const b3AlignedObjectArray<b3Vector3>& m_verticesB; - b3Vector3 m_ray; - b3Scalar m_distance; - sSimplex m_simplices[2]; - sSV m_store[4]; - sSV* m_free[4]; - unsigned int m_nfree; - unsigned int m_current; - sSimplex* m_simplex; - eStatus::_ m_status; - /* Methods */ - b3GJK(const b3AlignedObjectArray<b3Vector3>& verticesA,const b3AlignedObjectArray<b3Vector3>& verticesB) - :m_verticesA(verticesA),m_verticesB(verticesB) - { - Initialize(); - } - void Initialize() - { - m_ray = b3MakeVector3(0,0,0); - m_nfree = 0; - m_status = eStatus::Failed; - m_current = 0; - m_distance = 0; - } - eStatus::_ Evaluate(const tShape& shapearg,const b3Vector3& guess) - { - unsigned int iterations=0; - b3Scalar sqdist=0; - b3Scalar alpha=0; - b3Vector3 lastw[4]; - unsigned int clastw=0; - /* Initialize solver */ - m_free[0] = &m_store[0]; - m_free[1] = &m_store[1]; - m_free[2] = &m_store[2]; - m_free[3] = &m_store[3]; - m_nfree = 4; - m_current = 0; - m_status = eStatus::Valid; - m_shape = shapearg; - m_distance = 0; - /* Initialize simplex */ - m_simplices[0].rank = 0; - m_ray = guess; - const b3Scalar sqrl= m_ray.length2(); - appendvertice(m_simplices[0],sqrl>0?-m_ray:b3MakeVector3(1,0,0)); - m_simplices[0].p[0] = 1; - m_ray = m_simplices[0].c[0]->w; - sqdist = sqrl; - lastw[0] = - lastw[1] = - lastw[2] = - lastw[3] = m_ray; - /* Loop */ - do { - const unsigned int next=1-m_current; - sSimplex& cs=m_simplices[m_current]; - sSimplex& ns=m_simplices[next]; - /* Check zero */ - const b3Scalar rl=m_ray.length(); - if(rl<GJK_MIN_DISTANCE) - {/* Touching or inside */ - m_status=eStatus::Inside; - break; - } - /* Append new vertice in -'v' direction */ - appendvertice(cs,-m_ray); - const b3Vector3& w=cs.c[cs.rank-1]->w; - bool found=false; - for(unsigned int i=0;i<4;++i) - { - if((w-lastw[i]).length2()<GJK_DUPLICATED_EPS) - { found=true;break; } - } - if(found) - {/* Return old simplex */ - removevertice(m_simplices[m_current]); - break; - } - else - {/* Update lastw */ - lastw[clastw=(clastw+1)&3]=w; - } - /* Check for termination */ - const b3Scalar omega=b3Dot(m_ray,w)/rl; - alpha=b3Max(omega,alpha); - if(((rl-alpha)-(GJK_ACCURACY*rl))<=0) - {/* Return old simplex */ - removevertice(m_simplices[m_current]); - break; - } - /* Reduce simplex */ - b3Scalar weights[4]; - unsigned int mask=0; - switch(cs.rank) - { - case 2: sqdist=projectorigin( cs.c[0]->w, - cs.c[1]->w, - weights,mask);break; - case 3: sqdist=projectorigin( cs.c[0]->w, - cs.c[1]->w, - cs.c[2]->w, - weights,mask);break; - case 4: sqdist=projectorigin( cs.c[0]->w, - cs.c[1]->w, - cs.c[2]->w, - cs.c[3]->w, - weights,mask);break; - } - if(sqdist>=0) - {/* Valid */ - ns.rank = 0; - m_ray = b3MakeVector3(0,0,0); - m_current = next; - for(unsigned int i=0,ni=cs.rank;i<ni;++i) - { - if(mask&(1<<i)) - { - ns.c[ns.rank] = cs.c[i]; - ns.p[ns.rank++] = weights[i]; - m_ray += cs.c[i]->w*weights[i]; - } - else - { - m_free[m_nfree++] = cs.c[i]; - } - } - if(mask==15) m_status=eStatus::Inside; - } - else - {/* Return old simplex */ - removevertice(m_simplices[m_current]); - break; - } - m_status=((++iterations)<GJK_MAX_ITERATIONS)?m_status:eStatus::Failed; - } while(m_status==eStatus::Valid); - m_simplex=&m_simplices[m_current]; - switch(m_status) - { - case eStatus::Valid: m_distance=m_ray.length();break; - case eStatus::Inside: m_distance=0;break; - default: - { - } - } - return(m_status); - } - bool EncloseOrigin() - { - switch(m_simplex->rank) - { - case 1: - { - for(unsigned int i=0;i<3;++i) - { - b3Vector3 axis=b3MakeVector3(0,0,0); - axis[i]=1; - appendvertice(*m_simplex, axis); - if(EncloseOrigin()) return(true); - removevertice(*m_simplex); - appendvertice(*m_simplex,-axis); - if(EncloseOrigin()) return(true); - removevertice(*m_simplex); - } - } - break; - case 2: - { - const b3Vector3 d=m_simplex->c[1]->w-m_simplex->c[0]->w; - for(unsigned int i=0;i<3;++i) - { - b3Vector3 axis=b3MakeVector3(0,0,0); - axis[i]=1; - const b3Vector3 p=b3Cross(d,axis); - if(p.length2()>0) - { - appendvertice(*m_simplex, p); - if(EncloseOrigin()) return(true); - removevertice(*m_simplex); - appendvertice(*m_simplex,-p); - if(EncloseOrigin()) return(true); - removevertice(*m_simplex); - } - } - } - break; - case 3: - { - const b3Vector3 n=b3Cross(m_simplex->c[1]->w-m_simplex->c[0]->w, - m_simplex->c[2]->w-m_simplex->c[0]->w); - if(n.length2()>0) - { - appendvertice(*m_simplex,n); - if(EncloseOrigin()) return(true); - removevertice(*m_simplex); - appendvertice(*m_simplex,-n); - if(EncloseOrigin()) return(true); - removevertice(*m_simplex); - } - } - break; - case 4: - { - if(b3Fabs(det( m_simplex->c[0]->w-m_simplex->c[3]->w, - m_simplex->c[1]->w-m_simplex->c[3]->w, - m_simplex->c[2]->w-m_simplex->c[3]->w))>0) - return(true); - } - break; - } - return(false); - } - /* Internals */ - void getsupport(const b3Vector3& d,sSV& sv) const - { - sv.d = d/d.length(); - sv.w = m_shape.Support(sv.d,m_verticesA,m_verticesB); - } - void removevertice(sSimplex& simplex) - { - m_free[m_nfree++]=simplex.c[--simplex.rank]; - } - void appendvertice(sSimplex& simplex,const b3Vector3& v) - { - simplex.p[simplex.rank]=0; - simplex.c[simplex.rank]=m_free[--m_nfree]; - getsupport(v,*simplex.c[simplex.rank++]); - } - static b3Scalar det(const b3Vector3& a,const b3Vector3& b,const b3Vector3& c) - { - return( a.y*b.z*c.x+a.z*b.x*c.y- - a.x*b.z*c.y-a.y*b.x*c.z+ - a.x*b.y*c.z-a.z*b.y*c.x); - } - static b3Scalar projectorigin( const b3Vector3& a, - const b3Vector3& b, - b3Scalar* w,unsigned int& m) - { - const b3Vector3 d=b-a; - const b3Scalar l=d.length2(); - if(l>GJK_SIMPLEX2_EPS) - { - const b3Scalar t(l>0?-b3Dot(a,d)/l:0); - if(t>=1) { w[0]=0;w[1]=1;m=2;return(b.length2()); } - else if(t<=0) { w[0]=1;w[1]=0;m=1;return(a.length2()); } - else { w[0]=1-(w[1]=t);m=3;return((a+d*t).length2()); } - } - return(-1); - } - static b3Scalar projectorigin( const b3Vector3& a, - const b3Vector3& b, - const b3Vector3& c, - b3Scalar* w,unsigned int& m) - { - static const unsigned int imd3[]={1,2,0}; - const b3Vector3* vt[]={&a,&b,&c}; - const b3Vector3 dl[]={a-b,b-c,c-a}; - const b3Vector3 n=b3Cross(dl[0],dl[1]); - const b3Scalar l=n.length2(); - if(l>GJK_SIMPLEX3_EPS) - { - b3Scalar mindist=-1; - b3Scalar subw[2]={0.f,0.f}; - unsigned int subm(0); - for(unsigned int i=0;i<3;++i) - { - if(b3Dot(*vt[i],b3Cross(dl[i],n))>0) - { - const unsigned int j=imd3[i]; - const b3Scalar subd(projectorigin(*vt[i],*vt[j],subw,subm)); - if((mindist<0)||(subd<mindist)) - { - mindist = subd; - m = static_cast<unsigned int>(((subm&1)?1<<i:0)+((subm&2)?1<<j:0)); - w[i] = subw[0]; - w[j] = subw[1]; - w[imd3[j]] = 0; - } - } - } - if(mindist<0) - { - const b3Scalar d=b3Dot(a,n); - const b3Scalar s=b3Sqrt(l); - const b3Vector3 p=n*(d/l); - mindist = p.length2(); - m = 7; - w[0] = (b3Cross(dl[1],b-p)).length()/s; - w[1] = (b3Cross(dl[2],c-p)).length()/s; - w[2] = 1-(w[0]+w[1]); - } - return(mindist); - } - return(-1); - } - static b3Scalar projectorigin( const b3Vector3& a, - const b3Vector3& b, - const b3Vector3& c, - const b3Vector3& d, - b3Scalar* w,unsigned int& m) - { - static const unsigned int imd3[]={1,2,0}; - const b3Vector3* vt[]={&a,&b,&c,&d}; - const b3Vector3 dl[]={a-d,b-d,c-d}; - const b3Scalar vl=det(dl[0],dl[1],dl[2]); - const bool ng=(vl*b3Dot(a,b3Cross(b-c,a-b)))<=0; - if(ng&&(b3Fabs(vl)>GJK_SIMPLEX4_EPS)) - { - b3Scalar mindist=-1; - b3Scalar subw[3]={0.f,0.f,0.f}; - unsigned int subm(0); - for(unsigned int i=0;i<3;++i) - { - const unsigned int j=imd3[i]; - const b3Scalar s=vl*b3Dot(d,b3Cross(dl[i],dl[j])); - if(s>0) - { - const b3Scalar subd=projectorigin(*vt[i],*vt[j],d,subw,subm); - if((mindist<0)||(subd<mindist)) - { - mindist = subd; - m = static_cast<unsigned int>((subm&1?1<<i:0)+ - (subm&2?1<<j:0)+ - (subm&4?8:0)); - w[i] = subw[0]; - w[j] = subw[1]; - w[imd3[j]] = 0; - w[3] = subw[2]; - } - } - } - if(mindist<0) - { - mindist = 0; - m = 15; - w[0] = det(c,b,d)/vl; - w[1] = det(a,c,d)/vl; - w[2] = det(b,a,d)/vl; - w[3] = 1-(w[0]+w[1]+w[2]); - } - return(mindist); - } - return(-1); - } - }; - - // EPA - struct b3EPA - { - /* Types */ - typedef b3GJK::sSV sSV; - struct sFace - { - b3Vector3 n; - b3Scalar d; - sSV* c[3]; - sFace* f[3]; - sFace* l[2]; - unsigned char e[3]; - unsigned char pass; - }; - struct sList - { - sFace* root; - unsigned int count; - sList() : root(0),count(0) {} - }; - struct sHorizon - { - sFace* cf; - sFace* ff; - unsigned int nf; - sHorizon() : cf(0),ff(0),nf(0) {} - }; - struct eStatus { enum _ { - Valid, - Touching, - Degenerated, - NonConvex, - InvalidHull, - OutOfFaces, - OutOfVertices, - AccuraryReached, - FallBack, - Failed };}; - /* Fields */ - eStatus::_ m_status; - b3GJK::sSimplex m_result; - b3Vector3 m_normal; - b3Scalar m_depth; - sSV m_sv_store[EPA_MAX_VERTICES]; - sFace m_fc_store[EPA_MAX_FACES]; - unsigned int m_nextsv; - sList m_hull; - sList m_stock; - /* Methods */ - b3EPA() - { - Initialize(); - } - - - static inline void bind(sFace* fa,unsigned int ea,sFace* fb,unsigned int eb) - { - fa->e[ea]=(unsigned char)eb;fa->f[ea]=fb; - fb->e[eb]=(unsigned char)ea;fb->f[eb]=fa; - } - static inline void append(sList& list,sFace* face) - { - face->l[0] = 0; - face->l[1] = list.root; - if(list.root) list.root->l[0]=face; - list.root = face; - ++list.count; - } - static inline void remove(sList& list,sFace* face) - { - if(face->l[1]) face->l[1]->l[0]=face->l[0]; - if(face->l[0]) face->l[0]->l[1]=face->l[1]; - if(face==list.root) list.root=face->l[1]; - --list.count; - } - - - void Initialize() - { - m_status = eStatus::Failed; - m_normal = b3MakeVector3(0,0,0); - m_depth = 0; - m_nextsv = 0; - for(unsigned int i=0;i<EPA_MAX_FACES;++i) - { - append(m_stock,&m_fc_store[EPA_MAX_FACES-i-1]); - } - } - eStatus::_ Evaluate(b3GJK& gjk,const b3Vector3& guess) - { - b3GJK::sSimplex& simplex=*gjk.m_simplex; - if((simplex.rank>1)&&gjk.EncloseOrigin()) - { - - /* Clean up */ - while(m_hull.root) - { - sFace* f = m_hull.root; - remove(m_hull,f); - append(m_stock,f); - } - m_status = eStatus::Valid; - m_nextsv = 0; - /* Orient simplex */ - if(gjk.det( simplex.c[0]->w-simplex.c[3]->w, - simplex.c[1]->w-simplex.c[3]->w, - simplex.c[2]->w-simplex.c[3]->w)<0) - { - b3Swap(simplex.c[0],simplex.c[1]); - b3Swap(simplex.p[0],simplex.p[1]); - } - /* Build initial hull */ - sFace* tetra[]={newface(simplex.c[0],simplex.c[1],simplex.c[2],true), - newface(simplex.c[1],simplex.c[0],simplex.c[3],true), - newface(simplex.c[2],simplex.c[1],simplex.c[3],true), - newface(simplex.c[0],simplex.c[2],simplex.c[3],true)}; - if(m_hull.count==4) - { - sFace* best=findbest(); - sFace outer=*best; - unsigned int pass=0; - unsigned int iterations=0; - bind(tetra[0],0,tetra[1],0); - bind(tetra[0],1,tetra[2],0); - bind(tetra[0],2,tetra[3],0); - bind(tetra[1],1,tetra[3],2); - bind(tetra[1],2,tetra[2],1); - bind(tetra[2],2,tetra[3],1); - m_status=eStatus::Valid; - for(;iterations<EPA_MAX_ITERATIONS;++iterations) - { - if(m_nextsv<EPA_MAX_VERTICES) - { - sHorizon horizon; - sSV* w=&m_sv_store[m_nextsv++]; - bool valid=true; - best->pass = (unsigned char)(++pass); - gjk.getsupport(best->n,*w); - const b3Scalar wdist=b3Dot(best->n,w->w)-best->d; - if(wdist>EPA_ACCURACY) - { - for(unsigned int j=0;(j<3)&&valid;++j) - { - valid&=expand( pass,w, - best->f[j],best->e[j], - horizon); - } - if(valid&&(horizon.nf>=3)) - { - bind(horizon.cf,1,horizon.ff,2); - remove(m_hull,best); - append(m_stock,best); - best=findbest(); - outer=*best; - } else { - m_status=eStatus::Failed; - //m_status=eStatus::InvalidHull; - break; } - } else { m_status=eStatus::AccuraryReached;break; } - } else { m_status=eStatus::OutOfVertices;break; } - } - const b3Vector3 projection=outer.n*outer.d; - m_normal = outer.n; - m_depth = outer.d; - m_result.rank = 3; - m_result.c[0] = outer.c[0]; - m_result.c[1] = outer.c[1]; - m_result.c[2] = outer.c[2]; - m_result.p[0] = b3Cross( outer.c[1]->w-projection, - outer.c[2]->w-projection).length(); - m_result.p[1] = b3Cross( outer.c[2]->w-projection, - outer.c[0]->w-projection).length(); - m_result.p[2] = b3Cross( outer.c[0]->w-projection, - outer.c[1]->w-projection).length(); - const b3Scalar sum=m_result.p[0]+m_result.p[1]+m_result.p[2]; - m_result.p[0] /= sum; - m_result.p[1] /= sum; - m_result.p[2] /= sum; - return(m_status); - } - } - /* Fallback */ - m_status = eStatus::FallBack; - m_normal = -guess; - const b3Scalar nl=m_normal.length(); - if(nl>0) - m_normal = m_normal/nl; - else - m_normal = b3MakeVector3(1,0,0); - m_depth = 0; - m_result.rank=1; - m_result.c[0]=simplex.c[0]; - m_result.p[0]=1; - return(m_status); - } - bool getedgedist(sFace* face, sSV* a, sSV* b, b3Scalar& dist) - { - const b3Vector3 ba = b->w - a->w; - const b3Vector3 n_ab = b3Cross(ba, face->n); // Outward facing edge normal direction, on triangle plane - const b3Scalar a_dot_nab = b3Dot(a->w, n_ab); // Only care about the sign to determine inside/outside, so not normalization required - - if(a_dot_nab < 0) - { - // Outside of edge a->b - - const b3Scalar ba_l2 = ba.length2(); - const b3Scalar a_dot_ba = b3Dot(a->w, ba); - const b3Scalar b_dot_ba = b3Dot(b->w, ba); - - if(a_dot_ba > 0) - { - // Pick distance vertex a - dist = a->w.length(); - } - else if(b_dot_ba < 0) - { - // Pick distance vertex b - dist = b->w.length(); - } - else - { - // Pick distance to edge a->b - const b3Scalar a_dot_b = b3Dot(a->w, b->w); - dist = b3Sqrt(b3Max((a->w.length2() * b->w.length2() - a_dot_b * a_dot_b) / ba_l2, (b3Scalar)0)); - } - - return true; - } - - return false; - } - sFace* newface(sSV* a,sSV* b,sSV* c,bool forced) - { - if(m_stock.root) - { - sFace* face=m_stock.root; - remove(m_stock,face); - append(m_hull,face); - face->pass = 0; - face->c[0] = a; - face->c[1] = b; - face->c[2] = c; - face->n = b3Cross(b->w-a->w,c->w-a->w); - const b3Scalar l=face->n.length(); - const bool v=l>EPA_ACCURACY; - - if(v) - { - if(!(getedgedist(face, a, b, face->d) || - getedgedist(face, b, c, face->d) || - getedgedist(face, c, a, face->d))) - { - // Origin projects to the interior of the triangle - // Use distance to triangle plane - face->d = b3Dot(a->w, face->n) / l; - } - - face->n /= l; - if(forced || (face->d >= -EPA_PLANE_EPS)) - { - return face; - } - else - m_status=eStatus::NonConvex; - } - else - m_status=eStatus::Degenerated; - - remove(m_hull, face); - append(m_stock, face); - return 0; - - } - m_status = m_stock.root ? eStatus::OutOfVertices : eStatus::OutOfFaces; - return 0; - } - sFace* findbest() - { - sFace* minf=m_hull.root; - b3Scalar mind=minf->d*minf->d; - for(sFace* f=minf->l[1];f;f=f->l[1]) - { - const b3Scalar sqd=f->d*f->d; - if(sqd<mind) - { - minf=f; - mind=sqd; - } - } - return(minf); - } - bool expand(unsigned int pass,sSV* w,sFace* f,unsigned int e,sHorizon& horizon) - { - static const unsigned int i1m3[]={1,2,0}; - static const unsigned int i2m3[]={2,0,1}; - if(f->pass!=pass) - { - const unsigned int e1=i1m3[e]; - if((b3Dot(f->n,w->w)-f->d)<-EPA_PLANE_EPS) - { - sFace* nf=newface(f->c[e1],f->c[e],w,false); - if(nf) - { - bind(nf,0,f,e); - if(horizon.cf) bind(horizon.cf,1,nf,2); else horizon.ff=nf; - horizon.cf=nf; - ++horizon.nf; - return(true); - } - } - else - { - const unsigned int e2=i2m3[e]; - f->pass = (unsigned char)pass; - if( expand(pass,w,f->f[e1],f->e[e1],horizon)&& - expand(pass,w,f->f[e2],f->e[e2],horizon)) - { - remove(m_hull,f); - append(m_stock,f); - return(true); - } - } - } - return(false); - } - - }; - - // - static void Initialize(const b3Transform& transA, const b3Transform& transB, - const b3ConvexPolyhedronData* hullA, const b3ConvexPolyhedronData* hullB, - const b3AlignedObjectArray<b3Vector3>& verticesA, - const b3AlignedObjectArray<b3Vector3>& verticesB, - b3GjkEpaSolver2::sResults& results, - tShape& shape, - bool withmargins) - { - /* Results */ - results.witnesses[0] = - results.witnesses[1] = b3MakeVector3(0,0,0); - results.status = b3GjkEpaSolver2::sResults::Separated; - /* Shape */ - shape.m_shapes[0] = hullA; - shape.m_shapes[1] = hullB; - shape.m_toshape1 = transB.getBasis().transposeTimes(transA.getBasis()); - shape.m_toshape0 = transA.inverseTimes(transB); - shape.EnableMargin(withmargins); - } - -} - -// -// Api -// - -using namespace gjkepa2_impl2; - -// -int b3GjkEpaSolver2::StackSizeRequirement() -{ - return(sizeof(b3GJK)+sizeof(b3EPA)); -} - -// -bool b3GjkEpaSolver2::Distance( const b3Transform& transA, const b3Transform& transB, - const b3ConvexPolyhedronData* hullA, const b3ConvexPolyhedronData* hullB, - const b3AlignedObjectArray<b3Vector3>& verticesA, - const b3AlignedObjectArray<b3Vector3>& verticesB, - const b3Vector3& guess, - sResults& results) -{ - tShape shape; - Initialize(transA,transB,hullA,hullB,verticesA,verticesB,results,shape,false); - b3GJK gjk(verticesA,verticesB); - b3GJK::eStatus::_ gjk_status=gjk.Evaluate(shape,guess); - if(gjk_status==b3GJK::eStatus::Valid) - { - b3Vector3 w0=b3MakeVector3(0,0,0); - b3Vector3 w1=b3MakeVector3(0,0,0); - for(unsigned int i=0;i<gjk.m_simplex->rank;++i) - { - const b3Scalar p=gjk.m_simplex->p[i]; - w0+=shape.Support( gjk.m_simplex->c[i]->d,0,verticesA,verticesB)*p; - w1+=shape.Support(-gjk.m_simplex->c[i]->d,1,verticesA,verticesB)*p; - } - results.witnesses[0] = transA*w0; - results.witnesses[1] = transA*w1; - results.normal = w0-w1; - results.distance = results.normal.length(); - results.normal /= results.distance>GJK_MIN_DISTANCE?results.distance:1; - return(true); - } - else - { - results.status = gjk_status==b3GJK::eStatus::Inside? - sResults::Penetrating : - sResults::GJK_Failed ; - return(false); - } -} - -// -bool b3GjkEpaSolver2::Penetration( const b3Transform& transA, const b3Transform& transB, - const b3ConvexPolyhedronData* hullA, const b3ConvexPolyhedronData* hullB, - const b3AlignedObjectArray<b3Vector3>& verticesA, - const b3AlignedObjectArray<b3Vector3>& verticesB, - const b3Vector3& guess, - sResults& results, - bool usemargins) -{ - - tShape shape; - Initialize(transA,transB,hullA,hullB,verticesA,verticesB,results,shape,usemargins); - b3GJK gjk(verticesA,verticesB); - b3GJK::eStatus::_ gjk_status=gjk.Evaluate(shape,guess); - switch(gjk_status) - { - case b3GJK::eStatus::Inside: - { - b3EPA epa; - b3EPA::eStatus::_ epa_status=epa.Evaluate(gjk,-guess); - if(epa_status!=b3EPA::eStatus::Failed) - { - b3Vector3 w0=b3MakeVector3(0,0,0); - for(unsigned int i=0;i<epa.m_result.rank;++i) - { - w0+=shape.Support(epa.m_result.c[i]->d,0,verticesA,verticesB)*epa.m_result.p[i]; - } - results.status = sResults::Penetrating; - results.witnesses[0] = transA*w0; - results.witnesses[1] = transA*(w0-epa.m_normal*epa.m_depth); - results.normal = -epa.m_normal; - results.distance = -epa.m_depth; - return(true); - } else results.status=sResults::EPA_Failed; - } - break; - case b3GJK::eStatus::Failed: - results.status=sResults::GJK_Failed; - break; - default: - { - } - } - return(false); -} - - -#if 0 -// -b3Scalar b3GjkEpaSolver2::SignedDistance(const b3Vector3& position, - b3Scalar margin, - const b3Transform& transA, - const b3ConvexPolyhedronData& hullA, - const b3AlignedObjectArray<b3Vector3>& verticesA, - sResults& results) -{ - tShape shape; - btSphereShape shape1(margin); - b3Transform wtrs1(b3Quaternion(0,0,0,1),position); - Initialize(shape0,wtrs0,&shape1,wtrs1,results,shape,false); - GJK gjk; - GJK::eStatus::_ gjk_status=gjk.Evaluate(shape,b3Vector3(1,1,1)); - if(gjk_status==GJK::eStatus::Valid) - { - b3Vector3 w0=b3Vector3(0,0,0); - b3Vector3 w1=b3Vector3(0,0,0); - for(unsigned int i=0;i<gjk.m_simplex->rank;++i) - { - const b3Scalar p=gjk.m_simplex->p[i]; - w0+=shape.Support( gjk.m_simplex->c[i]->d,0)*p; - w1+=shape.Support(-gjk.m_simplex->c[i]->d,1)*p; - } - results.witnesses[0] = wtrs0*w0; - results.witnesses[1] = wtrs0*w1; - const b3Vector3 delta= results.witnesses[1]- - results.witnesses[0]; - const b3Scalar margin= shape0->getMarginNonVirtual()+ - shape1.getMarginNonVirtual(); - const b3Scalar length= delta.length(); - results.normal = delta/length; - results.witnesses[0] += results.normal*margin; - return(length-margin); - } - else - { - if(gjk_status==GJK::eStatus::Inside) - { - if(Penetration(shape0,wtrs0,&shape1,wtrs1,gjk.m_ray,results)) - { - const b3Vector3 delta= results.witnesses[0]- - results.witnesses[1]; - const b3Scalar length= delta.length(); - if (length >= B3_EPSILON) - results.normal = delta/length; - return(-length); - } - } - } - return(B3_INFINITY); -} - -// -bool b3GjkEpaSolver2::SignedDistance(const btConvexShape* shape0, - const b3Transform& wtrs0, - const btConvexShape* shape1, - const b3Transform& wtrs1, - const b3Vector3& guess, - sResults& results) -{ - if(!Distance(shape0,wtrs0,shape1,wtrs1,guess,results)) - return(Penetration(shape0,wtrs0,shape1,wtrs1,guess,results,false)); - else - return(true); -} -#endif - - -/* Symbols cleanup */ - -#undef GJK_MAX_ITERATIONS -#undef GJK_ACCURACY -#undef GJK_MIN_DISTANCE -#undef GJK_DUPLICATED_EPS -#undef GJK_SIMPLEX2_EPS -#undef GJK_SIMPLEX3_EPS -#undef GJK_SIMPLEX4_EPS - -#undef EPA_MAX_VERTICES -#undef EPA_MAX_FACES -#undef EPA_MAX_ITERATIONS -#undef EPA_ACCURACY -#undef EPA_FALLBACK -#undef EPA_PLANE_EPS -#undef EPA_INSIDE_EPS diff --git a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3GjkEpa.h b/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3GjkEpa.h deleted file mode 100644 index 976238a04c..0000000000 --- a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3GjkEpa.h +++ /dev/null @@ -1,82 +0,0 @@ -/* -Bullet Continuous Collision Detection and Physics Library -Copyright (c) 2003-2008 Erwin Coumans http://continuousphysics.com/Bullet/ - -This software is provided 'as-is', without any express or implied warranty. -In no event will the authors be held liable for any damages arising from the -use of this software. -Permission is granted to anyone to use this software for any purpose, -including commercial applications, and to alter it and redistribute it -freely, -subject to the following restrictions: - -1. The origin of this software must not be misrepresented; you must not -claim that you wrote the original software. If you use this software in a -product, an acknowledgment in the product documentation would be appreciated -but is not required. -2. Altered source versions must be plainly marked as such, and must not be -misrepresented as being the original software. -3. This notice may not be removed or altered from any source distribution. -*/ - -/* -GJK-EPA collision solver by Nathanael Presson, 2008 -*/ -#ifndef B3_GJK_EPA2_H -#define B3_GJK_EPA2_H - -#include "Bullet3Common/b3AlignedObjectArray.h" -#include "Bullet3Common/b3Transform.h" -#include "Bullet3Collision/NarrowPhaseCollision/shared/b3ConvexPolyhedronData.h" - - -///btGjkEpaSolver contributed under zlib by Nathanael Presson -struct b3GjkEpaSolver2 -{ -struct sResults - { - enum eStatus - { - Separated, /* Shapes doesnt penetrate */ - Penetrating, /* Shapes are penetrating */ - GJK_Failed, /* GJK phase fail, no big issue, shapes are probably just 'touching' */ - EPA_Failed /* EPA phase fail, bigger problem, need to save parameters, and debug */ - } status; - b3Vector3 witnesses[2]; - b3Vector3 normal; - b3Scalar distance; - }; - -static int StackSizeRequirement(); - -static bool Distance( const b3Transform& transA, const b3Transform& transB, - const b3ConvexPolyhedronData* hullA, const b3ConvexPolyhedronData* hullB, - const b3AlignedObjectArray<b3Vector3>& verticesA, - const b3AlignedObjectArray<b3Vector3>& verticesB, - const b3Vector3& guess, - sResults& results); - -static bool Penetration( const b3Transform& transA, const b3Transform& transB, - const b3ConvexPolyhedronData* hullA, const b3ConvexPolyhedronData* hullB, - const b3AlignedObjectArray<b3Vector3>& verticesA, - const b3AlignedObjectArray<b3Vector3>& verticesB, - const b3Vector3& guess, - sResults& results, - bool usemargins=true); -#if 0 -static b3Scalar SignedDistance( const b3Vector3& position, - b3Scalar margin, - const btConvexShape* shape, - const btTransform& wtrs, - sResults& results); - -static bool SignedDistance( const btConvexShape* shape0,const btTransform& wtrs0, - const btConvexShape* shape1,const btTransform& wtrs1, - const b3Vector3& guess, - sResults& results); -#endif - -}; - -#endif //B3_GJK_EPA2_H - diff --git a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3OptimizedBvh.cpp b/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3OptimizedBvh.cpp deleted file mode 100644 index e9e51d5a36..0000000000 --- a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3OptimizedBvh.cpp +++ /dev/null @@ -1,390 +0,0 @@ -/* -Bullet Continuous Collision Detection and Physics Library -Copyright (c) 2003-2009 Erwin Coumans http://bulletphysics.org - -This software is provided 'as-is', without any express or implied warranty. -In no event will the authors be held liable for any damages arising from the use of this software. -Permission is granted to anyone to use this software for any purpose, -including commercial applications, and to alter it and redistribute it freely, -subject to the following restrictions: - -1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. -2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. -3. This notice may not be removed or altered from any source distribution. -*/ - - -#include "b3OptimizedBvh.h" -#include "b3StridingMeshInterface.h" -#include "Bullet3Geometry/b3AabbUtil.h" - - -b3OptimizedBvh::b3OptimizedBvh() -{ -} - -b3OptimizedBvh::~b3OptimizedBvh() -{ -} - - -void b3OptimizedBvh::build(b3StridingMeshInterface* triangles, bool useQuantizedAabbCompression, const b3Vector3& bvhAabbMin, const b3Vector3& bvhAabbMax) -{ - m_useQuantization = useQuantizedAabbCompression; - - - // NodeArray triangleNodes; - - struct NodeTriangleCallback : public b3InternalTriangleIndexCallback - { - - NodeArray& m_triangleNodes; - - NodeTriangleCallback& operator=(NodeTriangleCallback& other) - { - m_triangleNodes.copyFromArray(other.m_triangleNodes); - return *this; - } - - NodeTriangleCallback(NodeArray& triangleNodes) - :m_triangleNodes(triangleNodes) - { - } - - virtual void internalProcessTriangleIndex(b3Vector3* triangle,int partId,int triangleIndex) - { - b3OptimizedBvhNode node; - b3Vector3 aabbMin,aabbMax; - aabbMin.setValue(b3Scalar(B3_LARGE_FLOAT),b3Scalar(B3_LARGE_FLOAT),b3Scalar(B3_LARGE_FLOAT)); - aabbMax.setValue(b3Scalar(-B3_LARGE_FLOAT),b3Scalar(-B3_LARGE_FLOAT),b3Scalar(-B3_LARGE_FLOAT)); - aabbMin.setMin(triangle[0]); - aabbMax.setMax(triangle[0]); - aabbMin.setMin(triangle[1]); - aabbMax.setMax(triangle[1]); - aabbMin.setMin(triangle[2]); - aabbMax.setMax(triangle[2]); - - //with quantization? - node.m_aabbMinOrg = aabbMin; - node.m_aabbMaxOrg = aabbMax; - - node.m_escapeIndex = -1; - - //for child nodes - node.m_subPart = partId; - node.m_triangleIndex = triangleIndex; - m_triangleNodes.push_back(node); - } - }; - struct QuantizedNodeTriangleCallback : public b3InternalTriangleIndexCallback - { - QuantizedNodeArray& m_triangleNodes; - const b3QuantizedBvh* m_optimizedTree; // for quantization - - QuantizedNodeTriangleCallback& operator=(QuantizedNodeTriangleCallback& other) - { - m_triangleNodes.copyFromArray(other.m_triangleNodes); - m_optimizedTree = other.m_optimizedTree; - return *this; - } - - QuantizedNodeTriangleCallback(QuantizedNodeArray& triangleNodes,const b3QuantizedBvh* tree) - :m_triangleNodes(triangleNodes),m_optimizedTree(tree) - { - } - - virtual void internalProcessTriangleIndex(b3Vector3* triangle,int partId,int triangleIndex) - { - // The partId and triangle index must fit in the same (positive) integer - b3Assert(partId < (1<<MAX_NUM_PARTS_IN_BITS)); - b3Assert(triangleIndex < (1<<(31-MAX_NUM_PARTS_IN_BITS))); - //negative indices are reserved for escapeIndex - b3Assert(triangleIndex>=0); - - b3QuantizedBvhNode node; - b3Vector3 aabbMin,aabbMax; - aabbMin.setValue(b3Scalar(B3_LARGE_FLOAT),b3Scalar(B3_LARGE_FLOAT),b3Scalar(B3_LARGE_FLOAT)); - aabbMax.setValue(b3Scalar(-B3_LARGE_FLOAT),b3Scalar(-B3_LARGE_FLOAT),b3Scalar(-B3_LARGE_FLOAT)); - aabbMin.setMin(triangle[0]); - aabbMax.setMax(triangle[0]); - aabbMin.setMin(triangle[1]); - aabbMax.setMax(triangle[1]); - aabbMin.setMin(triangle[2]); - aabbMax.setMax(triangle[2]); - - //PCK: add these checks for zero dimensions of aabb - const b3Scalar MIN_AABB_DIMENSION = b3Scalar(0.002); - const b3Scalar MIN_AABB_HALF_DIMENSION = b3Scalar(0.001); - if (aabbMax.getX() - aabbMin.getX() < MIN_AABB_DIMENSION) - { - aabbMax.setX(aabbMax.getX() + MIN_AABB_HALF_DIMENSION); - aabbMin.setX(aabbMin.getX() - MIN_AABB_HALF_DIMENSION); - } - if (aabbMax.getY() - aabbMin.getY() < MIN_AABB_DIMENSION) - { - aabbMax.setY(aabbMax.getY() + MIN_AABB_HALF_DIMENSION); - aabbMin.setY(aabbMin.getY() - MIN_AABB_HALF_DIMENSION); - } - if (aabbMax.getZ() - aabbMin.getZ() < MIN_AABB_DIMENSION) - { - aabbMax.setZ(aabbMax.getZ() + MIN_AABB_HALF_DIMENSION); - aabbMin.setZ(aabbMin.getZ() - MIN_AABB_HALF_DIMENSION); - } - - m_optimizedTree->quantize(&node.m_quantizedAabbMin[0],aabbMin,0); - m_optimizedTree->quantize(&node.m_quantizedAabbMax[0],aabbMax,1); - - node.m_escapeIndexOrTriangleIndex = (partId<<(31-MAX_NUM_PARTS_IN_BITS)) | triangleIndex; - - m_triangleNodes.push_back(node); - } - }; - - - - int numLeafNodes = 0; - - - if (m_useQuantization) - { - - //initialize quantization values - setQuantizationValues(bvhAabbMin,bvhAabbMax); - - QuantizedNodeTriangleCallback callback(m_quantizedLeafNodes,this); - - - triangles->InternalProcessAllTriangles(&callback,m_bvhAabbMin,m_bvhAabbMax); - - //now we have an array of leafnodes in m_leafNodes - numLeafNodes = m_quantizedLeafNodes.size(); - - - m_quantizedContiguousNodes.resize(2*numLeafNodes); - - - } else - { - NodeTriangleCallback callback(m_leafNodes); - - b3Vector3 aabbMin=b3MakeVector3(b3Scalar(-B3_LARGE_FLOAT),b3Scalar(-B3_LARGE_FLOAT),b3Scalar(-B3_LARGE_FLOAT)); - b3Vector3 aabbMax=b3MakeVector3(b3Scalar(B3_LARGE_FLOAT),b3Scalar(B3_LARGE_FLOAT),b3Scalar(B3_LARGE_FLOAT)); - - triangles->InternalProcessAllTriangles(&callback,aabbMin,aabbMax); - - //now we have an array of leafnodes in m_leafNodes - numLeafNodes = m_leafNodes.size(); - - m_contiguousNodes.resize(2*numLeafNodes); - } - - m_curNodeIndex = 0; - - buildTree(0,numLeafNodes); - - ///if the entire tree is small then subtree size, we need to create a header info for the tree - if(m_useQuantization && !m_SubtreeHeaders.size()) - { - b3BvhSubtreeInfo& subtree = m_SubtreeHeaders.expand(); - subtree.setAabbFromQuantizeNode(m_quantizedContiguousNodes[0]); - subtree.m_rootNodeIndex = 0; - subtree.m_subtreeSize = m_quantizedContiguousNodes[0].isLeafNode() ? 1 : m_quantizedContiguousNodes[0].getEscapeIndex(); - } - - //PCK: update the copy of the size - m_subtreeHeaderCount = m_SubtreeHeaders.size(); - - //PCK: clear m_quantizedLeafNodes and m_leafNodes, they are temporary - m_quantizedLeafNodes.clear(); - m_leafNodes.clear(); -} - - - - -void b3OptimizedBvh::refit(b3StridingMeshInterface* meshInterface,const b3Vector3& aabbMin,const b3Vector3& aabbMax) -{ - if (m_useQuantization) - { - - setQuantizationValues(aabbMin,aabbMax); - - updateBvhNodes(meshInterface,0,m_curNodeIndex,0); - - ///now update all subtree headers - - int i; - for (i=0;i<m_SubtreeHeaders.size();i++) - { - b3BvhSubtreeInfo& subtree = m_SubtreeHeaders[i]; - subtree.setAabbFromQuantizeNode(m_quantizedContiguousNodes[subtree.m_rootNodeIndex]); - } - - } else - { - - } -} - - - - -void b3OptimizedBvh::refitPartial(b3StridingMeshInterface* meshInterface,const b3Vector3& aabbMin,const b3Vector3& aabbMax) -{ - //incrementally initialize quantization values - b3Assert(m_useQuantization); - - b3Assert(aabbMin.getX() > m_bvhAabbMin.getX()); - b3Assert(aabbMin.getY() > m_bvhAabbMin.getY()); - b3Assert(aabbMin.getZ() > m_bvhAabbMin.getZ()); - - b3Assert(aabbMax.getX() < m_bvhAabbMax.getX()); - b3Assert(aabbMax.getY() < m_bvhAabbMax.getY()); - b3Assert(aabbMax.getZ() < m_bvhAabbMax.getZ()); - - ///we should update all quantization values, using updateBvhNodes(meshInterface); - ///but we only update chunks that overlap the given aabb - - unsigned short quantizedQueryAabbMin[3]; - unsigned short quantizedQueryAabbMax[3]; - - quantize(&quantizedQueryAabbMin[0],aabbMin,0); - quantize(&quantizedQueryAabbMax[0],aabbMax,1); - - int i; - for (i=0;i<this->m_SubtreeHeaders.size();i++) - { - b3BvhSubtreeInfo& subtree = m_SubtreeHeaders[i]; - - //PCK: unsigned instead of bool - unsigned overlap = b3TestQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,subtree.m_quantizedAabbMin,subtree.m_quantizedAabbMax); - if (overlap != 0) - { - updateBvhNodes(meshInterface,subtree.m_rootNodeIndex,subtree.m_rootNodeIndex+subtree.m_subtreeSize,i); - - subtree.setAabbFromQuantizeNode(m_quantizedContiguousNodes[subtree.m_rootNodeIndex]); - } - } - -} - -void b3OptimizedBvh::updateBvhNodes(b3StridingMeshInterface* meshInterface,int firstNode,int endNode,int index) -{ - (void)index; - - b3Assert(m_useQuantization); - - int curNodeSubPart=-1; - - //get access info to trianglemesh data - const unsigned char *vertexbase = 0; - int numverts = 0; - PHY_ScalarType type = PHY_INTEGER; - int stride = 0; - const unsigned char *indexbase = 0; - int indexstride = 0; - int numfaces = 0; - PHY_ScalarType indicestype = PHY_INTEGER; - - b3Vector3 triangleVerts[3]; - b3Vector3 aabbMin,aabbMax; - const b3Vector3& meshScaling = meshInterface->getScaling(); - - int i; - for (i=endNode-1;i>=firstNode;i--) - { - - - b3QuantizedBvhNode& curNode = m_quantizedContiguousNodes[i]; - if (curNode.isLeafNode()) - { - //recalc aabb from triangle data - int nodeSubPart = curNode.getPartId(); - int nodeTriangleIndex = curNode.getTriangleIndex(); - if (nodeSubPart != curNodeSubPart) - { - if (curNodeSubPart >= 0) - meshInterface->unLockReadOnlyVertexBase(curNodeSubPart); - meshInterface->getLockedReadOnlyVertexIndexBase(&vertexbase,numverts, type,stride,&indexbase,indexstride,numfaces,indicestype,nodeSubPart); - - curNodeSubPart = nodeSubPart; - b3Assert(indicestype==PHY_INTEGER||indicestype==PHY_SHORT); - } - //triangles->getLockedReadOnlyVertexIndexBase(vertexBase,numVerts, - - unsigned int* gfxbase = (unsigned int*)(indexbase+nodeTriangleIndex*indexstride); - - - for (int j=2;j>=0;j--) - { - - int graphicsindex = indicestype==PHY_SHORT?((unsigned short*)gfxbase)[j]:gfxbase[j]; - if (type == PHY_FLOAT) - { - float* graphicsbase = (float*)(vertexbase+graphicsindex*stride); - triangleVerts[j] = b3MakeVector3( - graphicsbase[0]*meshScaling.getX(), - graphicsbase[1]*meshScaling.getY(), - graphicsbase[2]*meshScaling.getZ()); - } - else - { - double* graphicsbase = (double*)(vertexbase+graphicsindex*stride); - triangleVerts[j] = b3MakeVector3( b3Scalar(graphicsbase[0]*meshScaling.getX()), b3Scalar(graphicsbase[1]*meshScaling.getY()), b3Scalar(graphicsbase[2]*meshScaling.getZ())); - } - } - - - - aabbMin.setValue(b3Scalar(B3_LARGE_FLOAT),b3Scalar(B3_LARGE_FLOAT),b3Scalar(B3_LARGE_FLOAT)); - aabbMax.setValue(b3Scalar(-B3_LARGE_FLOAT),b3Scalar(-B3_LARGE_FLOAT),b3Scalar(-B3_LARGE_FLOAT)); - aabbMin.setMin(triangleVerts[0]); - aabbMax.setMax(triangleVerts[0]); - aabbMin.setMin(triangleVerts[1]); - aabbMax.setMax(triangleVerts[1]); - aabbMin.setMin(triangleVerts[2]); - aabbMax.setMax(triangleVerts[2]); - - quantize(&curNode.m_quantizedAabbMin[0],aabbMin,0); - quantize(&curNode.m_quantizedAabbMax[0],aabbMax,1); - - } else - { - //combine aabb from both children - - b3QuantizedBvhNode* leftChildNode = &m_quantizedContiguousNodes[i+1]; - - b3QuantizedBvhNode* rightChildNode = leftChildNode->isLeafNode() ? &m_quantizedContiguousNodes[i+2] : - &m_quantizedContiguousNodes[i+1+leftChildNode->getEscapeIndex()]; - - - { - for (int i=0;i<3;i++) - { - curNode.m_quantizedAabbMin[i] = leftChildNode->m_quantizedAabbMin[i]; - if (curNode.m_quantizedAabbMin[i]>rightChildNode->m_quantizedAabbMin[i]) - curNode.m_quantizedAabbMin[i]=rightChildNode->m_quantizedAabbMin[i]; - - curNode.m_quantizedAabbMax[i] = leftChildNode->m_quantizedAabbMax[i]; - if (curNode.m_quantizedAabbMax[i] < rightChildNode->m_quantizedAabbMax[i]) - curNode.m_quantizedAabbMax[i] = rightChildNode->m_quantizedAabbMax[i]; - } - } - } - - } - - if (curNodeSubPart >= 0) - meshInterface->unLockReadOnlyVertexBase(curNodeSubPart); - - -} - -///deSerializeInPlace loads and initializes a BVH from a buffer in memory 'in place' -b3OptimizedBvh* b3OptimizedBvh::deSerializeInPlace(void *i_alignedDataBuffer, unsigned int i_dataBufferSize, bool i_swapEndian) -{ - b3QuantizedBvh* bvh = b3QuantizedBvh::deSerializeInPlace(i_alignedDataBuffer,i_dataBufferSize,i_swapEndian); - - //we don't add additional data so just do a static upcast - return static_cast<b3OptimizedBvh*>(bvh); -} diff --git a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3OptimizedBvh.h b/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3OptimizedBvh.h deleted file mode 100644 index 0272ef83bf..0000000000 --- a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3OptimizedBvh.h +++ /dev/null @@ -1,65 +0,0 @@ -/* -Bullet Continuous Collision Detection and Physics Library -Copyright (c) 2003-2009 Erwin Coumans http://bulletphysics.org - -This software is provided 'as-is', without any express or implied warranty. -In no event will the authors be held liable for any damages arising from the use of this software. -Permission is granted to anyone to use this software for any purpose, -including commercial applications, and to alter it and redistribute it freely, -subject to the following restrictions: - -1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. -2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. -3. This notice may not be removed or altered from any source distribution. -*/ - -///Contains contributions from Disney Studio's - -#ifndef B3_OPTIMIZED_BVH_H -#define B3_OPTIMIZED_BVH_H - -#include "b3QuantizedBvh.h" - -class b3StridingMeshInterface; - - -///The b3OptimizedBvh extends the b3QuantizedBvh to create AABB tree for triangle meshes, through the b3StridingMeshInterface. -B3_ATTRIBUTE_ALIGNED16(class) b3OptimizedBvh : public b3QuantizedBvh -{ - -public: - B3_DECLARE_ALIGNED_ALLOCATOR(); - -protected: - -public: - - b3OptimizedBvh(); - - virtual ~b3OptimizedBvh(); - - void build(b3StridingMeshInterface* triangles,bool useQuantizedAabbCompression, const b3Vector3& bvhAabbMin, const b3Vector3& bvhAabbMax); - - void refit(b3StridingMeshInterface* triangles,const b3Vector3& aabbMin,const b3Vector3& aabbMax); - - void refitPartial(b3StridingMeshInterface* triangles,const b3Vector3& aabbMin, const b3Vector3& aabbMax); - - void updateBvhNodes(b3StridingMeshInterface* meshInterface,int firstNode,int endNode,int index); - - /// Data buffer MUST be 16 byte aligned - virtual bool serializeInPlace(void *o_alignedDataBuffer, unsigned i_dataBufferSize, bool i_swapEndian) const - { - return b3QuantizedBvh::serialize(o_alignedDataBuffer,i_dataBufferSize,i_swapEndian); - - } - - ///deSerializeInPlace loads and initializes a BVH from a buffer in memory 'in place' - static b3OptimizedBvh *deSerializeInPlace(void *i_alignedDataBuffer, unsigned int i_dataBufferSize, bool i_swapEndian); - - -}; - - -#endif //B3_OPTIMIZED_BVH_H - - diff --git a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3QuantizedBvh.cpp b/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3QuantizedBvh.cpp deleted file mode 100644 index 52027e1118..0000000000 --- a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3QuantizedBvh.cpp +++ /dev/null @@ -1,1301 +0,0 @@ -/* -Bullet Continuous Collision Detection and Physics Library -Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ - -This software is provided 'as-is', without any express or implied warranty. -In no event will the authors be held liable for any damages arising from the use of this software. -Permission is granted to anyone to use this software for any purpose, -including commercial applications, and to alter it and redistribute it freely, -subject to the following restrictions: - -1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. -2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. -3. This notice may not be removed or altered from any source distribution. -*/ - -#include "b3QuantizedBvh.h" - -#include "Bullet3Geometry/b3AabbUtil.h" - - -#define RAYAABB2 - -b3QuantizedBvh::b3QuantizedBvh() : - m_bulletVersion(B3_BULLET_VERSION), - m_useQuantization(false), - m_traversalMode(TRAVERSAL_STACKLESS_CACHE_FRIENDLY) - //m_traversalMode(TRAVERSAL_STACKLESS) - //m_traversalMode(TRAVERSAL_RECURSIVE) - ,m_subtreeHeaderCount(0) //PCK: add this line -{ - m_bvhAabbMin.setValue(-B3_INFINITY,-B3_INFINITY,-B3_INFINITY); - m_bvhAabbMax.setValue(B3_INFINITY,B3_INFINITY,B3_INFINITY); -} - - - - - -void b3QuantizedBvh::buildInternal() -{ - ///assumes that caller filled in the m_quantizedLeafNodes - m_useQuantization = true; - int numLeafNodes = 0; - - if (m_useQuantization) - { - //now we have an array of leafnodes in m_leafNodes - numLeafNodes = m_quantizedLeafNodes.size(); - - m_quantizedContiguousNodes.resize(2*numLeafNodes); - - } - - m_curNodeIndex = 0; - - buildTree(0,numLeafNodes); - - ///if the entire tree is small then subtree size, we need to create a header info for the tree - if(m_useQuantization && !m_SubtreeHeaders.size()) - { - b3BvhSubtreeInfo& subtree = m_SubtreeHeaders.expand(); - subtree.setAabbFromQuantizeNode(m_quantizedContiguousNodes[0]); - subtree.m_rootNodeIndex = 0; - subtree.m_subtreeSize = m_quantizedContiguousNodes[0].isLeafNode() ? 1 : m_quantizedContiguousNodes[0].getEscapeIndex(); - } - - //PCK: update the copy of the size - m_subtreeHeaderCount = m_SubtreeHeaders.size(); - - //PCK: clear m_quantizedLeafNodes and m_leafNodes, they are temporary - m_quantizedLeafNodes.clear(); - m_leafNodes.clear(); -} - - - -///just for debugging, to visualize the individual patches/subtrees -#ifdef DEBUG_PATCH_COLORS -b3Vector3 color[4]= -{ - b3Vector3(1,0,0), - b3Vector3(0,1,0), - b3Vector3(0,0,1), - b3Vector3(0,1,1) -}; -#endif //DEBUG_PATCH_COLORS - - - -void b3QuantizedBvh::setQuantizationValues(const b3Vector3& bvhAabbMin,const b3Vector3& bvhAabbMax,b3Scalar quantizationMargin) -{ - //enlarge the AABB to avoid division by zero when initializing the quantization values - b3Vector3 clampValue =b3MakeVector3(quantizationMargin,quantizationMargin,quantizationMargin); - m_bvhAabbMin = bvhAabbMin - clampValue; - m_bvhAabbMax = bvhAabbMax + clampValue; - b3Vector3 aabbSize = m_bvhAabbMax - m_bvhAabbMin; - m_bvhQuantization = b3MakeVector3(b3Scalar(65533.0),b3Scalar(65533.0),b3Scalar(65533.0)) / aabbSize; - m_useQuantization = true; -} - - - - -b3QuantizedBvh::~b3QuantizedBvh() -{ -} - -#ifdef DEBUG_TREE_BUILDING -int gStackDepth = 0; -int gMaxStackDepth = 0; -#endif //DEBUG_TREE_BUILDING - -void b3QuantizedBvh::buildTree (int startIndex,int endIndex) -{ -#ifdef DEBUG_TREE_BUILDING - gStackDepth++; - if (gStackDepth > gMaxStackDepth) - gMaxStackDepth = gStackDepth; -#endif //DEBUG_TREE_BUILDING - - - int splitAxis, splitIndex, i; - int numIndices =endIndex-startIndex; - int curIndex = m_curNodeIndex; - - b3Assert(numIndices>0); - - if (numIndices==1) - { -#ifdef DEBUG_TREE_BUILDING - gStackDepth--; -#endif //DEBUG_TREE_BUILDING - - assignInternalNodeFromLeafNode(m_curNodeIndex,startIndex); - - m_curNodeIndex++; - return; - } - //calculate Best Splitting Axis and where to split it. Sort the incoming 'leafNodes' array within range 'startIndex/endIndex'. - - splitAxis = calcSplittingAxis(startIndex,endIndex); - - splitIndex = sortAndCalcSplittingIndex(startIndex,endIndex,splitAxis); - - int internalNodeIndex = m_curNodeIndex; - - //set the min aabb to 'inf' or a max value, and set the max aabb to a -inf/minimum value. - //the aabb will be expanded during buildTree/mergeInternalNodeAabb with actual node values - setInternalNodeAabbMin(m_curNodeIndex,m_bvhAabbMax);//can't use b3Vector3(B3_INFINITY,B3_INFINITY,B3_INFINITY)) because of quantization - setInternalNodeAabbMax(m_curNodeIndex,m_bvhAabbMin);//can't use b3Vector3(-B3_INFINITY,-B3_INFINITY,-B3_INFINITY)) because of quantization - - - for (i=startIndex;i<endIndex;i++) - { - mergeInternalNodeAabb(m_curNodeIndex,getAabbMin(i),getAabbMax(i)); - } - - m_curNodeIndex++; - - - //internalNode->m_escapeIndex; - - int leftChildNodexIndex = m_curNodeIndex; - - //build left child tree - buildTree(startIndex,splitIndex); - - int rightChildNodexIndex = m_curNodeIndex; - //build right child tree - buildTree(splitIndex,endIndex); - -#ifdef DEBUG_TREE_BUILDING - gStackDepth--; -#endif //DEBUG_TREE_BUILDING - - int escapeIndex = m_curNodeIndex - curIndex; - - if (m_useQuantization) - { - //escapeIndex is the number of nodes of this subtree - const int sizeQuantizedNode =sizeof(b3QuantizedBvhNode); - const int treeSizeInBytes = escapeIndex * sizeQuantizedNode; - if (treeSizeInBytes > MAX_SUBTREE_SIZE_IN_BYTES) - { - updateSubtreeHeaders(leftChildNodexIndex,rightChildNodexIndex); - } - } else - { - - } - - setInternalNodeEscapeIndex(internalNodeIndex,escapeIndex); - -} - -void b3QuantizedBvh::updateSubtreeHeaders(int leftChildNodexIndex,int rightChildNodexIndex) -{ - b3Assert(m_useQuantization); - - b3QuantizedBvhNode& leftChildNode = m_quantizedContiguousNodes[leftChildNodexIndex]; - int leftSubTreeSize = leftChildNode.isLeafNode() ? 1 : leftChildNode.getEscapeIndex(); - int leftSubTreeSizeInBytes = leftSubTreeSize * static_cast<int>(sizeof(b3QuantizedBvhNode)); - - b3QuantizedBvhNode& rightChildNode = m_quantizedContiguousNodes[rightChildNodexIndex]; - int rightSubTreeSize = rightChildNode.isLeafNode() ? 1 : rightChildNode.getEscapeIndex(); - int rightSubTreeSizeInBytes = rightSubTreeSize * static_cast<int>(sizeof(b3QuantizedBvhNode)); - - if(leftSubTreeSizeInBytes <= MAX_SUBTREE_SIZE_IN_BYTES) - { - b3BvhSubtreeInfo& subtree = m_SubtreeHeaders.expand(); - subtree.setAabbFromQuantizeNode(leftChildNode); - subtree.m_rootNodeIndex = leftChildNodexIndex; - subtree.m_subtreeSize = leftSubTreeSize; - } - - if(rightSubTreeSizeInBytes <= MAX_SUBTREE_SIZE_IN_BYTES) - { - b3BvhSubtreeInfo& subtree = m_SubtreeHeaders.expand(); - subtree.setAabbFromQuantizeNode(rightChildNode); - subtree.m_rootNodeIndex = rightChildNodexIndex; - subtree.m_subtreeSize = rightSubTreeSize; - } - - //PCK: update the copy of the size - m_subtreeHeaderCount = m_SubtreeHeaders.size(); -} - - -int b3QuantizedBvh::sortAndCalcSplittingIndex(int startIndex,int endIndex,int splitAxis) -{ - int i; - int splitIndex =startIndex; - int numIndices = endIndex - startIndex; - b3Scalar splitValue; - - b3Vector3 means=b3MakeVector3(b3Scalar(0.),b3Scalar(0.),b3Scalar(0.)); - for (i=startIndex;i<endIndex;i++) - { - b3Vector3 center = b3Scalar(0.5)*(getAabbMax(i)+getAabbMin(i)); - means+=center; - } - means *= (b3Scalar(1.)/(b3Scalar)numIndices); - - splitValue = means[splitAxis]; - - //sort leafNodes so all values larger then splitValue comes first, and smaller values start from 'splitIndex'. - for (i=startIndex;i<endIndex;i++) - { - b3Vector3 center = b3Scalar(0.5)*(getAabbMax(i)+getAabbMin(i)); - if (center[splitAxis] > splitValue) - { - //swap - swapLeafNodes(i,splitIndex); - splitIndex++; - } - } - - //if the splitIndex causes unbalanced trees, fix this by using the center in between startIndex and endIndex - //otherwise the tree-building might fail due to stack-overflows in certain cases. - //unbalanced1 is unsafe: it can cause stack overflows - //bool unbalanced1 = ((splitIndex==startIndex) || (splitIndex == (endIndex-1))); - - //unbalanced2 should work too: always use center (perfect balanced trees) - //bool unbalanced2 = true; - - //this should be safe too: - int rangeBalancedIndices = numIndices/3; - bool unbalanced = ((splitIndex<=(startIndex+rangeBalancedIndices)) || (splitIndex >=(endIndex-1-rangeBalancedIndices))); - - if (unbalanced) - { - splitIndex = startIndex+ (numIndices>>1); - } - - bool unbal = (splitIndex==startIndex) || (splitIndex == (endIndex)); - (void)unbal; - b3Assert(!unbal); - - return splitIndex; -} - - -int b3QuantizedBvh::calcSplittingAxis(int startIndex,int endIndex) -{ - int i; - - b3Vector3 means=b3MakeVector3(b3Scalar(0.),b3Scalar(0.),b3Scalar(0.)); - b3Vector3 variance=b3MakeVector3(b3Scalar(0.),b3Scalar(0.),b3Scalar(0.)); - int numIndices = endIndex-startIndex; - - for (i=startIndex;i<endIndex;i++) - { - b3Vector3 center = b3Scalar(0.5)*(getAabbMax(i)+getAabbMin(i)); - means+=center; - } - means *= (b3Scalar(1.)/(b3Scalar)numIndices); - - for (i=startIndex;i<endIndex;i++) - { - b3Vector3 center = b3Scalar(0.5)*(getAabbMax(i)+getAabbMin(i)); - b3Vector3 diff2 = center-means; - diff2 = diff2 * diff2; - variance += diff2; - } - variance *= (b3Scalar(1.)/ ((b3Scalar)numIndices-1) ); - - return variance.maxAxis(); -} - - - -void b3QuantizedBvh::reportAabbOverlappingNodex(b3NodeOverlapCallback* nodeCallback,const b3Vector3& aabbMin,const b3Vector3& aabbMax) const -{ - //either choose recursive traversal (walkTree) or stackless (walkStacklessTree) - - if (m_useQuantization) - { - ///quantize query AABB - unsigned short int quantizedQueryAabbMin[3]; - unsigned short int quantizedQueryAabbMax[3]; - quantizeWithClamp(quantizedQueryAabbMin,aabbMin,0); - quantizeWithClamp(quantizedQueryAabbMax,aabbMax,1); - - switch (m_traversalMode) - { - case TRAVERSAL_STACKLESS: - walkStacklessQuantizedTree(nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax,0,m_curNodeIndex); - break; - case TRAVERSAL_STACKLESS_CACHE_FRIENDLY: - walkStacklessQuantizedTreeCacheFriendly(nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax); - break; - case TRAVERSAL_RECURSIVE: - { - const b3QuantizedBvhNode* rootNode = &m_quantizedContiguousNodes[0]; - walkRecursiveQuantizedTreeAgainstQueryAabb(rootNode,nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax); - } - break; - default: - //unsupported - b3Assert(0); - } - } else - { - walkStacklessTree(nodeCallback,aabbMin,aabbMax); - } -} - - -static int b3s_maxIterations = 0; - - -void b3QuantizedBvh::walkStacklessTree(b3NodeOverlapCallback* nodeCallback,const b3Vector3& aabbMin,const b3Vector3& aabbMax) const -{ - b3Assert(!m_useQuantization); - - const b3OptimizedBvhNode* rootNode = &m_contiguousNodes[0]; - int escapeIndex, curIndex = 0; - int walkIterations = 0; - bool isLeafNode; - //PCK: unsigned instead of bool - unsigned aabbOverlap; - - while (curIndex < m_curNodeIndex) - { - //catch bugs in tree data - b3Assert (walkIterations < m_curNodeIndex); - - walkIterations++; - aabbOverlap = b3TestAabbAgainstAabb2(aabbMin,aabbMax,rootNode->m_aabbMinOrg,rootNode->m_aabbMaxOrg); - isLeafNode = rootNode->m_escapeIndex == -1; - - //PCK: unsigned instead of bool - if (isLeafNode && (aabbOverlap != 0)) - { - nodeCallback->processNode(rootNode->m_subPart,rootNode->m_triangleIndex); - } - - //PCK: unsigned instead of bool - if ((aabbOverlap != 0) || isLeafNode) - { - rootNode++; - curIndex++; - } else - { - escapeIndex = rootNode->m_escapeIndex; - rootNode += escapeIndex; - curIndex += escapeIndex; - } - } - if (b3s_maxIterations < walkIterations) - b3s_maxIterations = walkIterations; - -} - -/* -///this was the original recursive traversal, before we optimized towards stackless traversal -void b3QuantizedBvh::walkTree(b3OptimizedBvhNode* rootNode,b3NodeOverlapCallback* nodeCallback,const b3Vector3& aabbMin,const b3Vector3& aabbMax) const -{ - bool isLeafNode, aabbOverlap = TestAabbAgainstAabb2(aabbMin,aabbMax,rootNode->m_aabbMin,rootNode->m_aabbMax); - if (aabbOverlap) - { - isLeafNode = (!rootNode->m_leftChild && !rootNode->m_rightChild); - if (isLeafNode) - { - nodeCallback->processNode(rootNode); - } else - { - walkTree(rootNode->m_leftChild,nodeCallback,aabbMin,aabbMax); - walkTree(rootNode->m_rightChild,nodeCallback,aabbMin,aabbMax); - } - } - -} -*/ - -void b3QuantizedBvh::walkRecursiveQuantizedTreeAgainstQueryAabb(const b3QuantizedBvhNode* currentNode,b3NodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax) const -{ - b3Assert(m_useQuantization); - - bool isLeafNode; - //PCK: unsigned instead of bool - unsigned aabbOverlap; - - //PCK: unsigned instead of bool - aabbOverlap = b3TestQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,currentNode->m_quantizedAabbMin,currentNode->m_quantizedAabbMax); - isLeafNode = currentNode->isLeafNode(); - - //PCK: unsigned instead of bool - if (aabbOverlap != 0) - { - if (isLeafNode) - { - nodeCallback->processNode(currentNode->getPartId(),currentNode->getTriangleIndex()); - } else - { - //process left and right children - const b3QuantizedBvhNode* leftChildNode = currentNode+1; - walkRecursiveQuantizedTreeAgainstQueryAabb(leftChildNode,nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax); - - const b3QuantizedBvhNode* rightChildNode = leftChildNode->isLeafNode() ? leftChildNode+1:leftChildNode+leftChildNode->getEscapeIndex(); - walkRecursiveQuantizedTreeAgainstQueryAabb(rightChildNode,nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax); - } - } -} - - - -void b3QuantizedBvh::walkStacklessTreeAgainstRay(b3NodeOverlapCallback* nodeCallback, const b3Vector3& raySource, const b3Vector3& rayTarget, const b3Vector3& aabbMin, const b3Vector3& aabbMax, int startNodeIndex,int endNodeIndex) const -{ - b3Assert(!m_useQuantization); - - const b3OptimizedBvhNode* rootNode = &m_contiguousNodes[0]; - int escapeIndex, curIndex = 0; - int walkIterations = 0; - bool isLeafNode; - //PCK: unsigned instead of bool - unsigned aabbOverlap=0; - unsigned rayBoxOverlap=0; - b3Scalar lambda_max = 1.0; - - /* Quick pruning by quantized box */ - b3Vector3 rayAabbMin = raySource; - b3Vector3 rayAabbMax = raySource; - rayAabbMin.setMin(rayTarget); - rayAabbMax.setMax(rayTarget); - - /* Add box cast extents to bounding box */ - rayAabbMin += aabbMin; - rayAabbMax += aabbMax; - -#ifdef RAYAABB2 - b3Vector3 rayDir = (rayTarget-raySource); - rayDir.normalize (); - lambda_max = rayDir.dot(rayTarget-raySource); - ///what about division by zero? --> just set rayDirection[i] to 1.0 - b3Vector3 rayDirectionInverse; - rayDirectionInverse[0] = rayDir[0] == b3Scalar(0.0) ? b3Scalar(B3_LARGE_FLOAT) : b3Scalar(1.0) / rayDir[0]; - rayDirectionInverse[1] = rayDir[1] == b3Scalar(0.0) ? b3Scalar(B3_LARGE_FLOAT) : b3Scalar(1.0) / rayDir[1]; - rayDirectionInverse[2] = rayDir[2] == b3Scalar(0.0) ? b3Scalar(B3_LARGE_FLOAT) : b3Scalar(1.0) / rayDir[2]; - unsigned int sign[3] = { rayDirectionInverse[0] < 0.0, rayDirectionInverse[1] < 0.0, rayDirectionInverse[2] < 0.0}; -#endif - - b3Vector3 bounds[2]; - - while (curIndex < m_curNodeIndex) - { - b3Scalar param = 1.0; - //catch bugs in tree data - b3Assert (walkIterations < m_curNodeIndex); - - walkIterations++; - - bounds[0] = rootNode->m_aabbMinOrg; - bounds[1] = rootNode->m_aabbMaxOrg; - /* Add box cast extents */ - bounds[0] -= aabbMax; - bounds[1] -= aabbMin; - - aabbOverlap = b3TestAabbAgainstAabb2(rayAabbMin,rayAabbMax,rootNode->m_aabbMinOrg,rootNode->m_aabbMaxOrg); - //perhaps profile if it is worth doing the aabbOverlap test first - -#ifdef RAYAABB2 - ///careful with this check: need to check division by zero (above) and fix the unQuantize method - ///thanks Joerg/hiker for the reproduction case! - ///http://www.bulletphysics.com/Bullet/phpBB3/viewtopic.php?f=9&t=1858 - rayBoxOverlap = aabbOverlap ? b3RayAabb2 (raySource, rayDirectionInverse, sign, bounds, param, 0.0f, lambda_max) : false; - -#else - b3Vector3 normal; - rayBoxOverlap = b3RayAabb(raySource, rayTarget,bounds[0],bounds[1],param, normal); -#endif - - isLeafNode = rootNode->m_escapeIndex == -1; - - //PCK: unsigned instead of bool - if (isLeafNode && (rayBoxOverlap != 0)) - { - nodeCallback->processNode(rootNode->m_subPart,rootNode->m_triangleIndex); - } - - //PCK: unsigned instead of bool - if ((rayBoxOverlap != 0) || isLeafNode) - { - rootNode++; - curIndex++; - } else - { - escapeIndex = rootNode->m_escapeIndex; - rootNode += escapeIndex; - curIndex += escapeIndex; - } - } - if (b3s_maxIterations < walkIterations) - b3s_maxIterations = walkIterations; - -} - - - -void b3QuantizedBvh::walkStacklessQuantizedTreeAgainstRay(b3NodeOverlapCallback* nodeCallback, const b3Vector3& raySource, const b3Vector3& rayTarget, const b3Vector3& aabbMin, const b3Vector3& aabbMax, int startNodeIndex,int endNodeIndex) const -{ - b3Assert(m_useQuantization); - - int curIndex = startNodeIndex; - int walkIterations = 0; - int subTreeSize = endNodeIndex - startNodeIndex; - (void)subTreeSize; - - const b3QuantizedBvhNode* rootNode = &m_quantizedContiguousNodes[startNodeIndex]; - int escapeIndex; - - bool isLeafNode; - //PCK: unsigned instead of bool - unsigned boxBoxOverlap = 0; - unsigned rayBoxOverlap = 0; - - b3Scalar lambda_max = 1.0; - -#ifdef RAYAABB2 - b3Vector3 rayDirection = (rayTarget-raySource); - rayDirection.normalize (); - lambda_max = rayDirection.dot(rayTarget-raySource); - ///what about division by zero? --> just set rayDirection[i] to 1.0 - rayDirection[0] = rayDirection[0] == b3Scalar(0.0) ? b3Scalar(B3_LARGE_FLOAT) : b3Scalar(1.0) / rayDirection[0]; - rayDirection[1] = rayDirection[1] == b3Scalar(0.0) ? b3Scalar(B3_LARGE_FLOAT) : b3Scalar(1.0) / rayDirection[1]; - rayDirection[2] = rayDirection[2] == b3Scalar(0.0) ? b3Scalar(B3_LARGE_FLOAT) : b3Scalar(1.0) / rayDirection[2]; - unsigned int sign[3] = { rayDirection[0] < 0.0, rayDirection[1] < 0.0, rayDirection[2] < 0.0}; -#endif - - /* Quick pruning by quantized box */ - b3Vector3 rayAabbMin = raySource; - b3Vector3 rayAabbMax = raySource; - rayAabbMin.setMin(rayTarget); - rayAabbMax.setMax(rayTarget); - - /* Add box cast extents to bounding box */ - rayAabbMin += aabbMin; - rayAabbMax += aabbMax; - - unsigned short int quantizedQueryAabbMin[3]; - unsigned short int quantizedQueryAabbMax[3]; - quantizeWithClamp(quantizedQueryAabbMin,rayAabbMin,0); - quantizeWithClamp(quantizedQueryAabbMax,rayAabbMax,1); - - while (curIndex < endNodeIndex) - { - -//#define VISUALLY_ANALYZE_BVH 1 -#ifdef VISUALLY_ANALYZE_BVH - //some code snippet to debugDraw aabb, to visually analyze bvh structure - static int drawPatch = 0; - //need some global access to a debugDrawer - extern b3IDebugDraw* debugDrawerPtr; - if (curIndex==drawPatch) - { - b3Vector3 aabbMin,aabbMax; - aabbMin = unQuantize(rootNode->m_quantizedAabbMin); - aabbMax = unQuantize(rootNode->m_quantizedAabbMax); - b3Vector3 color(1,0,0); - debugDrawerPtr->drawAabb(aabbMin,aabbMax,color); - } -#endif//VISUALLY_ANALYZE_BVH - - //catch bugs in tree data - b3Assert (walkIterations < subTreeSize); - - walkIterations++; - //PCK: unsigned instead of bool - // only interested if this is closer than any previous hit - b3Scalar param = 1.0; - rayBoxOverlap = 0; - boxBoxOverlap = b3TestQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,rootNode->m_quantizedAabbMin,rootNode->m_quantizedAabbMax); - isLeafNode = rootNode->isLeafNode(); - if (boxBoxOverlap) - { - b3Vector3 bounds[2]; - bounds[0] = unQuantize(rootNode->m_quantizedAabbMin); - bounds[1] = unQuantize(rootNode->m_quantizedAabbMax); - /* Add box cast extents */ - bounds[0] -= aabbMax; - bounds[1] -= aabbMin; -#if 0 - b3Vector3 normal; - bool ra2 = b3RayAabb2 (raySource, rayDirection, sign, bounds, param, 0.0, lambda_max); - bool ra = b3RayAabb (raySource, rayTarget, bounds[0], bounds[1], param, normal); - if (ra2 != ra) - { - printf("functions don't match\n"); - } -#endif -#ifdef RAYAABB2 - ///careful with this check: need to check division by zero (above) and fix the unQuantize method - ///thanks Joerg/hiker for the reproduction case! - ///http://www.bulletphysics.com/Bullet/phpBB3/viewtopic.php?f=9&t=1858 - - //B3_PROFILE("b3RayAabb2"); - rayBoxOverlap = b3RayAabb2 (raySource, rayDirection, sign, bounds, param, 0.0f, lambda_max); - -#else - rayBoxOverlap = true;//b3RayAabb(raySource, rayTarget, bounds[0], bounds[1], param, normal); -#endif - } - - if (isLeafNode && rayBoxOverlap) - { - nodeCallback->processNode(rootNode->getPartId(),rootNode->getTriangleIndex()); - } - - //PCK: unsigned instead of bool - if ((rayBoxOverlap != 0) || isLeafNode) - { - rootNode++; - curIndex++; - } else - { - escapeIndex = rootNode->getEscapeIndex(); - rootNode += escapeIndex; - curIndex += escapeIndex; - } - } - if (b3s_maxIterations < walkIterations) - b3s_maxIterations = walkIterations; - -} - -void b3QuantizedBvh::walkStacklessQuantizedTree(b3NodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax,int startNodeIndex,int endNodeIndex) const -{ - b3Assert(m_useQuantization); - - int curIndex = startNodeIndex; - int walkIterations = 0; - int subTreeSize = endNodeIndex - startNodeIndex; - (void)subTreeSize; - - const b3QuantizedBvhNode* rootNode = &m_quantizedContiguousNodes[startNodeIndex]; - int escapeIndex; - - bool isLeafNode; - //PCK: unsigned instead of bool - unsigned aabbOverlap; - - while (curIndex < endNodeIndex) - { - -//#define VISUALLY_ANALYZE_BVH 1 -#ifdef VISUALLY_ANALYZE_BVH - //some code snippet to debugDraw aabb, to visually analyze bvh structure - static int drawPatch = 0; - //need some global access to a debugDrawer - extern b3IDebugDraw* debugDrawerPtr; - if (curIndex==drawPatch) - { - b3Vector3 aabbMin,aabbMax; - aabbMin = unQuantize(rootNode->m_quantizedAabbMin); - aabbMax = unQuantize(rootNode->m_quantizedAabbMax); - b3Vector3 color(1,0,0); - debugDrawerPtr->drawAabb(aabbMin,aabbMax,color); - } -#endif//VISUALLY_ANALYZE_BVH - - //catch bugs in tree data - b3Assert (walkIterations < subTreeSize); - - walkIterations++; - //PCK: unsigned instead of bool - aabbOverlap = b3TestQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,rootNode->m_quantizedAabbMin,rootNode->m_quantizedAabbMax); - isLeafNode = rootNode->isLeafNode(); - - if (isLeafNode && aabbOverlap) - { - nodeCallback->processNode(rootNode->getPartId(),rootNode->getTriangleIndex()); - } - - //PCK: unsigned instead of bool - if ((aabbOverlap != 0) || isLeafNode) - { - rootNode++; - curIndex++; - } else - { - escapeIndex = rootNode->getEscapeIndex(); - rootNode += escapeIndex; - curIndex += escapeIndex; - } - } - if (b3s_maxIterations < walkIterations) - b3s_maxIterations = walkIterations; - -} - -//This traversal can be called from Playstation 3 SPU -void b3QuantizedBvh::walkStacklessQuantizedTreeCacheFriendly(b3NodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax) const -{ - b3Assert(m_useQuantization); - - int i; - - - for (i=0;i<this->m_SubtreeHeaders.size();i++) - { - const b3BvhSubtreeInfo& subtree = m_SubtreeHeaders[i]; - - //PCK: unsigned instead of bool - unsigned overlap = b3TestQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,subtree.m_quantizedAabbMin,subtree.m_quantizedAabbMax); - if (overlap != 0) - { - walkStacklessQuantizedTree(nodeCallback,quantizedQueryAabbMin,quantizedQueryAabbMax, - subtree.m_rootNodeIndex, - subtree.m_rootNodeIndex+subtree.m_subtreeSize); - } - } -} - - -void b3QuantizedBvh::reportRayOverlappingNodex (b3NodeOverlapCallback* nodeCallback, const b3Vector3& raySource, const b3Vector3& rayTarget) const -{ - reportBoxCastOverlappingNodex(nodeCallback,raySource,rayTarget,b3MakeVector3(0,0,0),b3MakeVector3(0,0,0)); -} - - -void b3QuantizedBvh::reportBoxCastOverlappingNodex(b3NodeOverlapCallback* nodeCallback, const b3Vector3& raySource, const b3Vector3& rayTarget, const b3Vector3& aabbMin,const b3Vector3& aabbMax) const -{ - //always use stackless - - if (m_useQuantization) - { - walkStacklessQuantizedTreeAgainstRay(nodeCallback, raySource, rayTarget, aabbMin, aabbMax, 0, m_curNodeIndex); - } - else - { - walkStacklessTreeAgainstRay(nodeCallback, raySource, rayTarget, aabbMin, aabbMax, 0, m_curNodeIndex); - } - /* - { - //recursive traversal - b3Vector3 qaabbMin = raySource; - b3Vector3 qaabbMax = raySource; - qaabbMin.setMin(rayTarget); - qaabbMax.setMax(rayTarget); - qaabbMin += aabbMin; - qaabbMax += aabbMax; - reportAabbOverlappingNodex(nodeCallback,qaabbMin,qaabbMax); - } - */ - -} - - -void b3QuantizedBvh::swapLeafNodes(int i,int splitIndex) -{ - if (m_useQuantization) - { - b3QuantizedBvhNode tmp = m_quantizedLeafNodes[i]; - m_quantizedLeafNodes[i] = m_quantizedLeafNodes[splitIndex]; - m_quantizedLeafNodes[splitIndex] = tmp; - } else - { - b3OptimizedBvhNode tmp = m_leafNodes[i]; - m_leafNodes[i] = m_leafNodes[splitIndex]; - m_leafNodes[splitIndex] = tmp; - } -} - -void b3QuantizedBvh::assignInternalNodeFromLeafNode(int internalNode,int leafNodeIndex) -{ - if (m_useQuantization) - { - m_quantizedContiguousNodes[internalNode] = m_quantizedLeafNodes[leafNodeIndex]; - } else - { - m_contiguousNodes[internalNode] = m_leafNodes[leafNodeIndex]; - } -} - -//PCK: include -#include <new> - -#if 0 -//PCK: consts -static const unsigned BVH_ALIGNMENT = 16; -static const unsigned BVH_ALIGNMENT_MASK = BVH_ALIGNMENT-1; - -static const unsigned BVH_ALIGNMENT_BLOCKS = 2; -#endif - - -unsigned int b3QuantizedBvh::getAlignmentSerializationPadding() -{ - // I changed this to 0 since the extra padding is not needed or used. - return 0;//BVH_ALIGNMENT_BLOCKS * BVH_ALIGNMENT; -} - -unsigned b3QuantizedBvh::calculateSerializeBufferSize() const -{ - unsigned baseSize = sizeof(b3QuantizedBvh) + getAlignmentSerializationPadding(); - baseSize += sizeof(b3BvhSubtreeInfo) * m_subtreeHeaderCount; - if (m_useQuantization) - { - return baseSize + m_curNodeIndex * sizeof(b3QuantizedBvhNode); - } - return baseSize + m_curNodeIndex * sizeof(b3OptimizedBvhNode); -} - -bool b3QuantizedBvh::serialize(void *o_alignedDataBuffer, unsigned /*i_dataBufferSize */, bool i_swapEndian) const -{ - b3Assert(m_subtreeHeaderCount == m_SubtreeHeaders.size()); - m_subtreeHeaderCount = m_SubtreeHeaders.size(); - -/* if (i_dataBufferSize < calculateSerializeBufferSize() || o_alignedDataBuffer == NULL || (((unsigned)o_alignedDataBuffer & BVH_ALIGNMENT_MASK) != 0)) - { - ///check alignedment for buffer? - b3Assert(0); - return false; - } -*/ - - b3QuantizedBvh *targetBvh = (b3QuantizedBvh *)o_alignedDataBuffer; - - // construct the class so the virtual function table, etc will be set up - // Also, m_leafNodes and m_quantizedLeafNodes will be initialized to default values by the constructor - new (targetBvh) b3QuantizedBvh; - - if (i_swapEndian) - { - targetBvh->m_curNodeIndex = static_cast<int>(b3SwapEndian(m_curNodeIndex)); - - - b3SwapVector3Endian(m_bvhAabbMin,targetBvh->m_bvhAabbMin); - b3SwapVector3Endian(m_bvhAabbMax,targetBvh->m_bvhAabbMax); - b3SwapVector3Endian(m_bvhQuantization,targetBvh->m_bvhQuantization); - - targetBvh->m_traversalMode = (b3TraversalMode)b3SwapEndian(m_traversalMode); - targetBvh->m_subtreeHeaderCount = static_cast<int>(b3SwapEndian(m_subtreeHeaderCount)); - } - else - { - targetBvh->m_curNodeIndex = m_curNodeIndex; - targetBvh->m_bvhAabbMin = m_bvhAabbMin; - targetBvh->m_bvhAabbMax = m_bvhAabbMax; - targetBvh->m_bvhQuantization = m_bvhQuantization; - targetBvh->m_traversalMode = m_traversalMode; - targetBvh->m_subtreeHeaderCount = m_subtreeHeaderCount; - } - - targetBvh->m_useQuantization = m_useQuantization; - - unsigned char *nodeData = (unsigned char *)targetBvh; - nodeData += sizeof(b3QuantizedBvh); - - unsigned sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK; - nodeData += sizeToAdd; - - int nodeCount = m_curNodeIndex; - - if (m_useQuantization) - { - targetBvh->m_quantizedContiguousNodes.initializeFromBuffer(nodeData, nodeCount, nodeCount); - - if (i_swapEndian) - { - for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) - { - targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0] = b3SwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0]); - targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1] = b3SwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1]); - targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2] = b3SwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2]); - - targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0] = b3SwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0]); - targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1] = b3SwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1]); - targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2] = b3SwapEndian(m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2]); - - targetBvh->m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex = static_cast<int>(b3SwapEndian(m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex)); - } - } - else - { - for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) - { - - targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0]; - targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1]; - targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2]; - - targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0]; - targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1]; - targetBvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2] = m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2]; - - targetBvh->m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex = m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex; - - - } - } - nodeData += sizeof(b3QuantizedBvhNode) * nodeCount; - - // this clears the pointer in the member variable it doesn't really do anything to the data - // it does call the destructor on the contained objects, but they are all classes with no destructor defined - // so the memory (which is not freed) is left alone - targetBvh->m_quantizedContiguousNodes.initializeFromBuffer(NULL, 0, 0); - } - else - { - targetBvh->m_contiguousNodes.initializeFromBuffer(nodeData, nodeCount, nodeCount); - - if (i_swapEndian) - { - for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) - { - b3SwapVector3Endian(m_contiguousNodes[nodeIndex].m_aabbMinOrg, targetBvh->m_contiguousNodes[nodeIndex].m_aabbMinOrg); - b3SwapVector3Endian(m_contiguousNodes[nodeIndex].m_aabbMaxOrg, targetBvh->m_contiguousNodes[nodeIndex].m_aabbMaxOrg); - - targetBvh->m_contiguousNodes[nodeIndex].m_escapeIndex = static_cast<int>(b3SwapEndian(m_contiguousNodes[nodeIndex].m_escapeIndex)); - targetBvh->m_contiguousNodes[nodeIndex].m_subPart = static_cast<int>(b3SwapEndian(m_contiguousNodes[nodeIndex].m_subPart)); - targetBvh->m_contiguousNodes[nodeIndex].m_triangleIndex = static_cast<int>(b3SwapEndian(m_contiguousNodes[nodeIndex].m_triangleIndex)); - } - } - else - { - for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) - { - targetBvh->m_contiguousNodes[nodeIndex].m_aabbMinOrg = m_contiguousNodes[nodeIndex].m_aabbMinOrg; - targetBvh->m_contiguousNodes[nodeIndex].m_aabbMaxOrg = m_contiguousNodes[nodeIndex].m_aabbMaxOrg; - - targetBvh->m_contiguousNodes[nodeIndex].m_escapeIndex = m_contiguousNodes[nodeIndex].m_escapeIndex; - targetBvh->m_contiguousNodes[nodeIndex].m_subPart = m_contiguousNodes[nodeIndex].m_subPart; - targetBvh->m_contiguousNodes[nodeIndex].m_triangleIndex = m_contiguousNodes[nodeIndex].m_triangleIndex; - } - } - nodeData += sizeof(b3OptimizedBvhNode) * nodeCount; - - // this clears the pointer in the member variable it doesn't really do anything to the data - // it does call the destructor on the contained objects, but they are all classes with no destructor defined - // so the memory (which is not freed) is left alone - targetBvh->m_contiguousNodes.initializeFromBuffer(NULL, 0, 0); - } - - sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK; - nodeData += sizeToAdd; - - // Now serialize the subtree headers - targetBvh->m_SubtreeHeaders.initializeFromBuffer(nodeData, m_subtreeHeaderCount, m_subtreeHeaderCount); - if (i_swapEndian) - { - for (int i = 0; i < m_subtreeHeaderCount; i++) - { - targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[0] = b3SwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMin[0]); - targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[1] = b3SwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMin[1]); - targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[2] = b3SwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMin[2]); - - targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[0] = b3SwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMax[0]); - targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[1] = b3SwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMax[1]); - targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[2] = b3SwapEndian(m_SubtreeHeaders[i].m_quantizedAabbMax[2]); - - targetBvh->m_SubtreeHeaders[i].m_rootNodeIndex = static_cast<int>(b3SwapEndian(m_SubtreeHeaders[i].m_rootNodeIndex)); - targetBvh->m_SubtreeHeaders[i].m_subtreeSize = static_cast<int>(b3SwapEndian(m_SubtreeHeaders[i].m_subtreeSize)); - } - } - else - { - for (int i = 0; i < m_subtreeHeaderCount; i++) - { - targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[0] = (m_SubtreeHeaders[i].m_quantizedAabbMin[0]); - targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[1] = (m_SubtreeHeaders[i].m_quantizedAabbMin[1]); - targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMin[2] = (m_SubtreeHeaders[i].m_quantizedAabbMin[2]); - - targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[0] = (m_SubtreeHeaders[i].m_quantizedAabbMax[0]); - targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[1] = (m_SubtreeHeaders[i].m_quantizedAabbMax[1]); - targetBvh->m_SubtreeHeaders[i].m_quantizedAabbMax[2] = (m_SubtreeHeaders[i].m_quantizedAabbMax[2]); - - targetBvh->m_SubtreeHeaders[i].m_rootNodeIndex = (m_SubtreeHeaders[i].m_rootNodeIndex); - targetBvh->m_SubtreeHeaders[i].m_subtreeSize = (m_SubtreeHeaders[i].m_subtreeSize); - - // need to clear padding in destination buffer - targetBvh->m_SubtreeHeaders[i].m_padding[0] = 0; - targetBvh->m_SubtreeHeaders[i].m_padding[1] = 0; - targetBvh->m_SubtreeHeaders[i].m_padding[2] = 0; - } - } - nodeData += sizeof(b3BvhSubtreeInfo) * m_subtreeHeaderCount; - - // this clears the pointer in the member variable it doesn't really do anything to the data - // it does call the destructor on the contained objects, but they are all classes with no destructor defined - // so the memory (which is not freed) is left alone - targetBvh->m_SubtreeHeaders.initializeFromBuffer(NULL, 0, 0); - - // this wipes the virtual function table pointer at the start of the buffer for the class - *((void**)o_alignedDataBuffer) = NULL; - - return true; -} - -b3QuantizedBvh *b3QuantizedBvh::deSerializeInPlace(void *i_alignedDataBuffer, unsigned int i_dataBufferSize, bool i_swapEndian) -{ - - if (i_alignedDataBuffer == NULL)// || (((unsigned)i_alignedDataBuffer & BVH_ALIGNMENT_MASK) != 0)) - { - return NULL; - } - b3QuantizedBvh *bvh = (b3QuantizedBvh *)i_alignedDataBuffer; - - if (i_swapEndian) - { - bvh->m_curNodeIndex = static_cast<int>(b3SwapEndian(bvh->m_curNodeIndex)); - - b3UnSwapVector3Endian(bvh->m_bvhAabbMin); - b3UnSwapVector3Endian(bvh->m_bvhAabbMax); - b3UnSwapVector3Endian(bvh->m_bvhQuantization); - - bvh->m_traversalMode = (b3TraversalMode)b3SwapEndian(bvh->m_traversalMode); - bvh->m_subtreeHeaderCount = static_cast<int>(b3SwapEndian(bvh->m_subtreeHeaderCount)); - } - - unsigned int calculatedBufSize = bvh->calculateSerializeBufferSize(); - b3Assert(calculatedBufSize <= i_dataBufferSize); - - if (calculatedBufSize > i_dataBufferSize) - { - return NULL; - } - - unsigned char *nodeData = (unsigned char *)bvh; - nodeData += sizeof(b3QuantizedBvh); - - unsigned sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK; - nodeData += sizeToAdd; - - int nodeCount = bvh->m_curNodeIndex; - - // Must call placement new to fill in virtual function table, etc, but we don't want to overwrite most data, so call a special version of the constructor - // Also, m_leafNodes and m_quantizedLeafNodes will be initialized to default values by the constructor - new (bvh) b3QuantizedBvh(*bvh, false); - - if (bvh->m_useQuantization) - { - bvh->m_quantizedContiguousNodes.initializeFromBuffer(nodeData, nodeCount, nodeCount); - - if (i_swapEndian) - { - for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) - { - bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0] = b3SwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0]); - bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1] = b3SwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[1]); - bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2] = b3SwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[2]); - - bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0] = b3SwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0]); - bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1] = b3SwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[1]); - bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2] = b3SwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[2]); - - bvh->m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex = static_cast<int>(b3SwapEndian(bvh->m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex)); - } - } - nodeData += sizeof(b3QuantizedBvhNode) * nodeCount; - } - else - { - bvh->m_contiguousNodes.initializeFromBuffer(nodeData, nodeCount, nodeCount); - - if (i_swapEndian) - { - for (int nodeIndex = 0; nodeIndex < nodeCount; nodeIndex++) - { - b3UnSwapVector3Endian(bvh->m_contiguousNodes[nodeIndex].m_aabbMinOrg); - b3UnSwapVector3Endian(bvh->m_contiguousNodes[nodeIndex].m_aabbMaxOrg); - - bvh->m_contiguousNodes[nodeIndex].m_escapeIndex = static_cast<int>(b3SwapEndian(bvh->m_contiguousNodes[nodeIndex].m_escapeIndex)); - bvh->m_contiguousNodes[nodeIndex].m_subPart = static_cast<int>(b3SwapEndian(bvh->m_contiguousNodes[nodeIndex].m_subPart)); - bvh->m_contiguousNodes[nodeIndex].m_triangleIndex = static_cast<int>(b3SwapEndian(bvh->m_contiguousNodes[nodeIndex].m_triangleIndex)); - } - } - nodeData += sizeof(b3OptimizedBvhNode) * nodeCount; - } - - sizeToAdd = 0;//(BVH_ALIGNMENT-((unsigned)nodeData & BVH_ALIGNMENT_MASK))&BVH_ALIGNMENT_MASK; - nodeData += sizeToAdd; - - // Now serialize the subtree headers - bvh->m_SubtreeHeaders.initializeFromBuffer(nodeData, bvh->m_subtreeHeaderCount, bvh->m_subtreeHeaderCount); - if (i_swapEndian) - { - for (int i = 0; i < bvh->m_subtreeHeaderCount; i++) - { - bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[0] = b3SwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[0]); - bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[1] = b3SwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[1]); - bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[2] = b3SwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMin[2]); - - bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[0] = b3SwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[0]); - bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[1] = b3SwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[1]); - bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[2] = b3SwapEndian(bvh->m_SubtreeHeaders[i].m_quantizedAabbMax[2]); - - bvh->m_SubtreeHeaders[i].m_rootNodeIndex = static_cast<int>(b3SwapEndian(bvh->m_SubtreeHeaders[i].m_rootNodeIndex)); - bvh->m_SubtreeHeaders[i].m_subtreeSize = static_cast<int>(b3SwapEndian(bvh->m_SubtreeHeaders[i].m_subtreeSize)); - } - } - - return bvh; -} - -// Constructor that prevents b3Vector3's default constructor from being called -b3QuantizedBvh::b3QuantizedBvh(b3QuantizedBvh &self, bool /* ownsMemory */) : -m_bvhAabbMin(self.m_bvhAabbMin), -m_bvhAabbMax(self.m_bvhAabbMax), -m_bvhQuantization(self.m_bvhQuantization), -m_bulletVersion(B3_BULLET_VERSION) -{ - -} - -void b3QuantizedBvh::deSerializeFloat(struct b3QuantizedBvhFloatData& quantizedBvhFloatData) -{ - m_bvhAabbMax.deSerializeFloat(quantizedBvhFloatData.m_bvhAabbMax); - m_bvhAabbMin.deSerializeFloat(quantizedBvhFloatData.m_bvhAabbMin); - m_bvhQuantization.deSerializeFloat(quantizedBvhFloatData.m_bvhQuantization); - - m_curNodeIndex = quantizedBvhFloatData.m_curNodeIndex; - m_useQuantization = quantizedBvhFloatData.m_useQuantization!=0; - - { - int numElem = quantizedBvhFloatData.m_numContiguousLeafNodes; - m_contiguousNodes.resize(numElem); - - if (numElem) - { - b3OptimizedBvhNodeFloatData* memPtr = quantizedBvhFloatData.m_contiguousNodesPtr; - - for (int i=0;i<numElem;i++,memPtr++) - { - m_contiguousNodes[i].m_aabbMaxOrg.deSerializeFloat(memPtr->m_aabbMaxOrg); - m_contiguousNodes[i].m_aabbMinOrg.deSerializeFloat(memPtr->m_aabbMinOrg); - m_contiguousNodes[i].m_escapeIndex = memPtr->m_escapeIndex; - m_contiguousNodes[i].m_subPart = memPtr->m_subPart; - m_contiguousNodes[i].m_triangleIndex = memPtr->m_triangleIndex; - } - } - } - - { - int numElem = quantizedBvhFloatData.m_numQuantizedContiguousNodes; - m_quantizedContiguousNodes.resize(numElem); - - if (numElem) - { - b3QuantizedBvhNodeData* memPtr = quantizedBvhFloatData.m_quantizedContiguousNodesPtr; - for (int i=0;i<numElem;i++,memPtr++) - { - m_quantizedContiguousNodes[i].m_escapeIndexOrTriangleIndex = memPtr->m_escapeIndexOrTriangleIndex; - m_quantizedContiguousNodes[i].m_quantizedAabbMax[0] = memPtr->m_quantizedAabbMax[0]; - m_quantizedContiguousNodes[i].m_quantizedAabbMax[1] = memPtr->m_quantizedAabbMax[1]; - m_quantizedContiguousNodes[i].m_quantizedAabbMax[2] = memPtr->m_quantizedAabbMax[2]; - m_quantizedContiguousNodes[i].m_quantizedAabbMin[0] = memPtr->m_quantizedAabbMin[0]; - m_quantizedContiguousNodes[i].m_quantizedAabbMin[1] = memPtr->m_quantizedAabbMin[1]; - m_quantizedContiguousNodes[i].m_quantizedAabbMin[2] = memPtr->m_quantizedAabbMin[2]; - } - } - } - - m_traversalMode = b3TraversalMode(quantizedBvhFloatData.m_traversalMode); - - { - int numElem = quantizedBvhFloatData.m_numSubtreeHeaders; - m_SubtreeHeaders.resize(numElem); - if (numElem) - { - b3BvhSubtreeInfoData* memPtr = quantizedBvhFloatData.m_subTreeInfoPtr; - for (int i=0;i<numElem;i++,memPtr++) - { - m_SubtreeHeaders[i].m_quantizedAabbMax[0] = memPtr->m_quantizedAabbMax[0] ; - m_SubtreeHeaders[i].m_quantizedAabbMax[1] = memPtr->m_quantizedAabbMax[1]; - m_SubtreeHeaders[i].m_quantizedAabbMax[2] = memPtr->m_quantizedAabbMax[2]; - m_SubtreeHeaders[i].m_quantizedAabbMin[0] = memPtr->m_quantizedAabbMin[0]; - m_SubtreeHeaders[i].m_quantizedAabbMin[1] = memPtr->m_quantizedAabbMin[1]; - m_SubtreeHeaders[i].m_quantizedAabbMin[2] = memPtr->m_quantizedAabbMin[2]; - m_SubtreeHeaders[i].m_rootNodeIndex = memPtr->m_rootNodeIndex; - m_SubtreeHeaders[i].m_subtreeSize = memPtr->m_subtreeSize; - } - } - } -} - -void b3QuantizedBvh::deSerializeDouble(struct b3QuantizedBvhDoubleData& quantizedBvhDoubleData) -{ - m_bvhAabbMax.deSerializeDouble(quantizedBvhDoubleData.m_bvhAabbMax); - m_bvhAabbMin.deSerializeDouble(quantizedBvhDoubleData.m_bvhAabbMin); - m_bvhQuantization.deSerializeDouble(quantizedBvhDoubleData.m_bvhQuantization); - - m_curNodeIndex = quantizedBvhDoubleData.m_curNodeIndex; - m_useQuantization = quantizedBvhDoubleData.m_useQuantization!=0; - - { - int numElem = quantizedBvhDoubleData.m_numContiguousLeafNodes; - m_contiguousNodes.resize(numElem); - - if (numElem) - { - b3OptimizedBvhNodeDoubleData* memPtr = quantizedBvhDoubleData.m_contiguousNodesPtr; - - for (int i=0;i<numElem;i++,memPtr++) - { - m_contiguousNodes[i].m_aabbMaxOrg.deSerializeDouble(memPtr->m_aabbMaxOrg); - m_contiguousNodes[i].m_aabbMinOrg.deSerializeDouble(memPtr->m_aabbMinOrg); - m_contiguousNodes[i].m_escapeIndex = memPtr->m_escapeIndex; - m_contiguousNodes[i].m_subPart = memPtr->m_subPart; - m_contiguousNodes[i].m_triangleIndex = memPtr->m_triangleIndex; - } - } - } - - { - int numElem = quantizedBvhDoubleData.m_numQuantizedContiguousNodes; - m_quantizedContiguousNodes.resize(numElem); - - if (numElem) - { - b3QuantizedBvhNodeData* memPtr = quantizedBvhDoubleData.m_quantizedContiguousNodesPtr; - for (int i=0;i<numElem;i++,memPtr++) - { - m_quantizedContiguousNodes[i].m_escapeIndexOrTriangleIndex = memPtr->m_escapeIndexOrTriangleIndex; - m_quantizedContiguousNodes[i].m_quantizedAabbMax[0] = memPtr->m_quantizedAabbMax[0]; - m_quantizedContiguousNodes[i].m_quantizedAabbMax[1] = memPtr->m_quantizedAabbMax[1]; - m_quantizedContiguousNodes[i].m_quantizedAabbMax[2] = memPtr->m_quantizedAabbMax[2]; - m_quantizedContiguousNodes[i].m_quantizedAabbMin[0] = memPtr->m_quantizedAabbMin[0]; - m_quantizedContiguousNodes[i].m_quantizedAabbMin[1] = memPtr->m_quantizedAabbMin[1]; - m_quantizedContiguousNodes[i].m_quantizedAabbMin[2] = memPtr->m_quantizedAabbMin[2]; - } - } - } - - m_traversalMode = b3TraversalMode(quantizedBvhDoubleData.m_traversalMode); - - { - int numElem = quantizedBvhDoubleData.m_numSubtreeHeaders; - m_SubtreeHeaders.resize(numElem); - if (numElem) - { - b3BvhSubtreeInfoData* memPtr = quantizedBvhDoubleData.m_subTreeInfoPtr; - for (int i=0;i<numElem;i++,memPtr++) - { - m_SubtreeHeaders[i].m_quantizedAabbMax[0] = memPtr->m_quantizedAabbMax[0] ; - m_SubtreeHeaders[i].m_quantizedAabbMax[1] = memPtr->m_quantizedAabbMax[1]; - m_SubtreeHeaders[i].m_quantizedAabbMax[2] = memPtr->m_quantizedAabbMax[2]; - m_SubtreeHeaders[i].m_quantizedAabbMin[0] = memPtr->m_quantizedAabbMin[0]; - m_SubtreeHeaders[i].m_quantizedAabbMin[1] = memPtr->m_quantizedAabbMin[1]; - m_SubtreeHeaders[i].m_quantizedAabbMin[2] = memPtr->m_quantizedAabbMin[2]; - m_SubtreeHeaders[i].m_rootNodeIndex = memPtr->m_rootNodeIndex; - m_SubtreeHeaders[i].m_subtreeSize = memPtr->m_subtreeSize; - } - } - } - -} - - - -///fills the dataBuffer and returns the struct name (and 0 on failure) -const char* b3QuantizedBvh::serialize(void* dataBuffer, b3Serializer* serializer) const -{ - b3Assert(0); - return 0; -} - - - - - diff --git a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3QuantizedBvh.h b/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3QuantizedBvh.h deleted file mode 100644 index 63c523c758..0000000000 --- a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3QuantizedBvh.h +++ /dev/null @@ -1,556 +0,0 @@ -/* -Bullet Continuous Collision Detection and Physics Library -Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ - -This software is provided 'as-is', without any express or implied warranty. -In no event will the authors be held liable for any damages arising from the use of this software. -Permission is granted to anyone to use this software for any purpose, -including commercial applications, and to alter it and redistribute it freely, -subject to the following restrictions: - -1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. -2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. -3. This notice may not be removed or altered from any source distribution. -*/ - -#ifndef B3_QUANTIZED_BVH_H -#define B3_QUANTIZED_BVH_H - -class b3Serializer; - -//#define DEBUG_CHECK_DEQUANTIZATION 1 -#ifdef DEBUG_CHECK_DEQUANTIZATION -#ifdef __SPU__ -#define printf spu_printf -#endif //__SPU__ - -#include <stdio.h> -#include <stdlib.h> -#endif //DEBUG_CHECK_DEQUANTIZATION - -#include "Bullet3Common/b3Vector3.h" -#include "Bullet3Common/b3AlignedAllocator.h" - -#ifdef B3_USE_DOUBLE_PRECISION -#define b3QuantizedBvhData b3QuantizedBvhDoubleData -#define b3OptimizedBvhNodeData b3OptimizedBvhNodeDoubleData -#define b3QuantizedBvhDataName "b3QuantizedBvhDoubleData" -#else -#define b3QuantizedBvhData b3QuantizedBvhFloatData -#define b3OptimizedBvhNodeData b3OptimizedBvhNodeFloatData -#define b3QuantizedBvhDataName "b3QuantizedBvhFloatData" -#endif - -#include "Bullet3Collision/NarrowPhaseCollision/shared/b3QuantizedBvhNodeData.h" -#include "Bullet3Collision/NarrowPhaseCollision/shared/b3BvhSubtreeInfoData.h" - - - -//http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclang/html/vclrf__m128.asp - - -//Note: currently we have 16 bytes per quantized node -#define MAX_SUBTREE_SIZE_IN_BYTES 2048 - -// 10 gives the potential for 1024 parts, with at most 2^21 (2097152) (minus one -// actually) triangles each (since the sign bit is reserved -#define MAX_NUM_PARTS_IN_BITS 10 - -///b3QuantizedBvhNode is a compressed aabb node, 16 bytes. -///Node can be used for leafnode or internal node. Leafnodes can point to 32-bit triangle index (non-negative range). -B3_ATTRIBUTE_ALIGNED16 (struct) b3QuantizedBvhNode : public b3QuantizedBvhNodeData -{ - B3_DECLARE_ALIGNED_ALLOCATOR(); - - bool isLeafNode() const - { - //skipindex is negative (internal node), triangleindex >=0 (leafnode) - return (m_escapeIndexOrTriangleIndex >= 0); - } - int getEscapeIndex() const - { - b3Assert(!isLeafNode()); - return -m_escapeIndexOrTriangleIndex; - } - int getTriangleIndex() const - { - b3Assert(isLeafNode()); - unsigned int x=0; - unsigned int y = (~(x&0))<<(31-MAX_NUM_PARTS_IN_BITS); - // Get only the lower bits where the triangle index is stored - return (m_escapeIndexOrTriangleIndex&~(y)); - } - int getPartId() const - { - b3Assert(isLeafNode()); - // Get only the highest bits where the part index is stored - return (m_escapeIndexOrTriangleIndex>>(31-MAX_NUM_PARTS_IN_BITS)); - } -} -; - -/// b3OptimizedBvhNode contains both internal and leaf node information. -/// Total node size is 44 bytes / node. You can use the compressed version of 16 bytes. -B3_ATTRIBUTE_ALIGNED16 (struct) b3OptimizedBvhNode -{ - B3_DECLARE_ALIGNED_ALLOCATOR(); - - //32 bytes - b3Vector3 m_aabbMinOrg; - b3Vector3 m_aabbMaxOrg; - - //4 - int m_escapeIndex; - - //8 - //for child nodes - int m_subPart; - int m_triangleIndex; - -//pad the size to 64 bytes - char m_padding[20]; -}; - - -///b3BvhSubtreeInfo provides info to gather a subtree of limited size -B3_ATTRIBUTE_ALIGNED16(class) b3BvhSubtreeInfo : public b3BvhSubtreeInfoData -{ -public: - B3_DECLARE_ALIGNED_ALLOCATOR(); - - b3BvhSubtreeInfo() - { - //memset(&m_padding[0], 0, sizeof(m_padding)); - } - - - void setAabbFromQuantizeNode(const b3QuantizedBvhNode& quantizedNode) - { - m_quantizedAabbMin[0] = quantizedNode.m_quantizedAabbMin[0]; - m_quantizedAabbMin[1] = quantizedNode.m_quantizedAabbMin[1]; - m_quantizedAabbMin[2] = quantizedNode.m_quantizedAabbMin[2]; - m_quantizedAabbMax[0] = quantizedNode.m_quantizedAabbMax[0]; - m_quantizedAabbMax[1] = quantizedNode.m_quantizedAabbMax[1]; - m_quantizedAabbMax[2] = quantizedNode.m_quantizedAabbMax[2]; - } -} -; - - -class b3NodeOverlapCallback -{ -public: - virtual ~b3NodeOverlapCallback() {}; - - virtual void processNode(int subPart, int triangleIndex) = 0; -}; - -#include "Bullet3Common/b3AlignedAllocator.h" -#include "Bullet3Common/b3AlignedObjectArray.h" - - - -///for code readability: -typedef b3AlignedObjectArray<b3OptimizedBvhNode> NodeArray; -typedef b3AlignedObjectArray<b3QuantizedBvhNode> QuantizedNodeArray; -typedef b3AlignedObjectArray<b3BvhSubtreeInfo> BvhSubtreeInfoArray; - - -///The b3QuantizedBvh class stores an AABB tree that can be quickly traversed on CPU and Cell SPU. -///It is used by the b3BvhTriangleMeshShape as midphase -///It is recommended to use quantization for better performance and lower memory requirements. -B3_ATTRIBUTE_ALIGNED16(class) b3QuantizedBvh -{ -public: - enum b3TraversalMode - { - TRAVERSAL_STACKLESS = 0, - TRAVERSAL_STACKLESS_CACHE_FRIENDLY, - TRAVERSAL_RECURSIVE - }; - - - - - b3Vector3 m_bvhAabbMin; - b3Vector3 m_bvhAabbMax; - b3Vector3 m_bvhQuantization; - -protected: - int m_bulletVersion; //for serialization versioning. It could also be used to detect endianess. - - int m_curNodeIndex; - //quantization data - bool m_useQuantization; - - - - NodeArray m_leafNodes; - NodeArray m_contiguousNodes; - QuantizedNodeArray m_quantizedLeafNodes; - QuantizedNodeArray m_quantizedContiguousNodes; - - b3TraversalMode m_traversalMode; - BvhSubtreeInfoArray m_SubtreeHeaders; - - //This is only used for serialization so we don't have to add serialization directly to b3AlignedObjectArray - mutable int m_subtreeHeaderCount; - - - - - - ///two versions, one for quantized and normal nodes. This allows code-reuse while maintaining readability (no template/macro!) - ///this might be refactored into a virtual, it is usually not calculated at run-time - void setInternalNodeAabbMin(int nodeIndex, const b3Vector3& aabbMin) - { - if (m_useQuantization) - { - quantize(&m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[0] ,aabbMin,0); - } else - { - m_contiguousNodes[nodeIndex].m_aabbMinOrg = aabbMin; - - } - } - void setInternalNodeAabbMax(int nodeIndex,const b3Vector3& aabbMax) - { - if (m_useQuantization) - { - quantize(&m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[0],aabbMax,1); - } else - { - m_contiguousNodes[nodeIndex].m_aabbMaxOrg = aabbMax; - } - } - - b3Vector3 getAabbMin(int nodeIndex) const - { - if (m_useQuantization) - { - return unQuantize(&m_quantizedLeafNodes[nodeIndex].m_quantizedAabbMin[0]); - } - //non-quantized - return m_leafNodes[nodeIndex].m_aabbMinOrg; - - } - b3Vector3 getAabbMax(int nodeIndex) const - { - if (m_useQuantization) - { - return unQuantize(&m_quantizedLeafNodes[nodeIndex].m_quantizedAabbMax[0]); - } - //non-quantized - return m_leafNodes[nodeIndex].m_aabbMaxOrg; - - } - - - void setInternalNodeEscapeIndex(int nodeIndex, int escapeIndex) - { - if (m_useQuantization) - { - m_quantizedContiguousNodes[nodeIndex].m_escapeIndexOrTriangleIndex = -escapeIndex; - } - else - { - m_contiguousNodes[nodeIndex].m_escapeIndex = escapeIndex; - } - - } - - void mergeInternalNodeAabb(int nodeIndex,const b3Vector3& newAabbMin,const b3Vector3& newAabbMax) - { - if (m_useQuantization) - { - unsigned short int quantizedAabbMin[3]; - unsigned short int quantizedAabbMax[3]; - quantize(quantizedAabbMin,newAabbMin,0); - quantize(quantizedAabbMax,newAabbMax,1); - for (int i=0;i<3;i++) - { - if (m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[i] > quantizedAabbMin[i]) - m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMin[i] = quantizedAabbMin[i]; - - if (m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[i] < quantizedAabbMax[i]) - m_quantizedContiguousNodes[nodeIndex].m_quantizedAabbMax[i] = quantizedAabbMax[i]; - - } - } else - { - //non-quantized - m_contiguousNodes[nodeIndex].m_aabbMinOrg.setMin(newAabbMin); - m_contiguousNodes[nodeIndex].m_aabbMaxOrg.setMax(newAabbMax); - } - } - - void swapLeafNodes(int firstIndex,int secondIndex); - - void assignInternalNodeFromLeafNode(int internalNode,int leafNodeIndex); - -protected: - - - - void buildTree (int startIndex,int endIndex); - - int calcSplittingAxis(int startIndex,int endIndex); - - int sortAndCalcSplittingIndex(int startIndex,int endIndex,int splitAxis); - - void walkStacklessTree(b3NodeOverlapCallback* nodeCallback,const b3Vector3& aabbMin,const b3Vector3& aabbMax) const; - - void walkStacklessQuantizedTreeAgainstRay(b3NodeOverlapCallback* nodeCallback, const b3Vector3& raySource, const b3Vector3& rayTarget, const b3Vector3& aabbMin, const b3Vector3& aabbMax, int startNodeIndex,int endNodeIndex) const; - void walkStacklessQuantizedTree(b3NodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax,int startNodeIndex,int endNodeIndex) const; - void walkStacklessTreeAgainstRay(b3NodeOverlapCallback* nodeCallback, const b3Vector3& raySource, const b3Vector3& rayTarget, const b3Vector3& aabbMin, const b3Vector3& aabbMax, int startNodeIndex,int endNodeIndex) const; - - ///tree traversal designed for small-memory processors like PS3 SPU - void walkStacklessQuantizedTreeCacheFriendly(b3NodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax) const; - - ///use the 16-byte stackless 'skipindex' node tree to do a recursive traversal - void walkRecursiveQuantizedTreeAgainstQueryAabb(const b3QuantizedBvhNode* currentNode,b3NodeOverlapCallback* nodeCallback,unsigned short int* quantizedQueryAabbMin,unsigned short int* quantizedQueryAabbMax) const; - - ///use the 16-byte stackless 'skipindex' node tree to do a recursive traversal - void walkRecursiveQuantizedTreeAgainstQuantizedTree(const b3QuantizedBvhNode* treeNodeA,const b3QuantizedBvhNode* treeNodeB,b3NodeOverlapCallback* nodeCallback) const; - - - - - void updateSubtreeHeaders(int leftChildNodexIndex,int rightChildNodexIndex); - -public: - - B3_DECLARE_ALIGNED_ALLOCATOR(); - - b3QuantizedBvh(); - - virtual ~b3QuantizedBvh(); - - - ///***************************************** expert/internal use only ************************* - void setQuantizationValues(const b3Vector3& bvhAabbMin,const b3Vector3& bvhAabbMax,b3Scalar quantizationMargin=b3Scalar(1.0)); - QuantizedNodeArray& getLeafNodeArray() { return m_quantizedLeafNodes; } - ///buildInternal is expert use only: assumes that setQuantizationValues and LeafNodeArray are initialized - void buildInternal(); - ///***************************************** expert/internal use only ************************* - - void reportAabbOverlappingNodex(b3NodeOverlapCallback* nodeCallback,const b3Vector3& aabbMin,const b3Vector3& aabbMax) const; - void reportRayOverlappingNodex (b3NodeOverlapCallback* nodeCallback, const b3Vector3& raySource, const b3Vector3& rayTarget) const; - void reportBoxCastOverlappingNodex(b3NodeOverlapCallback* nodeCallback, const b3Vector3& raySource, const b3Vector3& rayTarget, const b3Vector3& aabbMin,const b3Vector3& aabbMax) const; - - B3_FORCE_INLINE void quantize(unsigned short* out, const b3Vector3& point,int isMax) const - { - - b3Assert(m_useQuantization); - - b3Assert(point.getX() <= m_bvhAabbMax.getX()); - b3Assert(point.getY() <= m_bvhAabbMax.getY()); - b3Assert(point.getZ() <= m_bvhAabbMax.getZ()); - - b3Assert(point.getX() >= m_bvhAabbMin.getX()); - b3Assert(point.getY() >= m_bvhAabbMin.getY()); - b3Assert(point.getZ() >= m_bvhAabbMin.getZ()); - - b3Vector3 v = (point - m_bvhAabbMin) * m_bvhQuantization; - ///Make sure rounding is done in a way that unQuantize(quantizeWithClamp(...)) is conservative - ///end-points always set the first bit, so that they are sorted properly (so that neighbouring AABBs overlap properly) - ///@todo: double-check this - if (isMax) - { - out[0] = (unsigned short) (((unsigned short)(v.getX()+b3Scalar(1.)) | 1)); - out[1] = (unsigned short) (((unsigned short)(v.getY()+b3Scalar(1.)) | 1)); - out[2] = (unsigned short) (((unsigned short)(v.getZ()+b3Scalar(1.)) | 1)); - } else - { - out[0] = (unsigned short) (((unsigned short)(v.getX()) & 0xfffe)); - out[1] = (unsigned short) (((unsigned short)(v.getY()) & 0xfffe)); - out[2] = (unsigned short) (((unsigned short)(v.getZ()) & 0xfffe)); - } - - -#ifdef DEBUG_CHECK_DEQUANTIZATION - b3Vector3 newPoint = unQuantize(out); - if (isMax) - { - if (newPoint.getX() < point.getX()) - { - printf("unconservative X, diffX = %f, oldX=%f,newX=%f\n",newPoint.getX()-point.getX(), newPoint.getX(),point.getX()); - } - if (newPoint.getY() < point.getY()) - { - printf("unconservative Y, diffY = %f, oldY=%f,newY=%f\n",newPoint.getY()-point.getY(), newPoint.getY(),point.getY()); - } - if (newPoint.getZ() < point.getZ()) - { - - printf("unconservative Z, diffZ = %f, oldZ=%f,newZ=%f\n",newPoint.getZ()-point.getZ(), newPoint.getZ(),point.getZ()); - } - } else - { - if (newPoint.getX() > point.getX()) - { - printf("unconservative X, diffX = %f, oldX=%f,newX=%f\n",newPoint.getX()-point.getX(), newPoint.getX(),point.getX()); - } - if (newPoint.getY() > point.getY()) - { - printf("unconservative Y, diffY = %f, oldY=%f,newY=%f\n",newPoint.getY()-point.getY(), newPoint.getY(),point.getY()); - } - if (newPoint.getZ() > point.getZ()) - { - printf("unconservative Z, diffZ = %f, oldZ=%f,newZ=%f\n",newPoint.getZ()-point.getZ(), newPoint.getZ(),point.getZ()); - } - } -#endif //DEBUG_CHECK_DEQUANTIZATION - - } - - - B3_FORCE_INLINE void quantizeWithClamp(unsigned short* out, const b3Vector3& point2,int isMax) const - { - - b3Assert(m_useQuantization); - - b3Vector3 clampedPoint(point2); - clampedPoint.setMax(m_bvhAabbMin); - clampedPoint.setMin(m_bvhAabbMax); - - quantize(out,clampedPoint,isMax); - - } - - B3_FORCE_INLINE b3Vector3 unQuantize(const unsigned short* vecIn) const - { - b3Vector3 vecOut; - vecOut.setValue( - (b3Scalar)(vecIn[0]) / (m_bvhQuantization.getX()), - (b3Scalar)(vecIn[1]) / (m_bvhQuantization.getY()), - (b3Scalar)(vecIn[2]) / (m_bvhQuantization.getZ())); - vecOut += m_bvhAabbMin; - return vecOut; - } - - ///setTraversalMode let's you choose between stackless, recursive or stackless cache friendly tree traversal. Note this is only implemented for quantized trees. - void setTraversalMode(b3TraversalMode traversalMode) - { - m_traversalMode = traversalMode; - } - - - B3_FORCE_INLINE QuantizedNodeArray& getQuantizedNodeArray() - { - return m_quantizedContiguousNodes; - } - - - B3_FORCE_INLINE BvhSubtreeInfoArray& getSubtreeInfoArray() - { - return m_SubtreeHeaders; - } - -//////////////////////////////////////////////////////////////////// - - /////Calculate space needed to store BVH for serialization - unsigned calculateSerializeBufferSize() const; - - /// Data buffer MUST be 16 byte aligned - virtual bool serialize(void *o_alignedDataBuffer, unsigned i_dataBufferSize, bool i_swapEndian) const; - - ///deSerializeInPlace loads and initializes a BVH from a buffer in memory 'in place' - static b3QuantizedBvh *deSerializeInPlace(void *i_alignedDataBuffer, unsigned int i_dataBufferSize, bool i_swapEndian); - - static unsigned int getAlignmentSerializationPadding(); -////////////////////////////////////////////////////////////////////// - - - virtual int calculateSerializeBufferSizeNew() const; - - ///fills the dataBuffer and returns the struct name (and 0 on failure) - virtual const char* serialize(void* dataBuffer, b3Serializer* serializer) const; - - virtual void deSerializeFloat(struct b3QuantizedBvhFloatData& quantizedBvhFloatData); - - virtual void deSerializeDouble(struct b3QuantizedBvhDoubleData& quantizedBvhDoubleData); - - -//////////////////////////////////////////////////////////////////// - - B3_FORCE_INLINE bool isQuantized() - { - return m_useQuantization; - } - -private: - // Special "copy" constructor that allows for in-place deserialization - // Prevents b3Vector3's default constructor from being called, but doesn't inialize much else - // ownsMemory should most likely be false if deserializing, and if you are not, don't call this (it also changes the function signature, which we need) - b3QuantizedBvh(b3QuantizedBvh &other, bool ownsMemory); - -} -; - - -struct b3OptimizedBvhNodeFloatData -{ - b3Vector3FloatData m_aabbMinOrg; - b3Vector3FloatData m_aabbMaxOrg; - int m_escapeIndex; - int m_subPart; - int m_triangleIndex; - char m_pad[4]; -}; - -struct b3OptimizedBvhNodeDoubleData -{ - b3Vector3DoubleData m_aabbMinOrg; - b3Vector3DoubleData m_aabbMaxOrg; - int m_escapeIndex; - int m_subPart; - int m_triangleIndex; - char m_pad[4]; -}; - - - -struct b3QuantizedBvhFloatData -{ - b3Vector3FloatData m_bvhAabbMin; - b3Vector3FloatData m_bvhAabbMax; - b3Vector3FloatData m_bvhQuantization; - int m_curNodeIndex; - int m_useQuantization; - int m_numContiguousLeafNodes; - int m_numQuantizedContiguousNodes; - b3OptimizedBvhNodeFloatData *m_contiguousNodesPtr; - b3QuantizedBvhNodeData *m_quantizedContiguousNodesPtr; - b3BvhSubtreeInfoData *m_subTreeInfoPtr; - int m_traversalMode; - int m_numSubtreeHeaders; - -}; - -struct b3QuantizedBvhDoubleData -{ - b3Vector3DoubleData m_bvhAabbMin; - b3Vector3DoubleData m_bvhAabbMax; - b3Vector3DoubleData m_bvhQuantization; - int m_curNodeIndex; - int m_useQuantization; - int m_numContiguousLeafNodes; - int m_numQuantizedContiguousNodes; - b3OptimizedBvhNodeDoubleData *m_contiguousNodesPtr; - b3QuantizedBvhNodeData *m_quantizedContiguousNodesPtr; - - int m_traversalMode; - int m_numSubtreeHeaders; - b3BvhSubtreeInfoData *m_subTreeInfoPtr; -}; - - -B3_FORCE_INLINE int b3QuantizedBvh::calculateSerializeBufferSizeNew() const -{ - return sizeof(b3QuantizedBvhData); -} - - - -#endif //B3_QUANTIZED_BVH_H diff --git a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3StridingMeshInterface.cpp b/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3StridingMeshInterface.cpp deleted file mode 100644 index 4d97f7f62b..0000000000 --- a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3StridingMeshInterface.cpp +++ /dev/null @@ -1,214 +0,0 @@ -/* -Bullet Continuous Collision Detection and Physics Library -Copyright (c) 2003-2009 Erwin Coumans http://bulletphysics.org - -This software is provided 'as-is', without any express or implied warranty. -In no event will the authors be held liable for any damages arising from the use of this software. -Permission is granted to anyone to use this software for any purpose, -including commercial applications, and to alter it and redistribute it freely, -subject to the following restrictions: - -1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. -2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. -3. This notice may not be removed or altered from any source distribution. -*/ - -#include "b3StridingMeshInterface.h" - - -b3StridingMeshInterface::~b3StridingMeshInterface() -{ - -} - - -void b3StridingMeshInterface::InternalProcessAllTriangles(b3InternalTriangleIndexCallback* callback,const b3Vector3& aabbMin,const b3Vector3& aabbMax) const -{ - (void)aabbMin; - (void)aabbMax; - int numtotalphysicsverts = 0; - int part,graphicssubparts = getNumSubParts(); - const unsigned char * vertexbase; - const unsigned char * indexbase; - int indexstride; - PHY_ScalarType type; - PHY_ScalarType gfxindextype; - int stride,numverts,numtriangles; - int gfxindex; - b3Vector3 triangle[3]; - - b3Vector3 meshScaling = getScaling(); - - ///if the number of parts is big, the performance might drop due to the innerloop switch on indextype - for (part=0;part<graphicssubparts ;part++) - { - getLockedReadOnlyVertexIndexBase(&vertexbase,numverts,type,stride,&indexbase,indexstride,numtriangles,gfxindextype,part); - numtotalphysicsverts+=numtriangles*3; //upper bound - - ///unlike that developers want to pass in double-precision meshes in single-precision Bullet build - ///so disable this feature by default - ///see patch http://code.google.com/p/bullet/issues/detail?id=213 - - switch (type) - { - case PHY_FLOAT: - { - - float* graphicsbase; - - switch (gfxindextype) - { - case PHY_INTEGER: - { - for (gfxindex=0;gfxindex<numtriangles;gfxindex++) - { - unsigned int* tri_indices= (unsigned int*)(indexbase+gfxindex*indexstride); - graphicsbase = (float*)(vertexbase+tri_indices[0]*stride); - triangle[0].setValue(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(),graphicsbase[2]*meshScaling.getZ()); - graphicsbase = (float*)(vertexbase+tri_indices[1]*stride); - triangle[1].setValue(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(), graphicsbase[2]*meshScaling.getZ()); - graphicsbase = (float*)(vertexbase+tri_indices[2]*stride); - triangle[2].setValue(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(), graphicsbase[2]*meshScaling.getZ()); - callback->internalProcessTriangleIndex(triangle,part,gfxindex); - } - break; - } - case PHY_SHORT: - { - for (gfxindex=0;gfxindex<numtriangles;gfxindex++) - { - unsigned short int* tri_indices= (unsigned short int*)(indexbase+gfxindex*indexstride); - graphicsbase = (float*)(vertexbase+tri_indices[0]*stride); - triangle[0].setValue(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(),graphicsbase[2]*meshScaling.getZ()); - graphicsbase = (float*)(vertexbase+tri_indices[1]*stride); - triangle[1].setValue(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(), graphicsbase[2]*meshScaling.getZ()); - graphicsbase = (float*)(vertexbase+tri_indices[2]*stride); - triangle[2].setValue(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(), graphicsbase[2]*meshScaling.getZ()); - callback->internalProcessTriangleIndex(triangle,part,gfxindex); - } - break; - } - case PHY_UCHAR: - { - for (gfxindex=0;gfxindex<numtriangles;gfxindex++) - { - unsigned char* tri_indices= (unsigned char*)(indexbase+gfxindex*indexstride); - graphicsbase = (float*)(vertexbase+tri_indices[0]*stride); - triangle[0].setValue(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(),graphicsbase[2]*meshScaling.getZ()); - graphicsbase = (float*)(vertexbase+tri_indices[1]*stride); - triangle[1].setValue(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(), graphicsbase[2]*meshScaling.getZ()); - graphicsbase = (float*)(vertexbase+tri_indices[2]*stride); - triangle[2].setValue(graphicsbase[0]*meshScaling.getX(),graphicsbase[1]*meshScaling.getY(), graphicsbase[2]*meshScaling.getZ()); - callback->internalProcessTriangleIndex(triangle,part,gfxindex); - } - break; - } - default: - b3Assert((gfxindextype == PHY_INTEGER) || (gfxindextype == PHY_SHORT)); - } - break; - } - - case PHY_DOUBLE: - { - double* graphicsbase; - - switch (gfxindextype) - { - case PHY_INTEGER: - { - for (gfxindex=0;gfxindex<numtriangles;gfxindex++) - { - unsigned int* tri_indices= (unsigned int*)(indexbase+gfxindex*indexstride); - graphicsbase = (double*)(vertexbase+tri_indices[0]*stride); - triangle[0].setValue((b3Scalar)graphicsbase[0]*meshScaling.getX(),(b3Scalar)graphicsbase[1]*meshScaling.getY(),(b3Scalar)graphicsbase[2]*meshScaling.getZ()); - graphicsbase = (double*)(vertexbase+tri_indices[1]*stride); - triangle[1].setValue((b3Scalar)graphicsbase[0]*meshScaling.getX(),(b3Scalar)graphicsbase[1]*meshScaling.getY(), (b3Scalar)graphicsbase[2]*meshScaling.getZ()); - graphicsbase = (double*)(vertexbase+tri_indices[2]*stride); - triangle[2].setValue((b3Scalar)graphicsbase[0]*meshScaling.getX(),(b3Scalar)graphicsbase[1]*meshScaling.getY(), (b3Scalar)graphicsbase[2]*meshScaling.getZ()); - callback->internalProcessTriangleIndex(triangle,part,gfxindex); - } - break; - } - case PHY_SHORT: - { - for (gfxindex=0;gfxindex<numtriangles;gfxindex++) - { - unsigned short int* tri_indices= (unsigned short int*)(indexbase+gfxindex*indexstride); - graphicsbase = (double*)(vertexbase+tri_indices[0]*stride); - triangle[0].setValue((b3Scalar)graphicsbase[0]*meshScaling.getX(),(b3Scalar)graphicsbase[1]*meshScaling.getY(),(b3Scalar)graphicsbase[2]*meshScaling.getZ()); - graphicsbase = (double*)(vertexbase+tri_indices[1]*stride); - triangle[1].setValue((b3Scalar)graphicsbase[0]*meshScaling.getX(),(b3Scalar)graphicsbase[1]*meshScaling.getY(), (b3Scalar)graphicsbase[2]*meshScaling.getZ()); - graphicsbase = (double*)(vertexbase+tri_indices[2]*stride); - triangle[2].setValue((b3Scalar)graphicsbase[0]*meshScaling.getX(),(b3Scalar)graphicsbase[1]*meshScaling.getY(), (b3Scalar)graphicsbase[2]*meshScaling.getZ()); - callback->internalProcessTriangleIndex(triangle,part,gfxindex); - } - break; - } - case PHY_UCHAR: - { - for (gfxindex=0;gfxindex<numtriangles;gfxindex++) - { - unsigned char* tri_indices= (unsigned char*)(indexbase+gfxindex*indexstride); - graphicsbase = (double*)(vertexbase+tri_indices[0]*stride); - triangle[0].setValue((b3Scalar)graphicsbase[0]*meshScaling.getX(),(b3Scalar)graphicsbase[1]*meshScaling.getY(),(b3Scalar)graphicsbase[2]*meshScaling.getZ()); - graphicsbase = (double*)(vertexbase+tri_indices[1]*stride); - triangle[1].setValue((b3Scalar)graphicsbase[0]*meshScaling.getX(),(b3Scalar)graphicsbase[1]*meshScaling.getY(), (b3Scalar)graphicsbase[2]*meshScaling.getZ()); - graphicsbase = (double*)(vertexbase+tri_indices[2]*stride); - triangle[2].setValue((b3Scalar)graphicsbase[0]*meshScaling.getX(),(b3Scalar)graphicsbase[1]*meshScaling.getY(), (b3Scalar)graphicsbase[2]*meshScaling.getZ()); - callback->internalProcessTriangleIndex(triangle,part,gfxindex); - } - break; - } - default: - b3Assert((gfxindextype == PHY_INTEGER) || (gfxindextype == PHY_SHORT)); - } - break; - } - default: - b3Assert((type == PHY_FLOAT) || (type == PHY_DOUBLE)); - } - - unLockReadOnlyVertexBase(part); - } -} - -void b3StridingMeshInterface::calculateAabbBruteForce(b3Vector3& aabbMin,b3Vector3& aabbMax) -{ - - struct AabbCalculationCallback : public b3InternalTriangleIndexCallback - { - b3Vector3 m_aabbMin; - b3Vector3 m_aabbMax; - - AabbCalculationCallback() - { - m_aabbMin.setValue(b3Scalar(B3_LARGE_FLOAT),b3Scalar(B3_LARGE_FLOAT),b3Scalar(B3_LARGE_FLOAT)); - m_aabbMax.setValue(b3Scalar(-B3_LARGE_FLOAT),b3Scalar(-B3_LARGE_FLOAT),b3Scalar(-B3_LARGE_FLOAT)); - } - - virtual void internalProcessTriangleIndex(b3Vector3* triangle,int partId,int triangleIndex) - { - (void)partId; - (void)triangleIndex; - - m_aabbMin.setMin(triangle[0]); - m_aabbMax.setMax(triangle[0]); - m_aabbMin.setMin(triangle[1]); - m_aabbMax.setMax(triangle[1]); - m_aabbMin.setMin(triangle[2]); - m_aabbMax.setMax(triangle[2]); - } - }; - - //first calculate the total aabb for all triangles - AabbCalculationCallback aabbCallback; - aabbMin.setValue(b3Scalar(-B3_LARGE_FLOAT),b3Scalar(-B3_LARGE_FLOAT),b3Scalar(-B3_LARGE_FLOAT)); - aabbMax.setValue(b3Scalar(B3_LARGE_FLOAT),b3Scalar(B3_LARGE_FLOAT),b3Scalar(B3_LARGE_FLOAT)); - InternalProcessAllTriangles(&aabbCallback,aabbMin,aabbMax); - - aabbMin = aabbCallback.m_aabbMin; - aabbMax = aabbCallback.m_aabbMax; -} - - diff --git a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3StridingMeshInterface.h b/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3StridingMeshInterface.h deleted file mode 100644 index 9513f68f77..0000000000 --- a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3StridingMeshInterface.h +++ /dev/null @@ -1,167 +0,0 @@ -/* -Bullet Continuous Collision Detection and Physics Library -Copyright (c) 2003-2009 Erwin Coumans http://bulletphysics.org - -This software is provided 'as-is', without any express or implied warranty. -In no event will the authors be held liable for any damages arising from the use of this software. -Permission is granted to anyone to use this software for any purpose, -including commercial applications, and to alter it and redistribute it freely, -subject to the following restrictions: - -1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. -2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. -3. This notice may not be removed or altered from any source distribution. -*/ - -#ifndef B3_STRIDING_MESHINTERFACE_H -#define B3_STRIDING_MESHINTERFACE_H - -#include "Bullet3Common/b3Vector3.h" -#include "b3TriangleCallback.h" -//#include "b3ConcaveShape.h" - - -enum PHY_ScalarType { - PHY_FLOAT, PHY_DOUBLE, PHY_INTEGER, PHY_SHORT, - PHY_FIXEDPOINT88, PHY_UCHAR -}; - - -/// The b3StridingMeshInterface is the interface class for high performance generic access to triangle meshes, used in combination with b3BvhTriangleMeshShape and some other collision shapes. -/// Using index striding of 3*sizeof(integer) it can use triangle arrays, using index striding of 1*sizeof(integer) it can handle triangle strips. -/// It allows for sharing graphics and collision meshes. Also it provides locking/unlocking of graphics meshes that are in gpu memory. -B3_ATTRIBUTE_ALIGNED16(class ) b3StridingMeshInterface -{ - protected: - - b3Vector3 m_scaling; - - public: - B3_DECLARE_ALIGNED_ALLOCATOR(); - - b3StridingMeshInterface() :m_scaling(b3MakeVector3(b3Scalar(1.),b3Scalar(1.),b3Scalar(1.))) - { - - } - - virtual ~b3StridingMeshInterface(); - - - - virtual void InternalProcessAllTriangles(b3InternalTriangleIndexCallback* callback,const b3Vector3& aabbMin,const b3Vector3& aabbMax) const; - - ///brute force method to calculate aabb - void calculateAabbBruteForce(b3Vector3& aabbMin,b3Vector3& aabbMax); - - /// get read and write access to a subpart of a triangle mesh - /// this subpart has a continuous array of vertices and indices - /// in this way the mesh can be handled as chunks of memory with striding - /// very similar to OpenGL vertexarray support - /// make a call to unLockVertexBase when the read and write access is finished - virtual void getLockedVertexIndexBase(unsigned char **vertexbase, int& numverts,PHY_ScalarType& type, int& stride,unsigned char **indexbase,int & indexstride,int& numfaces,PHY_ScalarType& indicestype,int subpart=0)=0; - - virtual void getLockedReadOnlyVertexIndexBase(const unsigned char **vertexbase, int& numverts,PHY_ScalarType& type, int& stride,const unsigned char **indexbase,int & indexstride,int& numfaces,PHY_ScalarType& indicestype,int subpart=0) const=0; - - /// unLockVertexBase finishes the access to a subpart of the triangle mesh - /// make a call to unLockVertexBase when the read and write access (using getLockedVertexIndexBase) is finished - virtual void unLockVertexBase(int subpart)=0; - - virtual void unLockReadOnlyVertexBase(int subpart) const=0; - - - /// getNumSubParts returns the number of seperate subparts - /// each subpart has a continuous array of vertices and indices - virtual int getNumSubParts() const=0; - - virtual void preallocateVertices(int numverts)=0; - virtual void preallocateIndices(int numindices)=0; - - virtual bool hasPremadeAabb() const { return false; } - virtual void setPremadeAabb(const b3Vector3& aabbMin, const b3Vector3& aabbMax ) const - { - (void) aabbMin; - (void) aabbMax; - } - virtual void getPremadeAabb(b3Vector3* aabbMin, b3Vector3* aabbMax ) const - { - (void) aabbMin; - (void) aabbMax; - } - - const b3Vector3& getScaling() const { - return m_scaling; - } - void setScaling(const b3Vector3& scaling) - { - m_scaling = scaling; - } - - virtual int calculateSerializeBufferSize() const; - - ///fills the dataBuffer and returns the struct name (and 0 on failure) - //virtual const char* serialize(void* dataBuffer, b3Serializer* serializer) const; - - -}; - -struct b3IntIndexData -{ - int m_value; -}; - -struct b3ShortIntIndexData -{ - short m_value; - char m_pad[2]; -}; - -struct b3ShortIntIndexTripletData -{ - short m_values[3]; - char m_pad[2]; -}; - -struct b3CharIndexTripletData -{ - unsigned char m_values[3]; - char m_pad; -}; - - -///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64 -struct b3MeshPartData -{ - b3Vector3FloatData *m_vertices3f; - b3Vector3DoubleData *m_vertices3d; - - b3IntIndexData *m_indices32; - b3ShortIntIndexTripletData *m_3indices16; - b3CharIndexTripletData *m_3indices8; - - b3ShortIntIndexData *m_indices16;//backwards compatibility - - int m_numTriangles;//length of m_indices = m_numTriangles - int m_numVertices; -}; - - -///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64 -struct b3StridingMeshInterfaceData -{ - b3MeshPartData *m_meshPartsPtr; - b3Vector3FloatData m_scaling; - int m_numMeshParts; - char m_padding[4]; -}; - - - - -B3_FORCE_INLINE int b3StridingMeshInterface::calculateSerializeBufferSize() const -{ - return sizeof(b3StridingMeshInterfaceData); -} - - - -#endif //B3_STRIDING_MESHINTERFACE_H diff --git a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3SupportMappings.h b/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3SupportMappings.h deleted file mode 100644 index d073ee57c3..0000000000 --- a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3SupportMappings.h +++ /dev/null @@ -1,38 +0,0 @@ - -#ifndef B3_SUPPORT_MAPPINGS_H -#define B3_SUPPORT_MAPPINGS_H - -#include "Bullet3Common/b3Transform.h" -#include "Bullet3Common/b3AlignedObjectArray.h" -#include "b3VectorFloat4.h" - - -struct b3GjkPairDetector; - - - -inline b3Vector3 localGetSupportVertexWithMargin(const float4& supportVec,const struct b3ConvexPolyhedronData* hull, - const b3AlignedObjectArray<b3Vector3>& verticesA, b3Scalar margin) -{ - b3Vector3 supVec = b3MakeVector3(b3Scalar(0.),b3Scalar(0.),b3Scalar(0.)); - b3Scalar maxDot = b3Scalar(-B3_LARGE_FLOAT); - - // Here we take advantage of dot(a, b*c) = dot(a*b, c). Note: This is true mathematically, but not numerically. - if( 0 < hull->m_numVertices ) - { - const b3Vector3 scaled = supportVec; - int index = (int) scaled.maxDot( &verticesA[hull->m_vertexOffset], hull->m_numVertices, maxDot); - return verticesA[hull->m_vertexOffset+index]; - } - - return supVec; - -} - -inline b3Vector3 localGetSupportVertexWithoutMargin(const float4& supportVec,const struct b3ConvexPolyhedronData* hull, - const b3AlignedObjectArray<b3Vector3>& verticesA) -{ - return localGetSupportVertexWithMargin(supportVec,hull,verticesA,0.f); -} - -#endif //B3_SUPPORT_MAPPINGS_H diff --git a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3TriangleCallback.cpp b/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3TriangleCallback.cpp deleted file mode 100644 index 9066451884..0000000000 --- a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3TriangleCallback.cpp +++ /dev/null @@ -1,28 +0,0 @@ -/* -Bullet Continuous Collision Detection and Physics Library -Copyright (c) 2003-2009 Erwin Coumans http://bulletphysics.org - -This software is provided 'as-is', without any express or implied warranty. -In no event will the authors be held liable for any damages arising from the use of this software. -Permission is granted to anyone to use this software for any purpose, -including commercial applications, and to alter it and redistribute it freely, -subject to the following restrictions: - -1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. -2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. -3. This notice may not be removed or altered from any source distribution. -*/ - -#include "b3TriangleCallback.h" - -b3TriangleCallback::~b3TriangleCallback() -{ - -} - - -b3InternalTriangleIndexCallback::~b3InternalTriangleIndexCallback() -{ - -} - diff --git a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3TriangleCallback.h b/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3TriangleCallback.h deleted file mode 100644 index 3059fa4f21..0000000000 --- a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3TriangleCallback.h +++ /dev/null @@ -1,42 +0,0 @@ -/* -Bullet Continuous Collision Detection and Physics Library -Copyright (c) 2003-2009 Erwin Coumans http://bulletphysics.org - -This software is provided 'as-is', without any express or implied warranty. -In no event will the authors be held liable for any damages arising from the use of this software. -Permission is granted to anyone to use this software for any purpose, -including commercial applications, and to alter it and redistribute it freely, -subject to the following restrictions: - -1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. -2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. -3. This notice may not be removed or altered from any source distribution. -*/ - -#ifndef B3_TRIANGLE_CALLBACK_H -#define B3_TRIANGLE_CALLBACK_H - -#include "Bullet3Common/b3Vector3.h" - - -///The b3TriangleCallback provides a callback for each overlapping triangle when calling processAllTriangles. -///This callback is called by processAllTriangles for all b3ConcaveShape derived class, such as b3BvhTriangleMeshShape, b3StaticPlaneShape and b3HeightfieldTerrainShape. -class b3TriangleCallback -{ -public: - - virtual ~b3TriangleCallback(); - virtual void processTriangle(b3Vector3* triangle, int partId, int triangleIndex) = 0; -}; - -class b3InternalTriangleIndexCallback -{ -public: - - virtual ~b3InternalTriangleIndexCallback(); - virtual void internalProcessTriangleIndex(b3Vector3* triangle,int partId,int triangleIndex) = 0; -}; - - - -#endif //B3_TRIANGLE_CALLBACK_H diff --git a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3TriangleIndexVertexArray.cpp b/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3TriangleIndexVertexArray.cpp deleted file mode 100644 index a0f59babbe..0000000000 --- a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3TriangleIndexVertexArray.cpp +++ /dev/null @@ -1,95 +0,0 @@ -/* -Bullet Continuous Collision Detection and Physics Library -Copyright (c) 2003-2009 Erwin Coumans http://bulletphysics.org - -This software is provided 'as-is', without any express or implied warranty. -In no event will the authors be held liable for any damages arising from the use of this software. -Permission is granted to anyone to use this software for any purpose, -including commercial applications, and to alter it and redistribute it freely, -subject to the following restrictions: - -1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. -2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. -3. This notice may not be removed or altered from any source distribution. -*/ - -#include "b3TriangleIndexVertexArray.h" - -b3TriangleIndexVertexArray::b3TriangleIndexVertexArray(int numTriangles,int* triangleIndexBase,int triangleIndexStride,int numVertices,b3Scalar* vertexBase,int vertexStride) -: m_hasAabb(0) -{ - b3IndexedMesh mesh; - - mesh.m_numTriangles = numTriangles; - mesh.m_triangleIndexBase = (const unsigned char *)triangleIndexBase; - mesh.m_triangleIndexStride = triangleIndexStride; - mesh.m_numVertices = numVertices; - mesh.m_vertexBase = (const unsigned char *)vertexBase; - mesh.m_vertexStride = vertexStride; - - addIndexedMesh(mesh); - -} - -b3TriangleIndexVertexArray::~b3TriangleIndexVertexArray() -{ - -} - -void b3TriangleIndexVertexArray::getLockedVertexIndexBase(unsigned char **vertexbase, int& numverts,PHY_ScalarType& type, int& vertexStride,unsigned char **indexbase,int & indexstride,int& numfaces,PHY_ScalarType& indicestype,int subpart) -{ - b3Assert(subpart< getNumSubParts() ); - - b3IndexedMesh& mesh = m_indexedMeshes[subpart]; - - numverts = mesh.m_numVertices; - (*vertexbase) = (unsigned char *) mesh.m_vertexBase; - - type = mesh.m_vertexType; - - vertexStride = mesh.m_vertexStride; - - numfaces = mesh.m_numTriangles; - - (*indexbase) = (unsigned char *)mesh.m_triangleIndexBase; - indexstride = mesh.m_triangleIndexStride; - indicestype = mesh.m_indexType; -} - -void b3TriangleIndexVertexArray::getLockedReadOnlyVertexIndexBase(const unsigned char **vertexbase, int& numverts,PHY_ScalarType& type, int& vertexStride,const unsigned char **indexbase,int & indexstride,int& numfaces,PHY_ScalarType& indicestype,int subpart) const -{ - const b3IndexedMesh& mesh = m_indexedMeshes[subpart]; - - numverts = mesh.m_numVertices; - (*vertexbase) = (const unsigned char *)mesh.m_vertexBase; - - type = mesh.m_vertexType; - - vertexStride = mesh.m_vertexStride; - - numfaces = mesh.m_numTriangles; - (*indexbase) = (const unsigned char *)mesh.m_triangleIndexBase; - indexstride = mesh.m_triangleIndexStride; - indicestype = mesh.m_indexType; -} - -bool b3TriangleIndexVertexArray::hasPremadeAabb() const -{ - return (m_hasAabb == 1); -} - - -void b3TriangleIndexVertexArray::setPremadeAabb(const b3Vector3& aabbMin, const b3Vector3& aabbMax ) const -{ - m_aabbMin = aabbMin; - m_aabbMax = aabbMax; - m_hasAabb = 1; // this is intentionally an int see notes in header -} - -void b3TriangleIndexVertexArray::getPremadeAabb(b3Vector3* aabbMin, b3Vector3* aabbMax ) const -{ - *aabbMin = m_aabbMin; - *aabbMax = m_aabbMax; -} - - diff --git a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3TriangleIndexVertexArray.h b/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3TriangleIndexVertexArray.h deleted file mode 100644 index d26b2893bc..0000000000 --- a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3TriangleIndexVertexArray.h +++ /dev/null @@ -1,133 +0,0 @@ -/* -Bullet Continuous Collision Detection and Physics Library -Copyright (c) 2003-2009 Erwin Coumans http://bulletphysics.org - -This software is provided 'as-is', without any express or implied warranty. -In no event will the authors be held liable for any damages arising from the use of this software. -Permission is granted to anyone to use this software for any purpose, -including commercial applications, and to alter it and redistribute it freely, -subject to the following restrictions: - -1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. -2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. -3. This notice may not be removed or altered from any source distribution. -*/ - -#ifndef B3_TRIANGLE_INDEX_VERTEX_ARRAY_H -#define B3_TRIANGLE_INDEX_VERTEX_ARRAY_H - -#include "b3StridingMeshInterface.h" -#include "Bullet3Common/b3AlignedObjectArray.h" -#include "Bullet3Common/b3Scalar.h" - - -///The b3IndexedMesh indexes a single vertex and index array. Multiple b3IndexedMesh objects can be passed into a b3TriangleIndexVertexArray using addIndexedMesh. -///Instead of the number of indices, we pass the number of triangles. -B3_ATTRIBUTE_ALIGNED16( struct) b3IndexedMesh -{ - B3_DECLARE_ALIGNED_ALLOCATOR(); - - int m_numTriangles; - const unsigned char * m_triangleIndexBase; - // Size in byte of the indices for one triangle (3*sizeof(index_type) if the indices are tightly packed) - int m_triangleIndexStride; - int m_numVertices; - const unsigned char * m_vertexBase; - // Size of a vertex, in bytes - int m_vertexStride; - - // The index type is set when adding an indexed mesh to the - // b3TriangleIndexVertexArray, do not set it manually - PHY_ScalarType m_indexType; - - // The vertex type has a default type similar to Bullet's precision mode (float or double) - // but can be set manually if you for example run Bullet with double precision but have - // mesh data in single precision.. - PHY_ScalarType m_vertexType; - - - b3IndexedMesh() - :m_indexType(PHY_INTEGER), -#ifdef B3_USE_DOUBLE_PRECISION - m_vertexType(PHY_DOUBLE) -#else // B3_USE_DOUBLE_PRECISION - m_vertexType(PHY_FLOAT) -#endif // B3_USE_DOUBLE_PRECISION - { - } -} -; - - -typedef b3AlignedObjectArray<b3IndexedMesh> IndexedMeshArray; - -///The b3TriangleIndexVertexArray allows to access multiple triangle meshes, by indexing into existing triangle/index arrays. -///Additional meshes can be added using addIndexedMesh -///No duplcate is made of the vertex/index data, it only indexes into external vertex/index arrays. -///So keep those arrays around during the lifetime of this b3TriangleIndexVertexArray. -B3_ATTRIBUTE_ALIGNED16( class) b3TriangleIndexVertexArray : public b3StridingMeshInterface -{ -protected: - IndexedMeshArray m_indexedMeshes; - int m_pad[2]; - mutable int m_hasAabb; // using int instead of bool to maintain alignment - mutable b3Vector3 m_aabbMin; - mutable b3Vector3 m_aabbMax; - -public: - - B3_DECLARE_ALIGNED_ALLOCATOR(); - - b3TriangleIndexVertexArray() : m_hasAabb(0) - { - } - - virtual ~b3TriangleIndexVertexArray(); - - //just to be backwards compatible - b3TriangleIndexVertexArray(int numTriangles,int* triangleIndexBase,int triangleIndexStride,int numVertices,b3Scalar* vertexBase,int vertexStride); - - void addIndexedMesh(const b3IndexedMesh& mesh, PHY_ScalarType indexType = PHY_INTEGER) - { - m_indexedMeshes.push_back(mesh); - m_indexedMeshes[m_indexedMeshes.size()-1].m_indexType = indexType; - } - - - virtual void getLockedVertexIndexBase(unsigned char **vertexbase, int& numverts,PHY_ScalarType& type, int& vertexStride,unsigned char **indexbase,int & indexstride,int& numfaces,PHY_ScalarType& indicestype,int subpart=0); - - virtual void getLockedReadOnlyVertexIndexBase(const unsigned char **vertexbase, int& numverts,PHY_ScalarType& type, int& vertexStride,const unsigned char **indexbase,int & indexstride,int& numfaces,PHY_ScalarType& indicestype,int subpart=0) const; - - /// unLockVertexBase finishes the access to a subpart of the triangle mesh - /// make a call to unLockVertexBase when the read and write access (using getLockedVertexIndexBase) is finished - virtual void unLockVertexBase(int subpart) {(void)subpart;} - - virtual void unLockReadOnlyVertexBase(int subpart) const {(void)subpart;} - - /// getNumSubParts returns the number of seperate subparts - /// each subpart has a continuous array of vertices and indices - virtual int getNumSubParts() const { - return (int)m_indexedMeshes.size(); - } - - IndexedMeshArray& getIndexedMeshArray() - { - return m_indexedMeshes; - } - - const IndexedMeshArray& getIndexedMeshArray() const - { - return m_indexedMeshes; - } - - virtual void preallocateVertices(int numverts){(void) numverts;} - virtual void preallocateIndices(int numindices){(void) numindices;} - - virtual bool hasPremadeAabb() const; - virtual void setPremadeAabb(const b3Vector3& aabbMin, const b3Vector3& aabbMax ) const; - virtual void getPremadeAabb(b3Vector3* aabbMin, b3Vector3* aabbMax ) const; - -} -; - -#endif //B3_TRIANGLE_INDEX_VERTEX_ARRAY_H diff --git a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3VectorFloat4.h b/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3VectorFloat4.h deleted file mode 100644 index f6f65f7719..0000000000 --- a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3VectorFloat4.h +++ /dev/null @@ -1,11 +0,0 @@ -#ifndef B3_VECTOR_FLOAT4_H -#define B3_VECTOR_FLOAT4_H - -#include "Bullet3Common/b3Transform.h" - -//#define cross3(a,b) (a.cross(b)) -#define float4 b3Vector3 -//#define make_float4(x,y,z,w) b3Vector4(x,y,z,w) - - -#endif //B3_VECTOR_FLOAT4_H diff --git a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3VoronoiSimplexSolver.cpp b/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3VoronoiSimplexSolver.cpp deleted file mode 100644 index cf3d5ef49d..0000000000 --- a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3VoronoiSimplexSolver.cpp +++ /dev/null @@ -1,609 +0,0 @@ - -/* -Bullet Continuous Collision Detection and Physics Library -Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ - -This software is provided 'as-is', without any express or implied warranty. -In no event will the authors be held liable for any damages arising from the use of this software. -Permission is granted to anyone to use this software for any purpose, -including commercial applications, and to alter it and redistribute it freely, -subject to the following restrictions: - -1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. -2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. -3. This notice may not be removed or altered from any source distribution. - - Elsevier CDROM license agreements grants nonexclusive license to use the software - for any purpose, commercial or non-commercial as long as the following credit is included - identifying the original source of the software: - - Parts of the source are "from the book Real-Time Collision Detection by - Christer Ericson, published by Morgan Kaufmann Publishers, - (c) 2005 Elsevier Inc." - -*/ - - -#include "b3VoronoiSimplexSolver.h" - -#define VERTA 0 -#define VERTB 1 -#define VERTC 2 -#define VERTD 3 - -#define B3_CATCH_DEGENERATE_TETRAHEDRON 1 -void b3VoronoiSimplexSolver::removeVertex(int index) -{ - - b3Assert(m_numVertices>0); - m_numVertices--; - m_simplexVectorW[index] = m_simplexVectorW[m_numVertices]; - m_simplexPointsP[index] = m_simplexPointsP[m_numVertices]; - m_simplexPointsQ[index] = m_simplexPointsQ[m_numVertices]; -} - -void b3VoronoiSimplexSolver::reduceVertices (const b3UsageBitfield& usedVerts) -{ - if ((numVertices() >= 4) && (!usedVerts.usedVertexD)) - removeVertex(3); - - if ((numVertices() >= 3) && (!usedVerts.usedVertexC)) - removeVertex(2); - - if ((numVertices() >= 2) && (!usedVerts.usedVertexB)) - removeVertex(1); - - if ((numVertices() >= 1) && (!usedVerts.usedVertexA)) - removeVertex(0); - -} - - - - - -//clear the simplex, remove all the vertices -void b3VoronoiSimplexSolver::reset() -{ - m_cachedValidClosest = false; - m_numVertices = 0; - m_needsUpdate = true; - m_lastW = b3MakeVector3(b3Scalar(B3_LARGE_FLOAT),b3Scalar(B3_LARGE_FLOAT),b3Scalar(B3_LARGE_FLOAT)); - m_cachedBC.reset(); -} - - - - //add a vertex -void b3VoronoiSimplexSolver::addVertex(const b3Vector3& w, const b3Vector3& p, const b3Vector3& q) -{ - m_lastW = w; - m_needsUpdate = true; - - m_simplexVectorW[m_numVertices] = w; - m_simplexPointsP[m_numVertices] = p; - m_simplexPointsQ[m_numVertices] = q; - - m_numVertices++; -} - -bool b3VoronoiSimplexSolver::updateClosestVectorAndPoints() -{ - - if (m_needsUpdate) - { - m_cachedBC.reset(); - - m_needsUpdate = false; - - switch (numVertices()) - { - case 0: - m_cachedValidClosest = false; - break; - case 1: - { - m_cachedP1 = m_simplexPointsP[0]; - m_cachedP2 = m_simplexPointsQ[0]; - m_cachedV = m_cachedP1-m_cachedP2; //== m_simplexVectorW[0] - m_cachedBC.reset(); - m_cachedBC.setBarycentricCoordinates(b3Scalar(1.),b3Scalar(0.),b3Scalar(0.),b3Scalar(0.)); - m_cachedValidClosest = m_cachedBC.isValid(); - break; - }; - case 2: - { - //closest point origin from line segment - const b3Vector3& from = m_simplexVectorW[0]; - const b3Vector3& to = m_simplexVectorW[1]; - b3Vector3 nearest; - - b3Vector3 p =b3MakeVector3(b3Scalar(0.),b3Scalar(0.),b3Scalar(0.)); - b3Vector3 diff = p - from; - b3Vector3 v = to - from; - b3Scalar t = v.dot(diff); - - if (t > 0) { - b3Scalar dotVV = v.dot(v); - if (t < dotVV) { - t /= dotVV; - diff -= t*v; - m_cachedBC.m_usedVertices.usedVertexA = true; - m_cachedBC.m_usedVertices.usedVertexB = true; - } else { - t = 1; - diff -= v; - //reduce to 1 point - m_cachedBC.m_usedVertices.usedVertexB = true; - } - } else - { - t = 0; - //reduce to 1 point - m_cachedBC.m_usedVertices.usedVertexA = true; - } - m_cachedBC.setBarycentricCoordinates(1-t,t); - nearest = from + t*v; - - m_cachedP1 = m_simplexPointsP[0] + t * (m_simplexPointsP[1] - m_simplexPointsP[0]); - m_cachedP2 = m_simplexPointsQ[0] + t * (m_simplexPointsQ[1] - m_simplexPointsQ[0]); - m_cachedV = m_cachedP1 - m_cachedP2; - - reduceVertices(m_cachedBC.m_usedVertices); - - m_cachedValidClosest = m_cachedBC.isValid(); - break; - } - case 3: - { - //closest point origin from triangle - b3Vector3 p =b3MakeVector3(b3Scalar(0.),b3Scalar(0.),b3Scalar(0.)); - - const b3Vector3& a = m_simplexVectorW[0]; - const b3Vector3& b = m_simplexVectorW[1]; - const b3Vector3& c = m_simplexVectorW[2]; - - closestPtPointTriangle(p,a,b,c,m_cachedBC); - m_cachedP1 = m_simplexPointsP[0] * m_cachedBC.m_barycentricCoords[0] + - m_simplexPointsP[1] * m_cachedBC.m_barycentricCoords[1] + - m_simplexPointsP[2] * m_cachedBC.m_barycentricCoords[2]; - - m_cachedP2 = m_simplexPointsQ[0] * m_cachedBC.m_barycentricCoords[0] + - m_simplexPointsQ[1] * m_cachedBC.m_barycentricCoords[1] + - m_simplexPointsQ[2] * m_cachedBC.m_barycentricCoords[2]; - - m_cachedV = m_cachedP1-m_cachedP2; - - reduceVertices (m_cachedBC.m_usedVertices); - m_cachedValidClosest = m_cachedBC.isValid(); - - break; - } - case 4: - { - - - b3Vector3 p =b3MakeVector3(b3Scalar(0.),b3Scalar(0.),b3Scalar(0.)); - - const b3Vector3& a = m_simplexVectorW[0]; - const b3Vector3& b = m_simplexVectorW[1]; - const b3Vector3& c = m_simplexVectorW[2]; - const b3Vector3& d = m_simplexVectorW[3]; - - bool hasSeperation = closestPtPointTetrahedron(p,a,b,c,d,m_cachedBC); - - if (hasSeperation) - { - - m_cachedP1 = m_simplexPointsP[0] * m_cachedBC.m_barycentricCoords[0] + - m_simplexPointsP[1] * m_cachedBC.m_barycentricCoords[1] + - m_simplexPointsP[2] * m_cachedBC.m_barycentricCoords[2] + - m_simplexPointsP[3] * m_cachedBC.m_barycentricCoords[3]; - - m_cachedP2 = m_simplexPointsQ[0] * m_cachedBC.m_barycentricCoords[0] + - m_simplexPointsQ[1] * m_cachedBC.m_barycentricCoords[1] + - m_simplexPointsQ[2] * m_cachedBC.m_barycentricCoords[2] + - m_simplexPointsQ[3] * m_cachedBC.m_barycentricCoords[3]; - - m_cachedV = m_cachedP1-m_cachedP2; - reduceVertices (m_cachedBC.m_usedVertices); - } else - { -// printf("sub distance got penetration\n"); - - if (m_cachedBC.m_degenerate) - { - m_cachedValidClosest = false; - } else - { - m_cachedValidClosest = true; - //degenerate case == false, penetration = true + zero - m_cachedV.setValue(b3Scalar(0.),b3Scalar(0.),b3Scalar(0.)); - } - break; - } - - m_cachedValidClosest = m_cachedBC.isValid(); - - //closest point origin from tetrahedron - break; - } - default: - { - m_cachedValidClosest = false; - } - }; - } - - return m_cachedValidClosest; - -} - -//return/calculate the closest vertex -bool b3VoronoiSimplexSolver::closest(b3Vector3& v) -{ - bool succes = updateClosestVectorAndPoints(); - v = m_cachedV; - return succes; -} - - - -b3Scalar b3VoronoiSimplexSolver::maxVertex() -{ - int i, numverts = numVertices(); - b3Scalar maxV = b3Scalar(0.); - for (i=0;i<numverts;i++) - { - b3Scalar curLen2 = m_simplexVectorW[i].length2(); - if (maxV < curLen2) - maxV = curLen2; - } - return maxV; -} - - - - //return the current simplex -int b3VoronoiSimplexSolver::getSimplex(b3Vector3 *pBuf, b3Vector3 *qBuf, b3Vector3 *yBuf) const -{ - int i; - for (i=0;i<numVertices();i++) - { - yBuf[i] = m_simplexVectorW[i]; - pBuf[i] = m_simplexPointsP[i]; - qBuf[i] = m_simplexPointsQ[i]; - } - return numVertices(); -} - - - - -bool b3VoronoiSimplexSolver::inSimplex(const b3Vector3& w) -{ - bool found = false; - int i, numverts = numVertices(); - //b3Scalar maxV = b3Scalar(0.); - - //w is in the current (reduced) simplex - for (i=0;i<numverts;i++) - { -#ifdef BT_USE_EQUAL_VERTEX_THRESHOLD - if ( m_simplexVectorW[i].distance2(w) <= m_equalVertexThreshold) -#else - if (m_simplexVectorW[i] == w) -#endif - found = true; - } - - //check in case lastW is already removed - if (w == m_lastW) - return true; - - return found; -} - -void b3VoronoiSimplexSolver::backup_closest(b3Vector3& v) -{ - v = m_cachedV; -} - - -bool b3VoronoiSimplexSolver::emptySimplex() const -{ - return (numVertices() == 0); - -} - -void b3VoronoiSimplexSolver::compute_points(b3Vector3& p1, b3Vector3& p2) -{ - updateClosestVectorAndPoints(); - p1 = m_cachedP1; - p2 = m_cachedP2; - -} - - - - -bool b3VoronoiSimplexSolver::closestPtPointTriangle(const b3Vector3& p, const b3Vector3& a, const b3Vector3& b, const b3Vector3& c,b3SubSimplexClosestResult& result) -{ - result.m_usedVertices.reset(); - - // Check if P in vertex region outside A - b3Vector3 ab = b - a; - b3Vector3 ac = c - a; - b3Vector3 ap = p - a; - b3Scalar d1 = ab.dot(ap); - b3Scalar d2 = ac.dot(ap); - if (d1 <= b3Scalar(0.0) && d2 <= b3Scalar(0.0)) - { - result.m_closestPointOnSimplex = a; - result.m_usedVertices.usedVertexA = true; - result.setBarycentricCoordinates(1,0,0); - return true;// a; // barycentric coordinates (1,0,0) - } - - // Check if P in vertex region outside B - b3Vector3 bp = p - b; - b3Scalar d3 = ab.dot(bp); - b3Scalar d4 = ac.dot(bp); - if (d3 >= b3Scalar(0.0) && d4 <= d3) - { - result.m_closestPointOnSimplex = b; - result.m_usedVertices.usedVertexB = true; - result.setBarycentricCoordinates(0,1,0); - - return true; // b; // barycentric coordinates (0,1,0) - } - // Check if P in edge region of AB, if so return projection of P onto AB - b3Scalar vc = d1*d4 - d3*d2; - if (vc <= b3Scalar(0.0) && d1 >= b3Scalar(0.0) && d3 <= b3Scalar(0.0)) { - b3Scalar v = d1 / (d1 - d3); - result.m_closestPointOnSimplex = a + v * ab; - result.m_usedVertices.usedVertexA = true; - result.m_usedVertices.usedVertexB = true; - result.setBarycentricCoordinates(1-v,v,0); - return true; - //return a + v * ab; // barycentric coordinates (1-v,v,0) - } - - // Check if P in vertex region outside C - b3Vector3 cp = p - c; - b3Scalar d5 = ab.dot(cp); - b3Scalar d6 = ac.dot(cp); - if (d6 >= b3Scalar(0.0) && d5 <= d6) - { - result.m_closestPointOnSimplex = c; - result.m_usedVertices.usedVertexC = true; - result.setBarycentricCoordinates(0,0,1); - return true;//c; // barycentric coordinates (0,0,1) - } - - // Check if P in edge region of AC, if so return projection of P onto AC - b3Scalar vb = d5*d2 - d1*d6; - if (vb <= b3Scalar(0.0) && d2 >= b3Scalar(0.0) && d6 <= b3Scalar(0.0)) { - b3Scalar w = d2 / (d2 - d6); - result.m_closestPointOnSimplex = a + w * ac; - result.m_usedVertices.usedVertexA = true; - result.m_usedVertices.usedVertexC = true; - result.setBarycentricCoordinates(1-w,0,w); - return true; - //return a + w * ac; // barycentric coordinates (1-w,0,w) - } - - // Check if P in edge region of BC, if so return projection of P onto BC - b3Scalar va = d3*d6 - d5*d4; - if (va <= b3Scalar(0.0) && (d4 - d3) >= b3Scalar(0.0) && (d5 - d6) >= b3Scalar(0.0)) { - b3Scalar w = (d4 - d3) / ((d4 - d3) + (d5 - d6)); - - result.m_closestPointOnSimplex = b + w * (c - b); - result.m_usedVertices.usedVertexB = true; - result.m_usedVertices.usedVertexC = true; - result.setBarycentricCoordinates(0,1-w,w); - return true; - // return b + w * (c - b); // barycentric coordinates (0,1-w,w) - } - - // P inside face region. Compute Q through its barycentric coordinates (u,v,w) - b3Scalar denom = b3Scalar(1.0) / (va + vb + vc); - b3Scalar v = vb * denom; - b3Scalar w = vc * denom; - - result.m_closestPointOnSimplex = a + ab * v + ac * w; - result.m_usedVertices.usedVertexA = true; - result.m_usedVertices.usedVertexB = true; - result.m_usedVertices.usedVertexC = true; - result.setBarycentricCoordinates(1-v-w,v,w); - - return true; -// return a + ab * v + ac * w; // = u*a + v*b + w*c, u = va * denom = b3Scalar(1.0) - v - w - -} - - - - - -/// Test if point p and d lie on opposite sides of plane through abc -int b3VoronoiSimplexSolver::pointOutsideOfPlane(const b3Vector3& p, const b3Vector3& a, const b3Vector3& b, const b3Vector3& c, const b3Vector3& d) -{ - b3Vector3 normal = (b-a).cross(c-a); - - b3Scalar signp = (p - a).dot(normal); // [AP AB AC] - b3Scalar signd = (d - a).dot( normal); // [AD AB AC] - -#ifdef B3_CATCH_DEGENERATE_TETRAHEDRON -#ifdef BT_USE_DOUBLE_PRECISION -if (signd * signd < (b3Scalar(1e-8) * b3Scalar(1e-8))) - { - return -1; - } -#else - if (signd * signd < (b3Scalar(1e-4) * b3Scalar(1e-4))) - { -// printf("affine dependent/degenerate\n");// - return -1; - } -#endif - -#endif - // Points on opposite sides if expression signs are opposite - return signp * signd < b3Scalar(0.); -} - - -bool b3VoronoiSimplexSolver::closestPtPointTetrahedron(const b3Vector3& p, const b3Vector3& a, const b3Vector3& b, const b3Vector3& c, const b3Vector3& d, b3SubSimplexClosestResult& finalResult) -{ - b3SubSimplexClosestResult tempResult; - - // Start out assuming point inside all halfspaces, so closest to itself - finalResult.m_closestPointOnSimplex = p; - finalResult.m_usedVertices.reset(); - finalResult.m_usedVertices.usedVertexA = true; - finalResult.m_usedVertices.usedVertexB = true; - finalResult.m_usedVertices.usedVertexC = true; - finalResult.m_usedVertices.usedVertexD = true; - - int pointOutsideABC = pointOutsideOfPlane(p, a, b, c, d); - int pointOutsideACD = pointOutsideOfPlane(p, a, c, d, b); - int pointOutsideADB = pointOutsideOfPlane(p, a, d, b, c); - int pointOutsideBDC = pointOutsideOfPlane(p, b, d, c, a); - - if (pointOutsideABC < 0 || pointOutsideACD < 0 || pointOutsideADB < 0 || pointOutsideBDC < 0) - { - finalResult.m_degenerate = true; - return false; - } - - if (!pointOutsideABC && !pointOutsideACD && !pointOutsideADB && !pointOutsideBDC) - { - return false; - } - - - b3Scalar bestSqDist = FLT_MAX; - // If point outside face abc then compute closest point on abc - if (pointOutsideABC) - { - closestPtPointTriangle(p, a, b, c,tempResult); - b3Vector3 q = tempResult.m_closestPointOnSimplex; - - b3Scalar sqDist = (q - p).dot( q - p); - // Update best closest point if (squared) distance is less than current best - if (sqDist < bestSqDist) { - bestSqDist = sqDist; - finalResult.m_closestPointOnSimplex = q; - //convert result bitmask! - finalResult.m_usedVertices.reset(); - finalResult.m_usedVertices.usedVertexA = tempResult.m_usedVertices.usedVertexA; - finalResult.m_usedVertices.usedVertexB = tempResult.m_usedVertices.usedVertexB; - finalResult.m_usedVertices.usedVertexC = tempResult.m_usedVertices.usedVertexC; - finalResult.setBarycentricCoordinates( - tempResult.m_barycentricCoords[VERTA], - tempResult.m_barycentricCoords[VERTB], - tempResult.m_barycentricCoords[VERTC], - 0 - ); - - } - } - - - // Repeat test for face acd - if (pointOutsideACD) - { - closestPtPointTriangle(p, a, c, d,tempResult); - b3Vector3 q = tempResult.m_closestPointOnSimplex; - //convert result bitmask! - - b3Scalar sqDist = (q - p).dot( q - p); - if (sqDist < bestSqDist) - { - bestSqDist = sqDist; - finalResult.m_closestPointOnSimplex = q; - finalResult.m_usedVertices.reset(); - finalResult.m_usedVertices.usedVertexA = tempResult.m_usedVertices.usedVertexA; - - finalResult.m_usedVertices.usedVertexC = tempResult.m_usedVertices.usedVertexB; - finalResult.m_usedVertices.usedVertexD = tempResult.m_usedVertices.usedVertexC; - finalResult.setBarycentricCoordinates( - tempResult.m_barycentricCoords[VERTA], - 0, - tempResult.m_barycentricCoords[VERTB], - tempResult.m_barycentricCoords[VERTC] - ); - - } - } - // Repeat test for face adb - - - if (pointOutsideADB) - { - closestPtPointTriangle(p, a, d, b,tempResult); - b3Vector3 q = tempResult.m_closestPointOnSimplex; - //convert result bitmask! - - b3Scalar sqDist = (q - p).dot( q - p); - if (sqDist < bestSqDist) - { - bestSqDist = sqDist; - finalResult.m_closestPointOnSimplex = q; - finalResult.m_usedVertices.reset(); - finalResult.m_usedVertices.usedVertexA = tempResult.m_usedVertices.usedVertexA; - finalResult.m_usedVertices.usedVertexB = tempResult.m_usedVertices.usedVertexC; - - finalResult.m_usedVertices.usedVertexD = tempResult.m_usedVertices.usedVertexB; - finalResult.setBarycentricCoordinates( - tempResult.m_barycentricCoords[VERTA], - tempResult.m_barycentricCoords[VERTC], - 0, - tempResult.m_barycentricCoords[VERTB] - ); - - } - } - // Repeat test for face bdc - - - if (pointOutsideBDC) - { - closestPtPointTriangle(p, b, d, c,tempResult); - b3Vector3 q = tempResult.m_closestPointOnSimplex; - //convert result bitmask! - b3Scalar sqDist = (q - p).dot( q - p); - if (sqDist < bestSqDist) - { - bestSqDist = sqDist; - finalResult.m_closestPointOnSimplex = q; - finalResult.m_usedVertices.reset(); - // - finalResult.m_usedVertices.usedVertexB = tempResult.m_usedVertices.usedVertexA; - finalResult.m_usedVertices.usedVertexC = tempResult.m_usedVertices.usedVertexC; - finalResult.m_usedVertices.usedVertexD = tempResult.m_usedVertices.usedVertexB; - - finalResult.setBarycentricCoordinates( - 0, - tempResult.m_barycentricCoords[VERTA], - tempResult.m_barycentricCoords[VERTC], - tempResult.m_barycentricCoords[VERTB] - ); - - } - } - - //help! we ended up full ! - - if (finalResult.m_usedVertices.usedVertexA && - finalResult.m_usedVertices.usedVertexB && - finalResult.m_usedVertices.usedVertexC && - finalResult.m_usedVertices.usedVertexD) - { - return true; - } - - return true; -} - diff --git a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3VoronoiSimplexSolver.h b/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3VoronoiSimplexSolver.h deleted file mode 100644 index a6e27667d8..0000000000 --- a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/b3VoronoiSimplexSolver.h +++ /dev/null @@ -1,177 +0,0 @@ -/* -Bullet Continuous Collision Detection and Physics Library -Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ - -This software is provided 'as-is', without any express or implied warranty. -In no event will the authors be held liable for any damages arising from the use of this software. -Permission is granted to anyone to use this software for any purpose, -including commercial applications, and to alter it and redistribute it freely, -subject to the following restrictions: - -1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. -2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. -3. This notice may not be removed or altered from any source distribution. -*/ - - - -#ifndef B3_VORONOI_SIMPLEX_SOLVER_H -#define B3_VORONOI_SIMPLEX_SOLVER_H - -#include "Bullet3Common/b3Vector3.h" - - -#define VORONOI_SIMPLEX_MAX_VERTS 5 - -///disable next define, or use defaultCollisionConfiguration->getSimplexSolver()->setEqualVertexThreshold(0.f) to disable/configure -//#define BT_USE_EQUAL_VERTEX_THRESHOLD -#define VORONOI_DEFAULT_EQUAL_VERTEX_THRESHOLD 0.0001f - - -struct b3UsageBitfield{ - b3UsageBitfield() - { - reset(); - } - - void reset() - { - usedVertexA = false; - usedVertexB = false; - usedVertexC = false; - usedVertexD = false; - } - unsigned short usedVertexA : 1; - unsigned short usedVertexB : 1; - unsigned short usedVertexC : 1; - unsigned short usedVertexD : 1; - unsigned short unused1 : 1; - unsigned short unused2 : 1; - unsigned short unused3 : 1; - unsigned short unused4 : 1; -}; - - -struct b3SubSimplexClosestResult -{ - b3Vector3 m_closestPointOnSimplex; - //MASK for m_usedVertices - //stores the simplex vertex-usage, using the MASK, - // if m_usedVertices & MASK then the related vertex is used - b3UsageBitfield m_usedVertices; - b3Scalar m_barycentricCoords[4]; - bool m_degenerate; - - void reset() - { - m_degenerate = false; - setBarycentricCoordinates(); - m_usedVertices.reset(); - } - bool isValid() - { - bool valid = (m_barycentricCoords[0] >= b3Scalar(0.)) && - (m_barycentricCoords[1] >= b3Scalar(0.)) && - (m_barycentricCoords[2] >= b3Scalar(0.)) && - (m_barycentricCoords[3] >= b3Scalar(0.)); - - - return valid; - } - void setBarycentricCoordinates(b3Scalar a=b3Scalar(0.),b3Scalar b=b3Scalar(0.),b3Scalar c=b3Scalar(0.),b3Scalar d=b3Scalar(0.)) - { - m_barycentricCoords[0] = a; - m_barycentricCoords[1] = b; - m_barycentricCoords[2] = c; - m_barycentricCoords[3] = d; - } - -}; - -/// b3VoronoiSimplexSolver is an implementation of the closest point distance algorithm from a 1-4 points simplex to the origin. -/// Can be used with GJK, as an alternative to Johnson distance algorithm. - -B3_ATTRIBUTE_ALIGNED16(class) b3VoronoiSimplexSolver -{ -public: - - B3_DECLARE_ALIGNED_ALLOCATOR(); - - int m_numVertices; - - b3Vector3 m_simplexVectorW[VORONOI_SIMPLEX_MAX_VERTS]; - b3Vector3 m_simplexPointsP[VORONOI_SIMPLEX_MAX_VERTS]; - b3Vector3 m_simplexPointsQ[VORONOI_SIMPLEX_MAX_VERTS]; - - - - b3Vector3 m_cachedP1; - b3Vector3 m_cachedP2; - b3Vector3 m_cachedV; - b3Vector3 m_lastW; - - b3Scalar m_equalVertexThreshold; - bool m_cachedValidClosest; - - - b3SubSimplexClosestResult m_cachedBC; - - bool m_needsUpdate; - - void removeVertex(int index); - void reduceVertices (const b3UsageBitfield& usedVerts); - bool updateClosestVectorAndPoints(); - - bool closestPtPointTetrahedron(const b3Vector3& p, const b3Vector3& a, const b3Vector3& b, const b3Vector3& c, const b3Vector3& d, b3SubSimplexClosestResult& finalResult); - int pointOutsideOfPlane(const b3Vector3& p, const b3Vector3& a, const b3Vector3& b, const b3Vector3& c, const b3Vector3& d); - bool closestPtPointTriangle(const b3Vector3& p, const b3Vector3& a, const b3Vector3& b, const b3Vector3& c,b3SubSimplexClosestResult& result); - -public: - - b3VoronoiSimplexSolver() - : m_equalVertexThreshold(VORONOI_DEFAULT_EQUAL_VERTEX_THRESHOLD) - { - } - void reset(); - - void addVertex(const b3Vector3& w, const b3Vector3& p, const b3Vector3& q); - - void setEqualVertexThreshold(b3Scalar threshold) - { - m_equalVertexThreshold = threshold; - } - - b3Scalar getEqualVertexThreshold() const - { - return m_equalVertexThreshold; - } - - bool closest(b3Vector3& v); - - b3Scalar maxVertex(); - - bool fullSimplex() const - { - return (m_numVertices == 4); - } - - int getSimplex(b3Vector3 *pBuf, b3Vector3 *qBuf, b3Vector3 *yBuf) const; - - bool inSimplex(const b3Vector3& w); - - void backup_closest(b3Vector3& v) ; - - bool emptySimplex() const ; - - void compute_points(b3Vector3& p1, b3Vector3& p2) ; - - int numVertices() const - { - return m_numVertices; - } - - -}; - -#endif //B3_VORONOI_SIMPLEX_SOLVER_H - diff --git a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/kernels/bvhTraversal.cl b/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/kernels/bvhTraversal.cl deleted file mode 100644 index faa413441c..0000000000 --- a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/kernels/bvhTraversal.cl +++ /dev/null @@ -1,283 +0,0 @@ -//keep this enum in sync with the CPU version (in btCollidable.h) -//written by Erwin Coumans - -#define SHAPE_CONVEX_HULL 3 -#define SHAPE_CONCAVE_TRIMESH 5 -#define TRIANGLE_NUM_CONVEX_FACES 5 -#define SHAPE_COMPOUND_OF_CONVEX_HULLS 6 -#define SHAPE_SPHERE 7 - -typedef unsigned int u32; - -#define MAX_NUM_PARTS_IN_BITS 10 - -///btQuantizedBvhNode is a compressed aabb node, 16 bytes. -///Node can be used for leafnode or internal node. Leafnodes can point to 32-bit triangle index (non-negative range). -typedef struct -{ - //12 bytes - unsigned short int m_quantizedAabbMin[3]; - unsigned short int m_quantizedAabbMax[3]; - //4 bytes - int m_escapeIndexOrTriangleIndex; -} btQuantizedBvhNode; - -typedef struct -{ - float4 m_aabbMin; - float4 m_aabbMax; - float4 m_quantization; - int m_numNodes; - int m_numSubTrees; - int m_nodeOffset; - int m_subTreeOffset; - -} b3BvhInfo; - -int getTriangleIndex(const btQuantizedBvhNode* rootNode) -{ - unsigned int x=0; - unsigned int y = (~(x&0))<<(31-MAX_NUM_PARTS_IN_BITS); - // Get only the lower bits where the triangle index is stored - return (rootNode->m_escapeIndexOrTriangleIndex&~(y)); -} - -int isLeaf(const btQuantizedBvhNode* rootNode) -{ - //skipindex is negative (internal node), triangleindex >=0 (leafnode) - return (rootNode->m_escapeIndexOrTriangleIndex >= 0)? 1 : 0; -} - -int getEscapeIndex(const btQuantizedBvhNode* rootNode) -{ - return -rootNode->m_escapeIndexOrTriangleIndex; -} - -typedef struct -{ - //12 bytes - unsigned short int m_quantizedAabbMin[3]; - unsigned short int m_quantizedAabbMax[3]; - //4 bytes, points to the root of the subtree - int m_rootNodeIndex; - //4 bytes - int m_subtreeSize; - int m_padding[3]; -} btBvhSubtreeInfo; - -///keep this in sync with btCollidable.h -typedef struct -{ - int m_numChildShapes; - int blaat2; - int m_shapeType; - int m_shapeIndex; - -} btCollidableGpu; - -typedef struct -{ - float4 m_childPosition; - float4 m_childOrientation; - int m_shapeIndex; - int m_unused0; - int m_unused1; - int m_unused2; -} btGpuChildShape; - - -typedef struct -{ - float4 m_pos; - float4 m_quat; - float4 m_linVel; - float4 m_angVel; - - u32 m_collidableIdx; - float m_invMass; - float m_restituitionCoeff; - float m_frictionCoeff; -} BodyData; - -typedef struct -{ - union - { - float4 m_min; - float m_minElems[4]; - int m_minIndices[4]; - }; - union - { - float4 m_max; - float m_maxElems[4]; - int m_maxIndices[4]; - }; -} btAabbCL; - - -int testQuantizedAabbAgainstQuantizedAabb( - const unsigned short int* aabbMin1, - const unsigned short int* aabbMax1, - const unsigned short int* aabbMin2, - const unsigned short int* aabbMax2) -{ - //int overlap = 1; - if (aabbMin1[0] > aabbMax2[0]) - return 0; - if (aabbMax1[0] < aabbMin2[0]) - return 0; - if (aabbMin1[1] > aabbMax2[1]) - return 0; - if (aabbMax1[1] < aabbMin2[1]) - return 0; - if (aabbMin1[2] > aabbMax2[2]) - return 0; - if (aabbMax1[2] < aabbMin2[2]) - return 0; - return 1; - //overlap = ((aabbMin1[0] > aabbMax2[0]) || (aabbMax1[0] < aabbMin2[0])) ? 0 : overlap; - //overlap = ((aabbMin1[2] > aabbMax2[2]) || (aabbMax1[2] < aabbMin2[2])) ? 0 : overlap; - //overlap = ((aabbMin1[1] > aabbMax2[1]) || (aabbMax1[1] < aabbMin2[1])) ? 0 : overlap; - //return overlap; -} - - -void quantizeWithClamp(unsigned short* out, float4 point2,int isMax, float4 bvhAabbMin, float4 bvhAabbMax, float4 bvhQuantization) -{ - float4 clampedPoint = max(point2,bvhAabbMin); - clampedPoint = min (clampedPoint, bvhAabbMax); - - float4 v = (clampedPoint - bvhAabbMin) * bvhQuantization; - if (isMax) - { - out[0] = (unsigned short) (((unsigned short)(v.x+1.f) | 1)); - out[1] = (unsigned short) (((unsigned short)(v.y+1.f) | 1)); - out[2] = (unsigned short) (((unsigned short)(v.z+1.f) | 1)); - } else - { - out[0] = (unsigned short) (((unsigned short)(v.x) & 0xfffe)); - out[1] = (unsigned short) (((unsigned short)(v.y) & 0xfffe)); - out[2] = (unsigned short) (((unsigned short)(v.z) & 0xfffe)); - } - -} - - -// work-in-progress -__kernel void bvhTraversalKernel( __global const int4* pairs, - __global const BodyData* rigidBodies, - __global const btCollidableGpu* collidables, - __global btAabbCL* aabbs, - __global int4* concavePairsOut, - __global volatile int* numConcavePairsOut, - __global const btBvhSubtreeInfo* subtreeHeadersRoot, - __global const btQuantizedBvhNode* quantizedNodesRoot, - __global const b3BvhInfo* bvhInfos, - int numPairs, - int maxNumConcavePairsCapacity) -{ - int id = get_global_id(0); - if (id>=numPairs) - return; - - int bodyIndexA = pairs[id].x; - int bodyIndexB = pairs[id].y; - int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; - int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; - - //once the broadphase avoids static-static pairs, we can remove this test - if ((rigidBodies[bodyIndexA].m_invMass==0) &&(rigidBodies[bodyIndexB].m_invMass==0)) - { - return; - } - - if (collidables[collidableIndexA].m_shapeType!=SHAPE_CONCAVE_TRIMESH) - return; - - int shapeTypeB = collidables[collidableIndexB].m_shapeType; - - if (shapeTypeB!=SHAPE_CONVEX_HULL && - shapeTypeB!=SHAPE_SPHERE && - shapeTypeB!=SHAPE_COMPOUND_OF_CONVEX_HULLS - ) - return; - - b3BvhInfo bvhInfo = bvhInfos[collidables[collidableIndexA].m_numChildShapes]; - - float4 bvhAabbMin = bvhInfo.m_aabbMin; - float4 bvhAabbMax = bvhInfo.m_aabbMax; - float4 bvhQuantization = bvhInfo.m_quantization; - int numSubtreeHeaders = bvhInfo.m_numSubTrees; - __global const btBvhSubtreeInfo* subtreeHeaders = &subtreeHeadersRoot[bvhInfo.m_subTreeOffset]; - __global const btQuantizedBvhNode* quantizedNodes = &quantizedNodesRoot[bvhInfo.m_nodeOffset]; - - - unsigned short int quantizedQueryAabbMin[3]; - unsigned short int quantizedQueryAabbMax[3]; - quantizeWithClamp(quantizedQueryAabbMin,aabbs[bodyIndexB].m_min,false,bvhAabbMin, bvhAabbMax,bvhQuantization); - quantizeWithClamp(quantizedQueryAabbMax,aabbs[bodyIndexB].m_max,true ,bvhAabbMin, bvhAabbMax,bvhQuantization); - - for (int i=0;i<numSubtreeHeaders;i++) - { - btBvhSubtreeInfo subtree = subtreeHeaders[i]; - - int overlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,subtree.m_quantizedAabbMin,subtree.m_quantizedAabbMax); - if (overlap != 0) - { - int startNodeIndex = subtree.m_rootNodeIndex; - int endNodeIndex = subtree.m_rootNodeIndex+subtree.m_subtreeSize; - int curIndex = startNodeIndex; - int escapeIndex; - int isLeafNode; - int aabbOverlap; - while (curIndex < endNodeIndex) - { - btQuantizedBvhNode rootNode = quantizedNodes[curIndex]; - aabbOverlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,rootNode.m_quantizedAabbMin,rootNode.m_quantizedAabbMax); - isLeafNode = isLeaf(&rootNode); - if (aabbOverlap) - { - if (isLeafNode) - { - int triangleIndex = getTriangleIndex(&rootNode); - if (shapeTypeB==SHAPE_COMPOUND_OF_CONVEX_HULLS) - { - int numChildrenB = collidables[collidableIndexB].m_numChildShapes; - int pairIdx = atomic_add(numConcavePairsOut,numChildrenB); - for (int b=0;b<numChildrenB;b++) - { - if ((pairIdx+b)<maxNumConcavePairsCapacity) - { - int childShapeIndexB = collidables[collidableIndexB].m_shapeIndex+b; - int4 newPair = (int4)(bodyIndexA,bodyIndexB,triangleIndex,childShapeIndexB); - concavePairsOut[pairIdx+b] = newPair; - } - } - } else - { - int pairIdx = atomic_inc(numConcavePairsOut); - if (pairIdx<maxNumConcavePairsCapacity) - { - int4 newPair = (int4)(bodyIndexA,bodyIndexB,triangleIndex,0); - concavePairsOut[pairIdx] = newPair; - } - } - } - curIndex++; - } else - { - if (isLeafNode) - { - curIndex++; - } else - { - escapeIndex = getEscapeIndex(&rootNode); - curIndex += escapeIndex; - } - } - } - } - } - -}
\ No newline at end of file diff --git a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/kernels/bvhTraversal.h b/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/kernels/bvhTraversal.h deleted file mode 100644 index 4b3b49eae8..0000000000 --- a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/kernels/bvhTraversal.h +++ /dev/null @@ -1,258 +0,0 @@ -//this file is autogenerated using stringify.bat (premake --stringify) in the build folder of this project -static const char* bvhTraversalKernelCL= \ -"//keep this enum in sync with the CPU version (in btCollidable.h)\n" -"//written by Erwin Coumans\n" -"#define SHAPE_CONVEX_HULL 3\n" -"#define SHAPE_CONCAVE_TRIMESH 5\n" -"#define TRIANGLE_NUM_CONVEX_FACES 5\n" -"#define SHAPE_COMPOUND_OF_CONVEX_HULLS 6\n" -"#define SHAPE_SPHERE 7\n" -"typedef unsigned int u32;\n" -"#define MAX_NUM_PARTS_IN_BITS 10\n" -"///btQuantizedBvhNode is a compressed aabb node, 16 bytes.\n" -"///Node can be used for leafnode or internal node. Leafnodes can point to 32-bit triangle index (non-negative range).\n" -"typedef struct\n" -"{\n" -" //12 bytes\n" -" unsigned short int m_quantizedAabbMin[3];\n" -" unsigned short int m_quantizedAabbMax[3];\n" -" //4 bytes\n" -" int m_escapeIndexOrTriangleIndex;\n" -"} btQuantizedBvhNode;\n" -"typedef struct\n" -"{\n" -" float4 m_aabbMin;\n" -" float4 m_aabbMax;\n" -" float4 m_quantization;\n" -" int m_numNodes;\n" -" int m_numSubTrees;\n" -" int m_nodeOffset;\n" -" int m_subTreeOffset;\n" -"} b3BvhInfo;\n" -"int getTriangleIndex(const btQuantizedBvhNode* rootNode)\n" -"{\n" -" unsigned int x=0;\n" -" unsigned int y = (~(x&0))<<(31-MAX_NUM_PARTS_IN_BITS);\n" -" // Get only the lower bits where the triangle index is stored\n" -" return (rootNode->m_escapeIndexOrTriangleIndex&~(y));\n" -"}\n" -"int isLeaf(const btQuantizedBvhNode* rootNode)\n" -"{\n" -" //skipindex is negative (internal node), triangleindex >=0 (leafnode)\n" -" return (rootNode->m_escapeIndexOrTriangleIndex >= 0)? 1 : 0;\n" -"}\n" -" \n" -"int getEscapeIndex(const btQuantizedBvhNode* rootNode)\n" -"{\n" -" return -rootNode->m_escapeIndexOrTriangleIndex;\n" -"}\n" -"typedef struct\n" -"{\n" -" //12 bytes\n" -" unsigned short int m_quantizedAabbMin[3];\n" -" unsigned short int m_quantizedAabbMax[3];\n" -" //4 bytes, points to the root of the subtree\n" -" int m_rootNodeIndex;\n" -" //4 bytes\n" -" int m_subtreeSize;\n" -" int m_padding[3];\n" -"} btBvhSubtreeInfo;\n" -"///keep this in sync with btCollidable.h\n" -"typedef struct\n" -"{\n" -" int m_numChildShapes;\n" -" int blaat2;\n" -" int m_shapeType;\n" -" int m_shapeIndex;\n" -" \n" -"} btCollidableGpu;\n" -"typedef struct\n" -"{\n" -" float4 m_childPosition;\n" -" float4 m_childOrientation;\n" -" int m_shapeIndex;\n" -" int m_unused0;\n" -" int m_unused1;\n" -" int m_unused2;\n" -"} btGpuChildShape;\n" -"typedef struct\n" -"{\n" -" float4 m_pos;\n" -" float4 m_quat;\n" -" float4 m_linVel;\n" -" float4 m_angVel;\n" -" u32 m_collidableIdx;\n" -" float m_invMass;\n" -" float m_restituitionCoeff;\n" -" float m_frictionCoeff;\n" -"} BodyData;\n" -"typedef struct \n" -"{\n" -" union\n" -" {\n" -" float4 m_min;\n" -" float m_minElems[4];\n" -" int m_minIndices[4];\n" -" };\n" -" union\n" -" {\n" -" float4 m_max;\n" -" float m_maxElems[4];\n" -" int m_maxIndices[4];\n" -" };\n" -"} btAabbCL;\n" -"int testQuantizedAabbAgainstQuantizedAabb(\n" -" const unsigned short int* aabbMin1,\n" -" const unsigned short int* aabbMax1,\n" -" const unsigned short int* aabbMin2,\n" -" const unsigned short int* aabbMax2)\n" -"{\n" -" //int overlap = 1;\n" -" if (aabbMin1[0] > aabbMax2[0])\n" -" return 0;\n" -" if (aabbMax1[0] < aabbMin2[0])\n" -" return 0;\n" -" if (aabbMin1[1] > aabbMax2[1])\n" -" return 0;\n" -" if (aabbMax1[1] < aabbMin2[1])\n" -" return 0;\n" -" if (aabbMin1[2] > aabbMax2[2])\n" -" return 0;\n" -" if (aabbMax1[2] < aabbMin2[2])\n" -" return 0;\n" -" return 1;\n" -" //overlap = ((aabbMin1[0] > aabbMax2[0]) || (aabbMax1[0] < aabbMin2[0])) ? 0 : overlap;\n" -" //overlap = ((aabbMin1[2] > aabbMax2[2]) || (aabbMax1[2] < aabbMin2[2])) ? 0 : overlap;\n" -" //overlap = ((aabbMin1[1] > aabbMax2[1]) || (aabbMax1[1] < aabbMin2[1])) ? 0 : overlap;\n" -" //return overlap;\n" -"}\n" -"void quantizeWithClamp(unsigned short* out, float4 point2,int isMax, float4 bvhAabbMin, float4 bvhAabbMax, float4 bvhQuantization)\n" -"{\n" -" float4 clampedPoint = max(point2,bvhAabbMin);\n" -" clampedPoint = min (clampedPoint, bvhAabbMax);\n" -" float4 v = (clampedPoint - bvhAabbMin) * bvhQuantization;\n" -" if (isMax)\n" -" {\n" -" out[0] = (unsigned short) (((unsigned short)(v.x+1.f) | 1));\n" -" out[1] = (unsigned short) (((unsigned short)(v.y+1.f) | 1));\n" -" out[2] = (unsigned short) (((unsigned short)(v.z+1.f) | 1));\n" -" } else\n" -" {\n" -" out[0] = (unsigned short) (((unsigned short)(v.x) & 0xfffe));\n" -" out[1] = (unsigned short) (((unsigned short)(v.y) & 0xfffe));\n" -" out[2] = (unsigned short) (((unsigned short)(v.z) & 0xfffe));\n" -" }\n" -"}\n" -"// work-in-progress\n" -"__kernel void bvhTraversalKernel( __global const int4* pairs, \n" -" __global const BodyData* rigidBodies, \n" -" __global const btCollidableGpu* collidables,\n" -" __global btAabbCL* aabbs,\n" -" __global int4* concavePairsOut,\n" -" __global volatile int* numConcavePairsOut,\n" -" __global const btBvhSubtreeInfo* subtreeHeadersRoot,\n" -" __global const btQuantizedBvhNode* quantizedNodesRoot,\n" -" __global const b3BvhInfo* bvhInfos,\n" -" int numPairs,\n" -" int maxNumConcavePairsCapacity)\n" -"{\n" -" int id = get_global_id(0);\n" -" if (id>=numPairs)\n" -" return;\n" -" \n" -" int bodyIndexA = pairs[id].x;\n" -" int bodyIndexB = pairs[id].y;\n" -" int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" -" int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" -" \n" -" //once the broadphase avoids static-static pairs, we can remove this test\n" -" if ((rigidBodies[bodyIndexA].m_invMass==0) &&(rigidBodies[bodyIndexB].m_invMass==0))\n" -" {\n" -" return;\n" -" }\n" -" \n" -" if (collidables[collidableIndexA].m_shapeType!=SHAPE_CONCAVE_TRIMESH)\n" -" return;\n" -" int shapeTypeB = collidables[collidableIndexB].m_shapeType;\n" -" \n" -" if (shapeTypeB!=SHAPE_CONVEX_HULL &&\n" -" shapeTypeB!=SHAPE_SPHERE &&\n" -" shapeTypeB!=SHAPE_COMPOUND_OF_CONVEX_HULLS\n" -" )\n" -" return;\n" -" b3BvhInfo bvhInfo = bvhInfos[collidables[collidableIndexA].m_numChildShapes];\n" -" float4 bvhAabbMin = bvhInfo.m_aabbMin;\n" -" float4 bvhAabbMax = bvhInfo.m_aabbMax;\n" -" float4 bvhQuantization = bvhInfo.m_quantization;\n" -" int numSubtreeHeaders = bvhInfo.m_numSubTrees;\n" -" __global const btBvhSubtreeInfo* subtreeHeaders = &subtreeHeadersRoot[bvhInfo.m_subTreeOffset];\n" -" __global const btQuantizedBvhNode* quantizedNodes = &quantizedNodesRoot[bvhInfo.m_nodeOffset];\n" -" \n" -" unsigned short int quantizedQueryAabbMin[3];\n" -" unsigned short int quantizedQueryAabbMax[3];\n" -" quantizeWithClamp(quantizedQueryAabbMin,aabbs[bodyIndexB].m_min,false,bvhAabbMin, bvhAabbMax,bvhQuantization);\n" -" quantizeWithClamp(quantizedQueryAabbMax,aabbs[bodyIndexB].m_max,true ,bvhAabbMin, bvhAabbMax,bvhQuantization);\n" -" \n" -" for (int i=0;i<numSubtreeHeaders;i++)\n" -" {\n" -" btBvhSubtreeInfo subtree = subtreeHeaders[i];\n" -" \n" -" int overlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,subtree.m_quantizedAabbMin,subtree.m_quantizedAabbMax);\n" -" if (overlap != 0)\n" -" {\n" -" int startNodeIndex = subtree.m_rootNodeIndex;\n" -" int endNodeIndex = subtree.m_rootNodeIndex+subtree.m_subtreeSize;\n" -" int curIndex = startNodeIndex;\n" -" int escapeIndex;\n" -" int isLeafNode;\n" -" int aabbOverlap;\n" -" while (curIndex < endNodeIndex)\n" -" {\n" -" btQuantizedBvhNode rootNode = quantizedNodes[curIndex];\n" -" aabbOverlap = testQuantizedAabbAgainstQuantizedAabb(quantizedQueryAabbMin,quantizedQueryAabbMax,rootNode.m_quantizedAabbMin,rootNode.m_quantizedAabbMax);\n" -" isLeafNode = isLeaf(&rootNode);\n" -" if (aabbOverlap)\n" -" {\n" -" if (isLeafNode)\n" -" {\n" -" int triangleIndex = getTriangleIndex(&rootNode);\n" -" if (shapeTypeB==SHAPE_COMPOUND_OF_CONVEX_HULLS)\n" -" {\n" -" int numChildrenB = collidables[collidableIndexB].m_numChildShapes;\n" -" int pairIdx = atomic_add(numConcavePairsOut,numChildrenB);\n" -" for (int b=0;b<numChildrenB;b++)\n" -" {\n" -" if ((pairIdx+b)<maxNumConcavePairsCapacity)\n" -" {\n" -" int childShapeIndexB = collidables[collidableIndexB].m_shapeIndex+b;\n" -" int4 newPair = (int4)(bodyIndexA,bodyIndexB,triangleIndex,childShapeIndexB);\n" -" concavePairsOut[pairIdx+b] = newPair;\n" -" }\n" -" }\n" -" } else\n" -" {\n" -" int pairIdx = atomic_inc(numConcavePairsOut);\n" -" if (pairIdx<maxNumConcavePairsCapacity)\n" -" {\n" -" int4 newPair = (int4)(bodyIndexA,bodyIndexB,triangleIndex,0);\n" -" concavePairsOut[pairIdx] = newPair;\n" -" }\n" -" }\n" -" } \n" -" curIndex++;\n" -" } else\n" -" {\n" -" if (isLeafNode)\n" -" {\n" -" curIndex++;\n" -" } else\n" -" {\n" -" escapeIndex = getEscapeIndex(&rootNode);\n" -" curIndex += escapeIndex;\n" -" }\n" -" }\n" -" }\n" -" }\n" -" }\n" -"}\n" -; diff --git a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/kernels/mpr.cl b/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/kernels/mpr.cl deleted file mode 100644 index e754f4e1da..0000000000 --- a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/kernels/mpr.cl +++ /dev/null @@ -1,311 +0,0 @@ - -#include "Bullet3Collision/NarrowPhaseCollision/shared/b3MprPenetration.h" -#include "Bullet3Collision/NarrowPhaseCollision/shared/b3Contact4Data.h" - -#define AppendInc(x, out) out = atomic_inc(x) -#define GET_NPOINTS(x) (x).m_worldNormalOnB.w -#ifdef cl_ext_atomic_counters_32 - #pragma OPENCL EXTENSION cl_ext_atomic_counters_32 : enable -#else - #define counter32_t volatile __global int* -#endif - - -__kernel void mprPenetrationKernel( __global int4* pairs, - __global const b3RigidBodyData_t* rigidBodies, - __global const b3Collidable_t* collidables, - __global const b3ConvexPolyhedronData_t* convexShapes, - __global const float4* vertices, - __global float4* separatingNormals, - __global int* hasSeparatingAxis, - __global struct b3Contact4Data* restrict globalContactsOut, - counter32_t nGlobalContactsOut, - int contactCapacity, - int numPairs) -{ - int i = get_global_id(0); - int pairIndex = i; - if (i<numPairs) - { - int bodyIndexA = pairs[i].x; - int bodyIndexB = pairs[i].y; - - int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; - int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; - - int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; - int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; - - - //once the broadphase avoids static-static pairs, we can remove this test - if ((rigidBodies[bodyIndexA].m_invMass==0) &&(rigidBodies[bodyIndexB].m_invMass==0)) - { - return; - } - - - if ((collidables[collidableIndexA].m_shapeType!=SHAPE_CONVEX_HULL) ||(collidables[collidableIndexB].m_shapeType!=SHAPE_CONVEX_HULL)) - { - return; - } - - float depthOut; - b3Float4 dirOut; - b3Float4 posOut; - - - int res = b3MprPenetration(pairIndex, bodyIndexA, bodyIndexB,rigidBodies,convexShapes,collidables,vertices,separatingNormals,hasSeparatingAxis,&depthOut, &dirOut, &posOut); - - - - - - if (res==0) - { - //add a contact - - int dstIdx; - AppendInc( nGlobalContactsOut, dstIdx ); - if (dstIdx<contactCapacity) - { - pairs[pairIndex].z = dstIdx; - __global struct b3Contact4Data* c = globalContactsOut + dstIdx; - c->m_worldNormalOnB = -dirOut;//normal; - c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff); - c->m_batchIdx = pairIndex; - int bodyA = pairs[pairIndex].x; - int bodyB = pairs[pairIndex].y; - c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0 ? -bodyA:bodyA; - c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0 ? -bodyB:bodyB; - c->m_childIndexA = -1; - c->m_childIndexB = -1; - //for (int i=0;i<nContacts;i++) - posOut.w = -depthOut; - c->m_worldPosB[0] = posOut;//localPoints[contactIdx[i]]; - GET_NPOINTS(*c) = 1;//nContacts; - } - } - - } -} - -typedef float4 Quaternion; -#define make_float4 (float4) - -__inline -float dot3F4(float4 a, float4 b) -{ - float4 a1 = make_float4(a.xyz,0.f); - float4 b1 = make_float4(b.xyz,0.f); - return dot(a1, b1); -} - - - - -__inline -float4 cross3(float4 a, float4 b) -{ - return cross(a,b); -} -__inline -Quaternion qtMul(Quaternion a, Quaternion b) -{ - Quaternion ans; - ans = cross3( a, b ); - ans += a.w*b+b.w*a; -// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z); - ans.w = a.w*b.w - dot3F4(a, b); - return ans; -} - -__inline -Quaternion qtInvert(Quaternion q) -{ - return (Quaternion)(-q.xyz, q.w); -} - -__inline -float4 qtRotate(Quaternion q, float4 vec) -{ - Quaternion qInv = qtInvert( q ); - float4 vcpy = vec; - vcpy.w = 0.f; - float4 out = qtMul(qtMul(q,vcpy),qInv); - return out; -} - -__inline -float4 transform(const float4* p, const float4* translation, const Quaternion* orientation) -{ - return qtRotate( *orientation, *p ) + (*translation); -} - - -__inline -float4 qtInvRotate(const Quaternion q, float4 vec) -{ - return qtRotate( qtInvert( q ), vec ); -} - - -inline void project(__global const b3ConvexPolyhedronData_t* hull, const float4 pos, const float4 orn, -const float4* dir, __global const float4* vertices, float* min, float* max) -{ - min[0] = FLT_MAX; - max[0] = -FLT_MAX; - int numVerts = hull->m_numVertices; - - const float4 localDir = qtInvRotate(orn,*dir); - float offset = dot(pos,*dir); - for(int i=0;i<numVerts;i++) - { - float dp = dot(vertices[hull->m_vertexOffset+i],localDir); - if(dp < min[0]) - min[0] = dp; - if(dp > max[0]) - max[0] = dp; - } - if(min[0]>max[0]) - { - float tmp = min[0]; - min[0] = max[0]; - max[0] = tmp; - } - min[0] += offset; - max[0] += offset; -} - - -bool findSeparatingAxisUnitSphere( __global const b3ConvexPolyhedronData_t* hullA, __global const b3ConvexPolyhedronData_t* hullB, - const float4 posA1, - const float4 ornA, - const float4 posB1, - const float4 ornB, - const float4 DeltaC2, - __global const float4* vertices, - __global const float4* unitSphereDirections, - int numUnitSphereDirections, - float4* sep, - float* dmin) -{ - - float4 posA = posA1; - posA.w = 0.f; - float4 posB = posB1; - posB.w = 0.f; - - int curPlaneTests=0; - - int curEdgeEdge = 0; - // Test unit sphere directions - for (int i=0;i<numUnitSphereDirections;i++) - { - - float4 crossje; - crossje = unitSphereDirections[i]; - - if (dot3F4(DeltaC2,crossje)>0) - crossje *= -1.f; - { - float dist; - bool result = true; - float Min0,Max0; - float Min1,Max1; - project(hullA,posA,ornA,&crossje,vertices, &Min0, &Max0); - project(hullB,posB,ornB,&crossje,vertices, &Min1, &Max1); - - if(Max0<Min1 || Max1<Min0) - return false; - - float d0 = Max0 - Min1; - float d1 = Max1 - Min0; - dist = d0<d1 ? d0:d1; - result = true; - - if(dist<*dmin) - { - *dmin = dist; - *sep = crossje; - } - } - } - - - if((dot3F4(-DeltaC2,*sep))>0.0f) - { - *sep = -(*sep); - } - return true; -} - - - -__kernel void findSeparatingAxisUnitSphereKernel( __global const int4* pairs, - __global const b3RigidBodyData_t* rigidBodies, - __global const b3Collidable_t* collidables, - __global const b3ConvexPolyhedronData_t* convexShapes, - __global const float4* vertices, - __global const float4* unitSphereDirections, - __global float4* separatingNormals, - __global int* hasSeparatingAxis, - __global float* dmins, - int numUnitSphereDirections, - int numPairs - ) -{ - - int i = get_global_id(0); - - if (i<numPairs) - { - - if (hasSeparatingAxis[i]) - { - - int bodyIndexA = pairs[i].x; - int bodyIndexB = pairs[i].y; - - int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; - int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; - - int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; - int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; - - - int numFacesA = convexShapes[shapeIndexA].m_numFaces; - - float dmin = dmins[i]; - - float4 posA = rigidBodies[bodyIndexA].m_pos; - posA.w = 0.f; - float4 posB = rigidBodies[bodyIndexB].m_pos; - posB.w = 0.f; - float4 c0local = convexShapes[shapeIndexA].m_localCenter; - float4 ornA = rigidBodies[bodyIndexA].m_quat; - float4 c0 = transform(&c0local, &posA, &ornA); - float4 c1local = convexShapes[shapeIndexB].m_localCenter; - float4 ornB =rigidBodies[bodyIndexB].m_quat; - float4 c1 = transform(&c1local,&posB,&ornB); - const float4 DeltaC2 = c0 - c1; - float4 sepNormal = separatingNormals[i]; - - int numEdgeEdgeDirections = convexShapes[shapeIndexA].m_numUniqueEdges*convexShapes[shapeIndexB].m_numUniqueEdges; - if (numEdgeEdgeDirections>numUnitSphereDirections) - { - bool sepEE = findSeparatingAxisUnitSphere( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA, - posB,ornB, - DeltaC2, - vertices,unitSphereDirections,numUnitSphereDirections,&sepNormal,&dmin); - if (!sepEE) - { - hasSeparatingAxis[i] = 0; - } else - { - hasSeparatingAxis[i] = 1; - separatingNormals[i] = sepNormal; - } - } - } //if (hasSeparatingAxis[i]) - }//(i<numPairs) -} diff --git a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/kernels/mprKernels.h b/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/kernels/mprKernels.h deleted file mode 100644 index 7ed4b382c3..0000000000 --- a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/kernels/mprKernels.h +++ /dev/null @@ -1,1446 +0,0 @@ -//this file is autogenerated using stringify.bat (premake --stringify) in the build folder of this project -static const char* mprKernelsCL= \ -"/***\n" -" * ---------------------------------\n" -" * Copyright (c)2012 Daniel Fiser <danfis@danfis.cz>\n" -" *\n" -" * This file was ported from mpr.c file, part of libccd.\n" -" * The Minkoski Portal Refinement implementation was ported \n" -" * to OpenCL by Erwin Coumans for the Bullet 3 Physics library.\n" -" * at http://github.com/erwincoumans/bullet3\n" -" *\n" -" * Distributed under the OSI-approved BSD License (the \"License\");\n" -" * see <http://www.opensource.org/licenses/bsd-license.php>.\n" -" * This software is distributed WITHOUT ANY WARRANTY; without even the\n" -" * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.\n" -" * See the License for more information.\n" -" */\n" -"#ifndef B3_MPR_PENETRATION_H\n" -"#define B3_MPR_PENETRATION_H\n" -"#ifndef B3_PLATFORM_DEFINITIONS_H\n" -"#define B3_PLATFORM_DEFINITIONS_H\n" -"struct MyTest\n" -"{\n" -" int bla;\n" -"};\n" -"#ifdef __cplusplus\n" -"#else\n" -"//keep B3_LARGE_FLOAT*B3_LARGE_FLOAT < FLT_MAX\n" -"#define B3_LARGE_FLOAT 1e18f\n" -"#define B3_INFINITY 1e18f\n" -"#define b3Assert(a)\n" -"#define b3ConstArray(a) __global const a*\n" -"#define b3AtomicInc atomic_inc\n" -"#define b3AtomicAdd atomic_add\n" -"#define b3Fabs fabs\n" -"#define b3Sqrt native_sqrt\n" -"#define b3Sin native_sin\n" -"#define b3Cos native_cos\n" -"#define B3_STATIC\n" -"#endif\n" -"#endif\n" -"#ifndef B3_FLOAT4_H\n" -"#define B3_FLOAT4_H\n" -"#ifndef B3_PLATFORM_DEFINITIONS_H\n" -"#ifdef __cplusplus\n" -"#else\n" -"#endif\n" -"#endif\n" -"#ifdef __cplusplus\n" -"#else\n" -" typedef float4 b3Float4;\n" -" #define b3Float4ConstArg const b3Float4\n" -" #define b3MakeFloat4 (float4)\n" -" float b3Dot3F4(b3Float4ConstArg v0,b3Float4ConstArg v1)\n" -" {\n" -" float4 a1 = b3MakeFloat4(v0.xyz,0.f);\n" -" float4 b1 = b3MakeFloat4(v1.xyz,0.f);\n" -" return dot(a1, b1);\n" -" }\n" -" b3Float4 b3Cross3(b3Float4ConstArg v0,b3Float4ConstArg v1)\n" -" {\n" -" float4 a1 = b3MakeFloat4(v0.xyz,0.f);\n" -" float4 b1 = b3MakeFloat4(v1.xyz,0.f);\n" -" return cross(a1, b1);\n" -" }\n" -" #define b3MinFloat4 min\n" -" #define b3MaxFloat4 max\n" -" #define b3Normalized(a) normalize(a)\n" -"#endif \n" -" \n" -"inline bool b3IsAlmostZero(b3Float4ConstArg v)\n" -"{\n" -" if(b3Fabs(v.x)>1e-6 || b3Fabs(v.y)>1e-6 || b3Fabs(v.z)>1e-6) \n" -" return false;\n" -" return true;\n" -"}\n" -"inline int b3MaxDot( b3Float4ConstArg vec, __global const b3Float4* vecArray, int vecLen, float* dotOut )\n" -"{\n" -" float maxDot = -B3_INFINITY;\n" -" int i = 0;\n" -" int ptIndex = -1;\n" -" for( i = 0; i < vecLen; i++ )\n" -" {\n" -" float dot = b3Dot3F4(vecArray[i],vec);\n" -" \n" -" if( dot > maxDot )\n" -" {\n" -" maxDot = dot;\n" -" ptIndex = i;\n" -" }\n" -" }\n" -" b3Assert(ptIndex>=0);\n" -" if (ptIndex<0)\n" -" {\n" -" ptIndex = 0;\n" -" }\n" -" *dotOut = maxDot;\n" -" return ptIndex;\n" -"}\n" -"#endif //B3_FLOAT4_H\n" -"#ifndef B3_RIGIDBODY_DATA_H\n" -"#define B3_RIGIDBODY_DATA_H\n" -"#ifndef B3_FLOAT4_H\n" -"#ifdef __cplusplus\n" -"#else\n" -"#endif \n" -"#endif //B3_FLOAT4_H\n" -"#ifndef B3_QUAT_H\n" -"#define B3_QUAT_H\n" -"#ifndef B3_PLATFORM_DEFINITIONS_H\n" -"#ifdef __cplusplus\n" -"#else\n" -"#endif\n" -"#endif\n" -"#ifndef B3_FLOAT4_H\n" -"#ifdef __cplusplus\n" -"#else\n" -"#endif \n" -"#endif //B3_FLOAT4_H\n" -"#ifdef __cplusplus\n" -"#else\n" -" typedef float4 b3Quat;\n" -" #define b3QuatConstArg const b3Quat\n" -" \n" -" \n" -"inline float4 b3FastNormalize4(float4 v)\n" -"{\n" -" v = (float4)(v.xyz,0.f);\n" -" return fast_normalize(v);\n" -"}\n" -" \n" -"inline b3Quat b3QuatMul(b3Quat a, b3Quat b);\n" -"inline b3Quat b3QuatNormalized(b3QuatConstArg in);\n" -"inline b3Quat b3QuatRotate(b3QuatConstArg q, b3QuatConstArg vec);\n" -"inline b3Quat b3QuatInvert(b3QuatConstArg q);\n" -"inline b3Quat b3QuatInverse(b3QuatConstArg q);\n" -"inline b3Quat b3QuatMul(b3QuatConstArg a, b3QuatConstArg b)\n" -"{\n" -" b3Quat ans;\n" -" ans = b3Cross3( a, b );\n" -" ans += a.w*b+b.w*a;\n" -"// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z);\n" -" ans.w = a.w*b.w - b3Dot3F4(a, b);\n" -" return ans;\n" -"}\n" -"inline b3Quat b3QuatNormalized(b3QuatConstArg in)\n" -"{\n" -" b3Quat q;\n" -" q=in;\n" -" //return b3FastNormalize4(in);\n" -" float len = native_sqrt(dot(q, q));\n" -" if(len > 0.f)\n" -" {\n" -" q *= 1.f / len;\n" -" }\n" -" else\n" -" {\n" -" q.x = q.y = q.z = 0.f;\n" -" q.w = 1.f;\n" -" }\n" -" return q;\n" -"}\n" -"inline float4 b3QuatRotate(b3QuatConstArg q, b3QuatConstArg vec)\n" -"{\n" -" b3Quat qInv = b3QuatInvert( q );\n" -" float4 vcpy = vec;\n" -" vcpy.w = 0.f;\n" -" float4 out = b3QuatMul(b3QuatMul(q,vcpy),qInv);\n" -" return out;\n" -"}\n" -"inline b3Quat b3QuatInverse(b3QuatConstArg q)\n" -"{\n" -" return (b3Quat)(-q.xyz, q.w);\n" -"}\n" -"inline b3Quat b3QuatInvert(b3QuatConstArg q)\n" -"{\n" -" return (b3Quat)(-q.xyz, q.w);\n" -"}\n" -"inline float4 b3QuatInvRotate(b3QuatConstArg q, b3QuatConstArg vec)\n" -"{\n" -" return b3QuatRotate( b3QuatInvert( q ), vec );\n" -"}\n" -"inline b3Float4 b3TransformPoint(b3Float4ConstArg point, b3Float4ConstArg translation, b3QuatConstArg orientation)\n" -"{\n" -" return b3QuatRotate( orientation, point ) + (translation);\n" -"}\n" -" \n" -"#endif \n" -"#endif //B3_QUAT_H\n" -"#ifndef B3_MAT3x3_H\n" -"#define B3_MAT3x3_H\n" -"#ifndef B3_QUAT_H\n" -"#ifdef __cplusplus\n" -"#else\n" -"#endif \n" -"#endif //B3_QUAT_H\n" -"#ifdef __cplusplus\n" -"#else\n" -"typedef struct\n" -"{\n" -" b3Float4 m_row[3];\n" -"}b3Mat3x3;\n" -"#define b3Mat3x3ConstArg const b3Mat3x3\n" -"#define b3GetRow(m,row) (m.m_row[row])\n" -"inline b3Mat3x3 b3QuatGetRotationMatrix(b3Quat quat)\n" -"{\n" -" b3Float4 quat2 = (b3Float4)(quat.x*quat.x, quat.y*quat.y, quat.z*quat.z, 0.f);\n" -" b3Mat3x3 out;\n" -" out.m_row[0].x=1-2*quat2.y-2*quat2.z;\n" -" out.m_row[0].y=2*quat.x*quat.y-2*quat.w*quat.z;\n" -" out.m_row[0].z=2*quat.x*quat.z+2*quat.w*quat.y;\n" -" out.m_row[0].w = 0.f;\n" -" out.m_row[1].x=2*quat.x*quat.y+2*quat.w*quat.z;\n" -" out.m_row[1].y=1-2*quat2.x-2*quat2.z;\n" -" out.m_row[1].z=2*quat.y*quat.z-2*quat.w*quat.x;\n" -" out.m_row[1].w = 0.f;\n" -" out.m_row[2].x=2*quat.x*quat.z-2*quat.w*quat.y;\n" -" out.m_row[2].y=2*quat.y*quat.z+2*quat.w*quat.x;\n" -" out.m_row[2].z=1-2*quat2.x-2*quat2.y;\n" -" out.m_row[2].w = 0.f;\n" -" return out;\n" -"}\n" -"inline b3Mat3x3 b3AbsoluteMat3x3(b3Mat3x3ConstArg matIn)\n" -"{\n" -" b3Mat3x3 out;\n" -" out.m_row[0] = fabs(matIn.m_row[0]);\n" -" out.m_row[1] = fabs(matIn.m_row[1]);\n" -" out.m_row[2] = fabs(matIn.m_row[2]);\n" -" return out;\n" -"}\n" -"__inline\n" -"b3Mat3x3 mtZero();\n" -"__inline\n" -"b3Mat3x3 mtIdentity();\n" -"__inline\n" -"b3Mat3x3 mtTranspose(b3Mat3x3 m);\n" -"__inline\n" -"b3Mat3x3 mtMul(b3Mat3x3 a, b3Mat3x3 b);\n" -"__inline\n" -"b3Float4 mtMul1(b3Mat3x3 a, b3Float4 b);\n" -"__inline\n" -"b3Float4 mtMul3(b3Float4 a, b3Mat3x3 b);\n" -"__inline\n" -"b3Mat3x3 mtZero()\n" -"{\n" -" b3Mat3x3 m;\n" -" m.m_row[0] = (b3Float4)(0.f);\n" -" m.m_row[1] = (b3Float4)(0.f);\n" -" m.m_row[2] = (b3Float4)(0.f);\n" -" return m;\n" -"}\n" -"__inline\n" -"b3Mat3x3 mtIdentity()\n" -"{\n" -" b3Mat3x3 m;\n" -" m.m_row[0] = (b3Float4)(1,0,0,0);\n" -" m.m_row[1] = (b3Float4)(0,1,0,0);\n" -" m.m_row[2] = (b3Float4)(0,0,1,0);\n" -" return m;\n" -"}\n" -"__inline\n" -"b3Mat3x3 mtTranspose(b3Mat3x3 m)\n" -"{\n" -" b3Mat3x3 out;\n" -" out.m_row[0] = (b3Float4)(m.m_row[0].x, m.m_row[1].x, m.m_row[2].x, 0.f);\n" -" out.m_row[1] = (b3Float4)(m.m_row[0].y, m.m_row[1].y, m.m_row[2].y, 0.f);\n" -" out.m_row[2] = (b3Float4)(m.m_row[0].z, m.m_row[1].z, m.m_row[2].z, 0.f);\n" -" return out;\n" -"}\n" -"__inline\n" -"b3Mat3x3 mtMul(b3Mat3x3 a, b3Mat3x3 b)\n" -"{\n" -" b3Mat3x3 transB;\n" -" transB = mtTranspose( b );\n" -" b3Mat3x3 ans;\n" -" // why this doesn't run when 0ing in the for{}\n" -" a.m_row[0].w = 0.f;\n" -" a.m_row[1].w = 0.f;\n" -" a.m_row[2].w = 0.f;\n" -" for(int i=0; i<3; i++)\n" -" {\n" -"// a.m_row[i].w = 0.f;\n" -" ans.m_row[i].x = b3Dot3F4(a.m_row[i],transB.m_row[0]);\n" -" ans.m_row[i].y = b3Dot3F4(a.m_row[i],transB.m_row[1]);\n" -" ans.m_row[i].z = b3Dot3F4(a.m_row[i],transB.m_row[2]);\n" -" ans.m_row[i].w = 0.f;\n" -" }\n" -" return ans;\n" -"}\n" -"__inline\n" -"b3Float4 mtMul1(b3Mat3x3 a, b3Float4 b)\n" -"{\n" -" b3Float4 ans;\n" -" ans.x = b3Dot3F4( a.m_row[0], b );\n" -" ans.y = b3Dot3F4( a.m_row[1], b );\n" -" ans.z = b3Dot3F4( a.m_row[2], b );\n" -" ans.w = 0.f;\n" -" return ans;\n" -"}\n" -"__inline\n" -"b3Float4 mtMul3(b3Float4 a, b3Mat3x3 b)\n" -"{\n" -" b3Float4 colx = b3MakeFloat4(b.m_row[0].x, b.m_row[1].x, b.m_row[2].x, 0);\n" -" b3Float4 coly = b3MakeFloat4(b.m_row[0].y, b.m_row[1].y, b.m_row[2].y, 0);\n" -" b3Float4 colz = b3MakeFloat4(b.m_row[0].z, b.m_row[1].z, b.m_row[2].z, 0);\n" -" b3Float4 ans;\n" -" ans.x = b3Dot3F4( a, colx );\n" -" ans.y = b3Dot3F4( a, coly );\n" -" ans.z = b3Dot3F4( a, colz );\n" -" return ans;\n" -"}\n" -"#endif\n" -"#endif //B3_MAT3x3_H\n" -"typedef struct b3RigidBodyData b3RigidBodyData_t;\n" -"struct b3RigidBodyData\n" -"{\n" -" b3Float4 m_pos;\n" -" b3Quat m_quat;\n" -" b3Float4 m_linVel;\n" -" b3Float4 m_angVel;\n" -" int m_collidableIdx;\n" -" float m_invMass;\n" -" float m_restituitionCoeff;\n" -" float m_frictionCoeff;\n" -"};\n" -"typedef struct b3InertiaData b3InertiaData_t;\n" -"struct b3InertiaData\n" -"{\n" -" b3Mat3x3 m_invInertiaWorld;\n" -" b3Mat3x3 m_initInvInertia;\n" -"};\n" -"#endif //B3_RIGIDBODY_DATA_H\n" -" \n" -"#ifndef B3_CONVEX_POLYHEDRON_DATA_H\n" -"#define B3_CONVEX_POLYHEDRON_DATA_H\n" -"#ifndef B3_FLOAT4_H\n" -"#ifdef __cplusplus\n" -"#else\n" -"#endif \n" -"#endif //B3_FLOAT4_H\n" -"#ifndef B3_QUAT_H\n" -"#ifdef __cplusplus\n" -"#else\n" -"#endif \n" -"#endif //B3_QUAT_H\n" -"typedef struct b3GpuFace b3GpuFace_t;\n" -"struct b3GpuFace\n" -"{\n" -" b3Float4 m_plane;\n" -" int m_indexOffset;\n" -" int m_numIndices;\n" -" int m_unusedPadding1;\n" -" int m_unusedPadding2;\n" -"};\n" -"typedef struct b3ConvexPolyhedronData b3ConvexPolyhedronData_t;\n" -"struct b3ConvexPolyhedronData\n" -"{\n" -" b3Float4 m_localCenter;\n" -" b3Float4 m_extents;\n" -" b3Float4 mC;\n" -" b3Float4 mE;\n" -" float m_radius;\n" -" int m_faceOffset;\n" -" int m_numFaces;\n" -" int m_numVertices;\n" -" int m_vertexOffset;\n" -" int m_uniqueEdgesOffset;\n" -" int m_numUniqueEdges;\n" -" int m_unused;\n" -"};\n" -"#endif //B3_CONVEX_POLYHEDRON_DATA_H\n" -"#ifndef B3_COLLIDABLE_H\n" -"#define B3_COLLIDABLE_H\n" -"#ifndef B3_FLOAT4_H\n" -"#ifdef __cplusplus\n" -"#else\n" -"#endif \n" -"#endif //B3_FLOAT4_H\n" -"#ifndef B3_QUAT_H\n" -"#ifdef __cplusplus\n" -"#else\n" -"#endif \n" -"#endif //B3_QUAT_H\n" -"enum b3ShapeTypes\n" -"{\n" -" SHAPE_HEIGHT_FIELD=1,\n" -" SHAPE_CONVEX_HULL=3,\n" -" SHAPE_PLANE=4,\n" -" SHAPE_CONCAVE_TRIMESH=5,\n" -" SHAPE_COMPOUND_OF_CONVEX_HULLS=6,\n" -" SHAPE_SPHERE=7,\n" -" MAX_NUM_SHAPE_TYPES,\n" -"};\n" -"typedef struct b3Collidable b3Collidable_t;\n" -"struct b3Collidable\n" -"{\n" -" union {\n" -" int m_numChildShapes;\n" -" int m_bvhIndex;\n" -" };\n" -" union\n" -" {\n" -" float m_radius;\n" -" int m_compoundBvhIndex;\n" -" };\n" -" int m_shapeType;\n" -" int m_shapeIndex;\n" -"};\n" -"typedef struct b3GpuChildShape b3GpuChildShape_t;\n" -"struct b3GpuChildShape\n" -"{\n" -" b3Float4 m_childPosition;\n" -" b3Quat m_childOrientation;\n" -" int m_shapeIndex;\n" -" int m_unused0;\n" -" int m_unused1;\n" -" int m_unused2;\n" -"};\n" -"struct b3CompoundOverlappingPair\n" -"{\n" -" int m_bodyIndexA;\n" -" int m_bodyIndexB;\n" -"// int m_pairType;\n" -" int m_childShapeIndexA;\n" -" int m_childShapeIndexB;\n" -"};\n" -"#endif //B3_COLLIDABLE_H\n" -"#ifdef __cplusplus\n" -"#else\n" -"#define B3_MPR_SQRT sqrt\n" -"#endif\n" -"#define B3_MPR_FMIN(x, y) ((x) < (y) ? (x) : (y))\n" -"#define B3_MPR_FABS fabs\n" -"#define B3_MPR_TOLERANCE 1E-6f\n" -"#define B3_MPR_MAX_ITERATIONS 1000\n" -"struct _b3MprSupport_t \n" -"{\n" -" b3Float4 v; //!< Support point in minkowski sum\n" -" b3Float4 v1; //!< Support point in obj1\n" -" b3Float4 v2; //!< Support point in obj2\n" -"};\n" -"typedef struct _b3MprSupport_t b3MprSupport_t;\n" -"struct _b3MprSimplex_t \n" -"{\n" -" b3MprSupport_t ps[4];\n" -" int last; //!< index of last added point\n" -"};\n" -"typedef struct _b3MprSimplex_t b3MprSimplex_t;\n" -"inline b3MprSupport_t* b3MprSimplexPointW(b3MprSimplex_t *s, int idx)\n" -"{\n" -" return &s->ps[idx];\n" -"}\n" -"inline void b3MprSimplexSetSize(b3MprSimplex_t *s, int size)\n" -"{\n" -" s->last = size - 1;\n" -"}\n" -"inline int b3MprSimplexSize(const b3MprSimplex_t *s)\n" -"{\n" -" return s->last + 1;\n" -"}\n" -"inline const b3MprSupport_t* b3MprSimplexPoint(const b3MprSimplex_t* s, int idx)\n" -"{\n" -" // here is no check on boundaries\n" -" return &s->ps[idx];\n" -"}\n" -"inline void b3MprSupportCopy(b3MprSupport_t *d, const b3MprSupport_t *s)\n" -"{\n" -" *d = *s;\n" -"}\n" -"inline void b3MprSimplexSet(b3MprSimplex_t *s, size_t pos, const b3MprSupport_t *a)\n" -"{\n" -" b3MprSupportCopy(s->ps + pos, a);\n" -"}\n" -"inline void b3MprSimplexSwap(b3MprSimplex_t *s, size_t pos1, size_t pos2)\n" -"{\n" -" b3MprSupport_t supp;\n" -" b3MprSupportCopy(&supp, &s->ps[pos1]);\n" -" b3MprSupportCopy(&s->ps[pos1], &s->ps[pos2]);\n" -" b3MprSupportCopy(&s->ps[pos2], &supp);\n" -"}\n" -"inline int b3MprIsZero(float val)\n" -"{\n" -" return B3_MPR_FABS(val) < FLT_EPSILON;\n" -"}\n" -"inline int b3MprEq(float _a, float _b)\n" -"{\n" -" float ab;\n" -" float a, b;\n" -" ab = B3_MPR_FABS(_a - _b);\n" -" if (B3_MPR_FABS(ab) < FLT_EPSILON)\n" -" return 1;\n" -" a = B3_MPR_FABS(_a);\n" -" b = B3_MPR_FABS(_b);\n" -" if (b > a){\n" -" return ab < FLT_EPSILON * b;\n" -" }else{\n" -" return ab < FLT_EPSILON * a;\n" -" }\n" -"}\n" -"inline int b3MprVec3Eq(const b3Float4* a, const b3Float4 *b)\n" -"{\n" -" return b3MprEq((*a).x, (*b).x)\n" -" && b3MprEq((*a).y, (*b).y)\n" -" && b3MprEq((*a).z, (*b).z);\n" -"}\n" -"inline b3Float4 b3LocalGetSupportVertex(b3Float4ConstArg supportVec,__global const b3ConvexPolyhedronData_t* hull, b3ConstArray(b3Float4) verticesA)\n" -"{\n" -" b3Float4 supVec = b3MakeFloat4(0,0,0,0);\n" -" float maxDot = -B3_LARGE_FLOAT;\n" -" if( 0 < hull->m_numVertices )\n" -" {\n" -" const b3Float4 scaled = supportVec;\n" -" int index = b3MaxDot(scaled, &verticesA[hull->m_vertexOffset], hull->m_numVertices, &maxDot);\n" -" return verticesA[hull->m_vertexOffset+index];\n" -" }\n" -" return supVec;\n" -"}\n" -"B3_STATIC void b3MprConvexSupport(int pairIndex,int bodyIndex, b3ConstArray(b3RigidBodyData_t) cpuBodyBuf, \n" -" b3ConstArray(b3ConvexPolyhedronData_t) cpuConvexData, \n" -" b3ConstArray(b3Collidable_t) cpuCollidables,\n" -" b3ConstArray(b3Float4) cpuVertices,\n" -" __global b3Float4* sepAxis,\n" -" const b3Float4* _dir, b3Float4* outp, int logme)\n" -"{\n" -" //dir is in worldspace, move to local space\n" -" \n" -" b3Float4 pos = cpuBodyBuf[bodyIndex].m_pos;\n" -" b3Quat orn = cpuBodyBuf[bodyIndex].m_quat;\n" -" \n" -" b3Float4 dir = b3MakeFloat4((*_dir).x,(*_dir).y,(*_dir).z,0.f);\n" -" \n" -" const b3Float4 localDir = b3QuatRotate(b3QuatInverse(orn),dir);\n" -" \n" -" //find local support vertex\n" -" int colIndex = cpuBodyBuf[bodyIndex].m_collidableIdx;\n" -" \n" -" b3Assert(cpuCollidables[colIndex].m_shapeType==SHAPE_CONVEX_HULL);\n" -" __global const b3ConvexPolyhedronData_t* hull = &cpuConvexData[cpuCollidables[colIndex].m_shapeIndex];\n" -" \n" -" b3Float4 pInA;\n" -" if (logme)\n" -" {\n" -" b3Float4 supVec = b3MakeFloat4(0,0,0,0);\n" -" float maxDot = -B3_LARGE_FLOAT;\n" -" if( 0 < hull->m_numVertices )\n" -" {\n" -" const b3Float4 scaled = localDir;\n" -" int index = b3MaxDot(scaled, &cpuVertices[hull->m_vertexOffset], hull->m_numVertices, &maxDot);\n" -" pInA = cpuVertices[hull->m_vertexOffset+index];\n" -" \n" -" }\n" -" } else\n" -" {\n" -" pInA = b3LocalGetSupportVertex(localDir,hull,cpuVertices);\n" -" }\n" -" //move vertex to world space\n" -" *outp = b3TransformPoint(pInA,pos,orn);\n" -" \n" -"}\n" -"inline void b3MprSupport(int pairIndex,int bodyIndexA, int bodyIndexB, b3ConstArray(b3RigidBodyData_t) cpuBodyBuf, \n" -" b3ConstArray(b3ConvexPolyhedronData_t) cpuConvexData, \n" -" b3ConstArray(b3Collidable_t) cpuCollidables,\n" -" b3ConstArray(b3Float4) cpuVertices,\n" -" __global b3Float4* sepAxis,\n" -" const b3Float4* _dir, b3MprSupport_t *supp)\n" -"{\n" -" b3Float4 dir;\n" -" dir = *_dir;\n" -" b3MprConvexSupport(pairIndex,bodyIndexA,cpuBodyBuf,cpuConvexData,cpuCollidables,cpuVertices,sepAxis,&dir, &supp->v1,0);\n" -" dir = *_dir*-1.f;\n" -" b3MprConvexSupport(pairIndex,bodyIndexB,cpuBodyBuf,cpuConvexData,cpuCollidables,cpuVertices,sepAxis,&dir, &supp->v2,0);\n" -" supp->v = supp->v1 - supp->v2;\n" -"}\n" -"inline void b3FindOrigin(int bodyIndexA, int bodyIndexB, b3ConstArray(b3RigidBodyData_t) cpuBodyBuf, b3MprSupport_t *center)\n" -"{\n" -" center->v1 = cpuBodyBuf[bodyIndexA].m_pos;\n" -" center->v2 = cpuBodyBuf[bodyIndexB].m_pos;\n" -" center->v = center->v1 - center->v2;\n" -"}\n" -"inline void b3MprVec3Set(b3Float4 *v, float x, float y, float z)\n" -"{\n" -" (*v).x = x;\n" -" (*v).y = y;\n" -" (*v).z = z;\n" -" (*v).w = 0.f;\n" -"}\n" -"inline void b3MprVec3Add(b3Float4 *v, const b3Float4 *w)\n" -"{\n" -" (*v).x += (*w).x;\n" -" (*v).y += (*w).y;\n" -" (*v).z += (*w).z;\n" -"}\n" -"inline void b3MprVec3Copy(b3Float4 *v, const b3Float4 *w)\n" -"{\n" -" *v = *w;\n" -"}\n" -"inline void b3MprVec3Scale(b3Float4 *d, float k)\n" -"{\n" -" *d *= k;\n" -"}\n" -"inline float b3MprVec3Dot(const b3Float4 *a, const b3Float4 *b)\n" -"{\n" -" float dot;\n" -" dot = b3Dot3F4(*a,*b);\n" -" return dot;\n" -"}\n" -"inline float b3MprVec3Len2(const b3Float4 *v)\n" -"{\n" -" return b3MprVec3Dot(v, v);\n" -"}\n" -"inline void b3MprVec3Normalize(b3Float4 *d)\n" -"{\n" -" float k = 1.f / B3_MPR_SQRT(b3MprVec3Len2(d));\n" -" b3MprVec3Scale(d, k);\n" -"}\n" -"inline void b3MprVec3Cross(b3Float4 *d, const b3Float4 *a, const b3Float4 *b)\n" -"{\n" -" *d = b3Cross3(*a,*b);\n" -" \n" -"}\n" -"inline void b3MprVec3Sub2(b3Float4 *d, const b3Float4 *v, const b3Float4 *w)\n" -"{\n" -" *d = *v - *w;\n" -"}\n" -"inline void b3PortalDir(const b3MprSimplex_t *portal, b3Float4 *dir)\n" -"{\n" -" b3Float4 v2v1, v3v1;\n" -" b3MprVec3Sub2(&v2v1, &b3MprSimplexPoint(portal, 2)->v,\n" -" &b3MprSimplexPoint(portal, 1)->v);\n" -" b3MprVec3Sub2(&v3v1, &b3MprSimplexPoint(portal, 3)->v,\n" -" &b3MprSimplexPoint(portal, 1)->v);\n" -" b3MprVec3Cross(dir, &v2v1, &v3v1);\n" -" b3MprVec3Normalize(dir);\n" -"}\n" -"inline int portalEncapsulesOrigin(const b3MprSimplex_t *portal,\n" -" const b3Float4 *dir)\n" -"{\n" -" float dot;\n" -" dot = b3MprVec3Dot(dir, &b3MprSimplexPoint(portal, 1)->v);\n" -" return b3MprIsZero(dot) || dot > 0.f;\n" -"}\n" -"inline int portalReachTolerance(const b3MprSimplex_t *portal,\n" -" const b3MprSupport_t *v4,\n" -" const b3Float4 *dir)\n" -"{\n" -" float dv1, dv2, dv3, dv4;\n" -" float dot1, dot2, dot3;\n" -" // find the smallest dot product of dir and {v1-v4, v2-v4, v3-v4}\n" -" dv1 = b3MprVec3Dot(&b3MprSimplexPoint(portal, 1)->v, dir);\n" -" dv2 = b3MprVec3Dot(&b3MprSimplexPoint(portal, 2)->v, dir);\n" -" dv3 = b3MprVec3Dot(&b3MprSimplexPoint(portal, 3)->v, dir);\n" -" dv4 = b3MprVec3Dot(&v4->v, dir);\n" -" dot1 = dv4 - dv1;\n" -" dot2 = dv4 - dv2;\n" -" dot3 = dv4 - dv3;\n" -" dot1 = B3_MPR_FMIN(dot1, dot2);\n" -" dot1 = B3_MPR_FMIN(dot1, dot3);\n" -" return b3MprEq(dot1, B3_MPR_TOLERANCE) || dot1 < B3_MPR_TOLERANCE;\n" -"}\n" -"inline int portalCanEncapsuleOrigin(const b3MprSimplex_t *portal, \n" -" const b3MprSupport_t *v4,\n" -" const b3Float4 *dir)\n" -"{\n" -" float dot;\n" -" dot = b3MprVec3Dot(&v4->v, dir);\n" -" return b3MprIsZero(dot) || dot > 0.f;\n" -"}\n" -"inline void b3ExpandPortal(b3MprSimplex_t *portal,\n" -" const b3MprSupport_t *v4)\n" -"{\n" -" float dot;\n" -" b3Float4 v4v0;\n" -" b3MprVec3Cross(&v4v0, &v4->v, &b3MprSimplexPoint(portal, 0)->v);\n" -" dot = b3MprVec3Dot(&b3MprSimplexPoint(portal, 1)->v, &v4v0);\n" -" if (dot > 0.f){\n" -" dot = b3MprVec3Dot(&b3MprSimplexPoint(portal, 2)->v, &v4v0);\n" -" if (dot > 0.f){\n" -" b3MprSimplexSet(portal, 1, v4);\n" -" }else{\n" -" b3MprSimplexSet(portal, 3, v4);\n" -" }\n" -" }else{\n" -" dot = b3MprVec3Dot(&b3MprSimplexPoint(portal, 3)->v, &v4v0);\n" -" if (dot > 0.f){\n" -" b3MprSimplexSet(portal, 2, v4);\n" -" }else{\n" -" b3MprSimplexSet(portal, 1, v4);\n" -" }\n" -" }\n" -"}\n" -"B3_STATIC int b3DiscoverPortal(int pairIndex, int bodyIndexA, int bodyIndexB, b3ConstArray(b3RigidBodyData_t) cpuBodyBuf, \n" -" b3ConstArray(b3ConvexPolyhedronData_t) cpuConvexData, \n" -" b3ConstArray(b3Collidable_t) cpuCollidables,\n" -" b3ConstArray(b3Float4) cpuVertices,\n" -" __global b3Float4* sepAxis,\n" -" __global int* hasSepAxis,\n" -" b3MprSimplex_t *portal)\n" -"{\n" -" b3Float4 dir, va, vb;\n" -" float dot;\n" -" int cont;\n" -" \n" -" \n" -" // vertex 0 is center of portal\n" -" b3FindOrigin(bodyIndexA,bodyIndexB,cpuBodyBuf, b3MprSimplexPointW(portal, 0));\n" -" // vertex 0 is center of portal\n" -" b3MprSimplexSetSize(portal, 1);\n" -" \n" -" b3Float4 zero = b3MakeFloat4(0,0,0,0);\n" -" b3Float4* b3mpr_vec3_origin = &zero;\n" -" if (b3MprVec3Eq(&b3MprSimplexPoint(portal, 0)->v, b3mpr_vec3_origin)){\n" -" // Portal's center lies on origin (0,0,0) => we know that objects\n" -" // intersect but we would need to know penetration info.\n" -" // So move center little bit...\n" -" b3MprVec3Set(&va, FLT_EPSILON * 10.f, 0.f, 0.f);\n" -" b3MprVec3Add(&b3MprSimplexPointW(portal, 0)->v, &va);\n" -" }\n" -" // vertex 1 = support in direction of origin\n" -" b3MprVec3Copy(&dir, &b3MprSimplexPoint(portal, 0)->v);\n" -" b3MprVec3Scale(&dir, -1.f);\n" -" b3MprVec3Normalize(&dir);\n" -" b3MprSupport(pairIndex,bodyIndexA,bodyIndexB,cpuBodyBuf,cpuConvexData,cpuCollidables,cpuVertices, sepAxis,&dir, b3MprSimplexPointW(portal, 1));\n" -" b3MprSimplexSetSize(portal, 2);\n" -" // test if origin isn't outside of v1\n" -" dot = b3MprVec3Dot(&b3MprSimplexPoint(portal, 1)->v, &dir);\n" -" \n" -" if (b3MprIsZero(dot) || dot < 0.f)\n" -" return -1;\n" -" // vertex 2\n" -" b3MprVec3Cross(&dir, &b3MprSimplexPoint(portal, 0)->v,\n" -" &b3MprSimplexPoint(portal, 1)->v);\n" -" if (b3MprIsZero(b3MprVec3Len2(&dir))){\n" -" if (b3MprVec3Eq(&b3MprSimplexPoint(portal, 1)->v, b3mpr_vec3_origin)){\n" -" // origin lies on v1\n" -" return 1;\n" -" }else{\n" -" // origin lies on v0-v1 segment\n" -" return 2;\n" -" }\n" -" }\n" -" b3MprVec3Normalize(&dir);\n" -" b3MprSupport(pairIndex,bodyIndexA,bodyIndexB,cpuBodyBuf,cpuConvexData,cpuCollidables,cpuVertices, sepAxis,&dir, b3MprSimplexPointW(portal, 2));\n" -" \n" -" dot = b3MprVec3Dot(&b3MprSimplexPoint(portal, 2)->v, &dir);\n" -" if (b3MprIsZero(dot) || dot < 0.f)\n" -" return -1;\n" -" b3MprSimplexSetSize(portal, 3);\n" -" // vertex 3 direction\n" -" b3MprVec3Sub2(&va, &b3MprSimplexPoint(portal, 1)->v,\n" -" &b3MprSimplexPoint(portal, 0)->v);\n" -" b3MprVec3Sub2(&vb, &b3MprSimplexPoint(portal, 2)->v,\n" -" &b3MprSimplexPoint(portal, 0)->v);\n" -" b3MprVec3Cross(&dir, &va, &vb);\n" -" b3MprVec3Normalize(&dir);\n" -" // it is better to form portal faces to be oriented \"outside\" origin\n" -" dot = b3MprVec3Dot(&dir, &b3MprSimplexPoint(portal, 0)->v);\n" -" if (dot > 0.f){\n" -" b3MprSimplexSwap(portal, 1, 2);\n" -" b3MprVec3Scale(&dir, -1.f);\n" -" }\n" -" while (b3MprSimplexSize(portal) < 4){\n" -" b3MprSupport(pairIndex,bodyIndexA,bodyIndexB,cpuBodyBuf,cpuConvexData,cpuCollidables,cpuVertices, sepAxis,&dir, b3MprSimplexPointW(portal, 3));\n" -" \n" -" dot = b3MprVec3Dot(&b3MprSimplexPoint(portal, 3)->v, &dir);\n" -" if (b3MprIsZero(dot) || dot < 0.f)\n" -" return -1;\n" -" cont = 0;\n" -" // test if origin is outside (v1, v0, v3) - set v2 as v3 and\n" -" // continue\n" -" b3MprVec3Cross(&va, &b3MprSimplexPoint(portal, 1)->v,\n" -" &b3MprSimplexPoint(portal, 3)->v);\n" -" dot = b3MprVec3Dot(&va, &b3MprSimplexPoint(portal, 0)->v);\n" -" if (dot < 0.f && !b3MprIsZero(dot)){\n" -" b3MprSimplexSet(portal, 2, b3MprSimplexPoint(portal, 3));\n" -" cont = 1;\n" -" }\n" -" if (!cont){\n" -" // test if origin is outside (v3, v0, v2) - set v1 as v3 and\n" -" // continue\n" -" b3MprVec3Cross(&va, &b3MprSimplexPoint(portal, 3)->v,\n" -" &b3MprSimplexPoint(portal, 2)->v);\n" -" dot = b3MprVec3Dot(&va, &b3MprSimplexPoint(portal, 0)->v);\n" -" if (dot < 0.f && !b3MprIsZero(dot)){\n" -" b3MprSimplexSet(portal, 1, b3MprSimplexPoint(portal, 3));\n" -" cont = 1;\n" -" }\n" -" }\n" -" if (cont){\n" -" b3MprVec3Sub2(&va, &b3MprSimplexPoint(portal, 1)->v,\n" -" &b3MprSimplexPoint(portal, 0)->v);\n" -" b3MprVec3Sub2(&vb, &b3MprSimplexPoint(portal, 2)->v,\n" -" &b3MprSimplexPoint(portal, 0)->v);\n" -" b3MprVec3Cross(&dir, &va, &vb);\n" -" b3MprVec3Normalize(&dir);\n" -" }else{\n" -" b3MprSimplexSetSize(portal, 4);\n" -" }\n" -" }\n" -" return 0;\n" -"}\n" -"B3_STATIC int b3RefinePortal(int pairIndex,int bodyIndexA, int bodyIndexB, b3ConstArray(b3RigidBodyData_t) cpuBodyBuf, \n" -" b3ConstArray(b3ConvexPolyhedronData_t) cpuConvexData, \n" -" b3ConstArray(b3Collidable_t) cpuCollidables,\n" -" b3ConstArray(b3Float4) cpuVertices,\n" -" __global b3Float4* sepAxis,\n" -" b3MprSimplex_t *portal)\n" -"{\n" -" b3Float4 dir;\n" -" b3MprSupport_t v4;\n" -" for (int i=0;i<B3_MPR_MAX_ITERATIONS;i++)\n" -" //while (1)\n" -" {\n" -" // compute direction outside the portal (from v0 throught v1,v2,v3\n" -" // face)\n" -" b3PortalDir(portal, &dir);\n" -" // test if origin is inside the portal\n" -" if (portalEncapsulesOrigin(portal, &dir))\n" -" return 0;\n" -" // get next support point\n" -" \n" -" b3MprSupport(pairIndex,bodyIndexA,bodyIndexB,cpuBodyBuf,cpuConvexData,cpuCollidables,cpuVertices, sepAxis,&dir, &v4);\n" -" // test if v4 can expand portal to contain origin and if portal\n" -" // expanding doesn't reach given tolerance\n" -" if (!portalCanEncapsuleOrigin(portal, &v4, &dir)\n" -" || portalReachTolerance(portal, &v4, &dir))\n" -" {\n" -" return -1;\n" -" }\n" -" // v1-v2-v3 triangle must be rearranged to face outside Minkowski\n" -" // difference (direction from v0).\n" -" b3ExpandPortal(portal, &v4);\n" -" }\n" -" return -1;\n" -"}\n" -"B3_STATIC void b3FindPos(const b3MprSimplex_t *portal, b3Float4 *pos)\n" -"{\n" -" b3Float4 zero = b3MakeFloat4(0,0,0,0);\n" -" b3Float4* b3mpr_vec3_origin = &zero;\n" -" b3Float4 dir;\n" -" size_t i;\n" -" float b[4], sum, inv;\n" -" b3Float4 vec, p1, p2;\n" -" b3PortalDir(portal, &dir);\n" -" // use barycentric coordinates of tetrahedron to find origin\n" -" b3MprVec3Cross(&vec, &b3MprSimplexPoint(portal, 1)->v,\n" -" &b3MprSimplexPoint(portal, 2)->v);\n" -" b[0] = b3MprVec3Dot(&vec, &b3MprSimplexPoint(portal, 3)->v);\n" -" b3MprVec3Cross(&vec, &b3MprSimplexPoint(portal, 3)->v,\n" -" &b3MprSimplexPoint(portal, 2)->v);\n" -" b[1] = b3MprVec3Dot(&vec, &b3MprSimplexPoint(portal, 0)->v);\n" -" b3MprVec3Cross(&vec, &b3MprSimplexPoint(portal, 0)->v,\n" -" &b3MprSimplexPoint(portal, 1)->v);\n" -" b[2] = b3MprVec3Dot(&vec, &b3MprSimplexPoint(portal, 3)->v);\n" -" b3MprVec3Cross(&vec, &b3MprSimplexPoint(portal, 2)->v,\n" -" &b3MprSimplexPoint(portal, 1)->v);\n" -" b[3] = b3MprVec3Dot(&vec, &b3MprSimplexPoint(portal, 0)->v);\n" -" sum = b[0] + b[1] + b[2] + b[3];\n" -" if (b3MprIsZero(sum) || sum < 0.f){\n" -" b[0] = 0.f;\n" -" b3MprVec3Cross(&vec, &b3MprSimplexPoint(portal, 2)->v,\n" -" &b3MprSimplexPoint(portal, 3)->v);\n" -" b[1] = b3MprVec3Dot(&vec, &dir);\n" -" b3MprVec3Cross(&vec, &b3MprSimplexPoint(portal, 3)->v,\n" -" &b3MprSimplexPoint(portal, 1)->v);\n" -" b[2] = b3MprVec3Dot(&vec, &dir);\n" -" b3MprVec3Cross(&vec, &b3MprSimplexPoint(portal, 1)->v,\n" -" &b3MprSimplexPoint(portal, 2)->v);\n" -" b[3] = b3MprVec3Dot(&vec, &dir);\n" -" sum = b[1] + b[2] + b[3];\n" -" }\n" -" inv = 1.f / sum;\n" -" b3MprVec3Copy(&p1, b3mpr_vec3_origin);\n" -" b3MprVec3Copy(&p2, b3mpr_vec3_origin);\n" -" for (i = 0; i < 4; i++){\n" -" b3MprVec3Copy(&vec, &b3MprSimplexPoint(portal, i)->v1);\n" -" b3MprVec3Scale(&vec, b[i]);\n" -" b3MprVec3Add(&p1, &vec);\n" -" b3MprVec3Copy(&vec, &b3MprSimplexPoint(portal, i)->v2);\n" -" b3MprVec3Scale(&vec, b[i]);\n" -" b3MprVec3Add(&p2, &vec);\n" -" }\n" -" b3MprVec3Scale(&p1, inv);\n" -" b3MprVec3Scale(&p2, inv);\n" -" b3MprVec3Copy(pos, &p1);\n" -" b3MprVec3Add(pos, &p2);\n" -" b3MprVec3Scale(pos, 0.5);\n" -"}\n" -"inline float b3MprVec3Dist2(const b3Float4 *a, const b3Float4 *b)\n" -"{\n" -" b3Float4 ab;\n" -" b3MprVec3Sub2(&ab, a, b);\n" -" return b3MprVec3Len2(&ab);\n" -"}\n" -"inline float _b3MprVec3PointSegmentDist2(const b3Float4 *P,\n" -" const b3Float4 *x0,\n" -" const b3Float4 *b,\n" -" b3Float4 *witness)\n" -"{\n" -" // The computation comes from solving equation of segment:\n" -" // S(t) = x0 + t.d\n" -" // where - x0 is initial point of segment\n" -" // - d is direction of segment from x0 (|d| > 0)\n" -" // - t belongs to <0, 1> interval\n" -" // \n" -" // Than, distance from a segment to some point P can be expressed:\n" -" // D(t) = |x0 + t.d - P|^2\n" -" // which is distance from any point on segment. Minimization\n" -" // of this function brings distance from P to segment.\n" -" // Minimization of D(t) leads to simple quadratic equation that's\n" -" // solving is straightforward.\n" -" //\n" -" // Bonus of this method is witness point for free.\n" -" float dist, t;\n" -" b3Float4 d, a;\n" -" // direction of segment\n" -" b3MprVec3Sub2(&d, b, x0);\n" -" // precompute vector from P to x0\n" -" b3MprVec3Sub2(&a, x0, P);\n" -" t = -1.f * b3MprVec3Dot(&a, &d);\n" -" t /= b3MprVec3Len2(&d);\n" -" if (t < 0.f || b3MprIsZero(t)){\n" -" dist = b3MprVec3Dist2(x0, P);\n" -" if (witness)\n" -" b3MprVec3Copy(witness, x0);\n" -" }else if (t > 1.f || b3MprEq(t, 1.f)){\n" -" dist = b3MprVec3Dist2(b, P);\n" -" if (witness)\n" -" b3MprVec3Copy(witness, b);\n" -" }else{\n" -" if (witness){\n" -" b3MprVec3Copy(witness, &d);\n" -" b3MprVec3Scale(witness, t);\n" -" b3MprVec3Add(witness, x0);\n" -" dist = b3MprVec3Dist2(witness, P);\n" -" }else{\n" -" // recycling variables\n" -" b3MprVec3Scale(&d, t);\n" -" b3MprVec3Add(&d, &a);\n" -" dist = b3MprVec3Len2(&d);\n" -" }\n" -" }\n" -" return dist;\n" -"}\n" -"inline float b3MprVec3PointTriDist2(const b3Float4 *P,\n" -" const b3Float4 *x0, const b3Float4 *B,\n" -" const b3Float4 *C,\n" -" b3Float4 *witness)\n" -"{\n" -" // Computation comes from analytic expression for triangle (x0, B, C)\n" -" // T(s, t) = x0 + s.d1 + t.d2, where d1 = B - x0 and d2 = C - x0 and\n" -" // Then equation for distance is:\n" -" // D(s, t) = | T(s, t) - P |^2\n" -" // This leads to minimization of quadratic function of two variables.\n" -" // The solution from is taken only if s is between 0 and 1, t is\n" -" // between 0 and 1 and t + s < 1, otherwise distance from segment is\n" -" // computed.\n" -" b3Float4 d1, d2, a;\n" -" float u, v, w, p, q, r;\n" -" float s, t, dist, dist2;\n" -" b3Float4 witness2;\n" -" b3MprVec3Sub2(&d1, B, x0);\n" -" b3MprVec3Sub2(&d2, C, x0);\n" -" b3MprVec3Sub2(&a, x0, P);\n" -" u = b3MprVec3Dot(&a, &a);\n" -" v = b3MprVec3Dot(&d1, &d1);\n" -" w = b3MprVec3Dot(&d2, &d2);\n" -" p = b3MprVec3Dot(&a, &d1);\n" -" q = b3MprVec3Dot(&a, &d2);\n" -" r = b3MprVec3Dot(&d1, &d2);\n" -" s = (q * r - w * p) / (w * v - r * r);\n" -" t = (-s * r - q) / w;\n" -" if ((b3MprIsZero(s) || s > 0.f)\n" -" && (b3MprEq(s, 1.f) || s < 1.f)\n" -" && (b3MprIsZero(t) || t > 0.f)\n" -" && (b3MprEq(t, 1.f) || t < 1.f)\n" -" && (b3MprEq(t + s, 1.f) || t + s < 1.f)){\n" -" if (witness){\n" -" b3MprVec3Scale(&d1, s);\n" -" b3MprVec3Scale(&d2, t);\n" -" b3MprVec3Copy(witness, x0);\n" -" b3MprVec3Add(witness, &d1);\n" -" b3MprVec3Add(witness, &d2);\n" -" dist = b3MprVec3Dist2(witness, P);\n" -" }else{\n" -" dist = s * s * v;\n" -" dist += t * t * w;\n" -" dist += 2.f * s * t * r;\n" -" dist += 2.f * s * p;\n" -" dist += 2.f * t * q;\n" -" dist += u;\n" -" }\n" -" }else{\n" -" dist = _b3MprVec3PointSegmentDist2(P, x0, B, witness);\n" -" dist2 = _b3MprVec3PointSegmentDist2(P, x0, C, &witness2);\n" -" if (dist2 < dist){\n" -" dist = dist2;\n" -" if (witness)\n" -" b3MprVec3Copy(witness, &witness2);\n" -" }\n" -" dist2 = _b3MprVec3PointSegmentDist2(P, B, C, &witness2);\n" -" if (dist2 < dist){\n" -" dist = dist2;\n" -" if (witness)\n" -" b3MprVec3Copy(witness, &witness2);\n" -" }\n" -" }\n" -" return dist;\n" -"}\n" -"B3_STATIC void b3FindPenetr(int pairIndex,int bodyIndexA, int bodyIndexB, b3ConstArray(b3RigidBodyData_t) cpuBodyBuf, \n" -" b3ConstArray(b3ConvexPolyhedronData_t) cpuConvexData, \n" -" b3ConstArray(b3Collidable_t) cpuCollidables,\n" -" b3ConstArray(b3Float4) cpuVertices,\n" -" __global b3Float4* sepAxis,\n" -" b3MprSimplex_t *portal,\n" -" float *depth, b3Float4 *pdir, b3Float4 *pos)\n" -"{\n" -" b3Float4 dir;\n" -" b3MprSupport_t v4;\n" -" unsigned long iterations;\n" -" b3Float4 zero = b3MakeFloat4(0,0,0,0);\n" -" b3Float4* b3mpr_vec3_origin = &zero;\n" -" iterations = 1UL;\n" -" for (int i=0;i<B3_MPR_MAX_ITERATIONS;i++)\n" -" //while (1)\n" -" {\n" -" // compute portal direction and obtain next support point\n" -" b3PortalDir(portal, &dir);\n" -" \n" -" b3MprSupport(pairIndex,bodyIndexA,bodyIndexB,cpuBodyBuf,cpuConvexData,cpuCollidables,cpuVertices, sepAxis,&dir, &v4);\n" -" // reached tolerance -> find penetration info\n" -" if (portalReachTolerance(portal, &v4, &dir)\n" -" || iterations ==B3_MPR_MAX_ITERATIONS)\n" -" {\n" -" *depth = b3MprVec3PointTriDist2(b3mpr_vec3_origin,&b3MprSimplexPoint(portal, 1)->v,&b3MprSimplexPoint(portal, 2)->v,&b3MprSimplexPoint(portal, 3)->v,pdir);\n" -" *depth = B3_MPR_SQRT(*depth);\n" -" \n" -" if (b3MprIsZero((*pdir).x) && b3MprIsZero((*pdir).y) && b3MprIsZero((*pdir).z))\n" -" {\n" -" \n" -" *pdir = dir;\n" -" } \n" -" b3MprVec3Normalize(pdir);\n" -" \n" -" // barycentric coordinates:\n" -" b3FindPos(portal, pos);\n" -" return;\n" -" }\n" -" b3ExpandPortal(portal, &v4);\n" -" iterations++;\n" -" }\n" -"}\n" -"B3_STATIC void b3FindPenetrTouch(b3MprSimplex_t *portal,float *depth, b3Float4 *dir, b3Float4 *pos)\n" -"{\n" -" // Touching contact on portal's v1 - so depth is zero and direction\n" -" // is unimportant and pos can be guessed\n" -" *depth = 0.f;\n" -" b3Float4 zero = b3MakeFloat4(0,0,0,0);\n" -" b3Float4* b3mpr_vec3_origin = &zero;\n" -" b3MprVec3Copy(dir, b3mpr_vec3_origin);\n" -" b3MprVec3Copy(pos, &b3MprSimplexPoint(portal, 1)->v1);\n" -" b3MprVec3Add(pos, &b3MprSimplexPoint(portal, 1)->v2);\n" -" b3MprVec3Scale(pos, 0.5);\n" -"}\n" -"B3_STATIC void b3FindPenetrSegment(b3MprSimplex_t *portal,\n" -" float *depth, b3Float4 *dir, b3Float4 *pos)\n" -"{\n" -" \n" -" // Origin lies on v0-v1 segment.\n" -" // Depth is distance to v1, direction also and position must be\n" -" // computed\n" -" b3MprVec3Copy(pos, &b3MprSimplexPoint(portal, 1)->v1);\n" -" b3MprVec3Add(pos, &b3MprSimplexPoint(portal, 1)->v2);\n" -" b3MprVec3Scale(pos, 0.5f);\n" -" \n" -" b3MprVec3Copy(dir, &b3MprSimplexPoint(portal, 1)->v);\n" -" *depth = B3_MPR_SQRT(b3MprVec3Len2(dir));\n" -" b3MprVec3Normalize(dir);\n" -"}\n" -"inline int b3MprPenetration(int pairIndex, int bodyIndexA, int bodyIndexB,\n" -" b3ConstArray(b3RigidBodyData_t) cpuBodyBuf,\n" -" b3ConstArray(b3ConvexPolyhedronData_t) cpuConvexData, \n" -" b3ConstArray(b3Collidable_t) cpuCollidables,\n" -" b3ConstArray(b3Float4) cpuVertices,\n" -" __global b3Float4* sepAxis,\n" -" __global int* hasSepAxis,\n" -" float *depthOut, b3Float4* dirOut, b3Float4* posOut)\n" -"{\n" -" \n" -" b3MprSimplex_t portal;\n" -" \n" -"// if (!hasSepAxis[pairIndex])\n" -" // return -1;\n" -" \n" -" hasSepAxis[pairIndex] = 0;\n" -" int res;\n" -" // Phase 1: Portal discovery\n" -" res = b3DiscoverPortal(pairIndex,bodyIndexA,bodyIndexB,cpuBodyBuf,cpuConvexData,cpuCollidables,cpuVertices,sepAxis,hasSepAxis, &portal);\n" -" \n" -" \n" -" //sepAxis[pairIndex] = *pdir;//or -dir?\n" -" switch (res)\n" -" {\n" -" case 0:\n" -" {\n" -" // Phase 2: Portal refinement\n" -" \n" -" res = b3RefinePortal(pairIndex,bodyIndexA,bodyIndexB,cpuBodyBuf,cpuConvexData,cpuCollidables,cpuVertices, sepAxis,&portal);\n" -" if (res < 0)\n" -" return -1;\n" -" // Phase 3. Penetration info\n" -" b3FindPenetr(pairIndex,bodyIndexA,bodyIndexB,cpuBodyBuf,cpuConvexData,cpuCollidables,cpuVertices, sepAxis,&portal, depthOut, dirOut, posOut);\n" -" hasSepAxis[pairIndex] = 1;\n" -" sepAxis[pairIndex] = -*dirOut;\n" -" break;\n" -" }\n" -" case 1:\n" -" {\n" -" // Touching contact on portal's v1.\n" -" b3FindPenetrTouch(&portal, depthOut, dirOut, posOut);\n" -" break;\n" -" }\n" -" case 2:\n" -" {\n" -" \n" -" b3FindPenetrSegment( &portal, depthOut, dirOut, posOut);\n" -" break;\n" -" }\n" -" default:\n" -" {\n" -" hasSepAxis[pairIndex]=0;\n" -" //if (res < 0)\n" -" //{\n" -" // Origin isn't inside portal - no collision.\n" -" return -1;\n" -" //}\n" -" }\n" -" };\n" -" \n" -" return 0;\n" -"};\n" -"#endif //B3_MPR_PENETRATION_H\n" -"#ifndef B3_CONTACT4DATA_H\n" -"#define B3_CONTACT4DATA_H\n" -"#ifndef B3_FLOAT4_H\n" -"#ifdef __cplusplus\n" -"#else\n" -"#endif \n" -"#endif //B3_FLOAT4_H\n" -"typedef struct b3Contact4Data b3Contact4Data_t;\n" -"struct b3Contact4Data\n" -"{\n" -" b3Float4 m_worldPosB[4];\n" -"// b3Float4 m_localPosA[4];\n" -"// b3Float4 m_localPosB[4];\n" -" b3Float4 m_worldNormalOnB; // w: m_nPoints\n" -" unsigned short m_restituitionCoeffCmp;\n" -" unsigned short m_frictionCoeffCmp;\n" -" int m_batchIdx;\n" -" int m_bodyAPtrAndSignBit;//x:m_bodyAPtr, y:m_bodyBPtr\n" -" int m_bodyBPtrAndSignBit;\n" -" int m_childIndexA;\n" -" int m_childIndexB;\n" -" int m_unused1;\n" -" int m_unused2;\n" -"};\n" -"inline int b3Contact4Data_getNumPoints(const struct b3Contact4Data* contact)\n" -"{\n" -" return (int)contact->m_worldNormalOnB.w;\n" -"};\n" -"inline void b3Contact4Data_setNumPoints(struct b3Contact4Data* contact, int numPoints)\n" -"{\n" -" contact->m_worldNormalOnB.w = (float)numPoints;\n" -"};\n" -"#endif //B3_CONTACT4DATA_H\n" -"#define AppendInc(x, out) out = atomic_inc(x)\n" -"#define GET_NPOINTS(x) (x).m_worldNormalOnB.w\n" -"#ifdef cl_ext_atomic_counters_32\n" -" #pragma OPENCL EXTENSION cl_ext_atomic_counters_32 : enable\n" -"#else\n" -" #define counter32_t volatile __global int*\n" -"#endif\n" -"__kernel void mprPenetrationKernel( __global int4* pairs,\n" -" __global const b3RigidBodyData_t* rigidBodies, \n" -" __global const b3Collidable_t* collidables,\n" -" __global const b3ConvexPolyhedronData_t* convexShapes, \n" -" __global const float4* vertices,\n" -" __global float4* separatingNormals,\n" -" __global int* hasSeparatingAxis,\n" -" __global struct b3Contact4Data* restrict globalContactsOut,\n" -" counter32_t nGlobalContactsOut,\n" -" int contactCapacity,\n" -" int numPairs)\n" -"{\n" -" int i = get_global_id(0);\n" -" int pairIndex = i;\n" -" if (i<numPairs)\n" -" {\n" -" int bodyIndexA = pairs[i].x;\n" -" int bodyIndexB = pairs[i].y;\n" -" int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" -" int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" -" \n" -" int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" -" int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" -" \n" -" \n" -" //once the broadphase avoids static-static pairs, we can remove this test\n" -" if ((rigidBodies[bodyIndexA].m_invMass==0) &&(rigidBodies[bodyIndexB].m_invMass==0))\n" -" {\n" -" return;\n" -" }\n" -" \n" -" if ((collidables[collidableIndexA].m_shapeType!=SHAPE_CONVEX_HULL) ||(collidables[collidableIndexB].m_shapeType!=SHAPE_CONVEX_HULL))\n" -" {\n" -" return;\n" -" }\n" -" float depthOut;\n" -" b3Float4 dirOut;\n" -" b3Float4 posOut;\n" -" int res = b3MprPenetration(pairIndex, bodyIndexA, bodyIndexB,rigidBodies,convexShapes,collidables,vertices,separatingNormals,hasSeparatingAxis,&depthOut, &dirOut, &posOut);\n" -" \n" -" \n" -" \n" -" \n" -" if (res==0)\n" -" {\n" -" //add a contact\n" -" int dstIdx;\n" -" AppendInc( nGlobalContactsOut, dstIdx );\n" -" if (dstIdx<contactCapacity)\n" -" {\n" -" pairs[pairIndex].z = dstIdx;\n" -" __global struct b3Contact4Data* c = globalContactsOut + dstIdx;\n" -" c->m_worldNormalOnB = -dirOut;//normal;\n" -" c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff);\n" -" c->m_batchIdx = pairIndex;\n" -" int bodyA = pairs[pairIndex].x;\n" -" int bodyB = pairs[pairIndex].y;\n" -" c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0 ? -bodyA:bodyA;\n" -" c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0 ? -bodyB:bodyB;\n" -" c->m_childIndexA = -1;\n" -" c->m_childIndexB = -1;\n" -" //for (int i=0;i<nContacts;i++)\n" -" posOut.w = -depthOut;\n" -" c->m_worldPosB[0] = posOut;//localPoints[contactIdx[i]];\n" -" GET_NPOINTS(*c) = 1;//nContacts;\n" -" }\n" -" }\n" -" }\n" -"}\n" -"typedef float4 Quaternion;\n" -"#define make_float4 (float4)\n" -"__inline\n" -"float dot3F4(float4 a, float4 b)\n" -"{\n" -" float4 a1 = make_float4(a.xyz,0.f);\n" -" float4 b1 = make_float4(b.xyz,0.f);\n" -" return dot(a1, b1);\n" -"}\n" -"__inline\n" -"float4 cross3(float4 a, float4 b)\n" -"{\n" -" return cross(a,b);\n" -"}\n" -"__inline\n" -"Quaternion qtMul(Quaternion a, Quaternion b)\n" -"{\n" -" Quaternion ans;\n" -" ans = cross3( a, b );\n" -" ans += a.w*b+b.w*a;\n" -"// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z);\n" -" ans.w = a.w*b.w - dot3F4(a, b);\n" -" return ans;\n" -"}\n" -"__inline\n" -"Quaternion qtInvert(Quaternion q)\n" -"{\n" -" return (Quaternion)(-q.xyz, q.w);\n" -"}\n" -"__inline\n" -"float4 qtRotate(Quaternion q, float4 vec)\n" -"{\n" -" Quaternion qInv = qtInvert( q );\n" -" float4 vcpy = vec;\n" -" vcpy.w = 0.f;\n" -" float4 out = qtMul(qtMul(q,vcpy),qInv);\n" -" return out;\n" -"}\n" -"__inline\n" -"float4 transform(const float4* p, const float4* translation, const Quaternion* orientation)\n" -"{\n" -" return qtRotate( *orientation, *p ) + (*translation);\n" -"}\n" -"__inline\n" -"float4 qtInvRotate(const Quaternion q, float4 vec)\n" -"{\n" -" return qtRotate( qtInvert( q ), vec );\n" -"}\n" -"inline void project(__global const b3ConvexPolyhedronData_t* hull, const float4 pos, const float4 orn, \n" -"const float4* dir, __global const float4* vertices, float* min, float* max)\n" -"{\n" -" min[0] = FLT_MAX;\n" -" max[0] = -FLT_MAX;\n" -" int numVerts = hull->m_numVertices;\n" -" const float4 localDir = qtInvRotate(orn,*dir);\n" -" float offset = dot(pos,*dir);\n" -" for(int i=0;i<numVerts;i++)\n" -" {\n" -" float dp = dot(vertices[hull->m_vertexOffset+i],localDir);\n" -" if(dp < min[0]) \n" -" min[0] = dp;\n" -" if(dp > max[0]) \n" -" max[0] = dp;\n" -" }\n" -" if(min[0]>max[0])\n" -" {\n" -" float tmp = min[0];\n" -" min[0] = max[0];\n" -" max[0] = tmp;\n" -" }\n" -" min[0] += offset;\n" -" max[0] += offset;\n" -"}\n" -"bool findSeparatingAxisUnitSphere( __global const b3ConvexPolyhedronData_t* hullA, __global const b3ConvexPolyhedronData_t* hullB, \n" -" const float4 posA1,\n" -" const float4 ornA,\n" -" const float4 posB1,\n" -" const float4 ornB,\n" -" const float4 DeltaC2,\n" -" __global const float4* vertices,\n" -" __global const float4* unitSphereDirections,\n" -" int numUnitSphereDirections,\n" -" float4* sep,\n" -" float* dmin)\n" -"{\n" -" \n" -" float4 posA = posA1;\n" -" posA.w = 0.f;\n" -" float4 posB = posB1;\n" -" posB.w = 0.f;\n" -" int curPlaneTests=0;\n" -" int curEdgeEdge = 0;\n" -" // Test unit sphere directions\n" -" for (int i=0;i<numUnitSphereDirections;i++)\n" -" {\n" -" float4 crossje;\n" -" crossje = unitSphereDirections[i]; \n" -" if (dot3F4(DeltaC2,crossje)>0)\n" -" crossje *= -1.f;\n" -" {\n" -" float dist;\n" -" bool result = true;\n" -" float Min0,Max0;\n" -" float Min1,Max1;\n" -" project(hullA,posA,ornA,&crossje,vertices, &Min0, &Max0);\n" -" project(hullB,posB,ornB,&crossje,vertices, &Min1, &Max1);\n" -" \n" -" if(Max0<Min1 || Max1<Min0)\n" -" return false;\n" -" \n" -" float d0 = Max0 - Min1;\n" -" float d1 = Max1 - Min0;\n" -" dist = d0<d1 ? d0:d1;\n" -" result = true;\n" -" \n" -" if(dist<*dmin)\n" -" {\n" -" *dmin = dist;\n" -" *sep = crossje;\n" -" }\n" -" }\n" -" }\n" -" \n" -" if((dot3F4(-DeltaC2,*sep))>0.0f)\n" -" {\n" -" *sep = -(*sep);\n" -" }\n" -" return true;\n" -"}\n" -"__kernel void findSeparatingAxisUnitSphereKernel( __global const int4* pairs, \n" -" __global const b3RigidBodyData_t* rigidBodies, \n" -" __global const b3Collidable_t* collidables,\n" -" __global const b3ConvexPolyhedronData_t* convexShapes, \n" -" __global const float4* vertices,\n" -" __global const float4* unitSphereDirections,\n" -" __global float4* separatingNormals,\n" -" __global int* hasSeparatingAxis,\n" -" __global float* dmins,\n" -" int numUnitSphereDirections,\n" -" int numPairs\n" -" )\n" -"{\n" -" int i = get_global_id(0);\n" -" \n" -" if (i<numPairs)\n" -" {\n" -" if (hasSeparatingAxis[i])\n" -" {\n" -" \n" -" int bodyIndexA = pairs[i].x;\n" -" int bodyIndexB = pairs[i].y;\n" -" \n" -" int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" -" int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" -" \n" -" int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" -" int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" -" \n" -" \n" -" int numFacesA = convexShapes[shapeIndexA].m_numFaces;\n" -" \n" -" float dmin = dmins[i];\n" -" \n" -" float4 posA = rigidBodies[bodyIndexA].m_pos;\n" -" posA.w = 0.f;\n" -" float4 posB = rigidBodies[bodyIndexB].m_pos;\n" -" posB.w = 0.f;\n" -" float4 c0local = convexShapes[shapeIndexA].m_localCenter;\n" -" float4 ornA = rigidBodies[bodyIndexA].m_quat;\n" -" float4 c0 = transform(&c0local, &posA, &ornA);\n" -" float4 c1local = convexShapes[shapeIndexB].m_localCenter;\n" -" float4 ornB =rigidBodies[bodyIndexB].m_quat;\n" -" float4 c1 = transform(&c1local,&posB,&ornB);\n" -" const float4 DeltaC2 = c0 - c1;\n" -" float4 sepNormal = separatingNormals[i];\n" -" \n" -" int numEdgeEdgeDirections = convexShapes[shapeIndexA].m_numUniqueEdges*convexShapes[shapeIndexB].m_numUniqueEdges;\n" -" if (numEdgeEdgeDirections>numUnitSphereDirections)\n" -" {\n" -" bool sepEE = findSeparatingAxisUnitSphere( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA,\n" -" posB,ornB,\n" -" DeltaC2,\n" -" vertices,unitSphereDirections,numUnitSphereDirections,&sepNormal,&dmin);\n" -" if (!sepEE)\n" -" {\n" -" hasSeparatingAxis[i] = 0;\n" -" } else\n" -" {\n" -" hasSeparatingAxis[i] = 1;\n" -" separatingNormals[i] = sepNormal;\n" -" }\n" -" }\n" -" } //if (hasSeparatingAxis[i])\n" -" }//(i<numPairs)\n" -"}\n" -; diff --git a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/kernels/primitiveContacts.cl b/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/kernels/primitiveContacts.cl deleted file mode 100644 index 9c9e920f13..0000000000 --- a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/kernels/primitiveContacts.cl +++ /dev/null @@ -1,1374 +0,0 @@ -#include "Bullet3Collision/NarrowPhaseCollision/shared/b3Contact4Data.h" - -#define SHAPE_CONVEX_HULL 3 -#define SHAPE_PLANE 4 -#define SHAPE_CONCAVE_TRIMESH 5 -#define SHAPE_COMPOUND_OF_CONVEX_HULLS 6 -#define SHAPE_SPHERE 7 - - -#pragma OPENCL EXTENSION cl_amd_printf : enable -#pragma OPENCL EXTENSION cl_khr_local_int32_base_atomics : enable -#pragma OPENCL EXTENSION cl_khr_global_int32_base_atomics : enable -#pragma OPENCL EXTENSION cl_khr_local_int32_extended_atomics : enable -#pragma OPENCL EXTENSION cl_khr_global_int32_extended_atomics : enable - -#ifdef cl_ext_atomic_counters_32 -#pragma OPENCL EXTENSION cl_ext_atomic_counters_32 : enable -#else -#define counter32_t volatile __global int* -#endif - -#define GET_GROUP_IDX get_group_id(0) -#define GET_LOCAL_IDX get_local_id(0) -#define GET_GLOBAL_IDX get_global_id(0) -#define GET_GROUP_SIZE get_local_size(0) -#define GET_NUM_GROUPS get_num_groups(0) -#define GROUP_LDS_BARRIER barrier(CLK_LOCAL_MEM_FENCE) -#define GROUP_MEM_FENCE mem_fence(CLK_LOCAL_MEM_FENCE) -#define AtomInc(x) atom_inc(&(x)) -#define AtomInc1(x, out) out = atom_inc(&(x)) -#define AppendInc(x, out) out = atomic_inc(x) -#define AtomAdd(x, value) atom_add(&(x), value) -#define AtomCmpxhg(x, cmp, value) atom_cmpxchg( &(x), cmp, value ) -#define AtomXhg(x, value) atom_xchg ( &(x), value ) - -#define max2 max -#define min2 min - -typedef unsigned int u32; - - - - -typedef struct -{ - union - { - float4 m_min; - float m_minElems[4]; - int m_minIndices[4]; - }; - union - { - float4 m_max; - float m_maxElems[4]; - int m_maxIndices[4]; - }; -} btAabbCL; - -///keep this in sync with btCollidable.h -typedef struct -{ - int m_numChildShapes; - float m_radius; - int m_shapeType; - int m_shapeIndex; - -} btCollidableGpu; - -typedef struct -{ - float4 m_childPosition; - float4 m_childOrientation; - int m_shapeIndex; - int m_unused0; - int m_unused1; - int m_unused2; -} btGpuChildShape; - -#define GET_NPOINTS(x) (x).m_worldNormalOnB.w - -typedef struct -{ - float4 m_pos; - float4 m_quat; - float4 m_linVel; - float4 m_angVel; - - u32 m_collidableIdx; - float m_invMass; - float m_restituitionCoeff; - float m_frictionCoeff; -} BodyData; - - -typedef struct -{ - float4 m_localCenter; - float4 m_extents; - float4 mC; - float4 mE; - - float m_radius; - int m_faceOffset; - int m_numFaces; - int m_numVertices; - - int m_vertexOffset; - int m_uniqueEdgesOffset; - int m_numUniqueEdges; - int m_unused; - -} ConvexPolyhedronCL; - -typedef struct -{ - float4 m_plane; - int m_indexOffset; - int m_numIndices; -} btGpuFace; - -#define SELECT_UINT4( b, a, condition ) select( b,a,condition ) - -#define make_float4 (float4) -#define make_float2 (float2) -#define make_uint4 (uint4) -#define make_int4 (int4) -#define make_uint2 (uint2) -#define make_int2 (int2) - - -__inline -float fastDiv(float numerator, float denominator) -{ - return native_divide(numerator, denominator); -// return numerator/denominator; -} - -__inline -float4 fastDiv4(float4 numerator, float4 denominator) -{ - return native_divide(numerator, denominator); -} - - -__inline -float4 cross3(float4 a, float4 b) -{ - return cross(a,b); -} - -//#define dot3F4 dot - -__inline -float dot3F4(float4 a, float4 b) -{ - float4 a1 = make_float4(a.xyz,0.f); - float4 b1 = make_float4(b.xyz,0.f); - return dot(a1, b1); -} - -__inline -float4 fastNormalize4(float4 v) -{ - return fast_normalize(v); -} - - -/////////////////////////////////////// -// Quaternion -/////////////////////////////////////// - -typedef float4 Quaternion; - -__inline -Quaternion qtMul(Quaternion a, Quaternion b); - -__inline -Quaternion qtNormalize(Quaternion in); - -__inline -float4 qtRotate(Quaternion q, float4 vec); - -__inline -Quaternion qtInvert(Quaternion q); - - - - -__inline -Quaternion qtMul(Quaternion a, Quaternion b) -{ - Quaternion ans; - ans = cross3( a, b ); - ans += a.w*b+b.w*a; -// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z); - ans.w = a.w*b.w - dot3F4(a, b); - return ans; -} - -__inline -Quaternion qtNormalize(Quaternion in) -{ - return fastNormalize4(in); -// in /= length( in ); -// return in; -} -__inline -float4 qtRotate(Quaternion q, float4 vec) -{ - Quaternion qInv = qtInvert( q ); - float4 vcpy = vec; - vcpy.w = 0.f; - float4 out = qtMul(qtMul(q,vcpy),qInv); - return out; -} - -__inline -Quaternion qtInvert(Quaternion q) -{ - return (Quaternion)(-q.xyz, q.w); -} - -__inline -float4 qtInvRotate(const Quaternion q, float4 vec) -{ - return qtRotate( qtInvert( q ), vec ); -} - -__inline -float4 transform(const float4* p, const float4* translation, const Quaternion* orientation) -{ - return qtRotate( *orientation, *p ) + (*translation); -} - -void trInverse(float4 translationIn, Quaternion orientationIn, - float4* translationOut, Quaternion* orientationOut) -{ - *orientationOut = qtInvert(orientationIn); - *translationOut = qtRotate(*orientationOut, -translationIn); -} - -void trMul(float4 translationA, Quaternion orientationA, - float4 translationB, Quaternion orientationB, - float4* translationOut, Quaternion* orientationOut) -{ - *orientationOut = qtMul(orientationA,orientationB); - *translationOut = transform(&translationB,&translationA,&orientationA); -} - - - -__inline -float4 normalize3(const float4 a) -{ - float4 n = make_float4(a.x, a.y, a.z, 0.f); - return fastNormalize4( n ); -} - - -__inline float4 lerp3(const float4 a,const float4 b, float t) -{ - return make_float4( a.x + (b.x - a.x) * t, - a.y + (b.y - a.y) * t, - a.z + (b.z - a.z) * t, - 0.f); -} - - -float signedDistanceFromPointToPlane(float4 point, float4 planeEqn, float4* closestPointOnFace) -{ - float4 n = (float4)(planeEqn.x, planeEqn.y, planeEqn.z, 0); - float dist = dot3F4(n, point) + planeEqn.w; - *closestPointOnFace = point - dist * n; - return dist; -} - - - -inline bool IsPointInPolygon(float4 p, - const btGpuFace* face, - __global const float4* baseVertex, - __global const int* convexIndices, - float4* out) -{ - float4 a; - float4 b; - float4 ab; - float4 ap; - float4 v; - - float4 plane = make_float4(face->m_plane.x,face->m_plane.y,face->m_plane.z,0.f); - - if (face->m_numIndices<2) - return false; - - - float4 v0 = baseVertex[convexIndices[face->m_indexOffset + face->m_numIndices-1]]; - - b = v0; - - for(unsigned i=0; i != face->m_numIndices; ++i) - { - a = b; - float4 vi = baseVertex[convexIndices[face->m_indexOffset + i]]; - b = vi; - ab = b-a; - ap = p-a; - v = cross3(ab,plane); - - if (dot(ap, v) > 0.f) - { - float ab_m2 = dot(ab, ab); - float rt = ab_m2 != 0.f ? dot(ab, ap) / ab_m2 : 0.f; - if (rt <= 0.f) - { - *out = a; - } - else if (rt >= 1.f) - { - *out = b; - } - else - { - float s = 1.f - rt; - out[0].x = s * a.x + rt * b.x; - out[0].y = s * a.y + rt * b.y; - out[0].z = s * a.z + rt * b.z; - } - return false; - } - } - return true; -} - - - - -void computeContactSphereConvex(int pairIndex, - int bodyIndexA, int bodyIndexB, - int collidableIndexA, int collidableIndexB, - __global const BodyData* rigidBodies, - __global const btCollidableGpu* collidables, - __global const ConvexPolyhedronCL* convexShapes, - __global const float4* convexVertices, - __global const int* convexIndices, - __global const btGpuFace* faces, - __global struct b3Contact4Data* restrict globalContactsOut, - counter32_t nGlobalContactsOut, - int maxContactCapacity, - float4 spherePos2, - float radius, - float4 pos, - float4 quat - ) -{ - - float4 invPos; - float4 invOrn; - - trInverse(pos,quat, &invPos,&invOrn); - - float4 spherePos = transform(&spherePos2,&invPos,&invOrn); - - int shapeIndex = collidables[collidableIndexB].m_shapeIndex; - int numFaces = convexShapes[shapeIndex].m_numFaces; - float4 closestPnt = (float4)(0, 0, 0, 0); - float4 hitNormalWorld = (float4)(0, 0, 0, 0); - float minDist = -1000000.f; - bool bCollide = true; - - for ( int f = 0; f < numFaces; f++ ) - { - btGpuFace face = faces[convexShapes[shapeIndex].m_faceOffset+f]; - - // set up a plane equation - float4 planeEqn; - float4 n1 = face.m_plane; - n1.w = 0.f; - planeEqn = n1; - planeEqn.w = face.m_plane.w; - - - // compute a signed distance from the vertex in cloth to the face of rigidbody. - float4 pntReturn; - float dist = signedDistanceFromPointToPlane(spherePos, planeEqn, &pntReturn); - - // If the distance is positive, the plane is a separating plane. - if ( dist > radius ) - { - bCollide = false; - break; - } - - - if (dist>0) - { - //might hit an edge or vertex - float4 out; - float4 zeroPos = make_float4(0,0,0,0); - - bool isInPoly = IsPointInPolygon(spherePos, - &face, - &convexVertices[convexShapes[shapeIndex].m_vertexOffset], - convexIndices, - &out); - if (isInPoly) - { - if (dist>minDist) - { - minDist = dist; - closestPnt = pntReturn; - hitNormalWorld = planeEqn; - - } - } else - { - float4 tmp = spherePos-out; - float l2 = dot(tmp,tmp); - if (l2<radius*radius) - { - dist = sqrt(l2); - if (dist>minDist) - { - minDist = dist; - closestPnt = out; - hitNormalWorld = tmp/dist; - - } - - } else - { - bCollide = false; - break; - } - } - } else - { - if ( dist > minDist ) - { - minDist = dist; - closestPnt = pntReturn; - hitNormalWorld.xyz = planeEqn.xyz; - } - } - - } - - - - if (bCollide && minDist > -10000) - { - float4 normalOnSurfaceB1 = qtRotate(quat,-hitNormalWorld); - float4 pOnB1 = transform(&closestPnt,&pos,&quat); - - float actualDepth = minDist-radius; - if (actualDepth<=0.f) - { - - - pOnB1.w = actualDepth; - - int dstIdx; - AppendInc( nGlobalContactsOut, dstIdx ); - - - if (1)//dstIdx < maxContactCapacity) - { - __global struct b3Contact4Data* c = &globalContactsOut[dstIdx]; - c->m_worldNormalOnB = -normalOnSurfaceB1; - c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff); - c->m_batchIdx = pairIndex; - c->m_bodyAPtrAndSignBit = rigidBodies[bodyIndexA].m_invMass==0?-bodyIndexA:bodyIndexA; - c->m_bodyBPtrAndSignBit = rigidBodies[bodyIndexB].m_invMass==0?-bodyIndexB:bodyIndexB; - c->m_worldPosB[0] = pOnB1; - c->m_childIndexA = -1; - c->m_childIndexB = -1; - - GET_NPOINTS(*c) = 1; - } - - } - }//if (hasCollision) - -} - - - -int extractManifoldSequential(const float4* p, int nPoints, float4 nearNormal, int4* contactIdx) -{ - if( nPoints == 0 ) - return 0; - - if (nPoints <=4) - return nPoints; - - - if (nPoints >64) - nPoints = 64; - - float4 center = make_float4(0.f); - { - - for (int i=0;i<nPoints;i++) - center += p[i]; - center /= (float)nPoints; - } - - - - // sample 4 directions - - float4 aVector = p[0] - center; - float4 u = cross3( nearNormal, aVector ); - float4 v = cross3( nearNormal, u ); - u = normalize3( u ); - v = normalize3( v ); - - - //keep point with deepest penetration - float minW= FLT_MAX; - - int minIndex=-1; - - float4 maxDots; - maxDots.x = FLT_MIN; - maxDots.y = FLT_MIN; - maxDots.z = FLT_MIN; - maxDots.w = FLT_MIN; - - // idx, distance - for(int ie = 0; ie<nPoints; ie++ ) - { - if (p[ie].w<minW) - { - minW = p[ie].w; - minIndex=ie; - } - float f; - float4 r = p[ie]-center; - f = dot3F4( u, r ); - if (f<maxDots.x) - { - maxDots.x = f; - contactIdx[0].x = ie; - } - - f = dot3F4( -u, r ); - if (f<maxDots.y) - { - maxDots.y = f; - contactIdx[0].y = ie; - } - - - f = dot3F4( v, r ); - if (f<maxDots.z) - { - maxDots.z = f; - contactIdx[0].z = ie; - } - - f = dot3F4( -v, r ); - if (f<maxDots.w) - { - maxDots.w = f; - contactIdx[0].w = ie; - } - - } - - if (contactIdx[0].x != minIndex && contactIdx[0].y != minIndex && contactIdx[0].z != minIndex && contactIdx[0].w != minIndex) - { - //replace the first contact with minimum (todo: replace contact with least penetration) - contactIdx[0].x = minIndex; - } - - return 4; - -} - -#define MAX_PLANE_CONVEX_POINTS 64 - -int computeContactPlaneConvex(int pairIndex, - int bodyIndexA, int bodyIndexB, - int collidableIndexA, int collidableIndexB, - __global const BodyData* rigidBodies, - __global const btCollidableGpu*collidables, - __global const ConvexPolyhedronCL* convexShapes, - __global const float4* convexVertices, - __global const int* convexIndices, - __global const btGpuFace* faces, - __global struct b3Contact4Data* restrict globalContactsOut, - counter32_t nGlobalContactsOut, - int maxContactCapacity, - float4 posB, - Quaternion ornB - ) -{ - int resultIndex=-1; - - int shapeIndex = collidables[collidableIndexB].m_shapeIndex; - __global const ConvexPolyhedronCL* hullB = &convexShapes[shapeIndex]; - - float4 posA; - posA = rigidBodies[bodyIndexA].m_pos; - Quaternion ornA; - ornA = rigidBodies[bodyIndexA].m_quat; - - int numContactsOut = 0; - int numWorldVertsB1= 0; - - float4 planeEq; - planeEq = faces[collidables[collidableIndexA].m_shapeIndex].m_plane; - float4 planeNormal = make_float4(planeEq.x,planeEq.y,planeEq.z,0.f); - float4 planeNormalWorld; - planeNormalWorld = qtRotate(ornA,planeNormal); - float planeConstant = planeEq.w; - - float4 invPosA;Quaternion invOrnA; - float4 convexInPlaneTransPos1; Quaternion convexInPlaneTransOrn1; - { - - trInverse(posA,ornA,&invPosA,&invOrnA); - trMul(invPosA,invOrnA,posB,ornB,&convexInPlaneTransPos1,&convexInPlaneTransOrn1); - } - float4 invPosB;Quaternion invOrnB; - float4 planeInConvexPos1; Quaternion planeInConvexOrn1; - { - - trInverse(posB,ornB,&invPosB,&invOrnB); - trMul(invPosB,invOrnB,posA,ornA,&planeInConvexPos1,&planeInConvexOrn1); - } - - - float4 planeNormalInConvex = qtRotate(planeInConvexOrn1,-planeNormal); - float maxDot = -1e30; - int hitVertex=-1; - float4 hitVtx; - - - - float4 contactPoints[MAX_PLANE_CONVEX_POINTS]; - int numPoints = 0; - - int4 contactIdx; - contactIdx=make_int4(0,1,2,3); - - - for (int i=0;i<hullB->m_numVertices;i++) - { - float4 vtx = convexVertices[hullB->m_vertexOffset+i]; - float curDot = dot(vtx,planeNormalInConvex); - - - if (curDot>maxDot) - { - hitVertex=i; - maxDot=curDot; - hitVtx = vtx; - //make sure the deepest points is always included - if (numPoints==MAX_PLANE_CONVEX_POINTS) - numPoints--; - } - - if (numPoints<MAX_PLANE_CONVEX_POINTS) - { - float4 vtxWorld = transform(&vtx, &posB, &ornB); - float4 vtxInPlane = transform(&vtxWorld, &invPosA, &invOrnA);//oplaneTransform.inverse()*vtxWorld; - float dist = dot(planeNormal,vtxInPlane)-planeConstant; - if (dist<0.f) - { - vtxWorld.w = dist; - contactPoints[numPoints] = vtxWorld; - numPoints++; - } - } - - } - - int numReducedPoints = numPoints; - if (numPoints>4) - { - numReducedPoints = extractManifoldSequential( contactPoints, numPoints, planeNormalInConvex, &contactIdx); - } - - if (numReducedPoints>0) - { - int dstIdx; - AppendInc( nGlobalContactsOut, dstIdx ); - - if (dstIdx < maxContactCapacity) - { - resultIndex = dstIdx; - __global struct b3Contact4Data* c = &globalContactsOut[dstIdx]; - c->m_worldNormalOnB = -planeNormalWorld; - //c->setFrictionCoeff(0.7); - //c->setRestituitionCoeff(0.f); - c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff); - c->m_batchIdx = pairIndex; - c->m_bodyAPtrAndSignBit = rigidBodies[bodyIndexA].m_invMass==0?-bodyIndexA:bodyIndexA; - c->m_bodyBPtrAndSignBit = rigidBodies[bodyIndexB].m_invMass==0?-bodyIndexB:bodyIndexB; - c->m_childIndexA = -1; - c->m_childIndexB = -1; - - switch (numReducedPoints) - { - case 4: - c->m_worldPosB[3] = contactPoints[contactIdx.w]; - case 3: - c->m_worldPosB[2] = contactPoints[contactIdx.z]; - case 2: - c->m_worldPosB[1] = contactPoints[contactIdx.y]; - case 1: - c->m_worldPosB[0] = contactPoints[contactIdx.x]; - default: - { - } - }; - - GET_NPOINTS(*c) = numReducedPoints; - }//if (dstIdx < numPairs) - } - - return resultIndex; -} - - -void computeContactPlaneSphere(int pairIndex, - int bodyIndexA, int bodyIndexB, - int collidableIndexA, int collidableIndexB, - __global const BodyData* rigidBodies, - __global const btCollidableGpu* collidables, - __global const btGpuFace* faces, - __global struct b3Contact4Data* restrict globalContactsOut, - counter32_t nGlobalContactsOut, - int maxContactCapacity) -{ - float4 planeEq = faces[collidables[collidableIndexA].m_shapeIndex].m_plane; - float radius = collidables[collidableIndexB].m_radius; - float4 posA1 = rigidBodies[bodyIndexA].m_pos; - float4 ornA1 = rigidBodies[bodyIndexA].m_quat; - float4 posB1 = rigidBodies[bodyIndexB].m_pos; - float4 ornB1 = rigidBodies[bodyIndexB].m_quat; - - bool hasCollision = false; - float4 planeNormal1 = make_float4(planeEq.x,planeEq.y,planeEq.z,0.f); - float planeConstant = planeEq.w; - float4 convexInPlaneTransPos1; Quaternion convexInPlaneTransOrn1; - { - float4 invPosA;Quaternion invOrnA; - trInverse(posA1,ornA1,&invPosA,&invOrnA); - trMul(invPosA,invOrnA,posB1,ornB1,&convexInPlaneTransPos1,&convexInPlaneTransOrn1); - } - float4 planeInConvexPos1; Quaternion planeInConvexOrn1; - { - float4 invPosB;Quaternion invOrnB; - trInverse(posB1,ornB1,&invPosB,&invOrnB); - trMul(invPosB,invOrnB,posA1,ornA1,&planeInConvexPos1,&planeInConvexOrn1); - } - float4 vtx1 = qtRotate(planeInConvexOrn1,-planeNormal1)*radius; - float4 vtxInPlane1 = transform(&vtx1,&convexInPlaneTransPos1,&convexInPlaneTransOrn1); - float distance = dot3F4(planeNormal1,vtxInPlane1) - planeConstant; - hasCollision = distance < 0.f;//m_manifoldPtr->getContactBreakingThreshold(); - if (hasCollision) - { - float4 vtxInPlaneProjected1 = vtxInPlane1 - distance*planeNormal1; - float4 vtxInPlaneWorld1 = transform(&vtxInPlaneProjected1,&posA1,&ornA1); - float4 normalOnSurfaceB1 = qtRotate(ornA1,planeNormal1); - float4 pOnB1 = vtxInPlaneWorld1+normalOnSurfaceB1*distance; - pOnB1.w = distance; - - int dstIdx; - AppendInc( nGlobalContactsOut, dstIdx ); - - if (dstIdx < maxContactCapacity) - { - __global struct b3Contact4Data* c = &globalContactsOut[dstIdx]; - c->m_worldNormalOnB = -normalOnSurfaceB1; - c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff); - c->m_batchIdx = pairIndex; - c->m_bodyAPtrAndSignBit = rigidBodies[bodyIndexA].m_invMass==0?-bodyIndexA:bodyIndexA; - c->m_bodyBPtrAndSignBit = rigidBodies[bodyIndexB].m_invMass==0?-bodyIndexB:bodyIndexB; - c->m_worldPosB[0] = pOnB1; - c->m_childIndexA = -1; - c->m_childIndexB = -1; - GET_NPOINTS(*c) = 1; - }//if (dstIdx < numPairs) - }//if (hasCollision) -} - - -__kernel void primitiveContactsKernel( __global int4* pairs, - __global const BodyData* rigidBodies, - __global const btCollidableGpu* collidables, - __global const ConvexPolyhedronCL* convexShapes, - __global const float4* vertices, - __global const float4* uniqueEdges, - __global const btGpuFace* faces, - __global const int* indices, - __global struct b3Contact4Data* restrict globalContactsOut, - counter32_t nGlobalContactsOut, - int numPairs, int maxContactCapacity) -{ - - int i = get_global_id(0); - int pairIndex = i; - - float4 worldVertsB1[64]; - float4 worldVertsB2[64]; - int capacityWorldVerts = 64; - - float4 localContactsOut[64]; - int localContactCapacity=64; - - float minDist = -1e30f; - float maxDist = 0.02f; - - if (i<numPairs) - { - - int bodyIndexA = pairs[i].x; - int bodyIndexB = pairs[i].y; - - int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; - int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; - - if (collidables[collidableIndexA].m_shapeType == SHAPE_PLANE && - collidables[collidableIndexB].m_shapeType == SHAPE_CONVEX_HULL) - { - - float4 posB; - posB = rigidBodies[bodyIndexB].m_pos; - Quaternion ornB; - ornB = rigidBodies[bodyIndexB].m_quat; - int contactIndex = computeContactPlaneConvex(pairIndex, bodyIndexA, bodyIndexB, collidableIndexA, collidableIndexB, - rigidBodies,collidables,convexShapes,vertices,indices, - faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity, posB,ornB); - if (contactIndex>=0) - pairs[pairIndex].z = contactIndex; - - return; - } - - - if (collidables[collidableIndexA].m_shapeType == SHAPE_CONVEX_HULL && - collidables[collidableIndexB].m_shapeType == SHAPE_PLANE) - { - - float4 posA; - posA = rigidBodies[bodyIndexA].m_pos; - Quaternion ornA; - ornA = rigidBodies[bodyIndexA].m_quat; - - - int contactIndex = computeContactPlaneConvex( pairIndex, bodyIndexB,bodyIndexA, collidableIndexB,collidableIndexA, - rigidBodies,collidables,convexShapes,vertices,indices, - faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity,posA,ornA); - - if (contactIndex>=0) - pairs[pairIndex].z = contactIndex; - - return; - } - - if (collidables[collidableIndexA].m_shapeType == SHAPE_PLANE && - collidables[collidableIndexB].m_shapeType == SHAPE_SPHERE) - { - computeContactPlaneSphere(pairIndex, bodyIndexA, bodyIndexB, collidableIndexA, collidableIndexB, - rigidBodies,collidables,faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity); - return; - } - - - if (collidables[collidableIndexA].m_shapeType == SHAPE_SPHERE && - collidables[collidableIndexB].m_shapeType == SHAPE_PLANE) - { - - - computeContactPlaneSphere( pairIndex, bodyIndexB,bodyIndexA, collidableIndexB,collidableIndexA, - rigidBodies,collidables, - faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity); - - return; - } - - - - - if (collidables[collidableIndexA].m_shapeType == SHAPE_SPHERE && - collidables[collidableIndexB].m_shapeType == SHAPE_CONVEX_HULL) - { - - float4 spherePos = rigidBodies[bodyIndexA].m_pos; - float sphereRadius = collidables[collidableIndexA].m_radius; - float4 convexPos = rigidBodies[bodyIndexB].m_pos; - float4 convexOrn = rigidBodies[bodyIndexB].m_quat; - - computeContactSphereConvex(pairIndex, bodyIndexA, bodyIndexB, collidableIndexA, collidableIndexB, - rigidBodies,collidables,convexShapes,vertices,indices,faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity, - spherePos,sphereRadius,convexPos,convexOrn); - - return; - } - - if (collidables[collidableIndexA].m_shapeType == SHAPE_CONVEX_HULL && - collidables[collidableIndexB].m_shapeType == SHAPE_SPHERE) - { - - float4 spherePos = rigidBodies[bodyIndexB].m_pos; - float sphereRadius = collidables[collidableIndexB].m_radius; - float4 convexPos = rigidBodies[bodyIndexA].m_pos; - float4 convexOrn = rigidBodies[bodyIndexA].m_quat; - - computeContactSphereConvex(pairIndex, bodyIndexB, bodyIndexA, collidableIndexB, collidableIndexA, - rigidBodies,collidables,convexShapes,vertices,indices,faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity, - spherePos,sphereRadius,convexPos,convexOrn); - return; - } - - - - - - - if (collidables[collidableIndexA].m_shapeType == SHAPE_SPHERE && - collidables[collidableIndexB].m_shapeType == SHAPE_SPHERE) - { - //sphere-sphere - float radiusA = collidables[collidableIndexA].m_radius; - float radiusB = collidables[collidableIndexB].m_radius; - float4 posA = rigidBodies[bodyIndexA].m_pos; - float4 posB = rigidBodies[bodyIndexB].m_pos; - - float4 diff = posA-posB; - float len = length(diff); - - ///iff distance positive, don't generate a new contact - if ( len <= (radiusA+radiusB)) - { - ///distance (negative means penetration) - float dist = len - (radiusA+radiusB); - float4 normalOnSurfaceB = make_float4(1.f,0.f,0.f,0.f); - if (len > 0.00001) - { - normalOnSurfaceB = diff / len; - } - float4 contactPosB = posB + normalOnSurfaceB*radiusB; - contactPosB.w = dist; - - int dstIdx; - AppendInc( nGlobalContactsOut, dstIdx ); - - if (dstIdx < maxContactCapacity) - { - __global struct b3Contact4Data* c = &globalContactsOut[dstIdx]; - c->m_worldNormalOnB = normalOnSurfaceB; - c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff); - c->m_batchIdx = pairIndex; - int bodyA = pairs[pairIndex].x; - int bodyB = pairs[pairIndex].y; - c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0?-bodyA:bodyA; - c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0?-bodyB:bodyB; - c->m_worldPosB[0] = contactPosB; - c->m_childIndexA = -1; - c->m_childIndexB = -1; - GET_NPOINTS(*c) = 1; - }//if (dstIdx < numPairs) - }//if ( len <= (radiusA+radiusB)) - - return; - }//SHAPE_SPHERE SHAPE_SPHERE - - }// if (i<numPairs) - -} - - -// work-in-progress -__kernel void processCompoundPairsPrimitivesKernel( __global const int4* gpuCompoundPairs, - __global const BodyData* rigidBodies, - __global const btCollidableGpu* collidables, - __global const ConvexPolyhedronCL* convexShapes, - __global const float4* vertices, - __global const float4* uniqueEdges, - __global const btGpuFace* faces, - __global const int* indices, - __global btAabbCL* aabbs, - __global const btGpuChildShape* gpuChildShapes, - __global struct b3Contact4Data* restrict globalContactsOut, - counter32_t nGlobalContactsOut, - int numCompoundPairs, int maxContactCapacity - ) -{ - - int i = get_global_id(0); - if (i<numCompoundPairs) - { - int bodyIndexA = gpuCompoundPairs[i].x; - int bodyIndexB = gpuCompoundPairs[i].y; - - int childShapeIndexA = gpuCompoundPairs[i].z; - int childShapeIndexB = gpuCompoundPairs[i].w; - - int collidableIndexA = -1; - int collidableIndexB = -1; - - float4 ornA = rigidBodies[bodyIndexA].m_quat; - float4 posA = rigidBodies[bodyIndexA].m_pos; - - float4 ornB = rigidBodies[bodyIndexB].m_quat; - float4 posB = rigidBodies[bodyIndexB].m_pos; - - if (childShapeIndexA >= 0) - { - collidableIndexA = gpuChildShapes[childShapeIndexA].m_shapeIndex; - float4 childPosA = gpuChildShapes[childShapeIndexA].m_childPosition; - float4 childOrnA = gpuChildShapes[childShapeIndexA].m_childOrientation; - float4 newPosA = qtRotate(ornA,childPosA)+posA; - float4 newOrnA = qtMul(ornA,childOrnA); - posA = newPosA; - ornA = newOrnA; - } else - { - collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; - } - - if (childShapeIndexB>=0) - { - collidableIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex; - float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition; - float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation; - float4 newPosB = transform(&childPosB,&posB,&ornB); - float4 newOrnB = qtMul(ornB,childOrnB); - posB = newPosB; - ornB = newOrnB; - } else - { - collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; - } - - int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; - int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; - - int shapeTypeA = collidables[collidableIndexA].m_shapeType; - int shapeTypeB = collidables[collidableIndexB].m_shapeType; - - int pairIndex = i; - if ((shapeTypeA == SHAPE_PLANE) && (shapeTypeB==SHAPE_CONVEX_HULL)) - { - - computeContactPlaneConvex( pairIndex, bodyIndexA,bodyIndexB, collidableIndexA,collidableIndexB, - rigidBodies,collidables,convexShapes,vertices,indices, - faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity,posB,ornB); - return; - } - - if ((shapeTypeA == SHAPE_CONVEX_HULL) && (shapeTypeB==SHAPE_PLANE)) - { - - computeContactPlaneConvex( pairIndex, bodyIndexB,bodyIndexA, collidableIndexB,collidableIndexA, - rigidBodies,collidables,convexShapes,vertices,indices, - faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity,posA,ornA); - return; - } - - if ((shapeTypeA == SHAPE_CONVEX_HULL) && (shapeTypeB == SHAPE_SPHERE)) - { - float4 spherePos = rigidBodies[bodyIndexB].m_pos; - float sphereRadius = collidables[collidableIndexB].m_radius; - float4 convexPos = posA; - float4 convexOrn = ornA; - - computeContactSphereConvex(pairIndex, bodyIndexB, bodyIndexA , collidableIndexB,collidableIndexA, - rigidBodies,collidables,convexShapes,vertices,indices,faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity, - spherePos,sphereRadius,convexPos,convexOrn); - - return; - } - - if ((shapeTypeA == SHAPE_SPHERE) && (shapeTypeB == SHAPE_CONVEX_HULL)) - { - - float4 spherePos = rigidBodies[bodyIndexA].m_pos; - float sphereRadius = collidables[collidableIndexA].m_radius; - float4 convexPos = posB; - float4 convexOrn = ornB; - - - computeContactSphereConvex(pairIndex, bodyIndexA, bodyIndexB, collidableIndexA, collidableIndexB, - rigidBodies,collidables,convexShapes,vertices,indices,faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity, - spherePos,sphereRadius,convexPos,convexOrn); - - return; - } - }// if (i<numCompoundPairs) -} - - -bool pointInTriangle(const float4* vertices, const float4* normal, float4 *p ) -{ - - const float4* p1 = &vertices[0]; - const float4* p2 = &vertices[1]; - const float4* p3 = &vertices[2]; - - float4 edge1; edge1 = (*p2 - *p1); - float4 edge2; edge2 = ( *p3 - *p2 ); - float4 edge3; edge3 = ( *p1 - *p3 ); - - - float4 p1_to_p; p1_to_p = ( *p - *p1 ); - float4 p2_to_p; p2_to_p = ( *p - *p2 ); - float4 p3_to_p; p3_to_p = ( *p - *p3 ); - - float4 edge1_normal; edge1_normal = ( cross(edge1,*normal)); - float4 edge2_normal; edge2_normal = ( cross(edge2,*normal)); - float4 edge3_normal; edge3_normal = ( cross(edge3,*normal)); - - - - float r1, r2, r3; - r1 = dot(edge1_normal,p1_to_p ); - r2 = dot(edge2_normal,p2_to_p ); - r3 = dot(edge3_normal,p3_to_p ); - - if ( r1 > 0 && r2 > 0 && r3 > 0 ) - return true; - if ( r1 <= 0 && r2 <= 0 && r3 <= 0 ) - return true; - return false; - -} - - -float segmentSqrDistance(float4 from, float4 to,float4 p, float4* nearest) -{ - float4 diff = p - from; - float4 v = to - from; - float t = dot(v,diff); - - if (t > 0) - { - float dotVV = dot(v,v); - if (t < dotVV) - { - t /= dotVV; - diff -= t*v; - } else - { - t = 1; - diff -= v; - } - } else - { - t = 0; - } - *nearest = from + t*v; - return dot(diff,diff); -} - - -void computeContactSphereTriangle(int pairIndex, - int bodyIndexA, int bodyIndexB, - int collidableIndexA, int collidableIndexB, - __global const BodyData* rigidBodies, - __global const btCollidableGpu* collidables, - const float4* triangleVertices, - __global struct b3Contact4Data* restrict globalContactsOut, - counter32_t nGlobalContactsOut, - int maxContactCapacity, - float4 spherePos2, - float radius, - float4 pos, - float4 quat, - int faceIndex - ) -{ - - float4 invPos; - float4 invOrn; - - trInverse(pos,quat, &invPos,&invOrn); - float4 spherePos = transform(&spherePos2,&invPos,&invOrn); - int numFaces = 3; - float4 closestPnt = (float4)(0, 0, 0, 0); - float4 hitNormalWorld = (float4)(0, 0, 0, 0); - float minDist = -1000000.f; - bool bCollide = false; - - - ////////////////////////////////////// - - float4 sphereCenter; - sphereCenter = spherePos; - - const float4* vertices = triangleVertices; - float contactBreakingThreshold = 0.f;//todo? - float radiusWithThreshold = radius + contactBreakingThreshold; - float4 edge10; - edge10 = vertices[1]-vertices[0]; - edge10.w = 0.f;//is this needed? - float4 edge20; - edge20 = vertices[2]-vertices[0]; - edge20.w = 0.f;//is this needed? - float4 normal = cross3(edge10,edge20); - normal = normalize(normal); - float4 p1ToCenter; - p1ToCenter = sphereCenter - vertices[0]; - - float distanceFromPlane = dot(p1ToCenter,normal); - - if (distanceFromPlane < 0.f) - { - //triangle facing the other way - distanceFromPlane *= -1.f; - normal *= -1.f; - } - hitNormalWorld = normal; - - bool isInsideContactPlane = distanceFromPlane < radiusWithThreshold; - - // Check for contact / intersection - bool hasContact = false; - float4 contactPoint; - if (isInsideContactPlane) - { - - if (pointInTriangle(vertices,&normal, &sphereCenter)) - { - // Inside the contact wedge - touches a point on the shell plane - hasContact = true; - contactPoint = sphereCenter - normal*distanceFromPlane; - - } else { - // Could be inside one of the contact capsules - float contactCapsuleRadiusSqr = radiusWithThreshold*radiusWithThreshold; - float4 nearestOnEdge; - int numEdges = 3; - for (int i = 0; i < numEdges; i++) - { - float4 pa =vertices[i]; - float4 pb = vertices[(i+1)%3]; - - float distanceSqr = segmentSqrDistance(pa,pb,sphereCenter, &nearestOnEdge); - if (distanceSqr < contactCapsuleRadiusSqr) - { - // Yep, we're inside a capsule - hasContact = true; - contactPoint = nearestOnEdge; - - } - - } - } - } - - if (hasContact) - { - - closestPnt = contactPoint; - float4 contactToCenter = sphereCenter - contactPoint; - minDist = length(contactToCenter); - if (minDist>FLT_EPSILON) - { - hitNormalWorld = normalize(contactToCenter);//*(1./minDist); - bCollide = true; - } - - } - - - ///////////////////////////////////// - - if (bCollide && minDist > -10000) - { - - float4 normalOnSurfaceB1 = qtRotate(quat,-hitNormalWorld); - float4 pOnB1 = transform(&closestPnt,&pos,&quat); - float actualDepth = minDist-radius; - - - if (actualDepth<=0.f) - { - pOnB1.w = actualDepth; - int dstIdx; - - - float lenSqr = dot3F4(normalOnSurfaceB1,normalOnSurfaceB1); - if (lenSqr>FLT_EPSILON) - { - AppendInc( nGlobalContactsOut, dstIdx ); - - if (dstIdx < maxContactCapacity) - { - __global struct b3Contact4Data* c = &globalContactsOut[dstIdx]; - c->m_worldNormalOnB = -normalOnSurfaceB1; - c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff); - c->m_batchIdx = pairIndex; - c->m_bodyAPtrAndSignBit = rigidBodies[bodyIndexA].m_invMass==0?-bodyIndexA:bodyIndexA; - c->m_bodyBPtrAndSignBit = rigidBodies[bodyIndexB].m_invMass==0?-bodyIndexB:bodyIndexB; - c->m_worldPosB[0] = pOnB1; - - c->m_childIndexA = -1; - c->m_childIndexB = faceIndex; - - GET_NPOINTS(*c) = 1; - } - } - - } - }//if (hasCollision) - -} - - - -// work-in-progress -__kernel void findConcaveSphereContactsKernel( __global int4* concavePairs, - __global const BodyData* rigidBodies, - __global const btCollidableGpu* collidables, - __global const ConvexPolyhedronCL* convexShapes, - __global const float4* vertices, - __global const float4* uniqueEdges, - __global const btGpuFace* faces, - __global const int* indices, - __global btAabbCL* aabbs, - __global struct b3Contact4Data* restrict globalContactsOut, - counter32_t nGlobalContactsOut, - int numConcavePairs, int maxContactCapacity - ) -{ - - int i = get_global_id(0); - if (i>=numConcavePairs) - return; - int pairIdx = i; - - int bodyIndexA = concavePairs[i].x; - int bodyIndexB = concavePairs[i].y; - - int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; - int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; - - int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; - int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; - - if (collidables[collidableIndexB].m_shapeType==SHAPE_SPHERE) - { - int f = concavePairs[i].z; - btGpuFace face = faces[convexShapes[shapeIndexA].m_faceOffset+f]; - - float4 verticesA[3]; - for (int i=0;i<3;i++) - { - int index = indices[face.m_indexOffset+i]; - float4 vert = vertices[convexShapes[shapeIndexA].m_vertexOffset+index]; - verticesA[i] = vert; - } - - float4 spherePos = rigidBodies[bodyIndexB].m_pos; - float sphereRadius = collidables[collidableIndexB].m_radius; - float4 convexPos = rigidBodies[bodyIndexA].m_pos; - float4 convexOrn = rigidBodies[bodyIndexA].m_quat; - - computeContactSphereTriangle(i, bodyIndexB, bodyIndexA, collidableIndexB, collidableIndexA, - rigidBodies,collidables, - verticesA, - globalContactsOut, nGlobalContactsOut,maxContactCapacity, - spherePos,sphereRadius,convexPos,convexOrn, f); - - return; - } -}
\ No newline at end of file diff --git a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/kernels/primitiveContacts.h b/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/kernels/primitiveContacts.h deleted file mode 100644 index b0103fe674..0000000000 --- a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/kernels/primitiveContacts.h +++ /dev/null @@ -1,1289 +0,0 @@ -//this file is autogenerated using stringify.bat (premake --stringify) in the build folder of this project -static const char* primitiveContactsKernelsCL= \ -"#ifndef B3_CONTACT4DATA_H\n" -"#define B3_CONTACT4DATA_H\n" -"#ifndef B3_FLOAT4_H\n" -"#define B3_FLOAT4_H\n" -"#ifndef B3_PLATFORM_DEFINITIONS_H\n" -"#define B3_PLATFORM_DEFINITIONS_H\n" -"struct MyTest\n" -"{\n" -" int bla;\n" -"};\n" -"#ifdef __cplusplus\n" -"#else\n" -"//keep B3_LARGE_FLOAT*B3_LARGE_FLOAT < FLT_MAX\n" -"#define B3_LARGE_FLOAT 1e18f\n" -"#define B3_INFINITY 1e18f\n" -"#define b3Assert(a)\n" -"#define b3ConstArray(a) __global const a*\n" -"#define b3AtomicInc atomic_inc\n" -"#define b3AtomicAdd atomic_add\n" -"#define b3Fabs fabs\n" -"#define b3Sqrt native_sqrt\n" -"#define b3Sin native_sin\n" -"#define b3Cos native_cos\n" -"#define B3_STATIC\n" -"#endif\n" -"#endif\n" -"#ifdef __cplusplus\n" -"#else\n" -" typedef float4 b3Float4;\n" -" #define b3Float4ConstArg const b3Float4\n" -" #define b3MakeFloat4 (float4)\n" -" float b3Dot3F4(b3Float4ConstArg v0,b3Float4ConstArg v1)\n" -" {\n" -" float4 a1 = b3MakeFloat4(v0.xyz,0.f);\n" -" float4 b1 = b3MakeFloat4(v1.xyz,0.f);\n" -" return dot(a1, b1);\n" -" }\n" -" b3Float4 b3Cross3(b3Float4ConstArg v0,b3Float4ConstArg v1)\n" -" {\n" -" float4 a1 = b3MakeFloat4(v0.xyz,0.f);\n" -" float4 b1 = b3MakeFloat4(v1.xyz,0.f);\n" -" return cross(a1, b1);\n" -" }\n" -" #define b3MinFloat4 min\n" -" #define b3MaxFloat4 max\n" -" #define b3Normalized(a) normalize(a)\n" -"#endif \n" -" \n" -"inline bool b3IsAlmostZero(b3Float4ConstArg v)\n" -"{\n" -" if(b3Fabs(v.x)>1e-6 || b3Fabs(v.y)>1e-6 || b3Fabs(v.z)>1e-6) \n" -" return false;\n" -" return true;\n" -"}\n" -"inline int b3MaxDot( b3Float4ConstArg vec, __global const b3Float4* vecArray, int vecLen, float* dotOut )\n" -"{\n" -" float maxDot = -B3_INFINITY;\n" -" int i = 0;\n" -" int ptIndex = -1;\n" -" for( i = 0; i < vecLen; i++ )\n" -" {\n" -" float dot = b3Dot3F4(vecArray[i],vec);\n" -" \n" -" if( dot > maxDot )\n" -" {\n" -" maxDot = dot;\n" -" ptIndex = i;\n" -" }\n" -" }\n" -" b3Assert(ptIndex>=0);\n" -" if (ptIndex<0)\n" -" {\n" -" ptIndex = 0;\n" -" }\n" -" *dotOut = maxDot;\n" -" return ptIndex;\n" -"}\n" -"#endif //B3_FLOAT4_H\n" -"typedef struct b3Contact4Data b3Contact4Data_t;\n" -"struct b3Contact4Data\n" -"{\n" -" b3Float4 m_worldPosB[4];\n" -"// b3Float4 m_localPosA[4];\n" -"// b3Float4 m_localPosB[4];\n" -" b3Float4 m_worldNormalOnB; // w: m_nPoints\n" -" unsigned short m_restituitionCoeffCmp;\n" -" unsigned short m_frictionCoeffCmp;\n" -" int m_batchIdx;\n" -" int m_bodyAPtrAndSignBit;//x:m_bodyAPtr, y:m_bodyBPtr\n" -" int m_bodyBPtrAndSignBit;\n" -" int m_childIndexA;\n" -" int m_childIndexB;\n" -" int m_unused1;\n" -" int m_unused2;\n" -"};\n" -"inline int b3Contact4Data_getNumPoints(const struct b3Contact4Data* contact)\n" -"{\n" -" return (int)contact->m_worldNormalOnB.w;\n" -"};\n" -"inline void b3Contact4Data_setNumPoints(struct b3Contact4Data* contact, int numPoints)\n" -"{\n" -" contact->m_worldNormalOnB.w = (float)numPoints;\n" -"};\n" -"#endif //B3_CONTACT4DATA_H\n" -"#define SHAPE_CONVEX_HULL 3\n" -"#define SHAPE_PLANE 4\n" -"#define SHAPE_CONCAVE_TRIMESH 5\n" -"#define SHAPE_COMPOUND_OF_CONVEX_HULLS 6\n" -"#define SHAPE_SPHERE 7\n" -"#pragma OPENCL EXTENSION cl_amd_printf : enable\n" -"#pragma OPENCL EXTENSION cl_khr_local_int32_base_atomics : enable\n" -"#pragma OPENCL EXTENSION cl_khr_global_int32_base_atomics : enable\n" -"#pragma OPENCL EXTENSION cl_khr_local_int32_extended_atomics : enable\n" -"#pragma OPENCL EXTENSION cl_khr_global_int32_extended_atomics : enable\n" -"#ifdef cl_ext_atomic_counters_32\n" -"#pragma OPENCL EXTENSION cl_ext_atomic_counters_32 : enable\n" -"#else\n" -"#define counter32_t volatile __global int*\n" -"#endif\n" -"#define GET_GROUP_IDX get_group_id(0)\n" -"#define GET_LOCAL_IDX get_local_id(0)\n" -"#define GET_GLOBAL_IDX get_global_id(0)\n" -"#define GET_GROUP_SIZE get_local_size(0)\n" -"#define GET_NUM_GROUPS get_num_groups(0)\n" -"#define GROUP_LDS_BARRIER barrier(CLK_LOCAL_MEM_FENCE)\n" -"#define GROUP_MEM_FENCE mem_fence(CLK_LOCAL_MEM_FENCE)\n" -"#define AtomInc(x) atom_inc(&(x))\n" -"#define AtomInc1(x, out) out = atom_inc(&(x))\n" -"#define AppendInc(x, out) out = atomic_inc(x)\n" -"#define AtomAdd(x, value) atom_add(&(x), value)\n" -"#define AtomCmpxhg(x, cmp, value) atom_cmpxchg( &(x), cmp, value )\n" -"#define AtomXhg(x, value) atom_xchg ( &(x), value )\n" -"#define max2 max\n" -"#define min2 min\n" -"typedef unsigned int u32;\n" -"typedef struct \n" -"{\n" -" union\n" -" {\n" -" float4 m_min;\n" -" float m_minElems[4];\n" -" int m_minIndices[4];\n" -" };\n" -" union\n" -" {\n" -" float4 m_max;\n" -" float m_maxElems[4];\n" -" int m_maxIndices[4];\n" -" };\n" -"} btAabbCL;\n" -"///keep this in sync with btCollidable.h\n" -"typedef struct\n" -"{\n" -" int m_numChildShapes;\n" -" float m_radius;\n" -" int m_shapeType;\n" -" int m_shapeIndex;\n" -" \n" -"} btCollidableGpu;\n" -"typedef struct\n" -"{\n" -" float4 m_childPosition;\n" -" float4 m_childOrientation;\n" -" int m_shapeIndex;\n" -" int m_unused0;\n" -" int m_unused1;\n" -" int m_unused2;\n" -"} btGpuChildShape;\n" -"#define GET_NPOINTS(x) (x).m_worldNormalOnB.w\n" -"typedef struct\n" -"{\n" -" float4 m_pos;\n" -" float4 m_quat;\n" -" float4 m_linVel;\n" -" float4 m_angVel;\n" -" u32 m_collidableIdx; \n" -" float m_invMass;\n" -" float m_restituitionCoeff;\n" -" float m_frictionCoeff;\n" -"} BodyData;\n" -"typedef struct \n" -"{\n" -" float4 m_localCenter;\n" -" float4 m_extents;\n" -" float4 mC;\n" -" float4 mE;\n" -" \n" -" float m_radius;\n" -" int m_faceOffset;\n" -" int m_numFaces;\n" -" int m_numVertices;\n" -" \n" -" int m_vertexOffset;\n" -" int m_uniqueEdgesOffset;\n" -" int m_numUniqueEdges;\n" -" int m_unused;\n" -"} ConvexPolyhedronCL;\n" -"typedef struct\n" -"{\n" -" float4 m_plane;\n" -" int m_indexOffset;\n" -" int m_numIndices;\n" -"} btGpuFace;\n" -"#define SELECT_UINT4( b, a, condition ) select( b,a,condition )\n" -"#define make_float4 (float4)\n" -"#define make_float2 (float2)\n" -"#define make_uint4 (uint4)\n" -"#define make_int4 (int4)\n" -"#define make_uint2 (uint2)\n" -"#define make_int2 (int2)\n" -"__inline\n" -"float fastDiv(float numerator, float denominator)\n" -"{\n" -" return native_divide(numerator, denominator); \n" -"// return numerator/denominator; \n" -"}\n" -"__inline\n" -"float4 fastDiv4(float4 numerator, float4 denominator)\n" -"{\n" -" return native_divide(numerator, denominator); \n" -"}\n" -"__inline\n" -"float4 cross3(float4 a, float4 b)\n" -"{\n" -" return cross(a,b);\n" -"}\n" -"//#define dot3F4 dot\n" -"__inline\n" -"float dot3F4(float4 a, float4 b)\n" -"{\n" -" float4 a1 = make_float4(a.xyz,0.f);\n" -" float4 b1 = make_float4(b.xyz,0.f);\n" -" return dot(a1, b1);\n" -"}\n" -"__inline\n" -"float4 fastNormalize4(float4 v)\n" -"{\n" -" return fast_normalize(v);\n" -"}\n" -"///////////////////////////////////////\n" -"// Quaternion\n" -"///////////////////////////////////////\n" -"typedef float4 Quaternion;\n" -"__inline\n" -"Quaternion qtMul(Quaternion a, Quaternion b);\n" -"__inline\n" -"Quaternion qtNormalize(Quaternion in);\n" -"__inline\n" -"float4 qtRotate(Quaternion q, float4 vec);\n" -"__inline\n" -"Quaternion qtInvert(Quaternion q);\n" -"__inline\n" -"Quaternion qtMul(Quaternion a, Quaternion b)\n" -"{\n" -" Quaternion ans;\n" -" ans = cross3( a, b );\n" -" ans += a.w*b+b.w*a;\n" -"// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z);\n" -" ans.w = a.w*b.w - dot3F4(a, b);\n" -" return ans;\n" -"}\n" -"__inline\n" -"Quaternion qtNormalize(Quaternion in)\n" -"{\n" -" return fastNormalize4(in);\n" -"// in /= length( in );\n" -"// return in;\n" -"}\n" -"__inline\n" -"float4 qtRotate(Quaternion q, float4 vec)\n" -"{\n" -" Quaternion qInv = qtInvert( q );\n" -" float4 vcpy = vec;\n" -" vcpy.w = 0.f;\n" -" float4 out = qtMul(qtMul(q,vcpy),qInv);\n" -" return out;\n" -"}\n" -"__inline\n" -"Quaternion qtInvert(Quaternion q)\n" -"{\n" -" return (Quaternion)(-q.xyz, q.w);\n" -"}\n" -"__inline\n" -"float4 qtInvRotate(const Quaternion q, float4 vec)\n" -"{\n" -" return qtRotate( qtInvert( q ), vec );\n" -"}\n" -"__inline\n" -"float4 transform(const float4* p, const float4* translation, const Quaternion* orientation)\n" -"{\n" -" return qtRotate( *orientation, *p ) + (*translation);\n" -"}\n" -"void trInverse(float4 translationIn, Quaternion orientationIn,\n" -" float4* translationOut, Quaternion* orientationOut)\n" -"{\n" -" *orientationOut = qtInvert(orientationIn);\n" -" *translationOut = qtRotate(*orientationOut, -translationIn);\n" -"}\n" -"void trMul(float4 translationA, Quaternion orientationA,\n" -" float4 translationB, Quaternion orientationB,\n" -" float4* translationOut, Quaternion* orientationOut)\n" -"{\n" -" *orientationOut = qtMul(orientationA,orientationB);\n" -" *translationOut = transform(&translationB,&translationA,&orientationA);\n" -"}\n" -"__inline\n" -"float4 normalize3(const float4 a)\n" -"{\n" -" float4 n = make_float4(a.x, a.y, a.z, 0.f);\n" -" return fastNormalize4( n );\n" -"}\n" -"__inline float4 lerp3(const float4 a,const float4 b, float t)\n" -"{\n" -" return make_float4( a.x + (b.x - a.x) * t,\n" -" a.y + (b.y - a.y) * t,\n" -" a.z + (b.z - a.z) * t,\n" -" 0.f);\n" -"}\n" -"float signedDistanceFromPointToPlane(float4 point, float4 planeEqn, float4* closestPointOnFace)\n" -"{\n" -" float4 n = (float4)(planeEqn.x, planeEqn.y, planeEqn.z, 0);\n" -" float dist = dot3F4(n, point) + planeEqn.w;\n" -" *closestPointOnFace = point - dist * n;\n" -" return dist;\n" -"}\n" -"inline bool IsPointInPolygon(float4 p, \n" -" const btGpuFace* face,\n" -" __global const float4* baseVertex,\n" -" __global const int* convexIndices,\n" -" float4* out)\n" -"{\n" -" float4 a;\n" -" float4 b;\n" -" float4 ab;\n" -" float4 ap;\n" -" float4 v;\n" -" float4 plane = make_float4(face->m_plane.x,face->m_plane.y,face->m_plane.z,0.f);\n" -" \n" -" if (face->m_numIndices<2)\n" -" return false;\n" -" \n" -" float4 v0 = baseVertex[convexIndices[face->m_indexOffset + face->m_numIndices-1]];\n" -" \n" -" b = v0;\n" -" for(unsigned i=0; i != face->m_numIndices; ++i)\n" -" {\n" -" a = b;\n" -" float4 vi = baseVertex[convexIndices[face->m_indexOffset + i]];\n" -" b = vi;\n" -" ab = b-a;\n" -" ap = p-a;\n" -" v = cross3(ab,plane);\n" -" if (dot(ap, v) > 0.f)\n" -" {\n" -" float ab_m2 = dot(ab, ab);\n" -" float rt = ab_m2 != 0.f ? dot(ab, ap) / ab_m2 : 0.f;\n" -" if (rt <= 0.f)\n" -" {\n" -" *out = a;\n" -" }\n" -" else if (rt >= 1.f) \n" -" {\n" -" *out = b;\n" -" }\n" -" else\n" -" {\n" -" float s = 1.f - rt;\n" -" out[0].x = s * a.x + rt * b.x;\n" -" out[0].y = s * a.y + rt * b.y;\n" -" out[0].z = s * a.z + rt * b.z;\n" -" }\n" -" return false;\n" -" }\n" -" }\n" -" return true;\n" -"}\n" -"void computeContactSphereConvex(int pairIndex,\n" -" int bodyIndexA, int bodyIndexB, \n" -" int collidableIndexA, int collidableIndexB, \n" -" __global const BodyData* rigidBodies, \n" -" __global const btCollidableGpu* collidables,\n" -" __global const ConvexPolyhedronCL* convexShapes,\n" -" __global const float4* convexVertices,\n" -" __global const int* convexIndices,\n" -" __global const btGpuFace* faces,\n" -" __global struct b3Contact4Data* restrict globalContactsOut,\n" -" counter32_t nGlobalContactsOut,\n" -" int maxContactCapacity,\n" -" float4 spherePos2,\n" -" float radius,\n" -" float4 pos,\n" -" float4 quat\n" -" )\n" -"{\n" -" float4 invPos;\n" -" float4 invOrn;\n" -" trInverse(pos,quat, &invPos,&invOrn);\n" -" float4 spherePos = transform(&spherePos2,&invPos,&invOrn);\n" -" int shapeIndex = collidables[collidableIndexB].m_shapeIndex;\n" -" int numFaces = convexShapes[shapeIndex].m_numFaces;\n" -" float4 closestPnt = (float4)(0, 0, 0, 0);\n" -" float4 hitNormalWorld = (float4)(0, 0, 0, 0);\n" -" float minDist = -1000000.f;\n" -" bool bCollide = true;\n" -" for ( int f = 0; f < numFaces; f++ )\n" -" {\n" -" btGpuFace face = faces[convexShapes[shapeIndex].m_faceOffset+f];\n" -" // set up a plane equation \n" -" float4 planeEqn;\n" -" float4 n1 = face.m_plane;\n" -" n1.w = 0.f;\n" -" planeEqn = n1;\n" -" planeEqn.w = face.m_plane.w;\n" -" \n" -" \n" -" // compute a signed distance from the vertex in cloth to the face of rigidbody.\n" -" float4 pntReturn;\n" -" float dist = signedDistanceFromPointToPlane(spherePos, planeEqn, &pntReturn);\n" -" // If the distance is positive, the plane is a separating plane. \n" -" if ( dist > radius )\n" -" {\n" -" bCollide = false;\n" -" break;\n" -" }\n" -" if (dist>0)\n" -" {\n" -" //might hit an edge or vertex\n" -" float4 out;\n" -" float4 zeroPos = make_float4(0,0,0,0);\n" -" bool isInPoly = IsPointInPolygon(spherePos,\n" -" &face,\n" -" &convexVertices[convexShapes[shapeIndex].m_vertexOffset],\n" -" convexIndices,\n" -" &out);\n" -" if (isInPoly)\n" -" {\n" -" if (dist>minDist)\n" -" {\n" -" minDist = dist;\n" -" closestPnt = pntReturn;\n" -" hitNormalWorld = planeEqn;\n" -" \n" -" }\n" -" } else\n" -" {\n" -" float4 tmp = spherePos-out;\n" -" float l2 = dot(tmp,tmp);\n" -" if (l2<radius*radius)\n" -" {\n" -" dist = sqrt(l2);\n" -" if (dist>minDist)\n" -" {\n" -" minDist = dist;\n" -" closestPnt = out;\n" -" hitNormalWorld = tmp/dist;\n" -" \n" -" }\n" -" \n" -" } else\n" -" {\n" -" bCollide = false;\n" -" break;\n" -" }\n" -" }\n" -" } else\n" -" {\n" -" if ( dist > minDist )\n" -" {\n" -" minDist = dist;\n" -" closestPnt = pntReturn;\n" -" hitNormalWorld.xyz = planeEqn.xyz;\n" -" }\n" -" }\n" -" \n" -" }\n" -" \n" -" if (bCollide && minDist > -10000)\n" -" {\n" -" float4 normalOnSurfaceB1 = qtRotate(quat,-hitNormalWorld);\n" -" float4 pOnB1 = transform(&closestPnt,&pos,&quat);\n" -" \n" -" float actualDepth = minDist-radius;\n" -" if (actualDepth<=0.f)\n" -" {\n" -" \n" -" pOnB1.w = actualDepth;\n" -" int dstIdx;\n" -" AppendInc( nGlobalContactsOut, dstIdx );\n" -" \n" -" \n" -" if (1)//dstIdx < maxContactCapacity)\n" -" {\n" -" __global struct b3Contact4Data* c = &globalContactsOut[dstIdx];\n" -" c->m_worldNormalOnB = -normalOnSurfaceB1;\n" -" c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff);\n" -" c->m_batchIdx = pairIndex;\n" -" c->m_bodyAPtrAndSignBit = rigidBodies[bodyIndexA].m_invMass==0?-bodyIndexA:bodyIndexA;\n" -" c->m_bodyBPtrAndSignBit = rigidBodies[bodyIndexB].m_invMass==0?-bodyIndexB:bodyIndexB;\n" -" c->m_worldPosB[0] = pOnB1;\n" -" c->m_childIndexA = -1;\n" -" c->m_childIndexB = -1;\n" -" GET_NPOINTS(*c) = 1;\n" -" } \n" -" }\n" -" }//if (hasCollision)\n" -"}\n" -" \n" -"int extractManifoldSequential(const float4* p, int nPoints, float4 nearNormal, int4* contactIdx)\n" -"{\n" -" if( nPoints == 0 )\n" -" return 0;\n" -" \n" -" if (nPoints <=4)\n" -" return nPoints;\n" -" \n" -" \n" -" if (nPoints >64)\n" -" nPoints = 64;\n" -" \n" -" float4 center = make_float4(0.f);\n" -" {\n" -" \n" -" for (int i=0;i<nPoints;i++)\n" -" center += p[i];\n" -" center /= (float)nPoints;\n" -" }\n" -" \n" -" \n" -" \n" -" // sample 4 directions\n" -" \n" -" float4 aVector = p[0] - center;\n" -" float4 u = cross3( nearNormal, aVector );\n" -" float4 v = cross3( nearNormal, u );\n" -" u = normalize3( u );\n" -" v = normalize3( v );\n" -" \n" -" \n" -" //keep point with deepest penetration\n" -" float minW= FLT_MAX;\n" -" \n" -" int minIndex=-1;\n" -" \n" -" float4 maxDots;\n" -" maxDots.x = FLT_MIN;\n" -" maxDots.y = FLT_MIN;\n" -" maxDots.z = FLT_MIN;\n" -" maxDots.w = FLT_MIN;\n" -" \n" -" // idx, distance\n" -" for(int ie = 0; ie<nPoints; ie++ )\n" -" {\n" -" if (p[ie].w<minW)\n" -" {\n" -" minW = p[ie].w;\n" -" minIndex=ie;\n" -" }\n" -" float f;\n" -" float4 r = p[ie]-center;\n" -" f = dot3F4( u, r );\n" -" if (f<maxDots.x)\n" -" {\n" -" maxDots.x = f;\n" -" contactIdx[0].x = ie;\n" -" }\n" -" \n" -" f = dot3F4( -u, r );\n" -" if (f<maxDots.y)\n" -" {\n" -" maxDots.y = f;\n" -" contactIdx[0].y = ie;\n" -" }\n" -" \n" -" \n" -" f = dot3F4( v, r );\n" -" if (f<maxDots.z)\n" -" {\n" -" maxDots.z = f;\n" -" contactIdx[0].z = ie;\n" -" }\n" -" \n" -" f = dot3F4( -v, r );\n" -" if (f<maxDots.w)\n" -" {\n" -" maxDots.w = f;\n" -" contactIdx[0].w = ie;\n" -" }\n" -" \n" -" }\n" -" \n" -" if (contactIdx[0].x != minIndex && contactIdx[0].y != minIndex && contactIdx[0].z != minIndex && contactIdx[0].w != minIndex)\n" -" {\n" -" //replace the first contact with minimum (todo: replace contact with least penetration)\n" -" contactIdx[0].x = minIndex;\n" -" }\n" -" \n" -" return 4;\n" -" \n" -"}\n" -"#define MAX_PLANE_CONVEX_POINTS 64\n" -"int computeContactPlaneConvex(int pairIndex,\n" -" int bodyIndexA, int bodyIndexB, \n" -" int collidableIndexA, int collidableIndexB, \n" -" __global const BodyData* rigidBodies, \n" -" __global const btCollidableGpu*collidables,\n" -" __global const ConvexPolyhedronCL* convexShapes,\n" -" __global const float4* convexVertices,\n" -" __global const int* convexIndices,\n" -" __global const btGpuFace* faces,\n" -" __global struct b3Contact4Data* restrict globalContactsOut,\n" -" counter32_t nGlobalContactsOut,\n" -" int maxContactCapacity,\n" -" float4 posB,\n" -" Quaternion ornB\n" -" )\n" -"{\n" -" int resultIndex=-1;\n" -" int shapeIndex = collidables[collidableIndexB].m_shapeIndex;\n" -" __global const ConvexPolyhedronCL* hullB = &convexShapes[shapeIndex];\n" -" \n" -" float4 posA;\n" -" posA = rigidBodies[bodyIndexA].m_pos;\n" -" Quaternion ornA;\n" -" ornA = rigidBodies[bodyIndexA].m_quat;\n" -" int numContactsOut = 0;\n" -" int numWorldVertsB1= 0;\n" -" float4 planeEq;\n" -" planeEq = faces[collidables[collidableIndexA].m_shapeIndex].m_plane;\n" -" float4 planeNormal = make_float4(planeEq.x,planeEq.y,planeEq.z,0.f);\n" -" float4 planeNormalWorld;\n" -" planeNormalWorld = qtRotate(ornA,planeNormal);\n" -" float planeConstant = planeEq.w;\n" -" \n" -" float4 invPosA;Quaternion invOrnA;\n" -" float4 convexInPlaneTransPos1; Quaternion convexInPlaneTransOrn1;\n" -" {\n" -" \n" -" trInverse(posA,ornA,&invPosA,&invOrnA);\n" -" trMul(invPosA,invOrnA,posB,ornB,&convexInPlaneTransPos1,&convexInPlaneTransOrn1);\n" -" }\n" -" float4 invPosB;Quaternion invOrnB;\n" -" float4 planeInConvexPos1; Quaternion planeInConvexOrn1;\n" -" {\n" -" \n" -" trInverse(posB,ornB,&invPosB,&invOrnB);\n" -" trMul(invPosB,invOrnB,posA,ornA,&planeInConvexPos1,&planeInConvexOrn1); \n" -" }\n" -" \n" -" float4 planeNormalInConvex = qtRotate(planeInConvexOrn1,-planeNormal);\n" -" float maxDot = -1e30;\n" -" int hitVertex=-1;\n" -" float4 hitVtx;\n" -" float4 contactPoints[MAX_PLANE_CONVEX_POINTS];\n" -" int numPoints = 0;\n" -" int4 contactIdx;\n" -" contactIdx=make_int4(0,1,2,3);\n" -" \n" -" \n" -" for (int i=0;i<hullB->m_numVertices;i++)\n" -" {\n" -" float4 vtx = convexVertices[hullB->m_vertexOffset+i];\n" -" float curDot = dot(vtx,planeNormalInConvex);\n" -" if (curDot>maxDot)\n" -" {\n" -" hitVertex=i;\n" -" maxDot=curDot;\n" -" hitVtx = vtx;\n" -" //make sure the deepest points is always included\n" -" if (numPoints==MAX_PLANE_CONVEX_POINTS)\n" -" numPoints--;\n" -" }\n" -" if (numPoints<MAX_PLANE_CONVEX_POINTS)\n" -" {\n" -" float4 vtxWorld = transform(&vtx, &posB, &ornB);\n" -" float4 vtxInPlane = transform(&vtxWorld, &invPosA, &invOrnA);//oplaneTransform.inverse()*vtxWorld;\n" -" float dist = dot(planeNormal,vtxInPlane)-planeConstant;\n" -" if (dist<0.f)\n" -" {\n" -" vtxWorld.w = dist;\n" -" contactPoints[numPoints] = vtxWorld;\n" -" numPoints++;\n" -" }\n" -" }\n" -" }\n" -" int numReducedPoints = numPoints;\n" -" if (numPoints>4)\n" -" {\n" -" numReducedPoints = extractManifoldSequential( contactPoints, numPoints, planeNormalInConvex, &contactIdx);\n" -" }\n" -" if (numReducedPoints>0)\n" -" {\n" -" int dstIdx;\n" -" AppendInc( nGlobalContactsOut, dstIdx );\n" -" if (dstIdx < maxContactCapacity)\n" -" {\n" -" resultIndex = dstIdx;\n" -" __global struct b3Contact4Data* c = &globalContactsOut[dstIdx];\n" -" c->m_worldNormalOnB = -planeNormalWorld;\n" -" //c->setFrictionCoeff(0.7);\n" -" //c->setRestituitionCoeff(0.f);\n" -" c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff);\n" -" c->m_batchIdx = pairIndex;\n" -" c->m_bodyAPtrAndSignBit = rigidBodies[bodyIndexA].m_invMass==0?-bodyIndexA:bodyIndexA;\n" -" c->m_bodyBPtrAndSignBit = rigidBodies[bodyIndexB].m_invMass==0?-bodyIndexB:bodyIndexB;\n" -" c->m_childIndexA = -1;\n" -" c->m_childIndexB = -1;\n" -" switch (numReducedPoints)\n" -" {\n" -" case 4:\n" -" c->m_worldPosB[3] = contactPoints[contactIdx.w];\n" -" case 3:\n" -" c->m_worldPosB[2] = contactPoints[contactIdx.z];\n" -" case 2:\n" -" c->m_worldPosB[1] = contactPoints[contactIdx.y];\n" -" case 1:\n" -" c->m_worldPosB[0] = contactPoints[contactIdx.x];\n" -" default:\n" -" {\n" -" }\n" -" };\n" -" \n" -" GET_NPOINTS(*c) = numReducedPoints;\n" -" }//if (dstIdx < numPairs)\n" -" } \n" -" return resultIndex;\n" -"}\n" -"void computeContactPlaneSphere(int pairIndex,\n" -" int bodyIndexA, int bodyIndexB, \n" -" int collidableIndexA, int collidableIndexB, \n" -" __global const BodyData* rigidBodies, \n" -" __global const btCollidableGpu* collidables,\n" -" __global const btGpuFace* faces,\n" -" __global struct b3Contact4Data* restrict globalContactsOut,\n" -" counter32_t nGlobalContactsOut,\n" -" int maxContactCapacity)\n" -"{\n" -" float4 planeEq = faces[collidables[collidableIndexA].m_shapeIndex].m_plane;\n" -" float radius = collidables[collidableIndexB].m_radius;\n" -" float4 posA1 = rigidBodies[bodyIndexA].m_pos;\n" -" float4 ornA1 = rigidBodies[bodyIndexA].m_quat;\n" -" float4 posB1 = rigidBodies[bodyIndexB].m_pos;\n" -" float4 ornB1 = rigidBodies[bodyIndexB].m_quat;\n" -" \n" -" bool hasCollision = false;\n" -" float4 planeNormal1 = make_float4(planeEq.x,planeEq.y,planeEq.z,0.f);\n" -" float planeConstant = planeEq.w;\n" -" float4 convexInPlaneTransPos1; Quaternion convexInPlaneTransOrn1;\n" -" {\n" -" float4 invPosA;Quaternion invOrnA;\n" -" trInverse(posA1,ornA1,&invPosA,&invOrnA);\n" -" trMul(invPosA,invOrnA,posB1,ornB1,&convexInPlaneTransPos1,&convexInPlaneTransOrn1);\n" -" }\n" -" float4 planeInConvexPos1; Quaternion planeInConvexOrn1;\n" -" {\n" -" float4 invPosB;Quaternion invOrnB;\n" -" trInverse(posB1,ornB1,&invPosB,&invOrnB);\n" -" trMul(invPosB,invOrnB,posA1,ornA1,&planeInConvexPos1,&planeInConvexOrn1); \n" -" }\n" -" float4 vtx1 = qtRotate(planeInConvexOrn1,-planeNormal1)*radius;\n" -" float4 vtxInPlane1 = transform(&vtx1,&convexInPlaneTransPos1,&convexInPlaneTransOrn1);\n" -" float distance = dot3F4(planeNormal1,vtxInPlane1) - planeConstant;\n" -" hasCollision = distance < 0.f;//m_manifoldPtr->getContactBreakingThreshold();\n" -" if (hasCollision)\n" -" {\n" -" float4 vtxInPlaneProjected1 = vtxInPlane1 - distance*planeNormal1;\n" -" float4 vtxInPlaneWorld1 = transform(&vtxInPlaneProjected1,&posA1,&ornA1);\n" -" float4 normalOnSurfaceB1 = qtRotate(ornA1,planeNormal1);\n" -" float4 pOnB1 = vtxInPlaneWorld1+normalOnSurfaceB1*distance;\n" -" pOnB1.w = distance;\n" -" int dstIdx;\n" -" AppendInc( nGlobalContactsOut, dstIdx );\n" -" \n" -" if (dstIdx < maxContactCapacity)\n" -" {\n" -" __global struct b3Contact4Data* c = &globalContactsOut[dstIdx];\n" -" c->m_worldNormalOnB = -normalOnSurfaceB1;\n" -" c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff);\n" -" c->m_batchIdx = pairIndex;\n" -" c->m_bodyAPtrAndSignBit = rigidBodies[bodyIndexA].m_invMass==0?-bodyIndexA:bodyIndexA;\n" -" c->m_bodyBPtrAndSignBit = rigidBodies[bodyIndexB].m_invMass==0?-bodyIndexB:bodyIndexB;\n" -" c->m_worldPosB[0] = pOnB1;\n" -" c->m_childIndexA = -1;\n" -" c->m_childIndexB = -1;\n" -" GET_NPOINTS(*c) = 1;\n" -" }//if (dstIdx < numPairs)\n" -" }//if (hasCollision)\n" -"}\n" -"__kernel void primitiveContactsKernel( __global int4* pairs, \n" -" __global const BodyData* rigidBodies, \n" -" __global const btCollidableGpu* collidables,\n" -" __global const ConvexPolyhedronCL* convexShapes, \n" -" __global const float4* vertices,\n" -" __global const float4* uniqueEdges,\n" -" __global const btGpuFace* faces,\n" -" __global const int* indices,\n" -" __global struct b3Contact4Data* restrict globalContactsOut,\n" -" counter32_t nGlobalContactsOut,\n" -" int numPairs, int maxContactCapacity)\n" -"{\n" -" int i = get_global_id(0);\n" -" int pairIndex = i;\n" -" \n" -" float4 worldVertsB1[64];\n" -" float4 worldVertsB2[64];\n" -" int capacityWorldVerts = 64; \n" -" float4 localContactsOut[64];\n" -" int localContactCapacity=64;\n" -" \n" -" float minDist = -1e30f;\n" -" float maxDist = 0.02f;\n" -" if (i<numPairs)\n" -" {\n" -" int bodyIndexA = pairs[i].x;\n" -" int bodyIndexB = pairs[i].y;\n" -" \n" -" int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" -" int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" -" \n" -" if (collidables[collidableIndexA].m_shapeType == SHAPE_PLANE &&\n" -" collidables[collidableIndexB].m_shapeType == SHAPE_CONVEX_HULL)\n" -" {\n" -" float4 posB;\n" -" posB = rigidBodies[bodyIndexB].m_pos;\n" -" Quaternion ornB;\n" -" ornB = rigidBodies[bodyIndexB].m_quat;\n" -" int contactIndex = computeContactPlaneConvex(pairIndex, bodyIndexA, bodyIndexB, collidableIndexA, collidableIndexB, \n" -" rigidBodies,collidables,convexShapes,vertices,indices,\n" -" faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity, posB,ornB);\n" -" if (contactIndex>=0)\n" -" pairs[pairIndex].z = contactIndex;\n" -" return;\n" -" }\n" -" if (collidables[collidableIndexA].m_shapeType == SHAPE_CONVEX_HULL &&\n" -" collidables[collidableIndexB].m_shapeType == SHAPE_PLANE)\n" -" {\n" -" float4 posA;\n" -" posA = rigidBodies[bodyIndexA].m_pos;\n" -" Quaternion ornA;\n" -" ornA = rigidBodies[bodyIndexA].m_quat;\n" -" int contactIndex = computeContactPlaneConvex( pairIndex, bodyIndexB,bodyIndexA, collidableIndexB,collidableIndexA, \n" -" rigidBodies,collidables,convexShapes,vertices,indices,\n" -" faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity,posA,ornA);\n" -" if (contactIndex>=0)\n" -" pairs[pairIndex].z = contactIndex;\n" -" return;\n" -" }\n" -" if (collidables[collidableIndexA].m_shapeType == SHAPE_PLANE &&\n" -" collidables[collidableIndexB].m_shapeType == SHAPE_SPHERE)\n" -" {\n" -" computeContactPlaneSphere(pairIndex, bodyIndexA, bodyIndexB, collidableIndexA, collidableIndexB, \n" -" rigidBodies,collidables,faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity);\n" -" return;\n" -" }\n" -" if (collidables[collidableIndexA].m_shapeType == SHAPE_SPHERE &&\n" -" collidables[collidableIndexB].m_shapeType == SHAPE_PLANE)\n" -" {\n" -" computeContactPlaneSphere( pairIndex, bodyIndexB,bodyIndexA, collidableIndexB,collidableIndexA, \n" -" rigidBodies,collidables,\n" -" faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity);\n" -" return;\n" -" }\n" -" \n" -" \n" -" if (collidables[collidableIndexA].m_shapeType == SHAPE_SPHERE &&\n" -" collidables[collidableIndexB].m_shapeType == SHAPE_CONVEX_HULL)\n" -" {\n" -" \n" -" float4 spherePos = rigidBodies[bodyIndexA].m_pos;\n" -" float sphereRadius = collidables[collidableIndexA].m_radius;\n" -" float4 convexPos = rigidBodies[bodyIndexB].m_pos;\n" -" float4 convexOrn = rigidBodies[bodyIndexB].m_quat;\n" -" computeContactSphereConvex(pairIndex, bodyIndexA, bodyIndexB, collidableIndexA, collidableIndexB, \n" -" rigidBodies,collidables,convexShapes,vertices,indices,faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity,\n" -" spherePos,sphereRadius,convexPos,convexOrn);\n" -" return;\n" -" }\n" -" if (collidables[collidableIndexA].m_shapeType == SHAPE_CONVEX_HULL &&\n" -" collidables[collidableIndexB].m_shapeType == SHAPE_SPHERE)\n" -" {\n" -" \n" -" float4 spherePos = rigidBodies[bodyIndexB].m_pos;\n" -" float sphereRadius = collidables[collidableIndexB].m_radius;\n" -" float4 convexPos = rigidBodies[bodyIndexA].m_pos;\n" -" float4 convexOrn = rigidBodies[bodyIndexA].m_quat;\n" -" computeContactSphereConvex(pairIndex, bodyIndexB, bodyIndexA, collidableIndexB, collidableIndexA, \n" -" rigidBodies,collidables,convexShapes,vertices,indices,faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity,\n" -" spherePos,sphereRadius,convexPos,convexOrn);\n" -" return;\n" -" }\n" -" \n" -" \n" -" \n" -" \n" -" \n" -" \n" -" if (collidables[collidableIndexA].m_shapeType == SHAPE_SPHERE &&\n" -" collidables[collidableIndexB].m_shapeType == SHAPE_SPHERE)\n" -" {\n" -" //sphere-sphere\n" -" float radiusA = collidables[collidableIndexA].m_radius;\n" -" float radiusB = collidables[collidableIndexB].m_radius;\n" -" float4 posA = rigidBodies[bodyIndexA].m_pos;\n" -" float4 posB = rigidBodies[bodyIndexB].m_pos;\n" -" float4 diff = posA-posB;\n" -" float len = length(diff);\n" -" \n" -" ///iff distance positive, don't generate a new contact\n" -" if ( len <= (radiusA+radiusB))\n" -" {\n" -" ///distance (negative means penetration)\n" -" float dist = len - (radiusA+radiusB);\n" -" float4 normalOnSurfaceB = make_float4(1.f,0.f,0.f,0.f);\n" -" if (len > 0.00001)\n" -" {\n" -" normalOnSurfaceB = diff / len;\n" -" }\n" -" float4 contactPosB = posB + normalOnSurfaceB*radiusB;\n" -" contactPosB.w = dist;\n" -" \n" -" int dstIdx;\n" -" AppendInc( nGlobalContactsOut, dstIdx );\n" -" \n" -" if (dstIdx < maxContactCapacity)\n" -" {\n" -" __global struct b3Contact4Data* c = &globalContactsOut[dstIdx];\n" -" c->m_worldNormalOnB = normalOnSurfaceB;\n" -" c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff);\n" -" c->m_batchIdx = pairIndex;\n" -" int bodyA = pairs[pairIndex].x;\n" -" int bodyB = pairs[pairIndex].y;\n" -" c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0?-bodyA:bodyA;\n" -" c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0?-bodyB:bodyB;\n" -" c->m_worldPosB[0] = contactPosB;\n" -" c->m_childIndexA = -1;\n" -" c->m_childIndexB = -1;\n" -" GET_NPOINTS(*c) = 1;\n" -" }//if (dstIdx < numPairs)\n" -" }//if ( len <= (radiusA+radiusB))\n" -" return;\n" -" }//SHAPE_SPHERE SHAPE_SPHERE\n" -" }// if (i<numPairs)\n" -"}\n" -"// work-in-progress\n" -"__kernel void processCompoundPairsPrimitivesKernel( __global const int4* gpuCompoundPairs,\n" -" __global const BodyData* rigidBodies, \n" -" __global const btCollidableGpu* collidables,\n" -" __global const ConvexPolyhedronCL* convexShapes, \n" -" __global const float4* vertices,\n" -" __global const float4* uniqueEdges,\n" -" __global const btGpuFace* faces,\n" -" __global const int* indices,\n" -" __global btAabbCL* aabbs,\n" -" __global const btGpuChildShape* gpuChildShapes,\n" -" __global struct b3Contact4Data* restrict globalContactsOut,\n" -" counter32_t nGlobalContactsOut,\n" -" int numCompoundPairs, int maxContactCapacity\n" -" )\n" -"{\n" -" int i = get_global_id(0);\n" -" if (i<numCompoundPairs)\n" -" {\n" -" int bodyIndexA = gpuCompoundPairs[i].x;\n" -" int bodyIndexB = gpuCompoundPairs[i].y;\n" -" int childShapeIndexA = gpuCompoundPairs[i].z;\n" -" int childShapeIndexB = gpuCompoundPairs[i].w;\n" -" \n" -" int collidableIndexA = -1;\n" -" int collidableIndexB = -1;\n" -" \n" -" float4 ornA = rigidBodies[bodyIndexA].m_quat;\n" -" float4 posA = rigidBodies[bodyIndexA].m_pos;\n" -" \n" -" float4 ornB = rigidBodies[bodyIndexB].m_quat;\n" -" float4 posB = rigidBodies[bodyIndexB].m_pos;\n" -" \n" -" if (childShapeIndexA >= 0)\n" -" {\n" -" collidableIndexA = gpuChildShapes[childShapeIndexA].m_shapeIndex;\n" -" float4 childPosA = gpuChildShapes[childShapeIndexA].m_childPosition;\n" -" float4 childOrnA = gpuChildShapes[childShapeIndexA].m_childOrientation;\n" -" float4 newPosA = qtRotate(ornA,childPosA)+posA;\n" -" float4 newOrnA = qtMul(ornA,childOrnA);\n" -" posA = newPosA;\n" -" ornA = newOrnA;\n" -" } else\n" -" {\n" -" collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" -" }\n" -" \n" -" if (childShapeIndexB>=0)\n" -" {\n" -" collidableIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex;\n" -" float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition;\n" -" float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation;\n" -" float4 newPosB = transform(&childPosB,&posB,&ornB);\n" -" float4 newOrnB = qtMul(ornB,childOrnB);\n" -" posB = newPosB;\n" -" ornB = newOrnB;\n" -" } else\n" -" {\n" -" collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; \n" -" }\n" -" \n" -" int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" -" int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" -" \n" -" int shapeTypeA = collidables[collidableIndexA].m_shapeType;\n" -" int shapeTypeB = collidables[collidableIndexB].m_shapeType;\n" -" int pairIndex = i;\n" -" if ((shapeTypeA == SHAPE_PLANE) && (shapeTypeB==SHAPE_CONVEX_HULL))\n" -" {\n" -" computeContactPlaneConvex( pairIndex, bodyIndexA,bodyIndexB, collidableIndexA,collidableIndexB, \n" -" rigidBodies,collidables,convexShapes,vertices,indices,\n" -" faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity,posB,ornB);\n" -" return;\n" -" }\n" -" if ((shapeTypeA == SHAPE_CONVEX_HULL) && (shapeTypeB==SHAPE_PLANE))\n" -" {\n" -" computeContactPlaneConvex( pairIndex, bodyIndexB,bodyIndexA, collidableIndexB,collidableIndexA, \n" -" rigidBodies,collidables,convexShapes,vertices,indices,\n" -" faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity,posA,ornA);\n" -" return;\n" -" }\n" -" if ((shapeTypeA == SHAPE_CONVEX_HULL) && (shapeTypeB == SHAPE_SPHERE))\n" -" {\n" -" float4 spherePos = rigidBodies[bodyIndexB].m_pos;\n" -" float sphereRadius = collidables[collidableIndexB].m_radius;\n" -" float4 convexPos = posA;\n" -" float4 convexOrn = ornA;\n" -" \n" -" computeContactSphereConvex(pairIndex, bodyIndexB, bodyIndexA , collidableIndexB,collidableIndexA, \n" -" rigidBodies,collidables,convexShapes,vertices,indices,faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity,\n" -" spherePos,sphereRadius,convexPos,convexOrn);\n" -" \n" -" return;\n" -" }\n" -" if ((shapeTypeA == SHAPE_SPHERE) && (shapeTypeB == SHAPE_CONVEX_HULL))\n" -" {\n" -" float4 spherePos = rigidBodies[bodyIndexA].m_pos;\n" -" float sphereRadius = collidables[collidableIndexA].m_radius;\n" -" float4 convexPos = posB;\n" -" float4 convexOrn = ornB;\n" -" \n" -" computeContactSphereConvex(pairIndex, bodyIndexA, bodyIndexB, collidableIndexA, collidableIndexB, \n" -" rigidBodies,collidables,convexShapes,vertices,indices,faces, globalContactsOut, nGlobalContactsOut,maxContactCapacity,\n" -" spherePos,sphereRadius,convexPos,convexOrn);\n" -" \n" -" return;\n" -" }\n" -" }// if (i<numCompoundPairs)\n" -"}\n" -"bool pointInTriangle(const float4* vertices, const float4* normal, float4 *p )\n" -"{\n" -" const float4* p1 = &vertices[0];\n" -" const float4* p2 = &vertices[1];\n" -" const float4* p3 = &vertices[2];\n" -" float4 edge1; edge1 = (*p2 - *p1);\n" -" float4 edge2; edge2 = ( *p3 - *p2 );\n" -" float4 edge3; edge3 = ( *p1 - *p3 );\n" -" \n" -" float4 p1_to_p; p1_to_p = ( *p - *p1 );\n" -" float4 p2_to_p; p2_to_p = ( *p - *p2 );\n" -" float4 p3_to_p; p3_to_p = ( *p - *p3 );\n" -" float4 edge1_normal; edge1_normal = ( cross(edge1,*normal));\n" -" float4 edge2_normal; edge2_normal = ( cross(edge2,*normal));\n" -" float4 edge3_normal; edge3_normal = ( cross(edge3,*normal));\n" -" \n" -" \n" -" float r1, r2, r3;\n" -" r1 = dot(edge1_normal,p1_to_p );\n" -" r2 = dot(edge2_normal,p2_to_p );\n" -" r3 = dot(edge3_normal,p3_to_p );\n" -" \n" -" if ( r1 > 0 && r2 > 0 && r3 > 0 )\n" -" return true;\n" -" if ( r1 <= 0 && r2 <= 0 && r3 <= 0 ) \n" -" return true;\n" -" return false;\n" -"}\n" -"float segmentSqrDistance(float4 from, float4 to,float4 p, float4* nearest) \n" -"{\n" -" float4 diff = p - from;\n" -" float4 v = to - from;\n" -" float t = dot(v,diff);\n" -" \n" -" if (t > 0) \n" -" {\n" -" float dotVV = dot(v,v);\n" -" if (t < dotVV) \n" -" {\n" -" t /= dotVV;\n" -" diff -= t*v;\n" -" } else \n" -" {\n" -" t = 1;\n" -" diff -= v;\n" -" }\n" -" } else\n" -" {\n" -" t = 0;\n" -" }\n" -" *nearest = from + t*v;\n" -" return dot(diff,diff); \n" -"}\n" -"void computeContactSphereTriangle(int pairIndex,\n" -" int bodyIndexA, int bodyIndexB,\n" -" int collidableIndexA, int collidableIndexB, \n" -" __global const BodyData* rigidBodies, \n" -" __global const btCollidableGpu* collidables,\n" -" const float4* triangleVertices,\n" -" __global struct b3Contact4Data* restrict globalContactsOut,\n" -" counter32_t nGlobalContactsOut,\n" -" int maxContactCapacity,\n" -" float4 spherePos2,\n" -" float radius,\n" -" float4 pos,\n" -" float4 quat,\n" -" int faceIndex\n" -" )\n" -"{\n" -" float4 invPos;\n" -" float4 invOrn;\n" -" trInverse(pos,quat, &invPos,&invOrn);\n" -" float4 spherePos = transform(&spherePos2,&invPos,&invOrn);\n" -" int numFaces = 3;\n" -" float4 closestPnt = (float4)(0, 0, 0, 0);\n" -" float4 hitNormalWorld = (float4)(0, 0, 0, 0);\n" -" float minDist = -1000000.f;\n" -" bool bCollide = false;\n" -" \n" -" //////////////////////////////////////\n" -" float4 sphereCenter;\n" -" sphereCenter = spherePos;\n" -" const float4* vertices = triangleVertices;\n" -" float contactBreakingThreshold = 0.f;//todo?\n" -" float radiusWithThreshold = radius + contactBreakingThreshold;\n" -" float4 edge10;\n" -" edge10 = vertices[1]-vertices[0];\n" -" edge10.w = 0.f;//is this needed?\n" -" float4 edge20;\n" -" edge20 = vertices[2]-vertices[0];\n" -" edge20.w = 0.f;//is this needed?\n" -" float4 normal = cross3(edge10,edge20);\n" -" normal = normalize(normal);\n" -" float4 p1ToCenter;\n" -" p1ToCenter = sphereCenter - vertices[0];\n" -" \n" -" float distanceFromPlane = dot(p1ToCenter,normal);\n" -" if (distanceFromPlane < 0.f)\n" -" {\n" -" //triangle facing the other way\n" -" distanceFromPlane *= -1.f;\n" -" normal *= -1.f;\n" -" }\n" -" hitNormalWorld = normal;\n" -" bool isInsideContactPlane = distanceFromPlane < radiusWithThreshold;\n" -" \n" -" // Check for contact / intersection\n" -" bool hasContact = false;\n" -" float4 contactPoint;\n" -" if (isInsideContactPlane) \n" -" {\n" -" \n" -" if (pointInTriangle(vertices,&normal, &sphereCenter)) \n" -" {\n" -" // Inside the contact wedge - touches a point on the shell plane\n" -" hasContact = true;\n" -" contactPoint = sphereCenter - normal*distanceFromPlane;\n" -" \n" -" } else {\n" -" // Could be inside one of the contact capsules\n" -" float contactCapsuleRadiusSqr = radiusWithThreshold*radiusWithThreshold;\n" -" float4 nearestOnEdge;\n" -" int numEdges = 3;\n" -" for (int i = 0; i < numEdges; i++) \n" -" {\n" -" float4 pa =vertices[i];\n" -" float4 pb = vertices[(i+1)%3];\n" -" float distanceSqr = segmentSqrDistance(pa,pb,sphereCenter, &nearestOnEdge);\n" -" if (distanceSqr < contactCapsuleRadiusSqr) \n" -" {\n" -" // Yep, we're inside a capsule\n" -" hasContact = true;\n" -" contactPoint = nearestOnEdge;\n" -" \n" -" }\n" -" \n" -" }\n" -" }\n" -" }\n" -" if (hasContact) \n" -" {\n" -" closestPnt = contactPoint;\n" -" float4 contactToCenter = sphereCenter - contactPoint;\n" -" minDist = length(contactToCenter);\n" -" if (minDist>FLT_EPSILON)\n" -" {\n" -" hitNormalWorld = normalize(contactToCenter);//*(1./minDist);\n" -" bCollide = true;\n" -" }\n" -" \n" -" }\n" -" /////////////////////////////////////\n" -" if (bCollide && minDist > -10000)\n" -" {\n" -" \n" -" float4 normalOnSurfaceB1 = qtRotate(quat,-hitNormalWorld);\n" -" float4 pOnB1 = transform(&closestPnt,&pos,&quat);\n" -" float actualDepth = minDist-radius;\n" -" \n" -" if (actualDepth<=0.f)\n" -" {\n" -" pOnB1.w = actualDepth;\n" -" int dstIdx;\n" -" \n" -" float lenSqr = dot3F4(normalOnSurfaceB1,normalOnSurfaceB1);\n" -" if (lenSqr>FLT_EPSILON)\n" -" {\n" -" AppendInc( nGlobalContactsOut, dstIdx );\n" -" \n" -" if (dstIdx < maxContactCapacity)\n" -" {\n" -" __global struct b3Contact4Data* c = &globalContactsOut[dstIdx];\n" -" c->m_worldNormalOnB = -normalOnSurfaceB1;\n" -" c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff);\n" -" c->m_batchIdx = pairIndex;\n" -" c->m_bodyAPtrAndSignBit = rigidBodies[bodyIndexA].m_invMass==0?-bodyIndexA:bodyIndexA;\n" -" c->m_bodyBPtrAndSignBit = rigidBodies[bodyIndexB].m_invMass==0?-bodyIndexB:bodyIndexB;\n" -" c->m_worldPosB[0] = pOnB1;\n" -" c->m_childIndexA = -1;\n" -" c->m_childIndexB = faceIndex;\n" -" GET_NPOINTS(*c) = 1;\n" -" } \n" -" }\n" -" }\n" -" }//if (hasCollision)\n" -"}\n" -"// work-in-progress\n" -"__kernel void findConcaveSphereContactsKernel( __global int4* concavePairs,\n" -" __global const BodyData* rigidBodies,\n" -" __global const btCollidableGpu* collidables,\n" -" __global const ConvexPolyhedronCL* convexShapes, \n" -" __global const float4* vertices,\n" -" __global const float4* uniqueEdges,\n" -" __global const btGpuFace* faces,\n" -" __global const int* indices,\n" -" __global btAabbCL* aabbs,\n" -" __global struct b3Contact4Data* restrict globalContactsOut,\n" -" counter32_t nGlobalContactsOut,\n" -" int numConcavePairs, int maxContactCapacity\n" -" )\n" -"{\n" -" int i = get_global_id(0);\n" -" if (i>=numConcavePairs)\n" -" return;\n" -" int pairIdx = i;\n" -" int bodyIndexA = concavePairs[i].x;\n" -" int bodyIndexB = concavePairs[i].y;\n" -" int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" -" int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" -" int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" -" int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" -" if (collidables[collidableIndexB].m_shapeType==SHAPE_SPHERE)\n" -" {\n" -" int f = concavePairs[i].z;\n" -" btGpuFace face = faces[convexShapes[shapeIndexA].m_faceOffset+f];\n" -" \n" -" float4 verticesA[3];\n" -" for (int i=0;i<3;i++)\n" -" {\n" -" int index = indices[face.m_indexOffset+i];\n" -" float4 vert = vertices[convexShapes[shapeIndexA].m_vertexOffset+index];\n" -" verticesA[i] = vert;\n" -" }\n" -" float4 spherePos = rigidBodies[bodyIndexB].m_pos;\n" -" float sphereRadius = collidables[collidableIndexB].m_radius;\n" -" float4 convexPos = rigidBodies[bodyIndexA].m_pos;\n" -" float4 convexOrn = rigidBodies[bodyIndexA].m_quat;\n" -" computeContactSphereTriangle(i, bodyIndexB, bodyIndexA, collidableIndexB, collidableIndexA, \n" -" rigidBodies,collidables,\n" -" verticesA,\n" -" globalContactsOut, nGlobalContactsOut,maxContactCapacity,\n" -" spherePos,sphereRadius,convexPos,convexOrn, f);\n" -" return;\n" -" }\n" -"}\n" -; diff --git a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/kernels/sat.cl b/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/kernels/sat.cl deleted file mode 100644 index a6565fd6fa..0000000000 --- a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/kernels/sat.cl +++ /dev/null @@ -1,2018 +0,0 @@ -//keep this enum in sync with the CPU version (in btCollidable.h) -//written by Erwin Coumans - - -#define SHAPE_CONVEX_HULL 3 -#define SHAPE_CONCAVE_TRIMESH 5 -#define TRIANGLE_NUM_CONVEX_FACES 5 -#define SHAPE_COMPOUND_OF_CONVEX_HULLS 6 - -#define B3_MAX_STACK_DEPTH 256 - - -typedef unsigned int u32; - -///keep this in sync with btCollidable.h -typedef struct -{ - union { - int m_numChildShapes; - int m_bvhIndex; - }; - union - { - float m_radius; - int m_compoundBvhIndex; - }; - - int m_shapeType; - int m_shapeIndex; - -} btCollidableGpu; - -#define MAX_NUM_PARTS_IN_BITS 10 - -///b3QuantizedBvhNode is a compressed aabb node, 16 bytes. -///Node can be used for leafnode or internal node. Leafnodes can point to 32-bit triangle index (non-negative range). -typedef struct -{ - //12 bytes - unsigned short int m_quantizedAabbMin[3]; - unsigned short int m_quantizedAabbMax[3]; - //4 bytes - int m_escapeIndexOrTriangleIndex; -} b3QuantizedBvhNode; - -typedef struct -{ - float4 m_aabbMin; - float4 m_aabbMax; - float4 m_quantization; - int m_numNodes; - int m_numSubTrees; - int m_nodeOffset; - int m_subTreeOffset; - -} b3BvhInfo; - - -int getTriangleIndex(const b3QuantizedBvhNode* rootNode) -{ - unsigned int x=0; - unsigned int y = (~(x&0))<<(31-MAX_NUM_PARTS_IN_BITS); - // Get only the lower bits where the triangle index is stored - return (rootNode->m_escapeIndexOrTriangleIndex&~(y)); -} - -int getTriangleIndexGlobal(__global const b3QuantizedBvhNode* rootNode) -{ - unsigned int x=0; - unsigned int y = (~(x&0))<<(31-MAX_NUM_PARTS_IN_BITS); - // Get only the lower bits where the triangle index is stored - return (rootNode->m_escapeIndexOrTriangleIndex&~(y)); -} - -int isLeafNode(const b3QuantizedBvhNode* rootNode) -{ - //skipindex is negative (internal node), triangleindex >=0 (leafnode) - return (rootNode->m_escapeIndexOrTriangleIndex >= 0)? 1 : 0; -} - -int isLeafNodeGlobal(__global const b3QuantizedBvhNode* rootNode) -{ - //skipindex is negative (internal node), triangleindex >=0 (leafnode) - return (rootNode->m_escapeIndexOrTriangleIndex >= 0)? 1 : 0; -} - -int getEscapeIndex(const b3QuantizedBvhNode* rootNode) -{ - return -rootNode->m_escapeIndexOrTriangleIndex; -} - -int getEscapeIndexGlobal(__global const b3QuantizedBvhNode* rootNode) -{ - return -rootNode->m_escapeIndexOrTriangleIndex; -} - - -typedef struct -{ - //12 bytes - unsigned short int m_quantizedAabbMin[3]; - unsigned short int m_quantizedAabbMax[3]; - //4 bytes, points to the root of the subtree - int m_rootNodeIndex; - //4 bytes - int m_subtreeSize; - int m_padding[3]; -} b3BvhSubtreeInfo; - - - - - - - -typedef struct -{ - float4 m_childPosition; - float4 m_childOrientation; - int m_shapeIndex; - int m_unused0; - int m_unused1; - int m_unused2; -} btGpuChildShape; - - -typedef struct -{ - float4 m_pos; - float4 m_quat; - float4 m_linVel; - float4 m_angVel; - - u32 m_collidableIdx; - float m_invMass; - float m_restituitionCoeff; - float m_frictionCoeff; -} BodyData; - - -typedef struct -{ - float4 m_localCenter; - float4 m_extents; - float4 mC; - float4 mE; - - float m_radius; - int m_faceOffset; - int m_numFaces; - int m_numVertices; - - int m_vertexOffset; - int m_uniqueEdgesOffset; - int m_numUniqueEdges; - int m_unused; -} ConvexPolyhedronCL; - -typedef struct -{ - union - { - float4 m_min; - float m_minElems[4]; - int m_minIndices[4]; - }; - union - { - float4 m_max; - float m_maxElems[4]; - int m_maxIndices[4]; - }; -} btAabbCL; - -#include "Bullet3Collision/BroadPhaseCollision/shared/b3Aabb.h" -#include "Bullet3Common/shared/b3Int2.h" - - - -typedef struct -{ - float4 m_plane; - int m_indexOffset; - int m_numIndices; -} btGpuFace; - -#define make_float4 (float4) - - -__inline -float4 cross3(float4 a, float4 b) -{ - return cross(a,b); - - -// float4 a1 = make_float4(a.xyz,0.f); -// float4 b1 = make_float4(b.xyz,0.f); - -// return cross(a1,b1); - -//float4 c = make_float4(a.y*b.z - a.z*b.y,a.z*b.x - a.x*b.z,a.x*b.y - a.y*b.x,0.f); - - // float4 c = make_float4(a.y*b.z - a.z*b.y,1.f,a.x*b.y - a.y*b.x,0.f); - - //return c; -} - -__inline -float dot3F4(float4 a, float4 b) -{ - float4 a1 = make_float4(a.xyz,0.f); - float4 b1 = make_float4(b.xyz,0.f); - return dot(a1, b1); -} - -__inline -float4 fastNormalize4(float4 v) -{ - v = make_float4(v.xyz,0.f); - return fast_normalize(v); -} - - -/////////////////////////////////////// -// Quaternion -/////////////////////////////////////// - -typedef float4 Quaternion; - -__inline -Quaternion qtMul(Quaternion a, Quaternion b); - -__inline -Quaternion qtNormalize(Quaternion in); - -__inline -float4 qtRotate(Quaternion q, float4 vec); - -__inline -Quaternion qtInvert(Quaternion q); - - - - -__inline -Quaternion qtMul(Quaternion a, Quaternion b) -{ - Quaternion ans; - ans = cross3( a, b ); - ans += a.w*b+b.w*a; -// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z); - ans.w = a.w*b.w - dot3F4(a, b); - return ans; -} - -__inline -Quaternion qtNormalize(Quaternion in) -{ - return fastNormalize4(in); -// in /= length( in ); -// return in; -} -__inline -float4 qtRotate(Quaternion q, float4 vec) -{ - Quaternion qInv = qtInvert( q ); - float4 vcpy = vec; - vcpy.w = 0.f; - float4 out = qtMul(qtMul(q,vcpy),qInv); - return out; -} - -__inline -Quaternion qtInvert(Quaternion q) -{ - return (Quaternion)(-q.xyz, q.w); -} - -__inline -float4 qtInvRotate(const Quaternion q, float4 vec) -{ - return qtRotate( qtInvert( q ), vec ); -} - -__inline -float4 transform(const float4* p, const float4* translation, const Quaternion* orientation) -{ - return qtRotate( *orientation, *p ) + (*translation); -} - - - -__inline -float4 normalize3(const float4 a) -{ - float4 n = make_float4(a.x, a.y, a.z, 0.f); - return fastNormalize4( n ); -} - -inline void projectLocal(const ConvexPolyhedronCL* hull, const float4 pos, const float4 orn, -const float4* dir, const float4* vertices, float* min, float* max) -{ - min[0] = FLT_MAX; - max[0] = -FLT_MAX; - int numVerts = hull->m_numVertices; - - const float4 localDir = qtInvRotate(orn,*dir); - float offset = dot(pos,*dir); - for(int i=0;i<numVerts;i++) - { - float dp = dot(vertices[hull->m_vertexOffset+i],localDir); - if(dp < min[0]) - min[0] = dp; - if(dp > max[0]) - max[0] = dp; - } - if(min[0]>max[0]) - { - float tmp = min[0]; - min[0] = max[0]; - max[0] = tmp; - } - min[0] += offset; - max[0] += offset; -} - -inline void project(__global const ConvexPolyhedronCL* hull, const float4 pos, const float4 orn, -const float4* dir, __global const float4* vertices, float* min, float* max) -{ - min[0] = FLT_MAX; - max[0] = -FLT_MAX; - int numVerts = hull->m_numVertices; - - const float4 localDir = qtInvRotate(orn,*dir); - float offset = dot(pos,*dir); - for(int i=0;i<numVerts;i++) - { - float dp = dot(vertices[hull->m_vertexOffset+i],localDir); - if(dp < min[0]) - min[0] = dp; - if(dp > max[0]) - max[0] = dp; - } - if(min[0]>max[0]) - { - float tmp = min[0]; - min[0] = max[0]; - max[0] = tmp; - } - min[0] += offset; - max[0] += offset; -} - -inline bool TestSepAxisLocalA(const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, - const float4 posA,const float4 ornA, - const float4 posB,const float4 ornB, - float4* sep_axis, const float4* verticesA, __global const float4* verticesB,float* depth) -{ - float Min0,Max0; - float Min1,Max1; - projectLocal(hullA,posA,ornA,sep_axis,verticesA, &Min0, &Max0); - project(hullB,posB,ornB, sep_axis,verticesB, &Min1, &Max1); - - if(Max0<Min1 || Max1<Min0) - return false; - - float d0 = Max0 - Min1; - float d1 = Max1 - Min0; - *depth = d0<d1 ? d0:d1; - return true; -} - - - - -inline bool IsAlmostZero(const float4 v) -{ - if(fabs(v.x)>1e-6f || fabs(v.y)>1e-6f || fabs(v.z)>1e-6f) - return false; - return true; -} - - - -bool findSeparatingAxisLocalA( const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, - const float4 posA1, - const float4 ornA, - const float4 posB1, - const float4 ornB, - const float4 DeltaC2, - - const float4* verticesA, - const float4* uniqueEdgesA, - const btGpuFace* facesA, - const int* indicesA, - - __global const float4* verticesB, - __global const float4* uniqueEdgesB, - __global const btGpuFace* facesB, - __global const int* indicesB, - float4* sep, - float* dmin) -{ - - - float4 posA = posA1; - posA.w = 0.f; - float4 posB = posB1; - posB.w = 0.f; - int curPlaneTests=0; - { - int numFacesA = hullA->m_numFaces; - // Test normals from hullA - for(int i=0;i<numFacesA;i++) - { - const float4 normal = facesA[hullA->m_faceOffset+i].m_plane; - float4 faceANormalWS = qtRotate(ornA,normal); - if (dot3F4(DeltaC2,faceANormalWS)<0) - faceANormalWS*=-1.f; - curPlaneTests++; - float d; - if(!TestSepAxisLocalA( hullA, hullB, posA,ornA,posB,ornB,&faceANormalWS, verticesA, verticesB,&d)) - return false; - if(d<*dmin) - { - *dmin = d; - *sep = faceANormalWS; - } - } - } - if((dot3F4(-DeltaC2,*sep))>0.0f) - { - *sep = -(*sep); - } - return true; -} - -bool findSeparatingAxisLocalB( __global const ConvexPolyhedronCL* hullA, const ConvexPolyhedronCL* hullB, - const float4 posA1, - const float4 ornA, - const float4 posB1, - const float4 ornB, - const float4 DeltaC2, - __global const float4* verticesA, - __global const float4* uniqueEdgesA, - __global const btGpuFace* facesA, - __global const int* indicesA, - const float4* verticesB, - const float4* uniqueEdgesB, - const btGpuFace* facesB, - const int* indicesB, - float4* sep, - float* dmin) -{ - - - float4 posA = posA1; - posA.w = 0.f; - float4 posB = posB1; - posB.w = 0.f; - int curPlaneTests=0; - { - int numFacesA = hullA->m_numFaces; - // Test normals from hullA - for(int i=0;i<numFacesA;i++) - { - const float4 normal = facesA[hullA->m_faceOffset+i].m_plane; - float4 faceANormalWS = qtRotate(ornA,normal); - if (dot3F4(DeltaC2,faceANormalWS)<0) - faceANormalWS *= -1.f; - curPlaneTests++; - float d; - if(!TestSepAxisLocalA( hullB, hullA, posB,ornB,posA,ornA, &faceANormalWS, verticesB,verticesA, &d)) - return false; - if(d<*dmin) - { - *dmin = d; - *sep = faceANormalWS; - } - } - } - if((dot3F4(-DeltaC2,*sep))>0.0f) - { - *sep = -(*sep); - } - return true; -} - - - -bool findSeparatingAxisEdgeEdgeLocalA( const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, - const float4 posA1, - const float4 ornA, - const float4 posB1, - const float4 ornB, - const float4 DeltaC2, - const float4* verticesA, - const float4* uniqueEdgesA, - const btGpuFace* facesA, - const int* indicesA, - __global const float4* verticesB, - __global const float4* uniqueEdgesB, - __global const btGpuFace* facesB, - __global const int* indicesB, - float4* sep, - float* dmin) -{ - - - float4 posA = posA1; - posA.w = 0.f; - float4 posB = posB1; - posB.w = 0.f; - - int curPlaneTests=0; - - int curEdgeEdge = 0; - // Test edges - for(int e0=0;e0<hullA->m_numUniqueEdges;e0++) - { - const float4 edge0 = uniqueEdgesA[hullA->m_uniqueEdgesOffset+e0]; - float4 edge0World = qtRotate(ornA,edge0); - - for(int e1=0;e1<hullB->m_numUniqueEdges;e1++) - { - const float4 edge1 = uniqueEdgesB[hullB->m_uniqueEdgesOffset+e1]; - float4 edge1World = qtRotate(ornB,edge1); - - - float4 crossje = cross3(edge0World,edge1World); - - curEdgeEdge++; - if(!IsAlmostZero(crossje)) - { - crossje = normalize3(crossje); - if (dot3F4(DeltaC2,crossje)<0) - crossje *= -1.f; - - float dist; - bool result = true; - { - float Min0,Max0; - float Min1,Max1; - projectLocal(hullA,posA,ornA,&crossje,verticesA, &Min0, &Max0); - project(hullB,posB,ornB,&crossje,verticesB, &Min1, &Max1); - - if(Max0<Min1 || Max1<Min0) - result = false; - - float d0 = Max0 - Min1; - float d1 = Max1 - Min0; - dist = d0<d1 ? d0:d1; - result = true; - - } - - - if(dist<*dmin) - { - *dmin = dist; - *sep = crossje; - } - } - } - - } - - - if((dot3F4(-DeltaC2,*sep))>0.0f) - { - *sep = -(*sep); - } - return true; -} - - -inline bool TestSepAxis(__global const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, - const float4 posA,const float4 ornA, - const float4 posB,const float4 ornB, - float4* sep_axis, __global const float4* vertices,float* depth) -{ - float Min0,Max0; - float Min1,Max1; - project(hullA,posA,ornA,sep_axis,vertices, &Min0, &Max0); - project(hullB,posB,ornB, sep_axis,vertices, &Min1, &Max1); - - if(Max0<Min1 || Max1<Min0) - return false; - - float d0 = Max0 - Min1; - float d1 = Max1 - Min0; - *depth = d0<d1 ? d0:d1; - return true; -} - - -bool findSeparatingAxis( __global const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, - const float4 posA1, - const float4 ornA, - const float4 posB1, - const float4 ornB, - const float4 DeltaC2, - __global const float4* vertices, - __global const float4* uniqueEdges, - __global const btGpuFace* faces, - __global const int* indices, - float4* sep, - float* dmin) -{ - - - float4 posA = posA1; - posA.w = 0.f; - float4 posB = posB1; - posB.w = 0.f; - - int curPlaneTests=0; - - { - int numFacesA = hullA->m_numFaces; - // Test normals from hullA - for(int i=0;i<numFacesA;i++) - { - const float4 normal = faces[hullA->m_faceOffset+i].m_plane; - float4 faceANormalWS = qtRotate(ornA,normal); - - if (dot3F4(DeltaC2,faceANormalWS)<0) - faceANormalWS*=-1.f; - - curPlaneTests++; - - float d; - if(!TestSepAxis( hullA, hullB, posA,ornA,posB,ornB,&faceANormalWS, vertices,&d)) - return false; - - if(d<*dmin) - { - *dmin = d; - *sep = faceANormalWS; - } - } - } - - - if((dot3F4(-DeltaC2,*sep))>0.0f) - { - *sep = -(*sep); - } - - return true; -} - - - - -bool findSeparatingAxisUnitSphere( __global const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, - const float4 posA1, - const float4 ornA, - const float4 posB1, - const float4 ornB, - const float4 DeltaC2, - __global const float4* vertices, - __global const float4* unitSphereDirections, - int numUnitSphereDirections, - float4* sep, - float* dmin) -{ - - float4 posA = posA1; - posA.w = 0.f; - float4 posB = posB1; - posB.w = 0.f; - - int curPlaneTests=0; - - int curEdgeEdge = 0; - // Test unit sphere directions - for (int i=0;i<numUnitSphereDirections;i++) - { - - float4 crossje; - crossje = unitSphereDirections[i]; - - if (dot3F4(DeltaC2,crossje)>0) - crossje *= -1.f; - { - float dist; - bool result = true; - float Min0,Max0; - float Min1,Max1; - project(hullA,posA,ornA,&crossje,vertices, &Min0, &Max0); - project(hullB,posB,ornB,&crossje,vertices, &Min1, &Max1); - - if(Max0<Min1 || Max1<Min0) - return false; - - float d0 = Max0 - Min1; - float d1 = Max1 - Min0; - dist = d0<d1 ? d0:d1; - result = true; - - if(dist<*dmin) - { - *dmin = dist; - *sep = crossje; - } - } - } - - - if((dot3F4(-DeltaC2,*sep))>0.0f) - { - *sep = -(*sep); - } - return true; -} - - -bool findSeparatingAxisEdgeEdge( __global const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, - const float4 posA1, - const float4 ornA, - const float4 posB1, - const float4 ornB, - const float4 DeltaC2, - __global const float4* vertices, - __global const float4* uniqueEdges, - __global const btGpuFace* faces, - __global const int* indices, - float4* sep, - float* dmin) -{ - - - float4 posA = posA1; - posA.w = 0.f; - float4 posB = posB1; - posB.w = 0.f; - - int curPlaneTests=0; - - int curEdgeEdge = 0; - // Test edges - for(int e0=0;e0<hullA->m_numUniqueEdges;e0++) - { - const float4 edge0 = uniqueEdges[hullA->m_uniqueEdgesOffset+e0]; - float4 edge0World = qtRotate(ornA,edge0); - - for(int e1=0;e1<hullB->m_numUniqueEdges;e1++) - { - const float4 edge1 = uniqueEdges[hullB->m_uniqueEdgesOffset+e1]; - float4 edge1World = qtRotate(ornB,edge1); - - - float4 crossje = cross3(edge0World,edge1World); - - curEdgeEdge++; - if(!IsAlmostZero(crossje)) - { - crossje = normalize3(crossje); - if (dot3F4(DeltaC2,crossje)<0) - crossje*=-1.f; - - float dist; - bool result = true; - { - float Min0,Max0; - float Min1,Max1; - project(hullA,posA,ornA,&crossje,vertices, &Min0, &Max0); - project(hullB,posB,ornB,&crossje,vertices, &Min1, &Max1); - - if(Max0<Min1 || Max1<Min0) - return false; - - float d0 = Max0 - Min1; - float d1 = Max1 - Min0; - dist = d0<d1 ? d0:d1; - result = true; - - } - - - if(dist<*dmin) - { - *dmin = dist; - *sep = crossje; - } - } - } - - } - - - if((dot3F4(-DeltaC2,*sep))>0.0f) - { - *sep = -(*sep); - } - return true; -} - - -// work-in-progress -__kernel void processCompoundPairsKernel( __global const int4* gpuCompoundPairs, - __global const BodyData* rigidBodies, - __global const btCollidableGpu* collidables, - __global const ConvexPolyhedronCL* convexShapes, - __global const float4* vertices, - __global const float4* uniqueEdges, - __global const btGpuFace* faces, - __global const int* indices, - __global btAabbCL* aabbs, - __global const btGpuChildShape* gpuChildShapes, - __global volatile float4* gpuCompoundSepNormalsOut, - __global volatile int* gpuHasCompoundSepNormalsOut, - int numCompoundPairs - ) -{ - - int i = get_global_id(0); - if (i<numCompoundPairs) - { - int bodyIndexA = gpuCompoundPairs[i].x; - int bodyIndexB = gpuCompoundPairs[i].y; - - int childShapeIndexA = gpuCompoundPairs[i].z; - int childShapeIndexB = gpuCompoundPairs[i].w; - - int collidableIndexA = -1; - int collidableIndexB = -1; - - float4 ornA = rigidBodies[bodyIndexA].m_quat; - float4 posA = rigidBodies[bodyIndexA].m_pos; - - float4 ornB = rigidBodies[bodyIndexB].m_quat; - float4 posB = rigidBodies[bodyIndexB].m_pos; - - if (childShapeIndexA >= 0) - { - collidableIndexA = gpuChildShapes[childShapeIndexA].m_shapeIndex; - float4 childPosA = gpuChildShapes[childShapeIndexA].m_childPosition; - float4 childOrnA = gpuChildShapes[childShapeIndexA].m_childOrientation; - float4 newPosA = qtRotate(ornA,childPosA)+posA; - float4 newOrnA = qtMul(ornA,childOrnA); - posA = newPosA; - ornA = newOrnA; - } else - { - collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; - } - - if (childShapeIndexB>=0) - { - collidableIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex; - float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition; - float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation; - float4 newPosB = transform(&childPosB,&posB,&ornB); - float4 newOrnB = qtMul(ornB,childOrnB); - posB = newPosB; - ornB = newOrnB; - } else - { - collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; - } - - gpuHasCompoundSepNormalsOut[i] = 0; - - int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; - int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; - - int shapeTypeA = collidables[collidableIndexA].m_shapeType; - int shapeTypeB = collidables[collidableIndexB].m_shapeType; - - - if ((shapeTypeA != SHAPE_CONVEX_HULL) || (shapeTypeB != SHAPE_CONVEX_HULL)) - { - return; - } - - int hasSeparatingAxis = 5; - - int numFacesA = convexShapes[shapeIndexA].m_numFaces; - float dmin = FLT_MAX; - posA.w = 0.f; - posB.w = 0.f; - float4 c0local = convexShapes[shapeIndexA].m_localCenter; - float4 c0 = transform(&c0local, &posA, &ornA); - float4 c1local = convexShapes[shapeIndexB].m_localCenter; - float4 c1 = transform(&c1local,&posB,&ornB); - const float4 DeltaC2 = c0 - c1; - float4 sepNormal = make_float4(1,0,0,0); - bool sepA = findSeparatingAxis( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA,posB,ornB,DeltaC2,vertices,uniqueEdges,faces,indices,&sepNormal,&dmin); - hasSeparatingAxis = 4; - if (!sepA) - { - hasSeparatingAxis = 0; - } else - { - bool sepB = findSeparatingAxis( &convexShapes[shapeIndexB],&convexShapes[shapeIndexA],posB,ornB,posA,ornA,DeltaC2,vertices,uniqueEdges,faces,indices,&sepNormal,&dmin); - - if (!sepB) - { - hasSeparatingAxis = 0; - } else//(!sepB) - { - bool sepEE = findSeparatingAxisEdgeEdge( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA,posB,ornB,DeltaC2,vertices,uniqueEdges,faces,indices,&sepNormal,&dmin); - if (sepEE) - { - gpuCompoundSepNormalsOut[i] = sepNormal;//fastNormalize4(sepNormal); - gpuHasCompoundSepNormalsOut[i] = 1; - }//sepEE - }//(!sepB) - }//(!sepA) - - - } - -} - - -inline b3Float4 MyUnQuantize(const unsigned short* vecIn, b3Float4 quantization, b3Float4 bvhAabbMin) -{ - b3Float4 vecOut; - vecOut = b3MakeFloat4( - (float)(vecIn[0]) / (quantization.x), - (float)(vecIn[1]) / (quantization.y), - (float)(vecIn[2]) / (quantization.z), - 0.f); - - vecOut += bvhAabbMin; - return vecOut; -} - -inline b3Float4 MyUnQuantizeGlobal(__global const unsigned short* vecIn, b3Float4 quantization, b3Float4 bvhAabbMin) -{ - b3Float4 vecOut; - vecOut = b3MakeFloat4( - (float)(vecIn[0]) / (quantization.x), - (float)(vecIn[1]) / (quantization.y), - (float)(vecIn[2]) / (quantization.z), - 0.f); - - vecOut += bvhAabbMin; - return vecOut; -} - - -// work-in-progress -__kernel void findCompoundPairsKernel( __global const int4* pairs, - __global const BodyData* rigidBodies, - __global const btCollidableGpu* collidables, - __global const ConvexPolyhedronCL* convexShapes, - __global const float4* vertices, - __global const float4* uniqueEdges, - __global const btGpuFace* faces, - __global const int* indices, - __global b3Aabb_t* aabbLocalSpace, - __global const btGpuChildShape* gpuChildShapes, - __global volatile int4* gpuCompoundPairsOut, - __global volatile int* numCompoundPairsOut, - __global const b3BvhSubtreeInfo* subtrees, - __global const b3QuantizedBvhNode* quantizedNodes, - __global const b3BvhInfo* bvhInfos, - int numPairs, - int maxNumCompoundPairsCapacity - ) -{ - - int i = get_global_id(0); - - if (i<numPairs) - { - int bodyIndexA = pairs[i].x; - int bodyIndexB = pairs[i].y; - - int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; - int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; - - int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; - int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; - - - //once the broadphase avoids static-static pairs, we can remove this test - if ((rigidBodies[bodyIndexA].m_invMass==0) &&(rigidBodies[bodyIndexB].m_invMass==0)) - { - return; - } - - if ((collidables[collidableIndexA].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) &&(collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)) - { - int bvhA = collidables[collidableIndexA].m_compoundBvhIndex; - int bvhB = collidables[collidableIndexB].m_compoundBvhIndex; - int numSubTreesA = bvhInfos[bvhA].m_numSubTrees; - int subTreesOffsetA = bvhInfos[bvhA].m_subTreeOffset; - int subTreesOffsetB = bvhInfos[bvhB].m_subTreeOffset; - - - int numSubTreesB = bvhInfos[bvhB].m_numSubTrees; - - float4 posA = rigidBodies[bodyIndexA].m_pos; - b3Quat ornA = rigidBodies[bodyIndexA].m_quat; - - b3Quat ornB = rigidBodies[bodyIndexB].m_quat; - float4 posB = rigidBodies[bodyIndexB].m_pos; - - - for (int p=0;p<numSubTreesA;p++) - { - b3BvhSubtreeInfo subtreeA = subtrees[subTreesOffsetA+p]; - //bvhInfos[bvhA].m_quantization - b3Float4 treeAminLocal = MyUnQuantize(subtreeA.m_quantizedAabbMin,bvhInfos[bvhA].m_quantization,bvhInfos[bvhA].m_aabbMin); - b3Float4 treeAmaxLocal = MyUnQuantize(subtreeA.m_quantizedAabbMax,bvhInfos[bvhA].m_quantization,bvhInfos[bvhA].m_aabbMin); - - b3Float4 aabbAMinOut,aabbAMaxOut; - float margin=0.f; - b3TransformAabb2(treeAminLocal,treeAmaxLocal, margin,posA,ornA,&aabbAMinOut,&aabbAMaxOut); - - for (int q=0;q<numSubTreesB;q++) - { - b3BvhSubtreeInfo subtreeB = subtrees[subTreesOffsetB+q]; - - b3Float4 treeBminLocal = MyUnQuantize(subtreeB.m_quantizedAabbMin,bvhInfos[bvhB].m_quantization,bvhInfos[bvhB].m_aabbMin); - b3Float4 treeBmaxLocal = MyUnQuantize(subtreeB.m_quantizedAabbMax,bvhInfos[bvhB].m_quantization,bvhInfos[bvhB].m_aabbMin); - - b3Float4 aabbBMinOut,aabbBMaxOut; - float margin=0.f; - b3TransformAabb2(treeBminLocal,treeBmaxLocal, margin,posB,ornB,&aabbBMinOut,&aabbBMaxOut); - - - - bool aabbOverlap = b3TestAabbAgainstAabb(aabbAMinOut,aabbAMaxOut,aabbBMinOut,aabbBMaxOut); - if (aabbOverlap) - { - - int startNodeIndexA = subtreeA.m_rootNodeIndex+bvhInfos[bvhA].m_nodeOffset; - int endNodeIndexA = startNodeIndexA+subtreeA.m_subtreeSize; - - int startNodeIndexB = subtreeB.m_rootNodeIndex+bvhInfos[bvhB].m_nodeOffset; - int endNodeIndexB = startNodeIndexB+subtreeB.m_subtreeSize; - - - b3Int2 nodeStack[B3_MAX_STACK_DEPTH]; - b3Int2 node0; - node0.x = startNodeIndexA; - node0.y = startNodeIndexB; - int maxStackDepth = B3_MAX_STACK_DEPTH; - int depth=0; - nodeStack[depth++]=node0; - - do - { - b3Int2 node = nodeStack[--depth]; - - b3Float4 aMinLocal = MyUnQuantizeGlobal(quantizedNodes[node.x].m_quantizedAabbMin,bvhInfos[bvhA].m_quantization,bvhInfos[bvhA].m_aabbMin); - b3Float4 aMaxLocal = MyUnQuantizeGlobal(quantizedNodes[node.x].m_quantizedAabbMax,bvhInfos[bvhA].m_quantization,bvhInfos[bvhA].m_aabbMin); - - b3Float4 bMinLocal = MyUnQuantizeGlobal(quantizedNodes[node.y].m_quantizedAabbMin,bvhInfos[bvhB].m_quantization,bvhInfos[bvhB].m_aabbMin); - b3Float4 bMaxLocal = MyUnQuantizeGlobal(quantizedNodes[node.y].m_quantizedAabbMax,bvhInfos[bvhB].m_quantization,bvhInfos[bvhB].m_aabbMin); - - float margin=0.f; - b3Float4 aabbAMinOut,aabbAMaxOut; - b3TransformAabb2(aMinLocal,aMaxLocal, margin,posA,ornA,&aabbAMinOut,&aabbAMaxOut); - - b3Float4 aabbBMinOut,aabbBMaxOut; - b3TransformAabb2(bMinLocal,bMaxLocal, margin,posB,ornB,&aabbBMinOut,&aabbBMaxOut); - - - bool nodeOverlap = b3TestAabbAgainstAabb(aabbAMinOut,aabbAMaxOut,aabbBMinOut,aabbBMaxOut); - if (nodeOverlap) - { - bool isLeafA = isLeafNodeGlobal(&quantizedNodes[node.x]); - bool isLeafB = isLeafNodeGlobal(&quantizedNodes[node.y]); - bool isInternalA = !isLeafA; - bool isInternalB = !isLeafB; - - //fail, even though it might hit two leaf nodes - if (depth+4>maxStackDepth && !(isLeafA && isLeafB)) - { - //printf("Error: traversal exceeded maxStackDepth"); - continue; - } - - if(isInternalA) - { - int nodeAleftChild = node.x+1; - bool isNodeALeftChildLeaf = isLeafNodeGlobal(&quantizedNodes[node.x+1]); - int nodeArightChild = isNodeALeftChildLeaf? node.x+2 : node.x+1 + getEscapeIndexGlobal(&quantizedNodes[node.x+1]); - - if(isInternalB) - { - int nodeBleftChild = node.y+1; - bool isNodeBLeftChildLeaf = isLeafNodeGlobal(&quantizedNodes[node.y+1]); - int nodeBrightChild = isNodeBLeftChildLeaf? node.y+2 : node.y+1 + getEscapeIndexGlobal(&quantizedNodes[node.y+1]); - - nodeStack[depth++] = b3MakeInt2(nodeAleftChild, nodeBleftChild); - nodeStack[depth++] = b3MakeInt2(nodeArightChild, nodeBleftChild); - nodeStack[depth++] = b3MakeInt2(nodeAleftChild, nodeBrightChild); - nodeStack[depth++] = b3MakeInt2(nodeArightChild, nodeBrightChild); - } - else - { - nodeStack[depth++] = b3MakeInt2(nodeAleftChild,node.y); - nodeStack[depth++] = b3MakeInt2(nodeArightChild,node.y); - } - } - else - { - if(isInternalB) - { - int nodeBleftChild = node.y+1; - bool isNodeBLeftChildLeaf = isLeafNodeGlobal(&quantizedNodes[node.y+1]); - int nodeBrightChild = isNodeBLeftChildLeaf? node.y+2 : node.y+1 + getEscapeIndexGlobal(&quantizedNodes[node.y+1]); - nodeStack[depth++] = b3MakeInt2(node.x,nodeBleftChild); - nodeStack[depth++] = b3MakeInt2(node.x,nodeBrightChild); - } - else - { - int compoundPairIdx = atomic_inc(numCompoundPairsOut); - if (compoundPairIdx<maxNumCompoundPairsCapacity) - { - int childShapeIndexA = getTriangleIndexGlobal(&quantizedNodes[node.x]); - int childShapeIndexB = getTriangleIndexGlobal(&quantizedNodes[node.y]); - gpuCompoundPairsOut[compoundPairIdx] = (int4)(bodyIndexA,bodyIndexB,childShapeIndexA,childShapeIndexB); - } - } - } - } - } while (depth); - } - } - } - - return; - } - - - - - - if ((collidables[collidableIndexA].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) ||(collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)) - { - - if (collidables[collidableIndexA].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) - { - - int numChildrenA = collidables[collidableIndexA].m_numChildShapes; - for (int c=0;c<numChildrenA;c++) - { - int childShapeIndexA = collidables[collidableIndexA].m_shapeIndex+c; - int childColIndexA = gpuChildShapes[childShapeIndexA].m_shapeIndex; - - float4 posA = rigidBodies[bodyIndexA].m_pos; - float4 ornA = rigidBodies[bodyIndexA].m_quat; - float4 childPosA = gpuChildShapes[childShapeIndexA].m_childPosition; - float4 childOrnA = gpuChildShapes[childShapeIndexA].m_childOrientation; - float4 newPosA = qtRotate(ornA,childPosA)+posA; - float4 newOrnA = qtMul(ornA,childOrnA); - - int shapeIndexA = collidables[childColIndexA].m_shapeIndex; - b3Aabb_t aabbAlocal = aabbLocalSpace[shapeIndexA]; - float margin = 0.f; - - b3Float4 aabbAMinWS; - b3Float4 aabbAMaxWS; - - b3TransformAabb2(aabbAlocal.m_minVec,aabbAlocal.m_maxVec,margin, - newPosA, - newOrnA, - &aabbAMinWS,&aabbAMaxWS); - - - if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) - { - int numChildrenB = collidables[collidableIndexB].m_numChildShapes; - for (int b=0;b<numChildrenB;b++) - { - int childShapeIndexB = collidables[collidableIndexB].m_shapeIndex+b; - int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex; - float4 ornB = rigidBodies[bodyIndexB].m_quat; - float4 posB = rigidBodies[bodyIndexB].m_pos; - float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition; - float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation; - float4 newPosB = transform(&childPosB,&posB,&ornB); - float4 newOrnB = qtMul(ornB,childOrnB); - - int shapeIndexB = collidables[childColIndexB].m_shapeIndex; - b3Aabb_t aabbBlocal = aabbLocalSpace[shapeIndexB]; - - b3Float4 aabbBMinWS; - b3Float4 aabbBMaxWS; - - b3TransformAabb2(aabbBlocal.m_minVec,aabbBlocal.m_maxVec,margin, - newPosB, - newOrnB, - &aabbBMinWS,&aabbBMaxWS); - - - - bool aabbOverlap = b3TestAabbAgainstAabb(aabbAMinWS,aabbAMaxWS,aabbBMinWS,aabbBMaxWS); - if (aabbOverlap) - { - int numFacesA = convexShapes[shapeIndexA].m_numFaces; - float dmin = FLT_MAX; - float4 posA = newPosA; - posA.w = 0.f; - float4 posB = newPosB; - posB.w = 0.f; - float4 c0local = convexShapes[shapeIndexA].m_localCenter; - float4 ornA = newOrnA; - float4 c0 = transform(&c0local, &posA, &ornA); - float4 c1local = convexShapes[shapeIndexB].m_localCenter; - float4 ornB =newOrnB; - float4 c1 = transform(&c1local,&posB,&ornB); - const float4 DeltaC2 = c0 - c1; - - {// - int compoundPairIdx = atomic_inc(numCompoundPairsOut); - if (compoundPairIdx<maxNumCompoundPairsCapacity) - { - gpuCompoundPairsOut[compoundPairIdx] = (int4)(bodyIndexA,bodyIndexB,childShapeIndexA,childShapeIndexB); - } - }// - }//fi(1) - } //for (int b=0 - }//if (collidables[collidableIndexB]. - else//if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) - { - if (1) - { - int numFacesA = convexShapes[shapeIndexA].m_numFaces; - float dmin = FLT_MAX; - float4 posA = newPosA; - posA.w = 0.f; - float4 posB = rigidBodies[bodyIndexB].m_pos; - posB.w = 0.f; - float4 c0local = convexShapes[shapeIndexA].m_localCenter; - float4 ornA = newOrnA; - float4 c0 = transform(&c0local, &posA, &ornA); - float4 c1local = convexShapes[shapeIndexB].m_localCenter; - float4 ornB = rigidBodies[bodyIndexB].m_quat; - float4 c1 = transform(&c1local,&posB,&ornB); - const float4 DeltaC2 = c0 - c1; - - { - int compoundPairIdx = atomic_inc(numCompoundPairsOut); - if (compoundPairIdx<maxNumCompoundPairsCapacity) - { - gpuCompoundPairsOut[compoundPairIdx] = (int4)(bodyIndexA,bodyIndexB,childShapeIndexA,-1); - }//if (compoundPairIdx<maxNumCompoundPairsCapacity) - }// - }//fi (1) - }//if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) - }//for (int b=0;b<numChildrenB;b++) - return; - }//if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) - if ((collidables[collidableIndexA].m_shapeType!=SHAPE_CONCAVE_TRIMESH) - && (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)) - { - int numChildrenB = collidables[collidableIndexB].m_numChildShapes; - for (int b=0;b<numChildrenB;b++) - { - int childShapeIndexB = collidables[collidableIndexB].m_shapeIndex+b; - int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex; - float4 ornB = rigidBodies[bodyIndexB].m_quat; - float4 posB = rigidBodies[bodyIndexB].m_pos; - float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition; - float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation; - float4 newPosB = qtRotate(ornB,childPosB)+posB; - float4 newOrnB = qtMul(ornB,childOrnB); - - int shapeIndexB = collidables[childColIndexB].m_shapeIndex; - - - ////////////////////////////////////// - - if (1) - { - int numFacesA = convexShapes[shapeIndexA].m_numFaces; - float dmin = FLT_MAX; - float4 posA = rigidBodies[bodyIndexA].m_pos; - posA.w = 0.f; - float4 posB = newPosB; - posB.w = 0.f; - float4 c0local = convexShapes[shapeIndexA].m_localCenter; - float4 ornA = rigidBodies[bodyIndexA].m_quat; - float4 c0 = transform(&c0local, &posA, &ornA); - float4 c1local = convexShapes[shapeIndexB].m_localCenter; - float4 ornB =newOrnB; - float4 c1 = transform(&c1local,&posB,&ornB); - const float4 DeltaC2 = c0 - c1; - {// - int compoundPairIdx = atomic_inc(numCompoundPairsOut); - if (compoundPairIdx<maxNumCompoundPairsCapacity) - { - gpuCompoundPairsOut[compoundPairIdx] = (int4)(bodyIndexA,bodyIndexB,-1,childShapeIndexB); - }//fi (compoundPairIdx<maxNumCompoundPairsCapacity) - }// - }//fi (1) - }//for (int b=0;b<numChildrenB;b++) - return; - }//if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) - return; - }//fi ((collidables[collidableIndexA].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) ||(collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)) - }//i<numPairs -} - -// work-in-progress -__kernel void findSeparatingAxisKernel( __global const int4* pairs, - __global const BodyData* rigidBodies, - __global const btCollidableGpu* collidables, - __global const ConvexPolyhedronCL* convexShapes, - __global const float4* vertices, - __global const float4* uniqueEdges, - __global const btGpuFace* faces, - __global const int* indices, - __global btAabbCL* aabbs, - __global volatile float4* separatingNormals, - __global volatile int* hasSeparatingAxis, - int numPairs - ) -{ - - int i = get_global_id(0); - - if (i<numPairs) - { - - - int bodyIndexA = pairs[i].x; - int bodyIndexB = pairs[i].y; - - int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; - int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; - - int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; - int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; - - - //once the broadphase avoids static-static pairs, we can remove this test - if ((rigidBodies[bodyIndexA].m_invMass==0) &&(rigidBodies[bodyIndexB].m_invMass==0)) - { - hasSeparatingAxis[i] = 0; - return; - } - - - if ((collidables[collidableIndexA].m_shapeType!=SHAPE_CONVEX_HULL) ||(collidables[collidableIndexB].m_shapeType!=SHAPE_CONVEX_HULL)) - { - hasSeparatingAxis[i] = 0; - return; - } - - if ((collidables[collidableIndexA].m_shapeType==SHAPE_CONCAVE_TRIMESH)) - { - hasSeparatingAxis[i] = 0; - return; - } - - int numFacesA = convexShapes[shapeIndexA].m_numFaces; - - float dmin = FLT_MAX; - - float4 posA = rigidBodies[bodyIndexA].m_pos; - posA.w = 0.f; - float4 posB = rigidBodies[bodyIndexB].m_pos; - posB.w = 0.f; - float4 c0local = convexShapes[shapeIndexA].m_localCenter; - float4 ornA = rigidBodies[bodyIndexA].m_quat; - float4 c0 = transform(&c0local, &posA, &ornA); - float4 c1local = convexShapes[shapeIndexB].m_localCenter; - float4 ornB =rigidBodies[bodyIndexB].m_quat; - float4 c1 = transform(&c1local,&posB,&ornB); - const float4 DeltaC2 = c0 - c1; - float4 sepNormal; - - bool sepA = findSeparatingAxis( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA, - posB,ornB, - DeltaC2, - vertices,uniqueEdges,faces, - indices,&sepNormal,&dmin); - hasSeparatingAxis[i] = 4; - if (!sepA) - { - hasSeparatingAxis[i] = 0; - } else - { - bool sepB = findSeparatingAxis( &convexShapes[shapeIndexB],&convexShapes[shapeIndexA],posB,ornB, - posA,ornA, - DeltaC2, - vertices,uniqueEdges,faces, - indices,&sepNormal,&dmin); - - if (!sepB) - { - hasSeparatingAxis[i] = 0; - } else - { - bool sepEE = findSeparatingAxisEdgeEdge( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA, - posB,ornB, - DeltaC2, - vertices,uniqueEdges,faces, - indices,&sepNormal,&dmin); - if (!sepEE) - { - hasSeparatingAxis[i] = 0; - } else - { - hasSeparatingAxis[i] = 1; - separatingNormals[i] = sepNormal; - } - } - } - - } - -} - - -__kernel void findSeparatingAxisVertexFaceKernel( __global const int4* pairs, - __global const BodyData* rigidBodies, - __global const btCollidableGpu* collidables, - __global const ConvexPolyhedronCL* convexShapes, - __global const float4* vertices, - __global const float4* uniqueEdges, - __global const btGpuFace* faces, - __global const int* indices, - __global btAabbCL* aabbs, - __global volatile float4* separatingNormals, - __global volatile int* hasSeparatingAxis, - __global float* dmins, - int numPairs - ) -{ - - int i = get_global_id(0); - - if (i<numPairs) - { - - - int bodyIndexA = pairs[i].x; - int bodyIndexB = pairs[i].y; - - int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; - int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; - - int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; - int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; - - hasSeparatingAxis[i] = 0; - - //once the broadphase avoids static-static pairs, we can remove this test - if ((rigidBodies[bodyIndexA].m_invMass==0) &&(rigidBodies[bodyIndexB].m_invMass==0)) - { - return; - } - - - if ((collidables[collidableIndexA].m_shapeType!=SHAPE_CONVEX_HULL) ||(collidables[collidableIndexB].m_shapeType!=SHAPE_CONVEX_HULL)) - { - return; - } - - - int numFacesA = convexShapes[shapeIndexA].m_numFaces; - - float dmin = FLT_MAX; - - dmins[i] = dmin; - - float4 posA = rigidBodies[bodyIndexA].m_pos; - posA.w = 0.f; - float4 posB = rigidBodies[bodyIndexB].m_pos; - posB.w = 0.f; - float4 c0local = convexShapes[shapeIndexA].m_localCenter; - float4 ornA = rigidBodies[bodyIndexA].m_quat; - float4 c0 = transform(&c0local, &posA, &ornA); - float4 c1local = convexShapes[shapeIndexB].m_localCenter; - float4 ornB =rigidBodies[bodyIndexB].m_quat; - float4 c1 = transform(&c1local,&posB,&ornB); - const float4 DeltaC2 = c0 - c1; - float4 sepNormal; - - bool sepA = findSeparatingAxis( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA, - posB,ornB, - DeltaC2, - vertices,uniqueEdges,faces, - indices,&sepNormal,&dmin); - hasSeparatingAxis[i] = 4; - if (!sepA) - { - hasSeparatingAxis[i] = 0; - } else - { - bool sepB = findSeparatingAxis( &convexShapes[shapeIndexB],&convexShapes[shapeIndexA],posB,ornB, - posA,ornA, - DeltaC2, - vertices,uniqueEdges,faces, - indices,&sepNormal,&dmin); - - if (sepB) - { - dmins[i] = dmin; - hasSeparatingAxis[i] = 1; - separatingNormals[i] = sepNormal; - } - } - - } - -} - - -__kernel void findSeparatingAxisEdgeEdgeKernel( __global const int4* pairs, - __global const BodyData* rigidBodies, - __global const btCollidableGpu* collidables, - __global const ConvexPolyhedronCL* convexShapes, - __global const float4* vertices, - __global const float4* uniqueEdges, - __global const btGpuFace* faces, - __global const int* indices, - __global btAabbCL* aabbs, - __global float4* separatingNormals, - __global int* hasSeparatingAxis, - __global float* dmins, - __global const float4* unitSphereDirections, - int numUnitSphereDirections, - int numPairs - ) -{ - - int i = get_global_id(0); - - if (i<numPairs) - { - - if (hasSeparatingAxis[i]) - { - - int bodyIndexA = pairs[i].x; - int bodyIndexB = pairs[i].y; - - int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; - int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; - - int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; - int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; - - - int numFacesA = convexShapes[shapeIndexA].m_numFaces; - - float dmin = dmins[i]; - - float4 posA = rigidBodies[bodyIndexA].m_pos; - posA.w = 0.f; - float4 posB = rigidBodies[bodyIndexB].m_pos; - posB.w = 0.f; - float4 c0local = convexShapes[shapeIndexA].m_localCenter; - float4 ornA = rigidBodies[bodyIndexA].m_quat; - float4 c0 = transform(&c0local, &posA, &ornA); - float4 c1local = convexShapes[shapeIndexB].m_localCenter; - float4 ornB =rigidBodies[bodyIndexB].m_quat; - float4 c1 = transform(&c1local,&posB,&ornB); - const float4 DeltaC2 = c0 - c1; - float4 sepNormal = separatingNormals[i]; - - - - bool sepEE = false; - int numEdgeEdgeDirections = convexShapes[shapeIndexA].m_numUniqueEdges*convexShapes[shapeIndexB].m_numUniqueEdges; - if (numEdgeEdgeDirections<=numUnitSphereDirections) - { - sepEE = findSeparatingAxisEdgeEdge( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA, - posB,ornB, - DeltaC2, - vertices,uniqueEdges,faces, - indices,&sepNormal,&dmin); - - if (!sepEE) - { - hasSeparatingAxis[i] = 0; - } else - { - hasSeparatingAxis[i] = 1; - separatingNormals[i] = sepNormal; - } - } - /* - ///else case is a separate kernel, to make Mac OSX OpenCL compiler happy - else - { - sepEE = findSeparatingAxisUnitSphere(&convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA, - posB,ornB, - DeltaC2, - vertices,unitSphereDirections,numUnitSphereDirections, - &sepNormal,&dmin); - if (!sepEE) - { - hasSeparatingAxis[i] = 0; - } else - { - hasSeparatingAxis[i] = 1; - separatingNormals[i] = sepNormal; - } - } - */ - } //if (hasSeparatingAxis[i]) - }//(i<numPairs) -} - - - - - -inline int findClippingFaces(const float4 separatingNormal, - const ConvexPolyhedronCL* hullA, - __global const ConvexPolyhedronCL* hullB, - const float4 posA, const Quaternion ornA,const float4 posB, const Quaternion ornB, - __global float4* worldVertsA1, - __global float4* worldNormalsA1, - __global float4* worldVertsB1, - int capacityWorldVerts, - const float minDist, float maxDist, - const float4* verticesA, - const btGpuFace* facesA, - const int* indicesA, - __global const float4* verticesB, - __global const btGpuFace* facesB, - __global const int* indicesB, - __global int4* clippingFaces, int pairIndex) -{ - int numContactsOut = 0; - int numWorldVertsB1= 0; - - - int closestFaceB=0; - float dmax = -FLT_MAX; - - { - for(int face=0;face<hullB->m_numFaces;face++) - { - const float4 Normal = make_float4(facesB[hullB->m_faceOffset+face].m_plane.x, - facesB[hullB->m_faceOffset+face].m_plane.y, facesB[hullB->m_faceOffset+face].m_plane.z,0.f); - const float4 WorldNormal = qtRotate(ornB, Normal); - float d = dot3F4(WorldNormal,separatingNormal); - if (d > dmax) - { - dmax = d; - closestFaceB = face; - } - } - } - - { - const btGpuFace polyB = facesB[hullB->m_faceOffset+closestFaceB]; - int numVertices = polyB.m_numIndices; - if (numVertices>capacityWorldVerts) - numVertices = capacityWorldVerts; - - for(int e0=0;e0<numVertices;e0++) - { - if (e0<capacityWorldVerts) - { - const float4 b = verticesB[hullB->m_vertexOffset+indicesB[polyB.m_indexOffset+e0]]; - worldVertsB1[pairIndex*capacityWorldVerts+numWorldVertsB1++] = transform(&b,&posB,&ornB); - } - } - } - - int closestFaceA=0; - { - float dmin = FLT_MAX; - for(int face=0;face<hullA->m_numFaces;face++) - { - const float4 Normal = make_float4( - facesA[hullA->m_faceOffset+face].m_plane.x, - facesA[hullA->m_faceOffset+face].m_plane.y, - facesA[hullA->m_faceOffset+face].m_plane.z, - 0.f); - const float4 faceANormalWS = qtRotate(ornA,Normal); - - float d = dot3F4(faceANormalWS,separatingNormal); - if (d < dmin) - { - dmin = d; - closestFaceA = face; - worldNormalsA1[pairIndex] = faceANormalWS; - } - } - } - - int numVerticesA = facesA[hullA->m_faceOffset+closestFaceA].m_numIndices; - if (numVerticesA>capacityWorldVerts) - numVerticesA = capacityWorldVerts; - - for(int e0=0;e0<numVerticesA;e0++) - { - if (e0<capacityWorldVerts) - { - const float4 a = verticesA[hullA->m_vertexOffset+indicesA[facesA[hullA->m_faceOffset+closestFaceA].m_indexOffset+e0]]; - worldVertsA1[pairIndex*capacityWorldVerts+e0] = transform(&a, &posA,&ornA); - } - } - - clippingFaces[pairIndex].x = closestFaceA; - clippingFaces[pairIndex].y = closestFaceB; - clippingFaces[pairIndex].z = numVerticesA; - clippingFaces[pairIndex].w = numWorldVertsB1; - - - return numContactsOut; -} - - - - -// work-in-progress -__kernel void findConcaveSeparatingAxisKernel( __global int4* concavePairs, - __global const BodyData* rigidBodies, - __global const btCollidableGpu* collidables, - __global const ConvexPolyhedronCL* convexShapes, - __global const float4* vertices, - __global const float4* uniqueEdges, - __global const btGpuFace* faces, - __global const int* indices, - __global const btGpuChildShape* gpuChildShapes, - __global btAabbCL* aabbs, - __global float4* concaveSeparatingNormalsOut, - __global int* concaveHasSeparatingNormals, - __global int4* clippingFacesOut, - __global float4* worldVertsA1GPU, - __global float4* worldNormalsAGPU, - __global float4* worldVertsB1GPU, - int vertexFaceCapacity, - int numConcavePairs - ) -{ - - int i = get_global_id(0); - if (i>=numConcavePairs) - return; - - concaveHasSeparatingNormals[i] = 0; - - int pairIdx = i; - - int bodyIndexA = concavePairs[i].x; - int bodyIndexB = concavePairs[i].y; - - int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; - int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; - - int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; - int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; - - if (collidables[collidableIndexB].m_shapeType!=SHAPE_CONVEX_HULL&& - collidables[collidableIndexB].m_shapeType!=SHAPE_COMPOUND_OF_CONVEX_HULLS) - { - concavePairs[pairIdx].w = -1; - return; - } - - - - int numFacesA = convexShapes[shapeIndexA].m_numFaces; - int numActualConcaveConvexTests = 0; - - int f = concavePairs[i].z; - - bool overlap = false; - - ConvexPolyhedronCL convexPolyhedronA; - - //add 3 vertices of the triangle - convexPolyhedronA.m_numVertices = 3; - convexPolyhedronA.m_vertexOffset = 0; - float4 localCenter = make_float4(0.f,0.f,0.f,0.f); - - btGpuFace face = faces[convexShapes[shapeIndexA].m_faceOffset+f]; - float4 triMinAabb, triMaxAabb; - btAabbCL triAabb; - triAabb.m_min = make_float4(1e30f,1e30f,1e30f,0.f); - triAabb.m_max = make_float4(-1e30f,-1e30f,-1e30f,0.f); - - float4 verticesA[3]; - for (int i=0;i<3;i++) - { - int index = indices[face.m_indexOffset+i]; - float4 vert = vertices[convexShapes[shapeIndexA].m_vertexOffset+index]; - verticesA[i] = vert; - localCenter += vert; - - triAabb.m_min = min(triAabb.m_min,vert); - triAabb.m_max = max(triAabb.m_max,vert); - - } - - overlap = true; - overlap = (triAabb.m_min.x > aabbs[bodyIndexB].m_max.x || triAabb.m_max.x < aabbs[bodyIndexB].m_min.x) ? false : overlap; - overlap = (triAabb.m_min.z > aabbs[bodyIndexB].m_max.z || triAabb.m_max.z < aabbs[bodyIndexB].m_min.z) ? false : overlap; - overlap = (triAabb.m_min.y > aabbs[bodyIndexB].m_max.y || triAabb.m_max.y < aabbs[bodyIndexB].m_min.y) ? false : overlap; - - if (overlap) - { - float dmin = FLT_MAX; - int hasSeparatingAxis=5; - float4 sepAxis=make_float4(1,2,3,4); - - int localCC=0; - numActualConcaveConvexTests++; - - //a triangle has 3 unique edges - convexPolyhedronA.m_numUniqueEdges = 3; - convexPolyhedronA.m_uniqueEdgesOffset = 0; - float4 uniqueEdgesA[3]; - - uniqueEdgesA[0] = (verticesA[1]-verticesA[0]); - uniqueEdgesA[1] = (verticesA[2]-verticesA[1]); - uniqueEdgesA[2] = (verticesA[0]-verticesA[2]); - - - convexPolyhedronA.m_faceOffset = 0; - - float4 normal = make_float4(face.m_plane.x,face.m_plane.y,face.m_plane.z,0.f); - - btGpuFace facesA[TRIANGLE_NUM_CONVEX_FACES]; - int indicesA[3+3+2+2+2]; - int curUsedIndices=0; - int fidx=0; - - //front size of triangle - { - facesA[fidx].m_indexOffset=curUsedIndices; - indicesA[0] = 0; - indicesA[1] = 1; - indicesA[2] = 2; - curUsedIndices+=3; - float c = face.m_plane.w; - facesA[fidx].m_plane.x = normal.x; - facesA[fidx].m_plane.y = normal.y; - facesA[fidx].m_plane.z = normal.z; - facesA[fidx].m_plane.w = c; - facesA[fidx].m_numIndices=3; - } - fidx++; - //back size of triangle - { - facesA[fidx].m_indexOffset=curUsedIndices; - indicesA[3]=2; - indicesA[4]=1; - indicesA[5]=0; - curUsedIndices+=3; - float c = dot(normal,verticesA[0]); - float c1 = -face.m_plane.w; - facesA[fidx].m_plane.x = -normal.x; - facesA[fidx].m_plane.y = -normal.y; - facesA[fidx].m_plane.z = -normal.z; - facesA[fidx].m_plane.w = c; - facesA[fidx].m_numIndices=3; - } - fidx++; - - bool addEdgePlanes = true; - if (addEdgePlanes) - { - int numVertices=3; - int prevVertex = numVertices-1; - for (int i=0;i<numVertices;i++) - { - float4 v0 = verticesA[i]; - float4 v1 = verticesA[prevVertex]; - - float4 edgeNormal = normalize(cross(normal,v1-v0)); - float c = -dot(edgeNormal,v0); - - facesA[fidx].m_numIndices = 2; - facesA[fidx].m_indexOffset=curUsedIndices; - indicesA[curUsedIndices++]=i; - indicesA[curUsedIndices++]=prevVertex; - - facesA[fidx].m_plane.x = edgeNormal.x; - facesA[fidx].m_plane.y = edgeNormal.y; - facesA[fidx].m_plane.z = edgeNormal.z; - facesA[fidx].m_plane.w = c; - fidx++; - prevVertex = i; - } - } - convexPolyhedronA.m_numFaces = TRIANGLE_NUM_CONVEX_FACES; - convexPolyhedronA.m_localCenter = localCenter*(1.f/3.f); - - - float4 posA = rigidBodies[bodyIndexA].m_pos; - posA.w = 0.f; - float4 posB = rigidBodies[bodyIndexB].m_pos; - posB.w = 0.f; - - float4 ornA = rigidBodies[bodyIndexA].m_quat; - float4 ornB =rigidBodies[bodyIndexB].m_quat; - - - - - /////////////////// - ///compound shape support - - if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) - { - int compoundChild = concavePairs[pairIdx].w; - int childShapeIndexB = compoundChild;//collidables[collidableIndexB].m_shapeIndex+compoundChild; - int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex; - float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition; - float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation; - float4 newPosB = transform(&childPosB,&posB,&ornB); - float4 newOrnB = qtMul(ornB,childOrnB); - posB = newPosB; - ornB = newOrnB; - shapeIndexB = collidables[childColIndexB].m_shapeIndex; - } - ////////////////// - - float4 c0local = convexPolyhedronA.m_localCenter; - float4 c0 = transform(&c0local, &posA, &ornA); - float4 c1local = convexShapes[shapeIndexB].m_localCenter; - float4 c1 = transform(&c1local,&posB,&ornB); - const float4 DeltaC2 = c0 - c1; - - - bool sepA = findSeparatingAxisLocalA( &convexPolyhedronA, &convexShapes[shapeIndexB], - posA,ornA, - posB,ornB, - DeltaC2, - verticesA,uniqueEdgesA,facesA,indicesA, - vertices,uniqueEdges,faces,indices, - &sepAxis,&dmin); - hasSeparatingAxis = 4; - if (!sepA) - { - hasSeparatingAxis = 0; - } else - { - bool sepB = findSeparatingAxisLocalB( &convexShapes[shapeIndexB],&convexPolyhedronA, - posB,ornB, - posA,ornA, - DeltaC2, - vertices,uniqueEdges,faces,indices, - verticesA,uniqueEdgesA,facesA,indicesA, - &sepAxis,&dmin); - - if (!sepB) - { - hasSeparatingAxis = 0; - } else - { - bool sepEE = findSeparatingAxisEdgeEdgeLocalA( &convexPolyhedronA, &convexShapes[shapeIndexB], - posA,ornA, - posB,ornB, - DeltaC2, - verticesA,uniqueEdgesA,facesA,indicesA, - vertices,uniqueEdges,faces,indices, - &sepAxis,&dmin); - - if (!sepEE) - { - hasSeparatingAxis = 0; - } else - { - hasSeparatingAxis = 1; - } - } - } - - if (hasSeparatingAxis) - { - sepAxis.w = dmin; - concaveSeparatingNormalsOut[pairIdx]=sepAxis; - concaveHasSeparatingNormals[i]=1; - - - float minDist = -1e30f; - float maxDist = 0.02f; - - - - findClippingFaces(sepAxis, - &convexPolyhedronA, - &convexShapes[shapeIndexB], - posA,ornA, - posB,ornB, - worldVertsA1GPU, - worldNormalsAGPU, - worldVertsB1GPU, - vertexFaceCapacity, - minDist, maxDist, - verticesA, - facesA, - indicesA, - vertices, - faces, - indices, - clippingFacesOut, pairIdx); - - - } else - { - //mark this pair as in-active - concavePairs[pairIdx].w = -1; - } - } - else - { - //mark this pair as in-active - concavePairs[pairIdx].w = -1; - } - - concavePairs[pairIdx].z = -1;//now z is used for existing/persistent contacts -} - - - diff --git a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/kernels/satClipHullContacts.cl b/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/kernels/satClipHullContacts.cl deleted file mode 100644 index f433971741..0000000000 --- a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/kernels/satClipHullContacts.cl +++ /dev/null @@ -1,1888 +0,0 @@ - -#define TRIANGLE_NUM_CONVEX_FACES 5 - - - -#pragma OPENCL EXTENSION cl_amd_printf : enable -#pragma OPENCL EXTENSION cl_khr_local_int32_base_atomics : enable -#pragma OPENCL EXTENSION cl_khr_global_int32_base_atomics : enable -#pragma OPENCL EXTENSION cl_khr_local_int32_extended_atomics : enable -#pragma OPENCL EXTENSION cl_khr_global_int32_extended_atomics : enable - -#ifdef cl_ext_atomic_counters_32 -#pragma OPENCL EXTENSION cl_ext_atomic_counters_32 : enable -#else -#define counter32_t volatile __global int* -#endif - -#define GET_GROUP_IDX get_group_id(0) -#define GET_LOCAL_IDX get_local_id(0) -#define GET_GLOBAL_IDX get_global_id(0) -#define GET_GROUP_SIZE get_local_size(0) -#define GET_NUM_GROUPS get_num_groups(0) -#define GROUP_LDS_BARRIER barrier(CLK_LOCAL_MEM_FENCE) -#define GROUP_MEM_FENCE mem_fence(CLK_LOCAL_MEM_FENCE) -#define AtomInc(x) atom_inc(&(x)) -#define AtomInc1(x, out) out = atom_inc(&(x)) -#define AppendInc(x, out) out = atomic_inc(x) -#define AtomAdd(x, value) atom_add(&(x), value) -#define AtomCmpxhg(x, cmp, value) atom_cmpxchg( &(x), cmp, value ) -#define AtomXhg(x, value) atom_xchg ( &(x), value ) - -#define max2 max -#define min2 min - -typedef unsigned int u32; - - - -#include "Bullet3Collision/NarrowPhaseCollision/shared/b3Contact4Data.h" -#include "Bullet3Collision/NarrowPhaseCollision/shared/b3ConvexPolyhedronData.h" -#include "Bullet3Collision/NarrowPhaseCollision/shared/b3Collidable.h" -#include "Bullet3Collision/NarrowPhaseCollision/shared/b3RigidBodyData.h" - - - -#define GET_NPOINTS(x) (x).m_worldNormalOnB.w - - - -#define SELECT_UINT4( b, a, condition ) select( b,a,condition ) - -#define make_float4 (float4) -#define make_float2 (float2) -#define make_uint4 (uint4) -#define make_int4 (int4) -#define make_uint2 (uint2) -#define make_int2 (int2) - - -__inline -float fastDiv(float numerator, float denominator) -{ - return native_divide(numerator, denominator); -// return numerator/denominator; -} - -__inline -float4 fastDiv4(float4 numerator, float4 denominator) -{ - return native_divide(numerator, denominator); -} - - -__inline -float4 cross3(float4 a, float4 b) -{ - return cross(a,b); -} - -//#define dot3F4 dot - -__inline -float dot3F4(float4 a, float4 b) -{ - float4 a1 = make_float4(a.xyz,0.f); - float4 b1 = make_float4(b.xyz,0.f); - return dot(a1, b1); -} - -__inline -float4 fastNormalize4(float4 v) -{ - return fast_normalize(v); -} - - -/////////////////////////////////////// -// Quaternion -/////////////////////////////////////// - -typedef float4 Quaternion; - -__inline -Quaternion qtMul(Quaternion a, Quaternion b); - -__inline -Quaternion qtNormalize(Quaternion in); - -__inline -float4 qtRotate(Quaternion q, float4 vec); - -__inline -Quaternion qtInvert(Quaternion q); - - - - -__inline -Quaternion qtMul(Quaternion a, Quaternion b) -{ - Quaternion ans; - ans = cross3( a, b ); - ans += a.w*b+b.w*a; -// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z); - ans.w = a.w*b.w - dot3F4(a, b); - return ans; -} - -__inline -Quaternion qtNormalize(Quaternion in) -{ - return fastNormalize4(in); -// in /= length( in ); -// return in; -} -__inline -float4 qtRotate(Quaternion q, float4 vec) -{ - Quaternion qInv = qtInvert( q ); - float4 vcpy = vec; - vcpy.w = 0.f; - float4 out = qtMul(qtMul(q,vcpy),qInv); - return out; -} - -__inline -Quaternion qtInvert(Quaternion q) -{ - return (Quaternion)(-q.xyz, q.w); -} - -__inline -float4 qtInvRotate(const Quaternion q, float4 vec) -{ - return qtRotate( qtInvert( q ), vec ); -} - -__inline -float4 transform(const float4* p, const float4* translation, const Quaternion* orientation) -{ - return qtRotate( *orientation, *p ) + (*translation); -} - - - -__inline -float4 normalize3(const float4 a) -{ - float4 n = make_float4(a.x, a.y, a.z, 0.f); - return fastNormalize4( n ); -} - - -__inline float4 lerp3(const float4 a,const float4 b, float t) -{ - return make_float4( a.x + (b.x - a.x) * t, - a.y + (b.y - a.y) * t, - a.z + (b.z - a.z) * t, - 0.f); -} - - - -// Clips a face to the back of a plane, return the number of vertices out, stored in ppVtxOut -int clipFaceGlobal(__global const float4* pVtxIn, int numVertsIn, float4 planeNormalWS,float planeEqWS, __global float4* ppVtxOut) -{ - - int ve; - float ds, de; - int numVertsOut = 0; - //double-check next test - if (numVertsIn < 2) - return 0; - - float4 firstVertex=pVtxIn[numVertsIn-1]; - float4 endVertex = pVtxIn[0]; - - ds = dot3F4(planeNormalWS,firstVertex)+planeEqWS; - - for (ve = 0; ve < numVertsIn; ve++) - { - endVertex=pVtxIn[ve]; - de = dot3F4(planeNormalWS,endVertex)+planeEqWS; - if (ds<0) - { - if (de<0) - { - // Start < 0, end < 0, so output endVertex - ppVtxOut[numVertsOut++] = endVertex; - } - else - { - // Start < 0, end >= 0, so output intersection - ppVtxOut[numVertsOut++] = lerp3(firstVertex, endVertex,(ds * 1.f/(ds - de)) ); - } - } - else - { - if (de<0) - { - // Start >= 0, end < 0 so output intersection and end - ppVtxOut[numVertsOut++] = lerp3(firstVertex, endVertex,(ds * 1.f/(ds - de)) ); - ppVtxOut[numVertsOut++] = endVertex; - } - } - firstVertex = endVertex; - ds = de; - } - return numVertsOut; -} - - - -// Clips a face to the back of a plane, return the number of vertices out, stored in ppVtxOut -int clipFace(const float4* pVtxIn, int numVertsIn, float4 planeNormalWS,float planeEqWS, float4* ppVtxOut) -{ - - int ve; - float ds, de; - int numVertsOut = 0; -//double-check next test - if (numVertsIn < 2) - return 0; - - float4 firstVertex=pVtxIn[numVertsIn-1]; - float4 endVertex = pVtxIn[0]; - - ds = dot3F4(planeNormalWS,firstVertex)+planeEqWS; - - for (ve = 0; ve < numVertsIn; ve++) - { - endVertex=pVtxIn[ve]; - - de = dot3F4(planeNormalWS,endVertex)+planeEqWS; - - if (ds<0) - { - if (de<0) - { - // Start < 0, end < 0, so output endVertex - ppVtxOut[numVertsOut++] = endVertex; - } - else - { - // Start < 0, end >= 0, so output intersection - ppVtxOut[numVertsOut++] = lerp3(firstVertex, endVertex,(ds * 1.f/(ds - de)) ); - } - } - else - { - if (de<0) - { - // Start >= 0, end < 0 so output intersection and end - ppVtxOut[numVertsOut++] = lerp3(firstVertex, endVertex,(ds * 1.f/(ds - de)) ); - ppVtxOut[numVertsOut++] = endVertex; - } - } - firstVertex = endVertex; - ds = de; - } - return numVertsOut; -} - - -int clipFaceAgainstHull(const float4 separatingNormal, __global const b3ConvexPolyhedronData_t* hullA, - const float4 posA, const Quaternion ornA, float4* worldVertsB1, int numWorldVertsB1, - float4* worldVertsB2, int capacityWorldVertsB2, - const float minDist, float maxDist, - __global const float4* vertices, - __global const b3GpuFace_t* faces, - __global const int* indices, - float4* contactsOut, - int contactCapacity) -{ - int numContactsOut = 0; - - float4* pVtxIn = worldVertsB1; - float4* pVtxOut = worldVertsB2; - - int numVertsIn = numWorldVertsB1; - int numVertsOut = 0; - - int closestFaceA=-1; - { - float dmin = FLT_MAX; - for(int face=0;face<hullA->m_numFaces;face++) - { - const float4 Normal = make_float4( - faces[hullA->m_faceOffset+face].m_plane.x, - faces[hullA->m_faceOffset+face].m_plane.y, - faces[hullA->m_faceOffset+face].m_plane.z,0.f); - const float4 faceANormalWS = qtRotate(ornA,Normal); - - float d = dot3F4(faceANormalWS,separatingNormal); - if (d < dmin) - { - dmin = d; - closestFaceA = face; - } - } - } - if (closestFaceA<0) - return numContactsOut; - - b3GpuFace_t polyA = faces[hullA->m_faceOffset+closestFaceA]; - - // clip polygon to back of planes of all faces of hull A that are adjacent to witness face - int numVerticesA = polyA.m_numIndices; - for(int e0=0;e0<numVerticesA;e0++) - { - const float4 a = vertices[hullA->m_vertexOffset+indices[polyA.m_indexOffset+e0]]; - const float4 b = vertices[hullA->m_vertexOffset+indices[polyA.m_indexOffset+((e0+1)%numVerticesA)]]; - const float4 edge0 = a - b; - const float4 WorldEdge0 = qtRotate(ornA,edge0); - float4 planeNormalA = make_float4(polyA.m_plane.x,polyA.m_plane.y,polyA.m_plane.z,0.f); - float4 worldPlaneAnormal1 = qtRotate(ornA,planeNormalA); - - float4 planeNormalWS1 = -cross3(WorldEdge0,worldPlaneAnormal1); - float4 worldA1 = transform(&a,&posA,&ornA); - float planeEqWS1 = -dot3F4(worldA1,planeNormalWS1); - - float4 planeNormalWS = planeNormalWS1; - float planeEqWS=planeEqWS1; - - //clip face - //clipFace(*pVtxIn, *pVtxOut,planeNormalWS,planeEqWS); - numVertsOut = clipFace(pVtxIn, numVertsIn, planeNormalWS,planeEqWS, pVtxOut); - - //btSwap(pVtxIn,pVtxOut); - float4* tmp = pVtxOut; - pVtxOut = pVtxIn; - pVtxIn = tmp; - numVertsIn = numVertsOut; - numVertsOut = 0; - } - - - // only keep points that are behind the witness face - { - float4 localPlaneNormal = make_float4(polyA.m_plane.x,polyA.m_plane.y,polyA.m_plane.z,0.f); - float localPlaneEq = polyA.m_plane.w; - float4 planeNormalWS = qtRotate(ornA,localPlaneNormal); - float planeEqWS=localPlaneEq-dot3F4(planeNormalWS,posA); - for (int i=0;i<numVertsIn;i++) - { - float depth = dot3F4(planeNormalWS,pVtxIn[i])+planeEqWS; - if (depth <=minDist) - { - depth = minDist; - } - - if (depth <=maxDist) - { - float4 pointInWorld = pVtxIn[i]; - //resultOut.addContactPoint(separatingNormal,point,depth); - contactsOut[numContactsOut++] = make_float4(pointInWorld.x,pointInWorld.y,pointInWorld.z,depth); - } - } - } - - return numContactsOut; -} - - - -int clipFaceAgainstHullLocalA(const float4 separatingNormal, const b3ConvexPolyhedronData_t* hullA, - const float4 posA, const Quaternion ornA, float4* worldVertsB1, int numWorldVertsB1, - float4* worldVertsB2, int capacityWorldVertsB2, - const float minDist, float maxDist, - const float4* verticesA, - const b3GpuFace_t* facesA, - const int* indicesA, - __global const float4* verticesB, - __global const b3GpuFace_t* facesB, - __global const int* indicesB, - float4* contactsOut, - int contactCapacity) -{ - int numContactsOut = 0; - - float4* pVtxIn = worldVertsB1; - float4* pVtxOut = worldVertsB2; - - int numVertsIn = numWorldVertsB1; - int numVertsOut = 0; - - int closestFaceA=-1; - { - float dmin = FLT_MAX; - for(int face=0;face<hullA->m_numFaces;face++) - { - const float4 Normal = make_float4( - facesA[hullA->m_faceOffset+face].m_plane.x, - facesA[hullA->m_faceOffset+face].m_plane.y, - facesA[hullA->m_faceOffset+face].m_plane.z,0.f); - const float4 faceANormalWS = qtRotate(ornA,Normal); - - float d = dot3F4(faceANormalWS,separatingNormal); - if (d < dmin) - { - dmin = d; - closestFaceA = face; - } - } - } - if (closestFaceA<0) - return numContactsOut; - - b3GpuFace_t polyA = facesA[hullA->m_faceOffset+closestFaceA]; - - // clip polygon to back of planes of all faces of hull A that are adjacent to witness face - int numVerticesA = polyA.m_numIndices; - for(int e0=0;e0<numVerticesA;e0++) - { - const float4 a = verticesA[hullA->m_vertexOffset+indicesA[polyA.m_indexOffset+e0]]; - const float4 b = verticesA[hullA->m_vertexOffset+indicesA[polyA.m_indexOffset+((e0+1)%numVerticesA)]]; - const float4 edge0 = a - b; - const float4 WorldEdge0 = qtRotate(ornA,edge0); - float4 planeNormalA = make_float4(polyA.m_plane.x,polyA.m_plane.y,polyA.m_plane.z,0.f); - float4 worldPlaneAnormal1 = qtRotate(ornA,planeNormalA); - - float4 planeNormalWS1 = -cross3(WorldEdge0,worldPlaneAnormal1); - float4 worldA1 = transform(&a,&posA,&ornA); - float planeEqWS1 = -dot3F4(worldA1,planeNormalWS1); - - float4 planeNormalWS = planeNormalWS1; - float planeEqWS=planeEqWS1; - - //clip face - //clipFace(*pVtxIn, *pVtxOut,planeNormalWS,planeEqWS); - numVertsOut = clipFace(pVtxIn, numVertsIn, planeNormalWS,planeEqWS, pVtxOut); - - //btSwap(pVtxIn,pVtxOut); - float4* tmp = pVtxOut; - pVtxOut = pVtxIn; - pVtxIn = tmp; - numVertsIn = numVertsOut; - numVertsOut = 0; - } - - - // only keep points that are behind the witness face - { - float4 localPlaneNormal = make_float4(polyA.m_plane.x,polyA.m_plane.y,polyA.m_plane.z,0.f); - float localPlaneEq = polyA.m_plane.w; - float4 planeNormalWS = qtRotate(ornA,localPlaneNormal); - float planeEqWS=localPlaneEq-dot3F4(planeNormalWS,posA); - for (int i=0;i<numVertsIn;i++) - { - float depth = dot3F4(planeNormalWS,pVtxIn[i])+planeEqWS; - if (depth <=minDist) - { - depth = minDist; - } - - if (depth <=maxDist) - { - float4 pointInWorld = pVtxIn[i]; - //resultOut.addContactPoint(separatingNormal,point,depth); - contactsOut[numContactsOut++] = make_float4(pointInWorld.x,pointInWorld.y,pointInWorld.z,depth); - } - } - } - - return numContactsOut; -} - -int clipHullAgainstHull(const float4 separatingNormal, - __global const b3ConvexPolyhedronData_t* hullA, __global const b3ConvexPolyhedronData_t* hullB, - const float4 posA, const Quaternion ornA,const float4 posB, const Quaternion ornB, - float4* worldVertsB1, float4* worldVertsB2, int capacityWorldVerts, - const float minDist, float maxDist, - __global const float4* vertices, - __global const b3GpuFace_t* faces, - __global const int* indices, - float4* localContactsOut, - int localContactCapacity) -{ - int numContactsOut = 0; - int numWorldVertsB1= 0; - - - int closestFaceB=-1; - float dmax = -FLT_MAX; - - { - for(int face=0;face<hullB->m_numFaces;face++) - { - const float4 Normal = make_float4(faces[hullB->m_faceOffset+face].m_plane.x, - faces[hullB->m_faceOffset+face].m_plane.y, faces[hullB->m_faceOffset+face].m_plane.z,0.f); - const float4 WorldNormal = qtRotate(ornB, Normal); - float d = dot3F4(WorldNormal,separatingNormal); - if (d > dmax) - { - dmax = d; - closestFaceB = face; - } - } - } - - { - const b3GpuFace_t polyB = faces[hullB->m_faceOffset+closestFaceB]; - const int numVertices = polyB.m_numIndices; - for(int e0=0;e0<numVertices;e0++) - { - const float4 b = vertices[hullB->m_vertexOffset+indices[polyB.m_indexOffset+e0]]; - worldVertsB1[numWorldVertsB1++] = transform(&b,&posB,&ornB); - } - } - - if (closestFaceB>=0) - { - numContactsOut = clipFaceAgainstHull(separatingNormal, hullA, - posA,ornA, - worldVertsB1,numWorldVertsB1,worldVertsB2,capacityWorldVerts, minDist, maxDist,vertices, - faces, - indices,localContactsOut,localContactCapacity); - } - - return numContactsOut; -} - - -int clipHullAgainstHullLocalA(const float4 separatingNormal, - const b3ConvexPolyhedronData_t* hullA, __global const b3ConvexPolyhedronData_t* hullB, - const float4 posA, const Quaternion ornA,const float4 posB, const Quaternion ornB, - float4* worldVertsB1, float4* worldVertsB2, int capacityWorldVerts, - const float minDist, float maxDist, - const float4* verticesA, - const b3GpuFace_t* facesA, - const int* indicesA, - __global const float4* verticesB, - __global const b3GpuFace_t* facesB, - __global const int* indicesB, - float4* localContactsOut, - int localContactCapacity) -{ - int numContactsOut = 0; - int numWorldVertsB1= 0; - - - int closestFaceB=-1; - float dmax = -FLT_MAX; - - { - for(int face=0;face<hullB->m_numFaces;face++) - { - const float4 Normal = make_float4(facesB[hullB->m_faceOffset+face].m_plane.x, - facesB[hullB->m_faceOffset+face].m_plane.y, facesB[hullB->m_faceOffset+face].m_plane.z,0.f); - const float4 WorldNormal = qtRotate(ornB, Normal); - float d = dot3F4(WorldNormal,separatingNormal); - if (d > dmax) - { - dmax = d; - closestFaceB = face; - } - } - } - - { - const b3GpuFace_t polyB = facesB[hullB->m_faceOffset+closestFaceB]; - const int numVertices = polyB.m_numIndices; - for(int e0=0;e0<numVertices;e0++) - { - const float4 b = verticesB[hullB->m_vertexOffset+indicesB[polyB.m_indexOffset+e0]]; - worldVertsB1[numWorldVertsB1++] = transform(&b,&posB,&ornB); - } - } - - if (closestFaceB>=0) - { - numContactsOut = clipFaceAgainstHullLocalA(separatingNormal, hullA, - posA,ornA, - worldVertsB1,numWorldVertsB1,worldVertsB2,capacityWorldVerts, minDist, maxDist, - verticesA,facesA,indicesA, - verticesB,facesB,indicesB, - localContactsOut,localContactCapacity); - } - - return numContactsOut; -} - -#define PARALLEL_SUM(v, n) for(int j=1; j<n; j++) v[0] += v[j]; -#define PARALLEL_DO(execution, n) for(int ie=0; ie<n; ie++){execution;} -#define REDUCE_MAX(v, n) {int i=0;\ -for(int offset=0; offset<n; offset++) v[i] = (v[i].y > v[i+offset].y)? v[i]: v[i+offset]; } -#define REDUCE_MIN(v, n) {int i=0;\ -for(int offset=0; offset<n; offset++) v[i] = (v[i].y < v[i+offset].y)? v[i]: v[i+offset]; } - -int extractManifoldSequentialGlobal(__global const float4* p, int nPoints, float4 nearNormal, int4* contactIdx) -{ - if( nPoints == 0 ) - return 0; - - if (nPoints <=4) - return nPoints; - - - if (nPoints >64) - nPoints = 64; - - float4 center = make_float4(0.f); - { - - for (int i=0;i<nPoints;i++) - center += p[i]; - center /= (float)nPoints; - } - - - - // sample 4 directions - - float4 aVector = p[0] - center; - float4 u = cross3( nearNormal, aVector ); - float4 v = cross3( nearNormal, u ); - u = normalize3( u ); - v = normalize3( v ); - - - //keep point with deepest penetration - float minW= FLT_MAX; - - int minIndex=-1; - - float4 maxDots; - maxDots.x = FLT_MIN; - maxDots.y = FLT_MIN; - maxDots.z = FLT_MIN; - maxDots.w = FLT_MIN; - - // idx, distance - for(int ie = 0; ie<nPoints; ie++ ) - { - if (p[ie].w<minW) - { - minW = p[ie].w; - minIndex=ie; - } - float f; - float4 r = p[ie]-center; - f = dot3F4( u, r ); - if (f<maxDots.x) - { - maxDots.x = f; - contactIdx[0].x = ie; - } - - f = dot3F4( -u, r ); - if (f<maxDots.y) - { - maxDots.y = f; - contactIdx[0].y = ie; - } - - - f = dot3F4( v, r ); - if (f<maxDots.z) - { - maxDots.z = f; - contactIdx[0].z = ie; - } - - f = dot3F4( -v, r ); - if (f<maxDots.w) - { - maxDots.w = f; - contactIdx[0].w = ie; - } - - } - - if (contactIdx[0].x != minIndex && contactIdx[0].y != minIndex && contactIdx[0].z != minIndex && contactIdx[0].w != minIndex) - { - //replace the first contact with minimum (todo: replace contact with least penetration) - contactIdx[0].x = minIndex; - } - - return 4; - -} - - -int extractManifoldSequentialGlobalFake(__global const float4* p, int nPoints, float4 nearNormal, int* contactIdx) -{ - contactIdx[0] = 0; - contactIdx[1] = 1; - contactIdx[2] = 2; - contactIdx[3] = 3; - - if( nPoints == 0 ) return 0; - - nPoints = min2( nPoints, 4 ); - return nPoints; - -} - - - -int extractManifoldSequential(const float4* p, int nPoints, float4 nearNormal, int* contactIdx) -{ - if( nPoints == 0 ) return 0; - - nPoints = min2( nPoints, 64 ); - - float4 center = make_float4(0.f); - { - float4 v[64]; - for (int i=0;i<nPoints;i++) - v[i] = p[i]; - //memcpy( v, p, nPoints*sizeof(float4) ); - PARALLEL_SUM( v, nPoints ); - center = v[0]/(float)nPoints; - } - - - - { // sample 4 directions - if( nPoints < 4 ) - { - for(int i=0; i<nPoints; i++) - contactIdx[i] = i; - return nPoints; - } - - float4 aVector = p[0] - center; - float4 u = cross3( nearNormal, aVector ); - float4 v = cross3( nearNormal, u ); - u = normalize3( u ); - v = normalize3( v ); - - int idx[4]; - - float2 max00 = make_float2(0,FLT_MAX); - { - // idx, distance - { - { - int4 a[64]; - for(int ie = 0; ie<nPoints; ie++ ) - { - - - float f; - float4 r = p[ie]-center; - f = dot3F4( u, r ); - a[ie].x = ((*(u32*)&f) & 0xffffff00) | (0xff & ie); - - f = dot3F4( -u, r ); - a[ie].y = ((*(u32*)&f) & 0xffffff00) | (0xff & ie); - - f = dot3F4( v, r ); - a[ie].z = ((*(u32*)&f) & 0xffffff00) | (0xff & ie); - - f = dot3F4( -v, r ); - a[ie].w = ((*(u32*)&f) & 0xffffff00) | (0xff & ie); - } - - for(int ie=0; ie<nPoints; ie++) - { - a[0].x = (a[0].x > a[ie].x )? a[0].x: a[ie].x; - a[0].y = (a[0].y > a[ie].y )? a[0].y: a[ie].y; - a[0].z = (a[0].z > a[ie].z )? a[0].z: a[ie].z; - a[0].w = (a[0].w > a[ie].w )? a[0].w: a[ie].w; - } - - idx[0] = (int)a[0].x & 0xff; - idx[1] = (int)a[0].y & 0xff; - idx[2] = (int)a[0].z & 0xff; - idx[3] = (int)a[0].w & 0xff; - } - } - - { - float2 h[64]; - PARALLEL_DO( h[ie] = make_float2((float)ie, p[ie].w), nPoints ); - REDUCE_MIN( h, nPoints ); - max00 = h[0]; - } - } - - contactIdx[0] = idx[0]; - contactIdx[1] = idx[1]; - contactIdx[2] = idx[2]; - contactIdx[3] = idx[3]; - - - return 4; - } -} - - - -__kernel void extractManifoldAndAddContactKernel(__global const int4* pairs, - __global const b3RigidBodyData_t* rigidBodies, - __global const float4* closestPointsWorld, - __global const float4* separatingNormalsWorld, - __global const int* contactCounts, - __global const int* contactOffsets, - __global struct b3Contact4Data* restrict contactsOut, - counter32_t nContactsOut, - int contactCapacity, - int numPairs, - int pairIndex - ) -{ - int idx = get_global_id(0); - - if (idx<numPairs) - { - float4 normal = separatingNormalsWorld[idx]; - int nPoints = contactCounts[idx]; - __global const float4* pointsIn = &closestPointsWorld[contactOffsets[idx]]; - float4 localPoints[64]; - for (int i=0;i<nPoints;i++) - { - localPoints[i] = pointsIn[i]; - } - - int contactIdx[4];// = {-1,-1,-1,-1}; - contactIdx[0] = -1; - contactIdx[1] = -1; - contactIdx[2] = -1; - contactIdx[3] = -1; - - int nContacts = extractManifoldSequential(localPoints, nPoints, normal, contactIdx); - - int dstIdx; - AppendInc( nContactsOut, dstIdx ); - if (dstIdx<contactCapacity) - { - __global struct b3Contact4Data* c = contactsOut + dstIdx; - c->m_worldNormalOnB = -normal; - c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff); - c->m_batchIdx = idx; - int bodyA = pairs[pairIndex].x; - int bodyB = pairs[pairIndex].y; - c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0 ? -bodyA:bodyA; - c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0 ? -bodyB:bodyB; - c->m_childIndexA = -1; - c->m_childIndexB = -1; - for (int i=0;i<nContacts;i++) - { - c->m_worldPosB[i] = localPoints[contactIdx[i]]; - } - GET_NPOINTS(*c) = nContacts; - } - } -} - - -void trInverse(float4 translationIn, Quaternion orientationIn, - float4* translationOut, Quaternion* orientationOut) -{ - *orientationOut = qtInvert(orientationIn); - *translationOut = qtRotate(*orientationOut, -translationIn); -} - -void trMul(float4 translationA, Quaternion orientationA, - float4 translationB, Quaternion orientationB, - float4* translationOut, Quaternion* orientationOut) -{ - *orientationOut = qtMul(orientationA,orientationB); - *translationOut = transform(&translationB,&translationA,&orientationA); -} - - - - -__kernel void clipHullHullKernel( __global int4* pairs, - __global const b3RigidBodyData_t* rigidBodies, - __global const b3Collidable_t* collidables, - __global const b3ConvexPolyhedronData_t* convexShapes, - __global const float4* vertices, - __global const float4* uniqueEdges, - __global const b3GpuFace_t* faces, - __global const int* indices, - __global const float4* separatingNormals, - __global const int* hasSeparatingAxis, - __global struct b3Contact4Data* restrict globalContactsOut, - counter32_t nGlobalContactsOut, - int numPairs, - int contactCapacity) -{ - - int i = get_global_id(0); - int pairIndex = i; - - float4 worldVertsB1[64]; - float4 worldVertsB2[64]; - int capacityWorldVerts = 64; - - float4 localContactsOut[64]; - int localContactCapacity=64; - - float minDist = -1e30f; - float maxDist = 0.02f; - - if (i<numPairs) - { - - int bodyIndexA = pairs[i].x; - int bodyIndexB = pairs[i].y; - - int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; - int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; - - if (hasSeparatingAxis[i]) - { - - - int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; - int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; - - - - - int numLocalContactsOut = clipHullAgainstHull(separatingNormals[i], - &convexShapes[shapeIndexA], &convexShapes[shapeIndexB], - rigidBodies[bodyIndexA].m_pos,rigidBodies[bodyIndexA].m_quat, - rigidBodies[bodyIndexB].m_pos,rigidBodies[bodyIndexB].m_quat, - worldVertsB1,worldVertsB2,capacityWorldVerts, - minDist, maxDist, - vertices,faces,indices, - localContactsOut,localContactCapacity); - - if (numLocalContactsOut>0) - { - float4 normal = -separatingNormals[i]; - int nPoints = numLocalContactsOut; - float4* pointsIn = localContactsOut; - int contactIdx[4];// = {-1,-1,-1,-1}; - - contactIdx[0] = -1; - contactIdx[1] = -1; - contactIdx[2] = -1; - contactIdx[3] = -1; - - int nReducedContacts = extractManifoldSequential(pointsIn, nPoints, normal, contactIdx); - - - int mprContactIndex = pairs[pairIndex].z; - - int dstIdx = mprContactIndex; - if (dstIdx<0) - { - AppendInc( nGlobalContactsOut, dstIdx ); - } - - if (dstIdx<contactCapacity) - { - pairs[pairIndex].z = dstIdx; - - __global struct b3Contact4Data* c = globalContactsOut+ dstIdx; - c->m_worldNormalOnB = -normal; - c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff); - c->m_batchIdx = pairIndex; - int bodyA = pairs[pairIndex].x; - int bodyB = pairs[pairIndex].y; - c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0?-bodyA:bodyA; - c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0?-bodyB:bodyB; - c->m_childIndexA = -1; - c->m_childIndexB = -1; - - for (int i=0;i<nReducedContacts;i++) - { - //this condition means: overwrite contact point, unless at index i==0 we have a valid 'mpr' contact - if (i>0||(mprContactIndex<0)) - { - c->m_worldPosB[i] = pointsIn[contactIdx[i]]; - } - } - GET_NPOINTS(*c) = nReducedContacts; - } - - }// if (numContactsOut>0) - }// if (hasSeparatingAxis[i]) - }// if (i<numPairs) - -} - - -__kernel void clipCompoundsHullHullKernel( __global const int4* gpuCompoundPairs, - __global const b3RigidBodyData_t* rigidBodies, - __global const b3Collidable_t* collidables, - __global const b3ConvexPolyhedronData_t* convexShapes, - __global const float4* vertices, - __global const float4* uniqueEdges, - __global const b3GpuFace_t* faces, - __global const int* indices, - __global const b3GpuChildShape_t* gpuChildShapes, - __global const float4* gpuCompoundSepNormalsOut, - __global const int* gpuHasCompoundSepNormalsOut, - __global struct b3Contact4Data* restrict globalContactsOut, - counter32_t nGlobalContactsOut, - int numCompoundPairs, int maxContactCapacity) -{ - - int i = get_global_id(0); - int pairIndex = i; - - float4 worldVertsB1[64]; - float4 worldVertsB2[64]; - int capacityWorldVerts = 64; - - float4 localContactsOut[64]; - int localContactCapacity=64; - - float minDist = -1e30f; - float maxDist = 0.02f; - - if (i<numCompoundPairs) - { - - if (gpuHasCompoundSepNormalsOut[i]) - { - - int bodyIndexA = gpuCompoundPairs[i].x; - int bodyIndexB = gpuCompoundPairs[i].y; - - int childShapeIndexA = gpuCompoundPairs[i].z; - int childShapeIndexB = gpuCompoundPairs[i].w; - - int collidableIndexA = -1; - int collidableIndexB = -1; - - float4 ornA = rigidBodies[bodyIndexA].m_quat; - float4 posA = rigidBodies[bodyIndexA].m_pos; - - float4 ornB = rigidBodies[bodyIndexB].m_quat; - float4 posB = rigidBodies[bodyIndexB].m_pos; - - if (childShapeIndexA >= 0) - { - collidableIndexA = gpuChildShapes[childShapeIndexA].m_shapeIndex; - float4 childPosA = gpuChildShapes[childShapeIndexA].m_childPosition; - float4 childOrnA = gpuChildShapes[childShapeIndexA].m_childOrientation; - float4 newPosA = qtRotate(ornA,childPosA)+posA; - float4 newOrnA = qtMul(ornA,childOrnA); - posA = newPosA; - ornA = newOrnA; - } else - { - collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; - } - - if (childShapeIndexB>=0) - { - collidableIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex; - float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition; - float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation; - float4 newPosB = transform(&childPosB,&posB,&ornB); - float4 newOrnB = qtMul(ornB,childOrnB); - posB = newPosB; - ornB = newOrnB; - } else - { - collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; - } - - int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; - int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; - - int numLocalContactsOut = clipHullAgainstHull(gpuCompoundSepNormalsOut[i], - &convexShapes[shapeIndexA], &convexShapes[shapeIndexB], - posA,ornA, - posB,ornB, - worldVertsB1,worldVertsB2,capacityWorldVerts, - minDist, maxDist, - vertices,faces,indices, - localContactsOut,localContactCapacity); - - if (numLocalContactsOut>0) - { - float4 normal = -gpuCompoundSepNormalsOut[i]; - int nPoints = numLocalContactsOut; - float4* pointsIn = localContactsOut; - int contactIdx[4];// = {-1,-1,-1,-1}; - - contactIdx[0] = -1; - contactIdx[1] = -1; - contactIdx[2] = -1; - contactIdx[3] = -1; - - int nReducedContacts = extractManifoldSequential(pointsIn, nPoints, normal, contactIdx); - - int dstIdx; - AppendInc( nGlobalContactsOut, dstIdx ); - if ((dstIdx+nReducedContacts) < maxContactCapacity) - { - __global struct b3Contact4Data* c = globalContactsOut+ dstIdx; - c->m_worldNormalOnB = -normal; - c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff); - c->m_batchIdx = pairIndex; - int bodyA = gpuCompoundPairs[pairIndex].x; - int bodyB = gpuCompoundPairs[pairIndex].y; - c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0?-bodyA:bodyA; - c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0?-bodyB:bodyB; - c->m_childIndexA = childShapeIndexA; - c->m_childIndexB = childShapeIndexB; - for (int i=0;i<nReducedContacts;i++) - { - c->m_worldPosB[i] = pointsIn[contactIdx[i]]; - } - GET_NPOINTS(*c) = nReducedContacts; - } - - }// if (numContactsOut>0) - }// if (gpuHasCompoundSepNormalsOut[i]) - }// if (i<numCompoundPairs) - -} - - - -__kernel void sphereSphereCollisionKernel( __global const int4* pairs, - __global const b3RigidBodyData_t* rigidBodies, - __global const b3Collidable_t* collidables, - __global const float4* separatingNormals, - __global const int* hasSeparatingAxis, - __global struct b3Contact4Data* restrict globalContactsOut, - counter32_t nGlobalContactsOut, - int contactCapacity, - int numPairs) -{ - - int i = get_global_id(0); - int pairIndex = i; - - if (i<numPairs) - { - int bodyIndexA = pairs[i].x; - int bodyIndexB = pairs[i].y; - - int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; - int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; - - if (collidables[collidableIndexA].m_shapeType == SHAPE_SPHERE && - collidables[collidableIndexB].m_shapeType == SHAPE_SPHERE) - { - //sphere-sphere - float radiusA = collidables[collidableIndexA].m_radius; - float radiusB = collidables[collidableIndexB].m_radius; - float4 posA = rigidBodies[bodyIndexA].m_pos; - float4 posB = rigidBodies[bodyIndexB].m_pos; - - float4 diff = posA-posB; - float len = length(diff); - - ///iff distance positive, don't generate a new contact - if ( len <= (radiusA+radiusB)) - { - ///distance (negative means penetration) - float dist = len - (radiusA+radiusB); - float4 normalOnSurfaceB = make_float4(1.f,0.f,0.f,0.f); - if (len > 0.00001) - { - normalOnSurfaceB = diff / len; - } - float4 contactPosB = posB + normalOnSurfaceB*radiusB; - contactPosB.w = dist; - - int dstIdx; - AppendInc( nGlobalContactsOut, dstIdx ); - if (dstIdx < contactCapacity) - { - __global struct b3Contact4Data* c = &globalContactsOut[dstIdx]; - c->m_worldNormalOnB = -normalOnSurfaceB; - c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff); - c->m_batchIdx = pairIndex; - int bodyA = pairs[pairIndex].x; - int bodyB = pairs[pairIndex].y; - c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0?-bodyA:bodyA; - c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0?-bodyB:bodyB; - c->m_worldPosB[0] = contactPosB; - c->m_childIndexA = -1; - c->m_childIndexB = -1; - - GET_NPOINTS(*c) = 1; - }//if (dstIdx < numPairs) - }//if ( len <= (radiusA+radiusB)) - }//SHAPE_SPHERE SHAPE_SPHERE - }//if (i<numPairs) -} - -__kernel void clipHullHullConcaveConvexKernel( __global int4* concavePairsIn, - __global const b3RigidBodyData_t* rigidBodies, - __global const b3Collidable_t* collidables, - __global const b3ConvexPolyhedronData_t* convexShapes, - __global const float4* vertices, - __global const float4* uniqueEdges, - __global const b3GpuFace_t* faces, - __global const int* indices, - __global const b3GpuChildShape_t* gpuChildShapes, - __global const float4* separatingNormals, - __global struct b3Contact4Data* restrict globalContactsOut, - counter32_t nGlobalContactsOut, - int contactCapacity, - int numConcavePairs) -{ - - int i = get_global_id(0); - int pairIndex = i; - - float4 worldVertsB1[64]; - float4 worldVertsB2[64]; - int capacityWorldVerts = 64; - - float4 localContactsOut[64]; - int localContactCapacity=64; - - float minDist = -1e30f; - float maxDist = 0.02f; - - if (i<numConcavePairs) - { - //negative value means that the pair is invalid - if (concavePairsIn[i].w<0) - return; - - int bodyIndexA = concavePairsIn[i].x; - int bodyIndexB = concavePairsIn[i].y; - int f = concavePairsIn[i].z; - int childShapeIndexA = f; - - int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; - int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; - - int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; - int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; - - /////////////////////////////////////////////////////////////// - - - bool overlap = false; - - b3ConvexPolyhedronData_t convexPolyhedronA; - - //add 3 vertices of the triangle - convexPolyhedronA.m_numVertices = 3; - convexPolyhedronA.m_vertexOffset = 0; - float4 localCenter = make_float4(0.f,0.f,0.f,0.f); - - b3GpuFace_t face = faces[convexShapes[shapeIndexA].m_faceOffset+f]; - - float4 verticesA[3]; - for (int i=0;i<3;i++) - { - int index = indices[face.m_indexOffset+i]; - float4 vert = vertices[convexShapes[shapeIndexA].m_vertexOffset+index]; - verticesA[i] = vert; - localCenter += vert; - } - - float dmin = FLT_MAX; - - int localCC=0; - - //a triangle has 3 unique edges - convexPolyhedronA.m_numUniqueEdges = 3; - convexPolyhedronA.m_uniqueEdgesOffset = 0; - float4 uniqueEdgesA[3]; - - uniqueEdgesA[0] = (verticesA[1]-verticesA[0]); - uniqueEdgesA[1] = (verticesA[2]-verticesA[1]); - uniqueEdgesA[2] = (verticesA[0]-verticesA[2]); - - - convexPolyhedronA.m_faceOffset = 0; - - float4 normal = make_float4(face.m_plane.x,face.m_plane.y,face.m_plane.z,0.f); - - b3GpuFace_t facesA[TRIANGLE_NUM_CONVEX_FACES]; - int indicesA[3+3+2+2+2]; - int curUsedIndices=0; - int fidx=0; - - //front size of triangle - { - facesA[fidx].m_indexOffset=curUsedIndices; - indicesA[0] = 0; - indicesA[1] = 1; - indicesA[2] = 2; - curUsedIndices+=3; - float c = face.m_plane.w; - facesA[fidx].m_plane.x = normal.x; - facesA[fidx].m_plane.y = normal.y; - facesA[fidx].m_plane.z = normal.z; - facesA[fidx].m_plane.w = c; - facesA[fidx].m_numIndices=3; - } - fidx++; - //back size of triangle - { - facesA[fidx].m_indexOffset=curUsedIndices; - indicesA[3]=2; - indicesA[4]=1; - indicesA[5]=0; - curUsedIndices+=3; - float c = dot3F4(normal,verticesA[0]); - float c1 = -face.m_plane.w; - facesA[fidx].m_plane.x = -normal.x; - facesA[fidx].m_plane.y = -normal.y; - facesA[fidx].m_plane.z = -normal.z; - facesA[fidx].m_plane.w = c; - facesA[fidx].m_numIndices=3; - } - fidx++; - - bool addEdgePlanes = true; - if (addEdgePlanes) - { - int numVertices=3; - int prevVertex = numVertices-1; - for (int i=0;i<numVertices;i++) - { - float4 v0 = verticesA[i]; - float4 v1 = verticesA[prevVertex]; - - float4 edgeNormal = normalize(cross(normal,v1-v0)); - float c = -dot3F4(edgeNormal,v0); - - facesA[fidx].m_numIndices = 2; - facesA[fidx].m_indexOffset=curUsedIndices; - indicesA[curUsedIndices++]=i; - indicesA[curUsedIndices++]=prevVertex; - - facesA[fidx].m_plane.x = edgeNormal.x; - facesA[fidx].m_plane.y = edgeNormal.y; - facesA[fidx].m_plane.z = edgeNormal.z; - facesA[fidx].m_plane.w = c; - fidx++; - prevVertex = i; - } - } - convexPolyhedronA.m_numFaces = TRIANGLE_NUM_CONVEX_FACES; - convexPolyhedronA.m_localCenter = localCenter*(1.f/3.f); - - - float4 posA = rigidBodies[bodyIndexA].m_pos; - posA.w = 0.f; - float4 posB = rigidBodies[bodyIndexB].m_pos; - posB.w = 0.f; - float4 ornA = rigidBodies[bodyIndexA].m_quat; - float4 ornB =rigidBodies[bodyIndexB].m_quat; - - - float4 sepAxis = separatingNormals[i]; - - int shapeTypeB = collidables[collidableIndexB].m_shapeType; - int childShapeIndexB =-1; - if (shapeTypeB==SHAPE_COMPOUND_OF_CONVEX_HULLS) - { - /////////////////// - ///compound shape support - - childShapeIndexB = concavePairsIn[pairIndex].w; - int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex; - shapeIndexB = collidables[childColIndexB].m_shapeIndex; - float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition; - float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation; - float4 newPosB = transform(&childPosB,&posB,&ornB); - float4 newOrnB = qtMul(ornB,childOrnB); - posB = newPosB; - ornB = newOrnB; - - } - - //////////////////////////////////////// - - - - int numLocalContactsOut = clipHullAgainstHullLocalA(sepAxis, - &convexPolyhedronA, &convexShapes[shapeIndexB], - posA,ornA, - posB,ornB, - worldVertsB1,worldVertsB2,capacityWorldVerts, - minDist, maxDist, - &verticesA,&facesA,&indicesA, - vertices,faces,indices, - localContactsOut,localContactCapacity); - - if (numLocalContactsOut>0) - { - float4 normal = -separatingNormals[i]; - int nPoints = numLocalContactsOut; - float4* pointsIn = localContactsOut; - int contactIdx[4];// = {-1,-1,-1,-1}; - - contactIdx[0] = -1; - contactIdx[1] = -1; - contactIdx[2] = -1; - contactIdx[3] = -1; - - int nReducedContacts = extractManifoldSequential(pointsIn, nPoints, normal, contactIdx); - - int dstIdx; - AppendInc( nGlobalContactsOut, dstIdx ); - if (dstIdx<contactCapacity) - { - __global struct b3Contact4Data* c = globalContactsOut+ dstIdx; - c->m_worldNormalOnB = -normal; - c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff); - c->m_batchIdx = pairIndex; - int bodyA = concavePairsIn[pairIndex].x; - int bodyB = concavePairsIn[pairIndex].y; - c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0?-bodyA:bodyA; - c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0?-bodyB:bodyB; - c->m_childIndexA = childShapeIndexA; - c->m_childIndexB = childShapeIndexB; - for (int i=0;i<nReducedContacts;i++) - { - c->m_worldPosB[i] = pointsIn[contactIdx[i]]; - } - GET_NPOINTS(*c) = nReducedContacts; - } - - }// if (numContactsOut>0) - }// if (i<numPairs) -} - - - - - - -int findClippingFaces(const float4 separatingNormal, - __global const b3ConvexPolyhedronData_t* hullA, __global const b3ConvexPolyhedronData_t* hullB, - const float4 posA, const Quaternion ornA,const float4 posB, const Quaternion ornB, - __global float4* worldVertsA1, - __global float4* worldNormalsA1, - __global float4* worldVertsB1, - int capacityWorldVerts, - const float minDist, float maxDist, - __global const float4* vertices, - __global const b3GpuFace_t* faces, - __global const int* indices, - __global int4* clippingFaces, int pairIndex) -{ - int numContactsOut = 0; - int numWorldVertsB1= 0; - - - int closestFaceB=-1; - float dmax = -FLT_MAX; - - { - for(int face=0;face<hullB->m_numFaces;face++) - { - const float4 Normal = make_float4(faces[hullB->m_faceOffset+face].m_plane.x, - faces[hullB->m_faceOffset+face].m_plane.y, faces[hullB->m_faceOffset+face].m_plane.z,0.f); - const float4 WorldNormal = qtRotate(ornB, Normal); - float d = dot3F4(WorldNormal,separatingNormal); - if (d > dmax) - { - dmax = d; - closestFaceB = face; - } - } - } - - { - const b3GpuFace_t polyB = faces[hullB->m_faceOffset+closestFaceB]; - const int numVertices = polyB.m_numIndices; - for(int e0=0;e0<numVertices;e0++) - { - const float4 b = vertices[hullB->m_vertexOffset+indices[polyB.m_indexOffset+e0]]; - worldVertsB1[pairIndex*capacityWorldVerts+numWorldVertsB1++] = transform(&b,&posB,&ornB); - } - } - - int closestFaceA=-1; - { - float dmin = FLT_MAX; - for(int face=0;face<hullA->m_numFaces;face++) - { - const float4 Normal = make_float4( - faces[hullA->m_faceOffset+face].m_plane.x, - faces[hullA->m_faceOffset+face].m_plane.y, - faces[hullA->m_faceOffset+face].m_plane.z, - 0.f); - const float4 faceANormalWS = qtRotate(ornA,Normal); - - float d = dot3F4(faceANormalWS,separatingNormal); - if (d < dmin) - { - dmin = d; - closestFaceA = face; - worldNormalsA1[pairIndex] = faceANormalWS; - } - } - } - - int numVerticesA = faces[hullA->m_faceOffset+closestFaceA].m_numIndices; - for(int e0=0;e0<numVerticesA;e0++) - { - const float4 a = vertices[hullA->m_vertexOffset+indices[faces[hullA->m_faceOffset+closestFaceA].m_indexOffset+e0]]; - worldVertsA1[pairIndex*capacityWorldVerts+e0] = transform(&a, &posA,&ornA); - } - - clippingFaces[pairIndex].x = closestFaceA; - clippingFaces[pairIndex].y = closestFaceB; - clippingFaces[pairIndex].z = numVerticesA; - clippingFaces[pairIndex].w = numWorldVertsB1; - - - return numContactsOut; -} - - - -int clipFaces(__global float4* worldVertsA1, - __global float4* worldNormalsA1, - __global float4* worldVertsB1, - __global float4* worldVertsB2, - int capacityWorldVertsB2, - const float minDist, float maxDist, - __global int4* clippingFaces, - int pairIndex) -{ - int numContactsOut = 0; - - int closestFaceA = clippingFaces[pairIndex].x; - int closestFaceB = clippingFaces[pairIndex].y; - int numVertsInA = clippingFaces[pairIndex].z; - int numVertsInB = clippingFaces[pairIndex].w; - - int numVertsOut = 0; - - if (closestFaceA<0) - return numContactsOut; - - __global float4* pVtxIn = &worldVertsB1[pairIndex*capacityWorldVertsB2]; - __global float4* pVtxOut = &worldVertsB2[pairIndex*capacityWorldVertsB2]; - - - - // clip polygon to back of planes of all faces of hull A that are adjacent to witness face - - for(int e0=0;e0<numVertsInA;e0++) - { - const float4 aw = worldVertsA1[pairIndex*capacityWorldVertsB2+e0]; - const float4 bw = worldVertsA1[pairIndex*capacityWorldVertsB2+((e0+1)%numVertsInA)]; - const float4 WorldEdge0 = aw - bw; - float4 worldPlaneAnormal1 = worldNormalsA1[pairIndex]; - float4 planeNormalWS1 = -cross3(WorldEdge0,worldPlaneAnormal1); - float4 worldA1 = aw; - float planeEqWS1 = -dot3F4(worldA1,planeNormalWS1); - float4 planeNormalWS = planeNormalWS1; - float planeEqWS=planeEqWS1; - numVertsOut = clipFaceGlobal(pVtxIn, numVertsInB, planeNormalWS,planeEqWS, pVtxOut); - __global float4* tmp = pVtxOut; - pVtxOut = pVtxIn; - pVtxIn = tmp; - numVertsInB = numVertsOut; - numVertsOut = 0; - } - - //float4 planeNormalWS = worldNormalsA1[pairIndex]; - //float planeEqWS=-dot3F4(planeNormalWS,worldVertsA1[pairIndex*capacityWorldVertsB2]); - - - - /*for (int i=0;i<numVertsInB;i++) - { - pVtxOut[i] = pVtxIn[i]; - }*/ - - - - - //numVertsInB=0; - - float4 planeNormalWS = worldNormalsA1[pairIndex]; - float planeEqWS=-dot3F4(planeNormalWS,worldVertsA1[pairIndex*capacityWorldVertsB2]); - - for (int i=0;i<numVertsInB;i++) - { - float depth = dot3F4(planeNormalWS,pVtxIn[i])+planeEqWS; - if (depth <=minDist) - { - depth = minDist; - } - - if (depth <=maxDist) - { - float4 pointInWorld = pVtxIn[i]; - pVtxOut[numContactsOut++] = make_float4(pointInWorld.x,pointInWorld.y,pointInWorld.z,depth); - } - } - - clippingFaces[pairIndex].w =numContactsOut; - - - return numContactsOut; - -} - - - - -__kernel void findClippingFacesKernel( __global const int4* pairs, - __global const b3RigidBodyData_t* rigidBodies, - __global const b3Collidable_t* collidables, - __global const b3ConvexPolyhedronData_t* convexShapes, - __global const float4* vertices, - __global const float4* uniqueEdges, - __global const b3GpuFace_t* faces, - __global const int* indices, - __global const float4* separatingNormals, - __global const int* hasSeparatingAxis, - __global int4* clippingFacesOut, - __global float4* worldVertsA1, - __global float4* worldNormalsA1, - __global float4* worldVertsB1, - int capacityWorldVerts, - int numPairs - ) -{ - - int i = get_global_id(0); - int pairIndex = i; - - - float minDist = -1e30f; - float maxDist = 0.02f; - - if (i<numPairs) - { - - if (hasSeparatingAxis[i]) - { - - int bodyIndexA = pairs[i].x; - int bodyIndexB = pairs[i].y; - - int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; - int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; - - int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; - int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; - - - - int numLocalContactsOut = findClippingFaces(separatingNormals[i], - &convexShapes[shapeIndexA], &convexShapes[shapeIndexB], - rigidBodies[bodyIndexA].m_pos,rigidBodies[bodyIndexA].m_quat, - rigidBodies[bodyIndexB].m_pos,rigidBodies[bodyIndexB].m_quat, - worldVertsA1, - worldNormalsA1, - worldVertsB1,capacityWorldVerts, - minDist, maxDist, - vertices,faces,indices, - clippingFacesOut,i); - - - }// if (hasSeparatingAxis[i]) - }// if (i<numPairs) - -} - - - - -__kernel void clipFacesAndFindContactsKernel( __global const float4* separatingNormals, - __global const int* hasSeparatingAxis, - __global int4* clippingFacesOut, - __global float4* worldVertsA1, - __global float4* worldNormalsA1, - __global float4* worldVertsB1, - __global float4* worldVertsB2, - int vertexFaceCapacity, - int numPairs, - int debugMode - ) -{ - int i = get_global_id(0); - int pairIndex = i; - - - float minDist = -1e30f; - float maxDist = 0.02f; - - if (i<numPairs) - { - - if (hasSeparatingAxis[i]) - { - -// int bodyIndexA = pairs[i].x; - // int bodyIndexB = pairs[i].y; - - int numLocalContactsOut = 0; - - int capacityWorldVertsB2 = vertexFaceCapacity; - - __global float4* pVtxIn = &worldVertsB1[pairIndex*capacityWorldVertsB2]; - __global float4* pVtxOut = &worldVertsB2[pairIndex*capacityWorldVertsB2]; - - - { - __global int4* clippingFaces = clippingFacesOut; - - - int closestFaceA = clippingFaces[pairIndex].x; - int closestFaceB = clippingFaces[pairIndex].y; - int numVertsInA = clippingFaces[pairIndex].z; - int numVertsInB = clippingFaces[pairIndex].w; - - int numVertsOut = 0; - - if (closestFaceA>=0) - { - - - - // clip polygon to back of planes of all faces of hull A that are adjacent to witness face - - for(int e0=0;e0<numVertsInA;e0++) - { - const float4 aw = worldVertsA1[pairIndex*capacityWorldVertsB2+e0]; - const float4 bw = worldVertsA1[pairIndex*capacityWorldVertsB2+((e0+1)%numVertsInA)]; - const float4 WorldEdge0 = aw - bw; - float4 worldPlaneAnormal1 = worldNormalsA1[pairIndex]; - float4 planeNormalWS1 = -cross3(WorldEdge0,worldPlaneAnormal1); - float4 worldA1 = aw; - float planeEqWS1 = -dot3F4(worldA1,planeNormalWS1); - float4 planeNormalWS = planeNormalWS1; - float planeEqWS=planeEqWS1; - numVertsOut = clipFaceGlobal(pVtxIn, numVertsInB, planeNormalWS,planeEqWS, pVtxOut); - __global float4* tmp = pVtxOut; - pVtxOut = pVtxIn; - pVtxIn = tmp; - numVertsInB = numVertsOut; - numVertsOut = 0; - } - - float4 planeNormalWS = worldNormalsA1[pairIndex]; - float planeEqWS=-dot3F4(planeNormalWS,worldVertsA1[pairIndex*capacityWorldVertsB2]); - - for (int i=0;i<numVertsInB;i++) - { - float depth = dot3F4(planeNormalWS,pVtxIn[i])+planeEqWS; - if (depth <=minDist) - { - depth = minDist; - } - - if (depth <=maxDist) - { - float4 pointInWorld = pVtxIn[i]; - pVtxOut[numLocalContactsOut++] = make_float4(pointInWorld.x,pointInWorld.y,pointInWorld.z,depth); - } - } - - } - clippingFaces[pairIndex].w =numLocalContactsOut; - - - } - - for (int i=0;i<numLocalContactsOut;i++) - pVtxIn[i] = pVtxOut[i]; - - }// if (hasSeparatingAxis[i]) - }// if (i<numPairs) - -} - - - - - -__kernel void newContactReductionKernel( __global int4* pairs, - __global const b3RigidBodyData_t* rigidBodies, - __global const float4* separatingNormals, - __global const int* hasSeparatingAxis, - __global struct b3Contact4Data* globalContactsOut, - __global int4* clippingFaces, - __global float4* worldVertsB2, - volatile __global int* nGlobalContactsOut, - int vertexFaceCapacity, - int contactCapacity, - int numPairs - ) -{ - int i = get_global_id(0); - int pairIndex = i; - - int4 contactIdx; - contactIdx=make_int4(0,1,2,3); - - if (i<numPairs) - { - - if (hasSeparatingAxis[i]) - { - - - - - int nPoints = clippingFaces[pairIndex].w; - - if (nPoints>0) - { - - __global float4* pointsIn = &worldVertsB2[pairIndex*vertexFaceCapacity]; - float4 normal = -separatingNormals[i]; - - int nReducedContacts = extractManifoldSequentialGlobal(pointsIn, nPoints, normal, &contactIdx); - - int mprContactIndex = pairs[pairIndex].z; - - int dstIdx = mprContactIndex; - - if (dstIdx<0) - { - AppendInc( nGlobalContactsOut, dstIdx ); - } -//#if 0 - - if (dstIdx < contactCapacity) - { - - __global struct b3Contact4Data* c = &globalContactsOut[dstIdx]; - c->m_worldNormalOnB = -normal; - c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff); - c->m_batchIdx = pairIndex; - int bodyA = pairs[pairIndex].x; - int bodyB = pairs[pairIndex].y; - - pairs[pairIndex].w = dstIdx; - - c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0?-bodyA:bodyA; - c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0?-bodyB:bodyB; - c->m_childIndexA =-1; - c->m_childIndexB =-1; - - switch (nReducedContacts) - { - case 4: - c->m_worldPosB[3] = pointsIn[contactIdx.w]; - case 3: - c->m_worldPosB[2] = pointsIn[contactIdx.z]; - case 2: - c->m_worldPosB[1] = pointsIn[contactIdx.y]; - case 1: - if (mprContactIndex<0)//test - c->m_worldPosB[0] = pointsIn[contactIdx.x]; - default: - { - } - }; - - GET_NPOINTS(*c) = nReducedContacts; - - } - - -//#endif - - }// if (numContactsOut>0) - }// if (hasSeparatingAxis[i]) - }// if (i<numPairs) - - - -} diff --git a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/kernels/satClipHullContacts.h b/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/kernels/satClipHullContacts.h deleted file mode 100644 index f0ecfc7851..0000000000 --- a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/kernels/satClipHullContacts.h +++ /dev/null @@ -1,2099 +0,0 @@ -//this file is autogenerated using stringify.bat (premake --stringify) in the build folder of this project -static const char* satClipKernelsCL= \ -"#define TRIANGLE_NUM_CONVEX_FACES 5\n" -"#pragma OPENCL EXTENSION cl_amd_printf : enable\n" -"#pragma OPENCL EXTENSION cl_khr_local_int32_base_atomics : enable\n" -"#pragma OPENCL EXTENSION cl_khr_global_int32_base_atomics : enable\n" -"#pragma OPENCL EXTENSION cl_khr_local_int32_extended_atomics : enable\n" -"#pragma OPENCL EXTENSION cl_khr_global_int32_extended_atomics : enable\n" -"#ifdef cl_ext_atomic_counters_32\n" -"#pragma OPENCL EXTENSION cl_ext_atomic_counters_32 : enable\n" -"#else\n" -"#define counter32_t volatile __global int*\n" -"#endif\n" -"#define GET_GROUP_IDX get_group_id(0)\n" -"#define GET_LOCAL_IDX get_local_id(0)\n" -"#define GET_GLOBAL_IDX get_global_id(0)\n" -"#define GET_GROUP_SIZE get_local_size(0)\n" -"#define GET_NUM_GROUPS get_num_groups(0)\n" -"#define GROUP_LDS_BARRIER barrier(CLK_LOCAL_MEM_FENCE)\n" -"#define GROUP_MEM_FENCE mem_fence(CLK_LOCAL_MEM_FENCE)\n" -"#define AtomInc(x) atom_inc(&(x))\n" -"#define AtomInc1(x, out) out = atom_inc(&(x))\n" -"#define AppendInc(x, out) out = atomic_inc(x)\n" -"#define AtomAdd(x, value) atom_add(&(x), value)\n" -"#define AtomCmpxhg(x, cmp, value) atom_cmpxchg( &(x), cmp, value )\n" -"#define AtomXhg(x, value) atom_xchg ( &(x), value )\n" -"#define max2 max\n" -"#define min2 min\n" -"typedef unsigned int u32;\n" -"#ifndef B3_CONTACT4DATA_H\n" -"#define B3_CONTACT4DATA_H\n" -"#ifndef B3_FLOAT4_H\n" -"#define B3_FLOAT4_H\n" -"#ifndef B3_PLATFORM_DEFINITIONS_H\n" -"#define B3_PLATFORM_DEFINITIONS_H\n" -"struct MyTest\n" -"{\n" -" int bla;\n" -"};\n" -"#ifdef __cplusplus\n" -"#else\n" -"//keep B3_LARGE_FLOAT*B3_LARGE_FLOAT < FLT_MAX\n" -"#define B3_LARGE_FLOAT 1e18f\n" -"#define B3_INFINITY 1e18f\n" -"#define b3Assert(a)\n" -"#define b3ConstArray(a) __global const a*\n" -"#define b3AtomicInc atomic_inc\n" -"#define b3AtomicAdd atomic_add\n" -"#define b3Fabs fabs\n" -"#define b3Sqrt native_sqrt\n" -"#define b3Sin native_sin\n" -"#define b3Cos native_cos\n" -"#define B3_STATIC\n" -"#endif\n" -"#endif\n" -"#ifdef __cplusplus\n" -"#else\n" -" typedef float4 b3Float4;\n" -" #define b3Float4ConstArg const b3Float4\n" -" #define b3MakeFloat4 (float4)\n" -" float b3Dot3F4(b3Float4ConstArg v0,b3Float4ConstArg v1)\n" -" {\n" -" float4 a1 = b3MakeFloat4(v0.xyz,0.f);\n" -" float4 b1 = b3MakeFloat4(v1.xyz,0.f);\n" -" return dot(a1, b1);\n" -" }\n" -" b3Float4 b3Cross3(b3Float4ConstArg v0,b3Float4ConstArg v1)\n" -" {\n" -" float4 a1 = b3MakeFloat4(v0.xyz,0.f);\n" -" float4 b1 = b3MakeFloat4(v1.xyz,0.f);\n" -" return cross(a1, b1);\n" -" }\n" -" #define b3MinFloat4 min\n" -" #define b3MaxFloat4 max\n" -" #define b3Normalized(a) normalize(a)\n" -"#endif \n" -" \n" -"inline bool b3IsAlmostZero(b3Float4ConstArg v)\n" -"{\n" -" if(b3Fabs(v.x)>1e-6 || b3Fabs(v.y)>1e-6 || b3Fabs(v.z)>1e-6) \n" -" return false;\n" -" return true;\n" -"}\n" -"inline int b3MaxDot( b3Float4ConstArg vec, __global const b3Float4* vecArray, int vecLen, float* dotOut )\n" -"{\n" -" float maxDot = -B3_INFINITY;\n" -" int i = 0;\n" -" int ptIndex = -1;\n" -" for( i = 0; i < vecLen; i++ )\n" -" {\n" -" float dot = b3Dot3F4(vecArray[i],vec);\n" -" \n" -" if( dot > maxDot )\n" -" {\n" -" maxDot = dot;\n" -" ptIndex = i;\n" -" }\n" -" }\n" -" b3Assert(ptIndex>=0);\n" -" if (ptIndex<0)\n" -" {\n" -" ptIndex = 0;\n" -" }\n" -" *dotOut = maxDot;\n" -" return ptIndex;\n" -"}\n" -"#endif //B3_FLOAT4_H\n" -"typedef struct b3Contact4Data b3Contact4Data_t;\n" -"struct b3Contact4Data\n" -"{\n" -" b3Float4 m_worldPosB[4];\n" -"// b3Float4 m_localPosA[4];\n" -"// b3Float4 m_localPosB[4];\n" -" b3Float4 m_worldNormalOnB; // w: m_nPoints\n" -" unsigned short m_restituitionCoeffCmp;\n" -" unsigned short m_frictionCoeffCmp;\n" -" int m_batchIdx;\n" -" int m_bodyAPtrAndSignBit;//x:m_bodyAPtr, y:m_bodyBPtr\n" -" int m_bodyBPtrAndSignBit;\n" -" int m_childIndexA;\n" -" int m_childIndexB;\n" -" int m_unused1;\n" -" int m_unused2;\n" -"};\n" -"inline int b3Contact4Data_getNumPoints(const struct b3Contact4Data* contact)\n" -"{\n" -" return (int)contact->m_worldNormalOnB.w;\n" -"};\n" -"inline void b3Contact4Data_setNumPoints(struct b3Contact4Data* contact, int numPoints)\n" -"{\n" -" contact->m_worldNormalOnB.w = (float)numPoints;\n" -"};\n" -"#endif //B3_CONTACT4DATA_H\n" -"#ifndef B3_CONVEX_POLYHEDRON_DATA_H\n" -"#define B3_CONVEX_POLYHEDRON_DATA_H\n" -"#ifndef B3_FLOAT4_H\n" -"#ifdef __cplusplus\n" -"#else\n" -"#endif \n" -"#endif //B3_FLOAT4_H\n" -"#ifndef B3_QUAT_H\n" -"#define B3_QUAT_H\n" -"#ifndef B3_PLATFORM_DEFINITIONS_H\n" -"#ifdef __cplusplus\n" -"#else\n" -"#endif\n" -"#endif\n" -"#ifndef B3_FLOAT4_H\n" -"#ifdef __cplusplus\n" -"#else\n" -"#endif \n" -"#endif //B3_FLOAT4_H\n" -"#ifdef __cplusplus\n" -"#else\n" -" typedef float4 b3Quat;\n" -" #define b3QuatConstArg const b3Quat\n" -" \n" -" \n" -"inline float4 b3FastNormalize4(float4 v)\n" -"{\n" -" v = (float4)(v.xyz,0.f);\n" -" return fast_normalize(v);\n" -"}\n" -" \n" -"inline b3Quat b3QuatMul(b3Quat a, b3Quat b);\n" -"inline b3Quat b3QuatNormalized(b3QuatConstArg in);\n" -"inline b3Quat b3QuatRotate(b3QuatConstArg q, b3QuatConstArg vec);\n" -"inline b3Quat b3QuatInvert(b3QuatConstArg q);\n" -"inline b3Quat b3QuatInverse(b3QuatConstArg q);\n" -"inline b3Quat b3QuatMul(b3QuatConstArg a, b3QuatConstArg b)\n" -"{\n" -" b3Quat ans;\n" -" ans = b3Cross3( a, b );\n" -" ans += a.w*b+b.w*a;\n" -"// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z);\n" -" ans.w = a.w*b.w - b3Dot3F4(a, b);\n" -" return ans;\n" -"}\n" -"inline b3Quat b3QuatNormalized(b3QuatConstArg in)\n" -"{\n" -" b3Quat q;\n" -" q=in;\n" -" //return b3FastNormalize4(in);\n" -" float len = native_sqrt(dot(q, q));\n" -" if(len > 0.f)\n" -" {\n" -" q *= 1.f / len;\n" -" }\n" -" else\n" -" {\n" -" q.x = q.y = q.z = 0.f;\n" -" q.w = 1.f;\n" -" }\n" -" return q;\n" -"}\n" -"inline float4 b3QuatRotate(b3QuatConstArg q, b3QuatConstArg vec)\n" -"{\n" -" b3Quat qInv = b3QuatInvert( q );\n" -" float4 vcpy = vec;\n" -" vcpy.w = 0.f;\n" -" float4 out = b3QuatMul(b3QuatMul(q,vcpy),qInv);\n" -" return out;\n" -"}\n" -"inline b3Quat b3QuatInverse(b3QuatConstArg q)\n" -"{\n" -" return (b3Quat)(-q.xyz, q.w);\n" -"}\n" -"inline b3Quat b3QuatInvert(b3QuatConstArg q)\n" -"{\n" -" return (b3Quat)(-q.xyz, q.w);\n" -"}\n" -"inline float4 b3QuatInvRotate(b3QuatConstArg q, b3QuatConstArg vec)\n" -"{\n" -" return b3QuatRotate( b3QuatInvert( q ), vec );\n" -"}\n" -"inline b3Float4 b3TransformPoint(b3Float4ConstArg point, b3Float4ConstArg translation, b3QuatConstArg orientation)\n" -"{\n" -" return b3QuatRotate( orientation, point ) + (translation);\n" -"}\n" -" \n" -"#endif \n" -"#endif //B3_QUAT_H\n" -"typedef struct b3GpuFace b3GpuFace_t;\n" -"struct b3GpuFace\n" -"{\n" -" b3Float4 m_plane;\n" -" int m_indexOffset;\n" -" int m_numIndices;\n" -" int m_unusedPadding1;\n" -" int m_unusedPadding2;\n" -"};\n" -"typedef struct b3ConvexPolyhedronData b3ConvexPolyhedronData_t;\n" -"struct b3ConvexPolyhedronData\n" -"{\n" -" b3Float4 m_localCenter;\n" -" b3Float4 m_extents;\n" -" b3Float4 mC;\n" -" b3Float4 mE;\n" -" float m_radius;\n" -" int m_faceOffset;\n" -" int m_numFaces;\n" -" int m_numVertices;\n" -" int m_vertexOffset;\n" -" int m_uniqueEdgesOffset;\n" -" int m_numUniqueEdges;\n" -" int m_unused;\n" -"};\n" -"#endif //B3_CONVEX_POLYHEDRON_DATA_H\n" -"#ifndef B3_COLLIDABLE_H\n" -"#define B3_COLLIDABLE_H\n" -"#ifndef B3_FLOAT4_H\n" -"#ifdef __cplusplus\n" -"#else\n" -"#endif \n" -"#endif //B3_FLOAT4_H\n" -"#ifndef B3_QUAT_H\n" -"#ifdef __cplusplus\n" -"#else\n" -"#endif \n" -"#endif //B3_QUAT_H\n" -"enum b3ShapeTypes\n" -"{\n" -" SHAPE_HEIGHT_FIELD=1,\n" -" SHAPE_CONVEX_HULL=3,\n" -" SHAPE_PLANE=4,\n" -" SHAPE_CONCAVE_TRIMESH=5,\n" -" SHAPE_COMPOUND_OF_CONVEX_HULLS=6,\n" -" SHAPE_SPHERE=7,\n" -" MAX_NUM_SHAPE_TYPES,\n" -"};\n" -"typedef struct b3Collidable b3Collidable_t;\n" -"struct b3Collidable\n" -"{\n" -" union {\n" -" int m_numChildShapes;\n" -" int m_bvhIndex;\n" -" };\n" -" union\n" -" {\n" -" float m_radius;\n" -" int m_compoundBvhIndex;\n" -" };\n" -" int m_shapeType;\n" -" int m_shapeIndex;\n" -"};\n" -"typedef struct b3GpuChildShape b3GpuChildShape_t;\n" -"struct b3GpuChildShape\n" -"{\n" -" b3Float4 m_childPosition;\n" -" b3Quat m_childOrientation;\n" -" int m_shapeIndex;\n" -" int m_unused0;\n" -" int m_unused1;\n" -" int m_unused2;\n" -"};\n" -"struct b3CompoundOverlappingPair\n" -"{\n" -" int m_bodyIndexA;\n" -" int m_bodyIndexB;\n" -"// int m_pairType;\n" -" int m_childShapeIndexA;\n" -" int m_childShapeIndexB;\n" -"};\n" -"#endif //B3_COLLIDABLE_H\n" -"#ifndef B3_RIGIDBODY_DATA_H\n" -"#define B3_RIGIDBODY_DATA_H\n" -"#ifndef B3_FLOAT4_H\n" -"#ifdef __cplusplus\n" -"#else\n" -"#endif \n" -"#endif //B3_FLOAT4_H\n" -"#ifndef B3_QUAT_H\n" -"#ifdef __cplusplus\n" -"#else\n" -"#endif \n" -"#endif //B3_QUAT_H\n" -"#ifndef B3_MAT3x3_H\n" -"#define B3_MAT3x3_H\n" -"#ifndef B3_QUAT_H\n" -"#ifdef __cplusplus\n" -"#else\n" -"#endif \n" -"#endif //B3_QUAT_H\n" -"#ifdef __cplusplus\n" -"#else\n" -"typedef struct\n" -"{\n" -" b3Float4 m_row[3];\n" -"}b3Mat3x3;\n" -"#define b3Mat3x3ConstArg const b3Mat3x3\n" -"#define b3GetRow(m,row) (m.m_row[row])\n" -"inline b3Mat3x3 b3QuatGetRotationMatrix(b3Quat quat)\n" -"{\n" -" b3Float4 quat2 = (b3Float4)(quat.x*quat.x, quat.y*quat.y, quat.z*quat.z, 0.f);\n" -" b3Mat3x3 out;\n" -" out.m_row[0].x=1-2*quat2.y-2*quat2.z;\n" -" out.m_row[0].y=2*quat.x*quat.y-2*quat.w*quat.z;\n" -" out.m_row[0].z=2*quat.x*quat.z+2*quat.w*quat.y;\n" -" out.m_row[0].w = 0.f;\n" -" out.m_row[1].x=2*quat.x*quat.y+2*quat.w*quat.z;\n" -" out.m_row[1].y=1-2*quat2.x-2*quat2.z;\n" -" out.m_row[1].z=2*quat.y*quat.z-2*quat.w*quat.x;\n" -" out.m_row[1].w = 0.f;\n" -" out.m_row[2].x=2*quat.x*quat.z-2*quat.w*quat.y;\n" -" out.m_row[2].y=2*quat.y*quat.z+2*quat.w*quat.x;\n" -" out.m_row[2].z=1-2*quat2.x-2*quat2.y;\n" -" out.m_row[2].w = 0.f;\n" -" return out;\n" -"}\n" -"inline b3Mat3x3 b3AbsoluteMat3x3(b3Mat3x3ConstArg matIn)\n" -"{\n" -" b3Mat3x3 out;\n" -" out.m_row[0] = fabs(matIn.m_row[0]);\n" -" out.m_row[1] = fabs(matIn.m_row[1]);\n" -" out.m_row[2] = fabs(matIn.m_row[2]);\n" -" return out;\n" -"}\n" -"__inline\n" -"b3Mat3x3 mtZero();\n" -"__inline\n" -"b3Mat3x3 mtIdentity();\n" -"__inline\n" -"b3Mat3x3 mtTranspose(b3Mat3x3 m);\n" -"__inline\n" -"b3Mat3x3 mtMul(b3Mat3x3 a, b3Mat3x3 b);\n" -"__inline\n" -"b3Float4 mtMul1(b3Mat3x3 a, b3Float4 b);\n" -"__inline\n" -"b3Float4 mtMul3(b3Float4 a, b3Mat3x3 b);\n" -"__inline\n" -"b3Mat3x3 mtZero()\n" -"{\n" -" b3Mat3x3 m;\n" -" m.m_row[0] = (b3Float4)(0.f);\n" -" m.m_row[1] = (b3Float4)(0.f);\n" -" m.m_row[2] = (b3Float4)(0.f);\n" -" return m;\n" -"}\n" -"__inline\n" -"b3Mat3x3 mtIdentity()\n" -"{\n" -" b3Mat3x3 m;\n" -" m.m_row[0] = (b3Float4)(1,0,0,0);\n" -" m.m_row[1] = (b3Float4)(0,1,0,0);\n" -" m.m_row[2] = (b3Float4)(0,0,1,0);\n" -" return m;\n" -"}\n" -"__inline\n" -"b3Mat3x3 mtTranspose(b3Mat3x3 m)\n" -"{\n" -" b3Mat3x3 out;\n" -" out.m_row[0] = (b3Float4)(m.m_row[0].x, m.m_row[1].x, m.m_row[2].x, 0.f);\n" -" out.m_row[1] = (b3Float4)(m.m_row[0].y, m.m_row[1].y, m.m_row[2].y, 0.f);\n" -" out.m_row[2] = (b3Float4)(m.m_row[0].z, m.m_row[1].z, m.m_row[2].z, 0.f);\n" -" return out;\n" -"}\n" -"__inline\n" -"b3Mat3x3 mtMul(b3Mat3x3 a, b3Mat3x3 b)\n" -"{\n" -" b3Mat3x3 transB;\n" -" transB = mtTranspose( b );\n" -" b3Mat3x3 ans;\n" -" // why this doesn't run when 0ing in the for{}\n" -" a.m_row[0].w = 0.f;\n" -" a.m_row[1].w = 0.f;\n" -" a.m_row[2].w = 0.f;\n" -" for(int i=0; i<3; i++)\n" -" {\n" -"// a.m_row[i].w = 0.f;\n" -" ans.m_row[i].x = b3Dot3F4(a.m_row[i],transB.m_row[0]);\n" -" ans.m_row[i].y = b3Dot3F4(a.m_row[i],transB.m_row[1]);\n" -" ans.m_row[i].z = b3Dot3F4(a.m_row[i],transB.m_row[2]);\n" -" ans.m_row[i].w = 0.f;\n" -" }\n" -" return ans;\n" -"}\n" -"__inline\n" -"b3Float4 mtMul1(b3Mat3x3 a, b3Float4 b)\n" -"{\n" -" b3Float4 ans;\n" -" ans.x = b3Dot3F4( a.m_row[0], b );\n" -" ans.y = b3Dot3F4( a.m_row[1], b );\n" -" ans.z = b3Dot3F4( a.m_row[2], b );\n" -" ans.w = 0.f;\n" -" return ans;\n" -"}\n" -"__inline\n" -"b3Float4 mtMul3(b3Float4 a, b3Mat3x3 b)\n" -"{\n" -" b3Float4 colx = b3MakeFloat4(b.m_row[0].x, b.m_row[1].x, b.m_row[2].x, 0);\n" -" b3Float4 coly = b3MakeFloat4(b.m_row[0].y, b.m_row[1].y, b.m_row[2].y, 0);\n" -" b3Float4 colz = b3MakeFloat4(b.m_row[0].z, b.m_row[1].z, b.m_row[2].z, 0);\n" -" b3Float4 ans;\n" -" ans.x = b3Dot3F4( a, colx );\n" -" ans.y = b3Dot3F4( a, coly );\n" -" ans.z = b3Dot3F4( a, colz );\n" -" return ans;\n" -"}\n" -"#endif\n" -"#endif //B3_MAT3x3_H\n" -"typedef struct b3RigidBodyData b3RigidBodyData_t;\n" -"struct b3RigidBodyData\n" -"{\n" -" b3Float4 m_pos;\n" -" b3Quat m_quat;\n" -" b3Float4 m_linVel;\n" -" b3Float4 m_angVel;\n" -" int m_collidableIdx;\n" -" float m_invMass;\n" -" float m_restituitionCoeff;\n" -" float m_frictionCoeff;\n" -"};\n" -"typedef struct b3InertiaData b3InertiaData_t;\n" -"struct b3InertiaData\n" -"{\n" -" b3Mat3x3 m_invInertiaWorld;\n" -" b3Mat3x3 m_initInvInertia;\n" -"};\n" -"#endif //B3_RIGIDBODY_DATA_H\n" -" \n" -"#define GET_NPOINTS(x) (x).m_worldNormalOnB.w\n" -"#define SELECT_UINT4( b, a, condition ) select( b,a,condition )\n" -"#define make_float4 (float4)\n" -"#define make_float2 (float2)\n" -"#define make_uint4 (uint4)\n" -"#define make_int4 (int4)\n" -"#define make_uint2 (uint2)\n" -"#define make_int2 (int2)\n" -"__inline\n" -"float fastDiv(float numerator, float denominator)\n" -"{\n" -" return native_divide(numerator, denominator); \n" -"// return numerator/denominator; \n" -"}\n" -"__inline\n" -"float4 fastDiv4(float4 numerator, float4 denominator)\n" -"{\n" -" return native_divide(numerator, denominator); \n" -"}\n" -"__inline\n" -"float4 cross3(float4 a, float4 b)\n" -"{\n" -" return cross(a,b);\n" -"}\n" -"//#define dot3F4 dot\n" -"__inline\n" -"float dot3F4(float4 a, float4 b)\n" -"{\n" -" float4 a1 = make_float4(a.xyz,0.f);\n" -" float4 b1 = make_float4(b.xyz,0.f);\n" -" return dot(a1, b1);\n" -"}\n" -"__inline\n" -"float4 fastNormalize4(float4 v)\n" -"{\n" -" return fast_normalize(v);\n" -"}\n" -"///////////////////////////////////////\n" -"// Quaternion\n" -"///////////////////////////////////////\n" -"typedef float4 Quaternion;\n" -"__inline\n" -"Quaternion qtMul(Quaternion a, Quaternion b);\n" -"__inline\n" -"Quaternion qtNormalize(Quaternion in);\n" -"__inline\n" -"float4 qtRotate(Quaternion q, float4 vec);\n" -"__inline\n" -"Quaternion qtInvert(Quaternion q);\n" -"__inline\n" -"Quaternion qtMul(Quaternion a, Quaternion b)\n" -"{\n" -" Quaternion ans;\n" -" ans = cross3( a, b );\n" -" ans += a.w*b+b.w*a;\n" -"// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z);\n" -" ans.w = a.w*b.w - dot3F4(a, b);\n" -" return ans;\n" -"}\n" -"__inline\n" -"Quaternion qtNormalize(Quaternion in)\n" -"{\n" -" return fastNormalize4(in);\n" -"// in /= length( in );\n" -"// return in;\n" -"}\n" -"__inline\n" -"float4 qtRotate(Quaternion q, float4 vec)\n" -"{\n" -" Quaternion qInv = qtInvert( q );\n" -" float4 vcpy = vec;\n" -" vcpy.w = 0.f;\n" -" float4 out = qtMul(qtMul(q,vcpy),qInv);\n" -" return out;\n" -"}\n" -"__inline\n" -"Quaternion qtInvert(Quaternion q)\n" -"{\n" -" return (Quaternion)(-q.xyz, q.w);\n" -"}\n" -"__inline\n" -"float4 qtInvRotate(const Quaternion q, float4 vec)\n" -"{\n" -" return qtRotate( qtInvert( q ), vec );\n" -"}\n" -"__inline\n" -"float4 transform(const float4* p, const float4* translation, const Quaternion* orientation)\n" -"{\n" -" return qtRotate( *orientation, *p ) + (*translation);\n" -"}\n" -"__inline\n" -"float4 normalize3(const float4 a)\n" -"{\n" -" float4 n = make_float4(a.x, a.y, a.z, 0.f);\n" -" return fastNormalize4( n );\n" -"}\n" -"__inline float4 lerp3(const float4 a,const float4 b, float t)\n" -"{\n" -" return make_float4( a.x + (b.x - a.x) * t,\n" -" a.y + (b.y - a.y) * t,\n" -" a.z + (b.z - a.z) * t,\n" -" 0.f);\n" -"}\n" -"// Clips a face to the back of a plane, return the number of vertices out, stored in ppVtxOut\n" -"int clipFaceGlobal(__global const float4* pVtxIn, int numVertsIn, float4 planeNormalWS,float planeEqWS, __global float4* ppVtxOut)\n" -"{\n" -" \n" -" int ve;\n" -" float ds, de;\n" -" int numVertsOut = 0;\n" -" //double-check next test\n" -" if (numVertsIn < 2)\n" -" return 0;\n" -" \n" -" float4 firstVertex=pVtxIn[numVertsIn-1];\n" -" float4 endVertex = pVtxIn[0];\n" -" \n" -" ds = dot3F4(planeNormalWS,firstVertex)+planeEqWS;\n" -" \n" -" for (ve = 0; ve < numVertsIn; ve++)\n" -" {\n" -" endVertex=pVtxIn[ve];\n" -" de = dot3F4(planeNormalWS,endVertex)+planeEqWS;\n" -" if (ds<0)\n" -" {\n" -" if (de<0)\n" -" {\n" -" // Start < 0, end < 0, so output endVertex\n" -" ppVtxOut[numVertsOut++] = endVertex;\n" -" }\n" -" else\n" -" {\n" -" // Start < 0, end >= 0, so output intersection\n" -" ppVtxOut[numVertsOut++] = lerp3(firstVertex, endVertex,(ds * 1.f/(ds - de)) );\n" -" }\n" -" }\n" -" else\n" -" {\n" -" if (de<0)\n" -" {\n" -" // Start >= 0, end < 0 so output intersection and end\n" -" ppVtxOut[numVertsOut++] = lerp3(firstVertex, endVertex,(ds * 1.f/(ds - de)) );\n" -" ppVtxOut[numVertsOut++] = endVertex;\n" -" }\n" -" }\n" -" firstVertex = endVertex;\n" -" ds = de;\n" -" }\n" -" return numVertsOut;\n" -"}\n" -"// Clips a face to the back of a plane, return the number of vertices out, stored in ppVtxOut\n" -"int clipFace(const float4* pVtxIn, int numVertsIn, float4 planeNormalWS,float planeEqWS, float4* ppVtxOut)\n" -"{\n" -" \n" -" int ve;\n" -" float ds, de;\n" -" int numVertsOut = 0;\n" -"//double-check next test\n" -" if (numVertsIn < 2)\n" -" return 0;\n" -" float4 firstVertex=pVtxIn[numVertsIn-1];\n" -" float4 endVertex = pVtxIn[0];\n" -" \n" -" ds = dot3F4(planeNormalWS,firstVertex)+planeEqWS;\n" -" for (ve = 0; ve < numVertsIn; ve++)\n" -" {\n" -" endVertex=pVtxIn[ve];\n" -" de = dot3F4(planeNormalWS,endVertex)+planeEqWS;\n" -" if (ds<0)\n" -" {\n" -" if (de<0)\n" -" {\n" -" // Start < 0, end < 0, so output endVertex\n" -" ppVtxOut[numVertsOut++] = endVertex;\n" -" }\n" -" else\n" -" {\n" -" // Start < 0, end >= 0, so output intersection\n" -" ppVtxOut[numVertsOut++] = lerp3(firstVertex, endVertex,(ds * 1.f/(ds - de)) );\n" -" }\n" -" }\n" -" else\n" -" {\n" -" if (de<0)\n" -" {\n" -" // Start >= 0, end < 0 so output intersection and end\n" -" ppVtxOut[numVertsOut++] = lerp3(firstVertex, endVertex,(ds * 1.f/(ds - de)) );\n" -" ppVtxOut[numVertsOut++] = endVertex;\n" -" }\n" -" }\n" -" firstVertex = endVertex;\n" -" ds = de;\n" -" }\n" -" return numVertsOut;\n" -"}\n" -"int clipFaceAgainstHull(const float4 separatingNormal, __global const b3ConvexPolyhedronData_t* hullA, \n" -" const float4 posA, const Quaternion ornA, float4* worldVertsB1, int numWorldVertsB1,\n" -" float4* worldVertsB2, int capacityWorldVertsB2,\n" -" const float minDist, float maxDist,\n" -" __global const float4* vertices,\n" -" __global const b3GpuFace_t* faces,\n" -" __global const int* indices,\n" -" float4* contactsOut,\n" -" int contactCapacity)\n" -"{\n" -" int numContactsOut = 0;\n" -" float4* pVtxIn = worldVertsB1;\n" -" float4* pVtxOut = worldVertsB2;\n" -" \n" -" int numVertsIn = numWorldVertsB1;\n" -" int numVertsOut = 0;\n" -" int closestFaceA=-1;\n" -" {\n" -" float dmin = FLT_MAX;\n" -" for(int face=0;face<hullA->m_numFaces;face++)\n" -" {\n" -" const float4 Normal = make_float4(\n" -" faces[hullA->m_faceOffset+face].m_plane.x, \n" -" faces[hullA->m_faceOffset+face].m_plane.y, \n" -" faces[hullA->m_faceOffset+face].m_plane.z,0.f);\n" -" const float4 faceANormalWS = qtRotate(ornA,Normal);\n" -" \n" -" float d = dot3F4(faceANormalWS,separatingNormal);\n" -" if (d < dmin)\n" -" {\n" -" dmin = d;\n" -" closestFaceA = face;\n" -" }\n" -" }\n" -" }\n" -" if (closestFaceA<0)\n" -" return numContactsOut;\n" -" b3GpuFace_t polyA = faces[hullA->m_faceOffset+closestFaceA];\n" -" // clip polygon to back of planes of all faces of hull A that are adjacent to witness face\n" -" int numVerticesA = polyA.m_numIndices;\n" -" for(int e0=0;e0<numVerticesA;e0++)\n" -" {\n" -" const float4 a = vertices[hullA->m_vertexOffset+indices[polyA.m_indexOffset+e0]];\n" -" const float4 b = vertices[hullA->m_vertexOffset+indices[polyA.m_indexOffset+((e0+1)%numVerticesA)]];\n" -" const float4 edge0 = a - b;\n" -" const float4 WorldEdge0 = qtRotate(ornA,edge0);\n" -" float4 planeNormalA = make_float4(polyA.m_plane.x,polyA.m_plane.y,polyA.m_plane.z,0.f);\n" -" float4 worldPlaneAnormal1 = qtRotate(ornA,planeNormalA);\n" -" float4 planeNormalWS1 = -cross3(WorldEdge0,worldPlaneAnormal1);\n" -" float4 worldA1 = transform(&a,&posA,&ornA);\n" -" float planeEqWS1 = -dot3F4(worldA1,planeNormalWS1);\n" -" \n" -" float4 planeNormalWS = planeNormalWS1;\n" -" float planeEqWS=planeEqWS1;\n" -" \n" -" //clip face\n" -" //clipFace(*pVtxIn, *pVtxOut,planeNormalWS,planeEqWS);\n" -" numVertsOut = clipFace(pVtxIn, numVertsIn, planeNormalWS,planeEqWS, pVtxOut);\n" -" //btSwap(pVtxIn,pVtxOut);\n" -" float4* tmp = pVtxOut;\n" -" pVtxOut = pVtxIn;\n" -" pVtxIn = tmp;\n" -" numVertsIn = numVertsOut;\n" -" numVertsOut = 0;\n" -" }\n" -" \n" -" // only keep points that are behind the witness face\n" -" {\n" -" float4 localPlaneNormal = make_float4(polyA.m_plane.x,polyA.m_plane.y,polyA.m_plane.z,0.f);\n" -" float localPlaneEq = polyA.m_plane.w;\n" -" float4 planeNormalWS = qtRotate(ornA,localPlaneNormal);\n" -" float planeEqWS=localPlaneEq-dot3F4(planeNormalWS,posA);\n" -" for (int i=0;i<numVertsIn;i++)\n" -" {\n" -" float depth = dot3F4(planeNormalWS,pVtxIn[i])+planeEqWS;\n" -" if (depth <=minDist)\n" -" {\n" -" depth = minDist;\n" -" }\n" -" if (depth <=maxDist)\n" -" {\n" -" float4 pointInWorld = pVtxIn[i];\n" -" //resultOut.addContactPoint(separatingNormal,point,depth);\n" -" contactsOut[numContactsOut++] = make_float4(pointInWorld.x,pointInWorld.y,pointInWorld.z,depth);\n" -" }\n" -" }\n" -" }\n" -" return numContactsOut;\n" -"}\n" -"int clipFaceAgainstHullLocalA(const float4 separatingNormal, const b3ConvexPolyhedronData_t* hullA, \n" -" const float4 posA, const Quaternion ornA, float4* worldVertsB1, int numWorldVertsB1,\n" -" float4* worldVertsB2, int capacityWorldVertsB2,\n" -" const float minDist, float maxDist,\n" -" const float4* verticesA,\n" -" const b3GpuFace_t* facesA,\n" -" const int* indicesA,\n" -" __global const float4* verticesB,\n" -" __global const b3GpuFace_t* facesB,\n" -" __global const int* indicesB,\n" -" float4* contactsOut,\n" -" int contactCapacity)\n" -"{\n" -" int numContactsOut = 0;\n" -" float4* pVtxIn = worldVertsB1;\n" -" float4* pVtxOut = worldVertsB2;\n" -" \n" -" int numVertsIn = numWorldVertsB1;\n" -" int numVertsOut = 0;\n" -" int closestFaceA=-1;\n" -" {\n" -" float dmin = FLT_MAX;\n" -" for(int face=0;face<hullA->m_numFaces;face++)\n" -" {\n" -" const float4 Normal = make_float4(\n" -" facesA[hullA->m_faceOffset+face].m_plane.x, \n" -" facesA[hullA->m_faceOffset+face].m_plane.y, \n" -" facesA[hullA->m_faceOffset+face].m_plane.z,0.f);\n" -" const float4 faceANormalWS = qtRotate(ornA,Normal);\n" -" \n" -" float d = dot3F4(faceANormalWS,separatingNormal);\n" -" if (d < dmin)\n" -" {\n" -" dmin = d;\n" -" closestFaceA = face;\n" -" }\n" -" }\n" -" }\n" -" if (closestFaceA<0)\n" -" return numContactsOut;\n" -" b3GpuFace_t polyA = facesA[hullA->m_faceOffset+closestFaceA];\n" -" // clip polygon to back of planes of all faces of hull A that are adjacent to witness face\n" -" int numVerticesA = polyA.m_numIndices;\n" -" for(int e0=0;e0<numVerticesA;e0++)\n" -" {\n" -" const float4 a = verticesA[hullA->m_vertexOffset+indicesA[polyA.m_indexOffset+e0]];\n" -" const float4 b = verticesA[hullA->m_vertexOffset+indicesA[polyA.m_indexOffset+((e0+1)%numVerticesA)]];\n" -" const float4 edge0 = a - b;\n" -" const float4 WorldEdge0 = qtRotate(ornA,edge0);\n" -" float4 planeNormalA = make_float4(polyA.m_plane.x,polyA.m_plane.y,polyA.m_plane.z,0.f);\n" -" float4 worldPlaneAnormal1 = qtRotate(ornA,planeNormalA);\n" -" float4 planeNormalWS1 = -cross3(WorldEdge0,worldPlaneAnormal1);\n" -" float4 worldA1 = transform(&a,&posA,&ornA);\n" -" float planeEqWS1 = -dot3F4(worldA1,planeNormalWS1);\n" -" \n" -" float4 planeNormalWS = planeNormalWS1;\n" -" float planeEqWS=planeEqWS1;\n" -" \n" -" //clip face\n" -" //clipFace(*pVtxIn, *pVtxOut,planeNormalWS,planeEqWS);\n" -" numVertsOut = clipFace(pVtxIn, numVertsIn, planeNormalWS,planeEqWS, pVtxOut);\n" -" //btSwap(pVtxIn,pVtxOut);\n" -" float4* tmp = pVtxOut;\n" -" pVtxOut = pVtxIn;\n" -" pVtxIn = tmp;\n" -" numVertsIn = numVertsOut;\n" -" numVertsOut = 0;\n" -" }\n" -" \n" -" // only keep points that are behind the witness face\n" -" {\n" -" float4 localPlaneNormal = make_float4(polyA.m_plane.x,polyA.m_plane.y,polyA.m_plane.z,0.f);\n" -" float localPlaneEq = polyA.m_plane.w;\n" -" float4 planeNormalWS = qtRotate(ornA,localPlaneNormal);\n" -" float planeEqWS=localPlaneEq-dot3F4(planeNormalWS,posA);\n" -" for (int i=0;i<numVertsIn;i++)\n" -" {\n" -" float depth = dot3F4(planeNormalWS,pVtxIn[i])+planeEqWS;\n" -" if (depth <=minDist)\n" -" {\n" -" depth = minDist;\n" -" }\n" -" if (depth <=maxDist)\n" -" {\n" -" float4 pointInWorld = pVtxIn[i];\n" -" //resultOut.addContactPoint(separatingNormal,point,depth);\n" -" contactsOut[numContactsOut++] = make_float4(pointInWorld.x,pointInWorld.y,pointInWorld.z,depth);\n" -" }\n" -" }\n" -" }\n" -" return numContactsOut;\n" -"}\n" -"int clipHullAgainstHull(const float4 separatingNormal,\n" -" __global const b3ConvexPolyhedronData_t* hullA, __global const b3ConvexPolyhedronData_t* hullB, \n" -" const float4 posA, const Quaternion ornA,const float4 posB, const Quaternion ornB, \n" -" float4* worldVertsB1, float4* worldVertsB2, int capacityWorldVerts,\n" -" const float minDist, float maxDist,\n" -" __global const float4* vertices,\n" -" __global const b3GpuFace_t* faces,\n" -" __global const int* indices,\n" -" float4* localContactsOut,\n" -" int localContactCapacity)\n" -"{\n" -" int numContactsOut = 0;\n" -" int numWorldVertsB1= 0;\n" -" int closestFaceB=-1;\n" -" float dmax = -FLT_MAX;\n" -" {\n" -" for(int face=0;face<hullB->m_numFaces;face++)\n" -" {\n" -" const float4 Normal = make_float4(faces[hullB->m_faceOffset+face].m_plane.x, \n" -" faces[hullB->m_faceOffset+face].m_plane.y, faces[hullB->m_faceOffset+face].m_plane.z,0.f);\n" -" const float4 WorldNormal = qtRotate(ornB, Normal);\n" -" float d = dot3F4(WorldNormal,separatingNormal);\n" -" if (d > dmax)\n" -" {\n" -" dmax = d;\n" -" closestFaceB = face;\n" -" }\n" -" }\n" -" }\n" -" {\n" -" const b3GpuFace_t polyB = faces[hullB->m_faceOffset+closestFaceB];\n" -" const int numVertices = polyB.m_numIndices;\n" -" for(int e0=0;e0<numVertices;e0++)\n" -" {\n" -" const float4 b = vertices[hullB->m_vertexOffset+indices[polyB.m_indexOffset+e0]];\n" -" worldVertsB1[numWorldVertsB1++] = transform(&b,&posB,&ornB);\n" -" }\n" -" }\n" -" if (closestFaceB>=0)\n" -" {\n" -" numContactsOut = clipFaceAgainstHull(separatingNormal, hullA, \n" -" posA,ornA,\n" -" worldVertsB1,numWorldVertsB1,worldVertsB2,capacityWorldVerts, minDist, maxDist,vertices,\n" -" faces,\n" -" indices,localContactsOut,localContactCapacity);\n" -" }\n" -" return numContactsOut;\n" -"}\n" -"int clipHullAgainstHullLocalA(const float4 separatingNormal,\n" -" const b3ConvexPolyhedronData_t* hullA, __global const b3ConvexPolyhedronData_t* hullB, \n" -" const float4 posA, const Quaternion ornA,const float4 posB, const Quaternion ornB, \n" -" float4* worldVertsB1, float4* worldVertsB2, int capacityWorldVerts,\n" -" const float minDist, float maxDist,\n" -" const float4* verticesA,\n" -" const b3GpuFace_t* facesA,\n" -" const int* indicesA,\n" -" __global const float4* verticesB,\n" -" __global const b3GpuFace_t* facesB,\n" -" __global const int* indicesB,\n" -" float4* localContactsOut,\n" -" int localContactCapacity)\n" -"{\n" -" int numContactsOut = 0;\n" -" int numWorldVertsB1= 0;\n" -" int closestFaceB=-1;\n" -" float dmax = -FLT_MAX;\n" -" {\n" -" for(int face=0;face<hullB->m_numFaces;face++)\n" -" {\n" -" const float4 Normal = make_float4(facesB[hullB->m_faceOffset+face].m_plane.x, \n" -" facesB[hullB->m_faceOffset+face].m_plane.y, facesB[hullB->m_faceOffset+face].m_plane.z,0.f);\n" -" const float4 WorldNormal = qtRotate(ornB, Normal);\n" -" float d = dot3F4(WorldNormal,separatingNormal);\n" -" if (d > dmax)\n" -" {\n" -" dmax = d;\n" -" closestFaceB = face;\n" -" }\n" -" }\n" -" }\n" -" {\n" -" const b3GpuFace_t polyB = facesB[hullB->m_faceOffset+closestFaceB];\n" -" const int numVertices = polyB.m_numIndices;\n" -" for(int e0=0;e0<numVertices;e0++)\n" -" {\n" -" const float4 b = verticesB[hullB->m_vertexOffset+indicesB[polyB.m_indexOffset+e0]];\n" -" worldVertsB1[numWorldVertsB1++] = transform(&b,&posB,&ornB);\n" -" }\n" -" }\n" -" if (closestFaceB>=0)\n" -" {\n" -" numContactsOut = clipFaceAgainstHullLocalA(separatingNormal, hullA, \n" -" posA,ornA,\n" -" worldVertsB1,numWorldVertsB1,worldVertsB2,capacityWorldVerts, minDist, maxDist,\n" -" verticesA,facesA,indicesA,\n" -" verticesB,facesB,indicesB,\n" -" localContactsOut,localContactCapacity);\n" -" }\n" -" return numContactsOut;\n" -"}\n" -"#define PARALLEL_SUM(v, n) for(int j=1; j<n; j++) v[0] += v[j];\n" -"#define PARALLEL_DO(execution, n) for(int ie=0; ie<n; ie++){execution;}\n" -"#define REDUCE_MAX(v, n) {int i=0; for(int offset=0; offset<n; offset++) v[i] = (v[i].y > v[i+offset].y)? v[i]: v[i+offset]; }\n" -"#define REDUCE_MIN(v, n) {int i=0; for(int offset=0; offset<n; offset++) v[i] = (v[i].y < v[i+offset].y)? v[i]: v[i+offset]; }\n" -"int extractManifoldSequentialGlobal(__global const float4* p, int nPoints, float4 nearNormal, int4* contactIdx)\n" -"{\n" -" if( nPoints == 0 )\n" -" return 0;\n" -" \n" -" if (nPoints <=4)\n" -" return nPoints;\n" -" \n" -" \n" -" if (nPoints >64)\n" -" nPoints = 64;\n" -" \n" -" float4 center = make_float4(0.f);\n" -" {\n" -" \n" -" for (int i=0;i<nPoints;i++)\n" -" center += p[i];\n" -" center /= (float)nPoints;\n" -" }\n" -" \n" -" \n" -" \n" -" // sample 4 directions\n" -" \n" -" float4 aVector = p[0] - center;\n" -" float4 u = cross3( nearNormal, aVector );\n" -" float4 v = cross3( nearNormal, u );\n" -" u = normalize3( u );\n" -" v = normalize3( v );\n" -" \n" -" \n" -" //keep point with deepest penetration\n" -" float minW= FLT_MAX;\n" -" \n" -" int minIndex=-1;\n" -" \n" -" float4 maxDots;\n" -" maxDots.x = FLT_MIN;\n" -" maxDots.y = FLT_MIN;\n" -" maxDots.z = FLT_MIN;\n" -" maxDots.w = FLT_MIN;\n" -" \n" -" // idx, distance\n" -" for(int ie = 0; ie<nPoints; ie++ )\n" -" {\n" -" if (p[ie].w<minW)\n" -" {\n" -" minW = p[ie].w;\n" -" minIndex=ie;\n" -" }\n" -" float f;\n" -" float4 r = p[ie]-center;\n" -" f = dot3F4( u, r );\n" -" if (f<maxDots.x)\n" -" {\n" -" maxDots.x = f;\n" -" contactIdx[0].x = ie;\n" -" }\n" -" \n" -" f = dot3F4( -u, r );\n" -" if (f<maxDots.y)\n" -" {\n" -" maxDots.y = f;\n" -" contactIdx[0].y = ie;\n" -" }\n" -" \n" -" \n" -" f = dot3F4( v, r );\n" -" if (f<maxDots.z)\n" -" {\n" -" maxDots.z = f;\n" -" contactIdx[0].z = ie;\n" -" }\n" -" \n" -" f = dot3F4( -v, r );\n" -" if (f<maxDots.w)\n" -" {\n" -" maxDots.w = f;\n" -" contactIdx[0].w = ie;\n" -" }\n" -" \n" -" }\n" -" \n" -" if (contactIdx[0].x != minIndex && contactIdx[0].y != minIndex && contactIdx[0].z != minIndex && contactIdx[0].w != minIndex)\n" -" {\n" -" //replace the first contact with minimum (todo: replace contact with least penetration)\n" -" contactIdx[0].x = minIndex;\n" -" }\n" -" \n" -" return 4;\n" -" \n" -"}\n" -"int extractManifoldSequentialGlobalFake(__global const float4* p, int nPoints, float4 nearNormal, int* contactIdx)\n" -"{\n" -" contactIdx[0] = 0;\n" -" contactIdx[1] = 1;\n" -" contactIdx[2] = 2;\n" -" contactIdx[3] = 3;\n" -" \n" -" if( nPoints == 0 ) return 0;\n" -" \n" -" nPoints = min2( nPoints, 4 );\n" -" return nPoints;\n" -" \n" -"}\n" -"int extractManifoldSequential(const float4* p, int nPoints, float4 nearNormal, int* contactIdx)\n" -"{\n" -" if( nPoints == 0 ) return 0;\n" -" nPoints = min2( nPoints, 64 );\n" -" float4 center = make_float4(0.f);\n" -" {\n" -" float4 v[64];\n" -" for (int i=0;i<nPoints;i++)\n" -" v[i] = p[i];\n" -" //memcpy( v, p, nPoints*sizeof(float4) );\n" -" PARALLEL_SUM( v, nPoints );\n" -" center = v[0]/(float)nPoints;\n" -" }\n" -" \n" -" { // sample 4 directions\n" -" if( nPoints < 4 )\n" -" {\n" -" for(int i=0; i<nPoints; i++) \n" -" contactIdx[i] = i;\n" -" return nPoints;\n" -" }\n" -" float4 aVector = p[0] - center;\n" -" float4 u = cross3( nearNormal, aVector );\n" -" float4 v = cross3( nearNormal, u );\n" -" u = normalize3( u );\n" -" v = normalize3( v );\n" -" int idx[4];\n" -" float2 max00 = make_float2(0,FLT_MAX);\n" -" {\n" -" // idx, distance\n" -" {\n" -" {\n" -" int4 a[64];\n" -" for(int ie = 0; ie<nPoints; ie++ )\n" -" {\n" -" \n" -" \n" -" float f;\n" -" float4 r = p[ie]-center;\n" -" f = dot3F4( u, r );\n" -" a[ie].x = ((*(u32*)&f) & 0xffffff00) | (0xff & ie);\n" -" f = dot3F4( -u, r );\n" -" a[ie].y = ((*(u32*)&f) & 0xffffff00) | (0xff & ie);\n" -" f = dot3F4( v, r );\n" -" a[ie].z = ((*(u32*)&f) & 0xffffff00) | (0xff & ie);\n" -" f = dot3F4( -v, r );\n" -" a[ie].w = ((*(u32*)&f) & 0xffffff00) | (0xff & ie);\n" -" }\n" -" for(int ie=0; ie<nPoints; ie++)\n" -" {\n" -" a[0].x = (a[0].x > a[ie].x )? a[0].x: a[ie].x;\n" -" a[0].y = (a[0].y > a[ie].y )? a[0].y: a[ie].y;\n" -" a[0].z = (a[0].z > a[ie].z )? a[0].z: a[ie].z;\n" -" a[0].w = (a[0].w > a[ie].w )? a[0].w: a[ie].w;\n" -" }\n" -" idx[0] = (int)a[0].x & 0xff;\n" -" idx[1] = (int)a[0].y & 0xff;\n" -" idx[2] = (int)a[0].z & 0xff;\n" -" idx[3] = (int)a[0].w & 0xff;\n" -" }\n" -" }\n" -" {\n" -" float2 h[64];\n" -" PARALLEL_DO( h[ie] = make_float2((float)ie, p[ie].w), nPoints );\n" -" REDUCE_MIN( h, nPoints );\n" -" max00 = h[0];\n" -" }\n" -" }\n" -" contactIdx[0] = idx[0];\n" -" contactIdx[1] = idx[1];\n" -" contactIdx[2] = idx[2];\n" -" contactIdx[3] = idx[3];\n" -" return 4;\n" -" }\n" -"}\n" -"__kernel void extractManifoldAndAddContactKernel(__global const int4* pairs, \n" -" __global const b3RigidBodyData_t* rigidBodies, \n" -" __global const float4* closestPointsWorld,\n" -" __global const float4* separatingNormalsWorld,\n" -" __global const int* contactCounts,\n" -" __global const int* contactOffsets,\n" -" __global struct b3Contact4Data* restrict contactsOut,\n" -" counter32_t nContactsOut,\n" -" int contactCapacity,\n" -" int numPairs,\n" -" int pairIndex\n" -" )\n" -"{\n" -" int idx = get_global_id(0);\n" -" \n" -" if (idx<numPairs)\n" -" {\n" -" float4 normal = separatingNormalsWorld[idx];\n" -" int nPoints = contactCounts[idx];\n" -" __global const float4* pointsIn = &closestPointsWorld[contactOffsets[idx]];\n" -" float4 localPoints[64];\n" -" for (int i=0;i<nPoints;i++)\n" -" {\n" -" localPoints[i] = pointsIn[i];\n" -" }\n" -" int contactIdx[4];// = {-1,-1,-1,-1};\n" -" contactIdx[0] = -1;\n" -" contactIdx[1] = -1;\n" -" contactIdx[2] = -1;\n" -" contactIdx[3] = -1;\n" -" int nContacts = extractManifoldSequential(localPoints, nPoints, normal, contactIdx);\n" -" int dstIdx;\n" -" AppendInc( nContactsOut, dstIdx );\n" -" if (dstIdx<contactCapacity)\n" -" {\n" -" __global struct b3Contact4Data* c = contactsOut + dstIdx;\n" -" c->m_worldNormalOnB = -normal;\n" -" c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff);\n" -" c->m_batchIdx = idx;\n" -" int bodyA = pairs[pairIndex].x;\n" -" int bodyB = pairs[pairIndex].y;\n" -" c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0 ? -bodyA:bodyA;\n" -" c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0 ? -bodyB:bodyB;\n" -" c->m_childIndexA = -1;\n" -" c->m_childIndexB = -1;\n" -" for (int i=0;i<nContacts;i++)\n" -" {\n" -" c->m_worldPosB[i] = localPoints[contactIdx[i]];\n" -" }\n" -" GET_NPOINTS(*c) = nContacts;\n" -" }\n" -" }\n" -"}\n" -"void trInverse(float4 translationIn, Quaternion orientationIn,\n" -" float4* translationOut, Quaternion* orientationOut)\n" -"{\n" -" *orientationOut = qtInvert(orientationIn);\n" -" *translationOut = qtRotate(*orientationOut, -translationIn);\n" -"}\n" -"void trMul(float4 translationA, Quaternion orientationA,\n" -" float4 translationB, Quaternion orientationB,\n" -" float4* translationOut, Quaternion* orientationOut)\n" -"{\n" -" *orientationOut = qtMul(orientationA,orientationB);\n" -" *translationOut = transform(&translationB,&translationA,&orientationA);\n" -"}\n" -"__kernel void clipHullHullKernel( __global int4* pairs, \n" -" __global const b3RigidBodyData_t* rigidBodies, \n" -" __global const b3Collidable_t* collidables,\n" -" __global const b3ConvexPolyhedronData_t* convexShapes, \n" -" __global const float4* vertices,\n" -" __global const float4* uniqueEdges,\n" -" __global const b3GpuFace_t* faces,\n" -" __global const int* indices,\n" -" __global const float4* separatingNormals,\n" -" __global const int* hasSeparatingAxis,\n" -" __global struct b3Contact4Data* restrict globalContactsOut,\n" -" counter32_t nGlobalContactsOut,\n" -" int numPairs,\n" -" int contactCapacity)\n" -"{\n" -" int i = get_global_id(0);\n" -" int pairIndex = i;\n" -" \n" -" float4 worldVertsB1[64];\n" -" float4 worldVertsB2[64];\n" -" int capacityWorldVerts = 64; \n" -" float4 localContactsOut[64];\n" -" int localContactCapacity=64;\n" -" \n" -" float minDist = -1e30f;\n" -" float maxDist = 0.02f;\n" -" if (i<numPairs)\n" -" {\n" -" int bodyIndexA = pairs[i].x;\n" -" int bodyIndexB = pairs[i].y;\n" -" \n" -" int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" -" int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" -" if (hasSeparatingAxis[i])\n" -" {\n" -" \n" -" int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" -" int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" -" \n" -" \n" -" int numLocalContactsOut = clipHullAgainstHull(separatingNormals[i],\n" -" &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],\n" -" rigidBodies[bodyIndexA].m_pos,rigidBodies[bodyIndexA].m_quat,\n" -" rigidBodies[bodyIndexB].m_pos,rigidBodies[bodyIndexB].m_quat,\n" -" worldVertsB1,worldVertsB2,capacityWorldVerts,\n" -" minDist, maxDist,\n" -" vertices,faces,indices,\n" -" localContactsOut,localContactCapacity);\n" -" \n" -" if (numLocalContactsOut>0)\n" -" {\n" -" float4 normal = -separatingNormals[i];\n" -" int nPoints = numLocalContactsOut;\n" -" float4* pointsIn = localContactsOut;\n" -" int contactIdx[4];// = {-1,-1,-1,-1};\n" -" contactIdx[0] = -1;\n" -" contactIdx[1] = -1;\n" -" contactIdx[2] = -1;\n" -" contactIdx[3] = -1;\n" -" \n" -" int nReducedContacts = extractManifoldSequential(pointsIn, nPoints, normal, contactIdx);\n" -" \n" -" \n" -" int mprContactIndex = pairs[pairIndex].z;\n" -" int dstIdx = mprContactIndex;\n" -" if (dstIdx<0)\n" -" {\n" -" AppendInc( nGlobalContactsOut, dstIdx );\n" -" }\n" -" if (dstIdx<contactCapacity)\n" -" {\n" -" pairs[pairIndex].z = dstIdx;\n" -" __global struct b3Contact4Data* c = globalContactsOut+ dstIdx;\n" -" c->m_worldNormalOnB = -normal;\n" -" c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff);\n" -" c->m_batchIdx = pairIndex;\n" -" int bodyA = pairs[pairIndex].x;\n" -" int bodyB = pairs[pairIndex].y;\n" -" c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0?-bodyA:bodyA;\n" -" c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0?-bodyB:bodyB;\n" -" c->m_childIndexA = -1;\n" -" c->m_childIndexB = -1;\n" -" for (int i=0;i<nReducedContacts;i++)\n" -" {\n" -" //this condition means: overwrite contact point, unless at index i==0 we have a valid 'mpr' contact\n" -" if (i>0||(mprContactIndex<0))\n" -" {\n" -" c->m_worldPosB[i] = pointsIn[contactIdx[i]];\n" -" }\n" -" }\n" -" GET_NPOINTS(*c) = nReducedContacts;\n" -" }\n" -" \n" -" }// if (numContactsOut>0)\n" -" }// if (hasSeparatingAxis[i])\n" -" }// if (i<numPairs)\n" -"}\n" -"__kernel void clipCompoundsHullHullKernel( __global const int4* gpuCompoundPairs, \n" -" __global const b3RigidBodyData_t* rigidBodies, \n" -" __global const b3Collidable_t* collidables,\n" -" __global const b3ConvexPolyhedronData_t* convexShapes, \n" -" __global const float4* vertices,\n" -" __global const float4* uniqueEdges,\n" -" __global const b3GpuFace_t* faces,\n" -" __global const int* indices,\n" -" __global const b3GpuChildShape_t* gpuChildShapes,\n" -" __global const float4* gpuCompoundSepNormalsOut,\n" -" __global const int* gpuHasCompoundSepNormalsOut,\n" -" __global struct b3Contact4Data* restrict globalContactsOut,\n" -" counter32_t nGlobalContactsOut,\n" -" int numCompoundPairs, int maxContactCapacity)\n" -"{\n" -" int i = get_global_id(0);\n" -" int pairIndex = i;\n" -" \n" -" float4 worldVertsB1[64];\n" -" float4 worldVertsB2[64];\n" -" int capacityWorldVerts = 64; \n" -" float4 localContactsOut[64];\n" -" int localContactCapacity=64;\n" -" \n" -" float minDist = -1e30f;\n" -" float maxDist = 0.02f;\n" -" if (i<numCompoundPairs)\n" -" {\n" -" if (gpuHasCompoundSepNormalsOut[i])\n" -" {\n" -" int bodyIndexA = gpuCompoundPairs[i].x;\n" -" int bodyIndexB = gpuCompoundPairs[i].y;\n" -" \n" -" int childShapeIndexA = gpuCompoundPairs[i].z;\n" -" int childShapeIndexB = gpuCompoundPairs[i].w;\n" -" \n" -" int collidableIndexA = -1;\n" -" int collidableIndexB = -1;\n" -" \n" -" float4 ornA = rigidBodies[bodyIndexA].m_quat;\n" -" float4 posA = rigidBodies[bodyIndexA].m_pos;\n" -" \n" -" float4 ornB = rigidBodies[bodyIndexB].m_quat;\n" -" float4 posB = rigidBodies[bodyIndexB].m_pos;\n" -" \n" -" if (childShapeIndexA >= 0)\n" -" {\n" -" collidableIndexA = gpuChildShapes[childShapeIndexA].m_shapeIndex;\n" -" float4 childPosA = gpuChildShapes[childShapeIndexA].m_childPosition;\n" -" float4 childOrnA = gpuChildShapes[childShapeIndexA].m_childOrientation;\n" -" float4 newPosA = qtRotate(ornA,childPosA)+posA;\n" -" float4 newOrnA = qtMul(ornA,childOrnA);\n" -" posA = newPosA;\n" -" ornA = newOrnA;\n" -" } else\n" -" {\n" -" collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" -" }\n" -" \n" -" if (childShapeIndexB>=0)\n" -" {\n" -" collidableIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex;\n" -" float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition;\n" -" float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation;\n" -" float4 newPosB = transform(&childPosB,&posB,&ornB);\n" -" float4 newOrnB = qtMul(ornB,childOrnB);\n" -" posB = newPosB;\n" -" ornB = newOrnB;\n" -" } else\n" -" {\n" -" collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; \n" -" }\n" -" \n" -" int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" -" int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" -" \n" -" int numLocalContactsOut = clipHullAgainstHull(gpuCompoundSepNormalsOut[i],\n" -" &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],\n" -" posA,ornA,\n" -" posB,ornB,\n" -" worldVertsB1,worldVertsB2,capacityWorldVerts,\n" -" minDist, maxDist,\n" -" vertices,faces,indices,\n" -" localContactsOut,localContactCapacity);\n" -" \n" -" if (numLocalContactsOut>0)\n" -" {\n" -" float4 normal = -gpuCompoundSepNormalsOut[i];\n" -" int nPoints = numLocalContactsOut;\n" -" float4* pointsIn = localContactsOut;\n" -" int contactIdx[4];// = {-1,-1,-1,-1};\n" -" contactIdx[0] = -1;\n" -" contactIdx[1] = -1;\n" -" contactIdx[2] = -1;\n" -" contactIdx[3] = -1;\n" -" \n" -" int nReducedContacts = extractManifoldSequential(pointsIn, nPoints, normal, contactIdx);\n" -" \n" -" int dstIdx;\n" -" AppendInc( nGlobalContactsOut, dstIdx );\n" -" if ((dstIdx+nReducedContacts) < maxContactCapacity)\n" -" {\n" -" __global struct b3Contact4Data* c = globalContactsOut+ dstIdx;\n" -" c->m_worldNormalOnB = -normal;\n" -" c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff);\n" -" c->m_batchIdx = pairIndex;\n" -" int bodyA = gpuCompoundPairs[pairIndex].x;\n" -" int bodyB = gpuCompoundPairs[pairIndex].y;\n" -" c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0?-bodyA:bodyA;\n" -" c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0?-bodyB:bodyB;\n" -" c->m_childIndexA = childShapeIndexA;\n" -" c->m_childIndexB = childShapeIndexB;\n" -" for (int i=0;i<nReducedContacts;i++)\n" -" {\n" -" c->m_worldPosB[i] = pointsIn[contactIdx[i]];\n" -" }\n" -" GET_NPOINTS(*c) = nReducedContacts;\n" -" }\n" -" \n" -" }// if (numContactsOut>0)\n" -" }// if (gpuHasCompoundSepNormalsOut[i])\n" -" }// if (i<numCompoundPairs)\n" -"}\n" -"__kernel void sphereSphereCollisionKernel( __global const int4* pairs, \n" -" __global const b3RigidBodyData_t* rigidBodies, \n" -" __global const b3Collidable_t* collidables,\n" -" __global const float4* separatingNormals,\n" -" __global const int* hasSeparatingAxis,\n" -" __global struct b3Contact4Data* restrict globalContactsOut,\n" -" counter32_t nGlobalContactsOut,\n" -" int contactCapacity,\n" -" int numPairs)\n" -"{\n" -" int i = get_global_id(0);\n" -" int pairIndex = i;\n" -" \n" -" if (i<numPairs)\n" -" {\n" -" int bodyIndexA = pairs[i].x;\n" -" int bodyIndexB = pairs[i].y;\n" -" \n" -" int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" -" int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" -" if (collidables[collidableIndexA].m_shapeType == SHAPE_SPHERE &&\n" -" collidables[collidableIndexB].m_shapeType == SHAPE_SPHERE)\n" -" {\n" -" //sphere-sphere\n" -" float radiusA = collidables[collidableIndexA].m_radius;\n" -" float radiusB = collidables[collidableIndexB].m_radius;\n" -" float4 posA = rigidBodies[bodyIndexA].m_pos;\n" -" float4 posB = rigidBodies[bodyIndexB].m_pos;\n" -" float4 diff = posA-posB;\n" -" float len = length(diff);\n" -" \n" -" ///iff distance positive, don't generate a new contact\n" -" if ( len <= (radiusA+radiusB))\n" -" {\n" -" ///distance (negative means penetration)\n" -" float dist = len - (radiusA+radiusB);\n" -" float4 normalOnSurfaceB = make_float4(1.f,0.f,0.f,0.f);\n" -" if (len > 0.00001)\n" -" {\n" -" normalOnSurfaceB = diff / len;\n" -" }\n" -" float4 contactPosB = posB + normalOnSurfaceB*radiusB;\n" -" contactPosB.w = dist;\n" -" \n" -" int dstIdx;\n" -" AppendInc( nGlobalContactsOut, dstIdx );\n" -" if (dstIdx < contactCapacity)\n" -" {\n" -" __global struct b3Contact4Data* c = &globalContactsOut[dstIdx];\n" -" c->m_worldNormalOnB = -normalOnSurfaceB;\n" -" c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff);\n" -" c->m_batchIdx = pairIndex;\n" -" int bodyA = pairs[pairIndex].x;\n" -" int bodyB = pairs[pairIndex].y;\n" -" c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0?-bodyA:bodyA;\n" -" c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0?-bodyB:bodyB;\n" -" c->m_worldPosB[0] = contactPosB;\n" -" c->m_childIndexA = -1;\n" -" c->m_childIndexB = -1;\n" -" GET_NPOINTS(*c) = 1;\n" -" }//if (dstIdx < numPairs)\n" -" }//if ( len <= (radiusA+radiusB))\n" -" }//SHAPE_SPHERE SHAPE_SPHERE\n" -" }//if (i<numPairs)\n" -"} \n" -"__kernel void clipHullHullConcaveConvexKernel( __global int4* concavePairsIn,\n" -" __global const b3RigidBodyData_t* rigidBodies, \n" -" __global const b3Collidable_t* collidables,\n" -" __global const b3ConvexPolyhedronData_t* convexShapes, \n" -" __global const float4* vertices,\n" -" __global const float4* uniqueEdges,\n" -" __global const b3GpuFace_t* faces,\n" -" __global const int* indices,\n" -" __global const b3GpuChildShape_t* gpuChildShapes,\n" -" __global const float4* separatingNormals,\n" -" __global struct b3Contact4Data* restrict globalContactsOut,\n" -" counter32_t nGlobalContactsOut,\n" -" int contactCapacity,\n" -" int numConcavePairs)\n" -"{\n" -" int i = get_global_id(0);\n" -" int pairIndex = i;\n" -" \n" -" float4 worldVertsB1[64];\n" -" float4 worldVertsB2[64];\n" -" int capacityWorldVerts = 64; \n" -" float4 localContactsOut[64];\n" -" int localContactCapacity=64;\n" -" \n" -" float minDist = -1e30f;\n" -" float maxDist = 0.02f;\n" -" if (i<numConcavePairs)\n" -" {\n" -" //negative value means that the pair is invalid\n" -" if (concavePairsIn[i].w<0)\n" -" return;\n" -" int bodyIndexA = concavePairsIn[i].x;\n" -" int bodyIndexB = concavePairsIn[i].y;\n" -" int f = concavePairsIn[i].z;\n" -" int childShapeIndexA = f;\n" -" \n" -" int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" -" int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" -" \n" -" int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" -" int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" -" \n" -" ///////////////////////////////////////////////////////////////\n" -" \n" -" \n" -" bool overlap = false;\n" -" \n" -" b3ConvexPolyhedronData_t convexPolyhedronA;\n" -" //add 3 vertices of the triangle\n" -" convexPolyhedronA.m_numVertices = 3;\n" -" convexPolyhedronA.m_vertexOffset = 0;\n" -" float4 localCenter = make_float4(0.f,0.f,0.f,0.f);\n" -" b3GpuFace_t face = faces[convexShapes[shapeIndexA].m_faceOffset+f];\n" -" \n" -" float4 verticesA[3];\n" -" for (int i=0;i<3;i++)\n" -" {\n" -" int index = indices[face.m_indexOffset+i];\n" -" float4 vert = vertices[convexShapes[shapeIndexA].m_vertexOffset+index];\n" -" verticesA[i] = vert;\n" -" localCenter += vert;\n" -" }\n" -" float dmin = FLT_MAX;\n" -" int localCC=0;\n" -" //a triangle has 3 unique edges\n" -" convexPolyhedronA.m_numUniqueEdges = 3;\n" -" convexPolyhedronA.m_uniqueEdgesOffset = 0;\n" -" float4 uniqueEdgesA[3];\n" -" \n" -" uniqueEdgesA[0] = (verticesA[1]-verticesA[0]);\n" -" uniqueEdgesA[1] = (verticesA[2]-verticesA[1]);\n" -" uniqueEdgesA[2] = (verticesA[0]-verticesA[2]);\n" -" convexPolyhedronA.m_faceOffset = 0;\n" -" \n" -" float4 normal = make_float4(face.m_plane.x,face.m_plane.y,face.m_plane.z,0.f);\n" -" \n" -" b3GpuFace_t facesA[TRIANGLE_NUM_CONVEX_FACES];\n" -" int indicesA[3+3+2+2+2];\n" -" int curUsedIndices=0;\n" -" int fidx=0;\n" -" //front size of triangle\n" -" {\n" -" facesA[fidx].m_indexOffset=curUsedIndices;\n" -" indicesA[0] = 0;\n" -" indicesA[1] = 1;\n" -" indicesA[2] = 2;\n" -" curUsedIndices+=3;\n" -" float c = face.m_plane.w;\n" -" facesA[fidx].m_plane.x = normal.x;\n" -" facesA[fidx].m_plane.y = normal.y;\n" -" facesA[fidx].m_plane.z = normal.z;\n" -" facesA[fidx].m_plane.w = c;\n" -" facesA[fidx].m_numIndices=3;\n" -" }\n" -" fidx++;\n" -" //back size of triangle\n" -" {\n" -" facesA[fidx].m_indexOffset=curUsedIndices;\n" -" indicesA[3]=2;\n" -" indicesA[4]=1;\n" -" indicesA[5]=0;\n" -" curUsedIndices+=3;\n" -" float c = dot3F4(normal,verticesA[0]);\n" -" float c1 = -face.m_plane.w;\n" -" facesA[fidx].m_plane.x = -normal.x;\n" -" facesA[fidx].m_plane.y = -normal.y;\n" -" facesA[fidx].m_plane.z = -normal.z;\n" -" facesA[fidx].m_plane.w = c;\n" -" facesA[fidx].m_numIndices=3;\n" -" }\n" -" fidx++;\n" -" bool addEdgePlanes = true;\n" -" if (addEdgePlanes)\n" -" {\n" -" int numVertices=3;\n" -" int prevVertex = numVertices-1;\n" -" for (int i=0;i<numVertices;i++)\n" -" {\n" -" float4 v0 = verticesA[i];\n" -" float4 v1 = verticesA[prevVertex];\n" -" \n" -" float4 edgeNormal = normalize(cross(normal,v1-v0));\n" -" float c = -dot3F4(edgeNormal,v0);\n" -" facesA[fidx].m_numIndices = 2;\n" -" facesA[fidx].m_indexOffset=curUsedIndices;\n" -" indicesA[curUsedIndices++]=i;\n" -" indicesA[curUsedIndices++]=prevVertex;\n" -" \n" -" facesA[fidx].m_plane.x = edgeNormal.x;\n" -" facesA[fidx].m_plane.y = edgeNormal.y;\n" -" facesA[fidx].m_plane.z = edgeNormal.z;\n" -" facesA[fidx].m_plane.w = c;\n" -" fidx++;\n" -" prevVertex = i;\n" -" }\n" -" }\n" -" convexPolyhedronA.m_numFaces = TRIANGLE_NUM_CONVEX_FACES;\n" -" convexPolyhedronA.m_localCenter = localCenter*(1.f/3.f);\n" -" float4 posA = rigidBodies[bodyIndexA].m_pos;\n" -" posA.w = 0.f;\n" -" float4 posB = rigidBodies[bodyIndexB].m_pos;\n" -" posB.w = 0.f;\n" -" float4 ornA = rigidBodies[bodyIndexA].m_quat;\n" -" float4 ornB =rigidBodies[bodyIndexB].m_quat;\n" -" float4 sepAxis = separatingNormals[i];\n" -" \n" -" int shapeTypeB = collidables[collidableIndexB].m_shapeType;\n" -" int childShapeIndexB =-1;\n" -" if (shapeTypeB==SHAPE_COMPOUND_OF_CONVEX_HULLS)\n" -" {\n" -" ///////////////////\n" -" ///compound shape support\n" -" \n" -" childShapeIndexB = concavePairsIn[pairIndex].w;\n" -" int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex;\n" -" shapeIndexB = collidables[childColIndexB].m_shapeIndex;\n" -" float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition;\n" -" float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation;\n" -" float4 newPosB = transform(&childPosB,&posB,&ornB);\n" -" float4 newOrnB = qtMul(ornB,childOrnB);\n" -" posB = newPosB;\n" -" ornB = newOrnB;\n" -" \n" -" }\n" -" \n" -" ////////////////////////////////////////\n" -" \n" -" \n" -" \n" -" int numLocalContactsOut = clipHullAgainstHullLocalA(sepAxis,\n" -" &convexPolyhedronA, &convexShapes[shapeIndexB],\n" -" posA,ornA,\n" -" posB,ornB,\n" -" worldVertsB1,worldVertsB2,capacityWorldVerts,\n" -" minDist, maxDist,\n" -" &verticesA,&facesA,&indicesA,\n" -" vertices,faces,indices,\n" -" localContactsOut,localContactCapacity);\n" -" \n" -" if (numLocalContactsOut>0)\n" -" {\n" -" float4 normal = -separatingNormals[i];\n" -" int nPoints = numLocalContactsOut;\n" -" float4* pointsIn = localContactsOut;\n" -" int contactIdx[4];// = {-1,-1,-1,-1};\n" -" contactIdx[0] = -1;\n" -" contactIdx[1] = -1;\n" -" contactIdx[2] = -1;\n" -" contactIdx[3] = -1;\n" -" \n" -" int nReducedContacts = extractManifoldSequential(pointsIn, nPoints, normal, contactIdx);\n" -" \n" -" int dstIdx;\n" -" AppendInc( nGlobalContactsOut, dstIdx );\n" -" if (dstIdx<contactCapacity)\n" -" {\n" -" __global struct b3Contact4Data* c = globalContactsOut+ dstIdx;\n" -" c->m_worldNormalOnB = -normal;\n" -" c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff);\n" -" c->m_batchIdx = pairIndex;\n" -" int bodyA = concavePairsIn[pairIndex].x;\n" -" int bodyB = concavePairsIn[pairIndex].y;\n" -" c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0?-bodyA:bodyA;\n" -" c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0?-bodyB:bodyB;\n" -" c->m_childIndexA = childShapeIndexA;\n" -" c->m_childIndexB = childShapeIndexB;\n" -" for (int i=0;i<nReducedContacts;i++)\n" -" {\n" -" c->m_worldPosB[i] = pointsIn[contactIdx[i]];\n" -" }\n" -" GET_NPOINTS(*c) = nReducedContacts;\n" -" }\n" -" \n" -" }// if (numContactsOut>0)\n" -" }// if (i<numPairs)\n" -"}\n" -"int findClippingFaces(const float4 separatingNormal,\n" -" __global const b3ConvexPolyhedronData_t* hullA, __global const b3ConvexPolyhedronData_t* hullB,\n" -" const float4 posA, const Quaternion ornA,const float4 posB, const Quaternion ornB,\n" -" __global float4* worldVertsA1,\n" -" __global float4* worldNormalsA1,\n" -" __global float4* worldVertsB1,\n" -" int capacityWorldVerts,\n" -" const float minDist, float maxDist,\n" -" __global const float4* vertices,\n" -" __global const b3GpuFace_t* faces,\n" -" __global const int* indices,\n" -" __global int4* clippingFaces, int pairIndex)\n" -"{\n" -" int numContactsOut = 0;\n" -" int numWorldVertsB1= 0;\n" -" \n" -" \n" -" int closestFaceB=-1;\n" -" float dmax = -FLT_MAX;\n" -" \n" -" {\n" -" for(int face=0;face<hullB->m_numFaces;face++)\n" -" {\n" -" const float4 Normal = make_float4(faces[hullB->m_faceOffset+face].m_plane.x,\n" -" faces[hullB->m_faceOffset+face].m_plane.y, faces[hullB->m_faceOffset+face].m_plane.z,0.f);\n" -" const float4 WorldNormal = qtRotate(ornB, Normal);\n" -" float d = dot3F4(WorldNormal,separatingNormal);\n" -" if (d > dmax)\n" -" {\n" -" dmax = d;\n" -" closestFaceB = face;\n" -" }\n" -" }\n" -" }\n" -" \n" -" {\n" -" const b3GpuFace_t polyB = faces[hullB->m_faceOffset+closestFaceB];\n" -" const int numVertices = polyB.m_numIndices;\n" -" for(int e0=0;e0<numVertices;e0++)\n" -" {\n" -" const float4 b = vertices[hullB->m_vertexOffset+indices[polyB.m_indexOffset+e0]];\n" -" worldVertsB1[pairIndex*capacityWorldVerts+numWorldVertsB1++] = transform(&b,&posB,&ornB);\n" -" }\n" -" }\n" -" \n" -" int closestFaceA=-1;\n" -" {\n" -" float dmin = FLT_MAX;\n" -" for(int face=0;face<hullA->m_numFaces;face++)\n" -" {\n" -" const float4 Normal = make_float4(\n" -" faces[hullA->m_faceOffset+face].m_plane.x,\n" -" faces[hullA->m_faceOffset+face].m_plane.y,\n" -" faces[hullA->m_faceOffset+face].m_plane.z,\n" -" 0.f);\n" -" const float4 faceANormalWS = qtRotate(ornA,Normal);\n" -" \n" -" float d = dot3F4(faceANormalWS,separatingNormal);\n" -" if (d < dmin)\n" -" {\n" -" dmin = d;\n" -" closestFaceA = face;\n" -" worldNormalsA1[pairIndex] = faceANormalWS;\n" -" }\n" -" }\n" -" }\n" -" \n" -" int numVerticesA = faces[hullA->m_faceOffset+closestFaceA].m_numIndices;\n" -" for(int e0=0;e0<numVerticesA;e0++)\n" -" {\n" -" const float4 a = vertices[hullA->m_vertexOffset+indices[faces[hullA->m_faceOffset+closestFaceA].m_indexOffset+e0]];\n" -" worldVertsA1[pairIndex*capacityWorldVerts+e0] = transform(&a, &posA,&ornA);\n" -" }\n" -" \n" -" clippingFaces[pairIndex].x = closestFaceA;\n" -" clippingFaces[pairIndex].y = closestFaceB;\n" -" clippingFaces[pairIndex].z = numVerticesA;\n" -" clippingFaces[pairIndex].w = numWorldVertsB1;\n" -" \n" -" \n" -" return numContactsOut;\n" -"}\n" -"int clipFaces(__global float4* worldVertsA1,\n" -" __global float4* worldNormalsA1,\n" -" __global float4* worldVertsB1,\n" -" __global float4* worldVertsB2, \n" -" int capacityWorldVertsB2,\n" -" const float minDist, float maxDist,\n" -" __global int4* clippingFaces,\n" -" int pairIndex)\n" -"{\n" -" int numContactsOut = 0;\n" -" \n" -" int closestFaceA = clippingFaces[pairIndex].x;\n" -" int closestFaceB = clippingFaces[pairIndex].y;\n" -" int numVertsInA = clippingFaces[pairIndex].z;\n" -" int numVertsInB = clippingFaces[pairIndex].w;\n" -" \n" -" int numVertsOut = 0;\n" -" \n" -" if (closestFaceA<0)\n" -" return numContactsOut;\n" -" \n" -" __global float4* pVtxIn = &worldVertsB1[pairIndex*capacityWorldVertsB2];\n" -" __global float4* pVtxOut = &worldVertsB2[pairIndex*capacityWorldVertsB2];\n" -" \n" -" \n" -" \n" -" // clip polygon to back of planes of all faces of hull A that are adjacent to witness face\n" -" \n" -" for(int e0=0;e0<numVertsInA;e0++)\n" -" {\n" -" const float4 aw = worldVertsA1[pairIndex*capacityWorldVertsB2+e0];\n" -" const float4 bw = worldVertsA1[pairIndex*capacityWorldVertsB2+((e0+1)%numVertsInA)];\n" -" const float4 WorldEdge0 = aw - bw;\n" -" float4 worldPlaneAnormal1 = worldNormalsA1[pairIndex];\n" -" float4 planeNormalWS1 = -cross3(WorldEdge0,worldPlaneAnormal1);\n" -" float4 worldA1 = aw;\n" -" float planeEqWS1 = -dot3F4(worldA1,planeNormalWS1);\n" -" float4 planeNormalWS = planeNormalWS1;\n" -" float planeEqWS=planeEqWS1;\n" -" numVertsOut = clipFaceGlobal(pVtxIn, numVertsInB, planeNormalWS,planeEqWS, pVtxOut);\n" -" __global float4* tmp = pVtxOut;\n" -" pVtxOut = pVtxIn;\n" -" pVtxIn = tmp;\n" -" numVertsInB = numVertsOut;\n" -" numVertsOut = 0;\n" -" }\n" -" \n" -" //float4 planeNormalWS = worldNormalsA1[pairIndex];\n" -" //float planeEqWS=-dot3F4(planeNormalWS,worldVertsA1[pairIndex*capacityWorldVertsB2]);\n" -" \n" -" /*for (int i=0;i<numVertsInB;i++)\n" -" {\n" -" pVtxOut[i] = pVtxIn[i];\n" -" }*/\n" -" \n" -" \n" -" \n" -" \n" -" //numVertsInB=0;\n" -" \n" -" float4 planeNormalWS = worldNormalsA1[pairIndex];\n" -" float planeEqWS=-dot3F4(planeNormalWS,worldVertsA1[pairIndex*capacityWorldVertsB2]);\n" -" for (int i=0;i<numVertsInB;i++)\n" -" {\n" -" float depth = dot3F4(planeNormalWS,pVtxIn[i])+planeEqWS;\n" -" if (depth <=minDist)\n" -" {\n" -" depth = minDist;\n" -" }\n" -" \n" -" if (depth <=maxDist)\n" -" {\n" -" float4 pointInWorld = pVtxIn[i];\n" -" pVtxOut[numContactsOut++] = make_float4(pointInWorld.x,pointInWorld.y,pointInWorld.z,depth);\n" -" }\n" -" }\n" -" \n" -" clippingFaces[pairIndex].w =numContactsOut;\n" -" \n" -" \n" -" return numContactsOut;\n" -"}\n" -"__kernel void findClippingFacesKernel( __global const int4* pairs,\n" -" __global const b3RigidBodyData_t* rigidBodies,\n" -" __global const b3Collidable_t* collidables,\n" -" __global const b3ConvexPolyhedronData_t* convexShapes,\n" -" __global const float4* vertices,\n" -" __global const float4* uniqueEdges,\n" -" __global const b3GpuFace_t* faces,\n" -" __global const int* indices,\n" -" __global const float4* separatingNormals,\n" -" __global const int* hasSeparatingAxis,\n" -" __global int4* clippingFacesOut,\n" -" __global float4* worldVertsA1,\n" -" __global float4* worldNormalsA1,\n" -" __global float4* worldVertsB1,\n" -" int capacityWorldVerts,\n" -" int numPairs\n" -" )\n" -"{\n" -" \n" -" int i = get_global_id(0);\n" -" int pairIndex = i;\n" -" \n" -" \n" -" float minDist = -1e30f;\n" -" float maxDist = 0.02f;\n" -" \n" -" if (i<numPairs)\n" -" {\n" -" \n" -" if (hasSeparatingAxis[i])\n" -" {\n" -" \n" -" int bodyIndexA = pairs[i].x;\n" -" int bodyIndexB = pairs[i].y;\n" -" \n" -" int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" -" int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" -" \n" -" int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" -" int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" -" \n" -" \n" -" \n" -" int numLocalContactsOut = findClippingFaces(separatingNormals[i],\n" -" &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],\n" -" rigidBodies[bodyIndexA].m_pos,rigidBodies[bodyIndexA].m_quat,\n" -" rigidBodies[bodyIndexB].m_pos,rigidBodies[bodyIndexB].m_quat,\n" -" worldVertsA1,\n" -" worldNormalsA1,\n" -" worldVertsB1,capacityWorldVerts,\n" -" minDist, maxDist,\n" -" vertices,faces,indices,\n" -" clippingFacesOut,i);\n" -" \n" -" \n" -" }// if (hasSeparatingAxis[i])\n" -" }// if (i<numPairs)\n" -" \n" -"}\n" -"__kernel void clipFacesAndFindContactsKernel( __global const float4* separatingNormals,\n" -" __global const int* hasSeparatingAxis,\n" -" __global int4* clippingFacesOut,\n" -" __global float4* worldVertsA1,\n" -" __global float4* worldNormalsA1,\n" -" __global float4* worldVertsB1,\n" -" __global float4* worldVertsB2,\n" -" int vertexFaceCapacity,\n" -" int numPairs,\n" -" int debugMode\n" -" )\n" -"{\n" -" int i = get_global_id(0);\n" -" int pairIndex = i;\n" -" \n" -" \n" -" float minDist = -1e30f;\n" -" float maxDist = 0.02f;\n" -" \n" -" if (i<numPairs)\n" -" {\n" -" \n" -" if (hasSeparatingAxis[i])\n" -" {\n" -" \n" -"// int bodyIndexA = pairs[i].x;\n" -" // int bodyIndexB = pairs[i].y;\n" -" \n" -" int numLocalContactsOut = 0;\n" -" int capacityWorldVertsB2 = vertexFaceCapacity;\n" -" \n" -" __global float4* pVtxIn = &worldVertsB1[pairIndex*capacityWorldVertsB2];\n" -" __global float4* pVtxOut = &worldVertsB2[pairIndex*capacityWorldVertsB2];\n" -" \n" -" {\n" -" __global int4* clippingFaces = clippingFacesOut;\n" -" \n" -" \n" -" int closestFaceA = clippingFaces[pairIndex].x;\n" -" int closestFaceB = clippingFaces[pairIndex].y;\n" -" int numVertsInA = clippingFaces[pairIndex].z;\n" -" int numVertsInB = clippingFaces[pairIndex].w;\n" -" \n" -" int numVertsOut = 0;\n" -" \n" -" if (closestFaceA>=0)\n" -" {\n" -" \n" -" \n" -" \n" -" // clip polygon to back of planes of all faces of hull A that are adjacent to witness face\n" -" \n" -" for(int e0=0;e0<numVertsInA;e0++)\n" -" {\n" -" const float4 aw = worldVertsA1[pairIndex*capacityWorldVertsB2+e0];\n" -" const float4 bw = worldVertsA1[pairIndex*capacityWorldVertsB2+((e0+1)%numVertsInA)];\n" -" const float4 WorldEdge0 = aw - bw;\n" -" float4 worldPlaneAnormal1 = worldNormalsA1[pairIndex];\n" -" float4 planeNormalWS1 = -cross3(WorldEdge0,worldPlaneAnormal1);\n" -" float4 worldA1 = aw;\n" -" float planeEqWS1 = -dot3F4(worldA1,planeNormalWS1);\n" -" float4 planeNormalWS = planeNormalWS1;\n" -" float planeEqWS=planeEqWS1;\n" -" numVertsOut = clipFaceGlobal(pVtxIn, numVertsInB, planeNormalWS,planeEqWS, pVtxOut);\n" -" __global float4* tmp = pVtxOut;\n" -" pVtxOut = pVtxIn;\n" -" pVtxIn = tmp;\n" -" numVertsInB = numVertsOut;\n" -" numVertsOut = 0;\n" -" }\n" -" \n" -" float4 planeNormalWS = worldNormalsA1[pairIndex];\n" -" float planeEqWS=-dot3F4(planeNormalWS,worldVertsA1[pairIndex*capacityWorldVertsB2]);\n" -" \n" -" for (int i=0;i<numVertsInB;i++)\n" -" {\n" -" float depth = dot3F4(planeNormalWS,pVtxIn[i])+planeEqWS;\n" -" if (depth <=minDist)\n" -" {\n" -" depth = minDist;\n" -" }\n" -" \n" -" if (depth <=maxDist)\n" -" {\n" -" float4 pointInWorld = pVtxIn[i];\n" -" pVtxOut[numLocalContactsOut++] = make_float4(pointInWorld.x,pointInWorld.y,pointInWorld.z,depth);\n" -" }\n" -" }\n" -" \n" -" }\n" -" clippingFaces[pairIndex].w =numLocalContactsOut;\n" -" \n" -" }\n" -" \n" -" for (int i=0;i<numLocalContactsOut;i++)\n" -" pVtxIn[i] = pVtxOut[i];\n" -" \n" -" }// if (hasSeparatingAxis[i])\n" -" }// if (i<numPairs)\n" -" \n" -"}\n" -"__kernel void newContactReductionKernel( __global int4* pairs,\n" -" __global const b3RigidBodyData_t* rigidBodies,\n" -" __global const float4* separatingNormals,\n" -" __global const int* hasSeparatingAxis,\n" -" __global struct b3Contact4Data* globalContactsOut,\n" -" __global int4* clippingFaces,\n" -" __global float4* worldVertsB2,\n" -" volatile __global int* nGlobalContactsOut,\n" -" int vertexFaceCapacity,\n" -" int contactCapacity,\n" -" int numPairs\n" -" )\n" -"{\n" -" int i = get_global_id(0);\n" -" int pairIndex = i;\n" -" \n" -" int4 contactIdx;\n" -" contactIdx=make_int4(0,1,2,3);\n" -" \n" -" if (i<numPairs)\n" -" {\n" -" \n" -" if (hasSeparatingAxis[i])\n" -" {\n" -" \n" -" \n" -" \n" -" \n" -" int nPoints = clippingFaces[pairIndex].w;\n" -" \n" -" if (nPoints>0)\n" -" {\n" -" __global float4* pointsIn = &worldVertsB2[pairIndex*vertexFaceCapacity];\n" -" float4 normal = -separatingNormals[i];\n" -" \n" -" int nReducedContacts = extractManifoldSequentialGlobal(pointsIn, nPoints, normal, &contactIdx);\n" -" \n" -" int mprContactIndex = pairs[pairIndex].z;\n" -" int dstIdx = mprContactIndex;\n" -" if (dstIdx<0)\n" -" {\n" -" AppendInc( nGlobalContactsOut, dstIdx );\n" -" }\n" -"//#if 0\n" -" \n" -" if (dstIdx < contactCapacity)\n" -" {\n" -" __global struct b3Contact4Data* c = &globalContactsOut[dstIdx];\n" -" c->m_worldNormalOnB = -normal;\n" -" c->m_restituitionCoeffCmp = (0.f*0xffff);c->m_frictionCoeffCmp = (0.7f*0xffff);\n" -" c->m_batchIdx = pairIndex;\n" -" int bodyA = pairs[pairIndex].x;\n" -" int bodyB = pairs[pairIndex].y;\n" -" pairs[pairIndex].w = dstIdx;\n" -" c->m_bodyAPtrAndSignBit = rigidBodies[bodyA].m_invMass==0?-bodyA:bodyA;\n" -" c->m_bodyBPtrAndSignBit = rigidBodies[bodyB].m_invMass==0?-bodyB:bodyB;\n" -" c->m_childIndexA =-1;\n" -" c->m_childIndexB =-1;\n" -" switch (nReducedContacts)\n" -" {\n" -" case 4:\n" -" c->m_worldPosB[3] = pointsIn[contactIdx.w];\n" -" case 3:\n" -" c->m_worldPosB[2] = pointsIn[contactIdx.z];\n" -" case 2:\n" -" c->m_worldPosB[1] = pointsIn[contactIdx.y];\n" -" case 1:\n" -" if (mprContactIndex<0)//test\n" -" c->m_worldPosB[0] = pointsIn[contactIdx.x];\n" -" default:\n" -" {\n" -" }\n" -" };\n" -" \n" -" GET_NPOINTS(*c) = nReducedContacts;\n" -" \n" -" }\n" -" \n" -" \n" -"//#endif\n" -" \n" -" }// if (numContactsOut>0)\n" -" }// if (hasSeparatingAxis[i])\n" -" }// if (i<numPairs)\n" -" \n" -" \n" -"}\n" -; diff --git a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/kernels/satConcave.cl b/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/kernels/satConcave.cl deleted file mode 100644 index 31ca43b8cd..0000000000 --- a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/kernels/satConcave.cl +++ /dev/null @@ -1,1220 +0,0 @@ - -//keep this enum in sync with the CPU version (in btCollidable.h) -//written by Erwin Coumans - - -#define SHAPE_CONVEX_HULL 3 -#define SHAPE_CONCAVE_TRIMESH 5 -#define TRIANGLE_NUM_CONVEX_FACES 5 -#define SHAPE_COMPOUND_OF_CONVEX_HULLS 6 - -#define B3_MAX_STACK_DEPTH 256 - - -typedef unsigned int u32; - -///keep this in sync with btCollidable.h -typedef struct -{ - union { - int m_numChildShapes; - int m_bvhIndex; - }; - union - { - float m_radius; - int m_compoundBvhIndex; - }; - - int m_shapeType; - int m_shapeIndex; - -} btCollidableGpu; - -#define MAX_NUM_PARTS_IN_BITS 10 - -///b3QuantizedBvhNode is a compressed aabb node, 16 bytes. -///Node can be used for leafnode or internal node. Leafnodes can point to 32-bit triangle index (non-negative range). -typedef struct -{ - //12 bytes - unsigned short int m_quantizedAabbMin[3]; - unsigned short int m_quantizedAabbMax[3]; - //4 bytes - int m_escapeIndexOrTriangleIndex; -} b3QuantizedBvhNode; - -typedef struct -{ - float4 m_aabbMin; - float4 m_aabbMax; - float4 m_quantization; - int m_numNodes; - int m_numSubTrees; - int m_nodeOffset; - int m_subTreeOffset; - -} b3BvhInfo; - - -int getTriangleIndex(const b3QuantizedBvhNode* rootNode) -{ - unsigned int x=0; - unsigned int y = (~(x&0))<<(31-MAX_NUM_PARTS_IN_BITS); - // Get only the lower bits where the triangle index is stored - return (rootNode->m_escapeIndexOrTriangleIndex&~(y)); -} - -int getTriangleIndexGlobal(__global const b3QuantizedBvhNode* rootNode) -{ - unsigned int x=0; - unsigned int y = (~(x&0))<<(31-MAX_NUM_PARTS_IN_BITS); - // Get only the lower bits where the triangle index is stored - return (rootNode->m_escapeIndexOrTriangleIndex&~(y)); -} - -int isLeafNode(const b3QuantizedBvhNode* rootNode) -{ - //skipindex is negative (internal node), triangleindex >=0 (leafnode) - return (rootNode->m_escapeIndexOrTriangleIndex >= 0)? 1 : 0; -} - -int isLeafNodeGlobal(__global const b3QuantizedBvhNode* rootNode) -{ - //skipindex is negative (internal node), triangleindex >=0 (leafnode) - return (rootNode->m_escapeIndexOrTriangleIndex >= 0)? 1 : 0; -} - -int getEscapeIndex(const b3QuantizedBvhNode* rootNode) -{ - return -rootNode->m_escapeIndexOrTriangleIndex; -} - -int getEscapeIndexGlobal(__global const b3QuantizedBvhNode* rootNode) -{ - return -rootNode->m_escapeIndexOrTriangleIndex; -} - - -typedef struct -{ - //12 bytes - unsigned short int m_quantizedAabbMin[3]; - unsigned short int m_quantizedAabbMax[3]; - //4 bytes, points to the root of the subtree - int m_rootNodeIndex; - //4 bytes - int m_subtreeSize; - int m_padding[3]; -} b3BvhSubtreeInfo; - - - - - - - -typedef struct -{ - float4 m_childPosition; - float4 m_childOrientation; - int m_shapeIndex; - int m_unused0; - int m_unused1; - int m_unused2; -} btGpuChildShape; - - -typedef struct -{ - float4 m_pos; - float4 m_quat; - float4 m_linVel; - float4 m_angVel; - - u32 m_collidableIdx; - float m_invMass; - float m_restituitionCoeff; - float m_frictionCoeff; -} BodyData; - - -typedef struct -{ - float4 m_localCenter; - float4 m_extents; - float4 mC; - float4 mE; - - float m_radius; - int m_faceOffset; - int m_numFaces; - int m_numVertices; - - int m_vertexOffset; - int m_uniqueEdgesOffset; - int m_numUniqueEdges; - int m_unused; -} ConvexPolyhedronCL; - -typedef struct -{ - union - { - float4 m_min; - float m_minElems[4]; - int m_minIndices[4]; - }; - union - { - float4 m_max; - float m_maxElems[4]; - int m_maxIndices[4]; - }; -} btAabbCL; - -#include "Bullet3Collision/BroadPhaseCollision/shared/b3Aabb.h" -#include "Bullet3Common/shared/b3Int2.h" - - - -typedef struct -{ - float4 m_plane; - int m_indexOffset; - int m_numIndices; -} btGpuFace; - -#define make_float4 (float4) - - -__inline -float4 cross3(float4 a, float4 b) -{ - return cross(a,b); - - -// float4 a1 = make_float4(a.xyz,0.f); -// float4 b1 = make_float4(b.xyz,0.f); - -// return cross(a1,b1); - -//float4 c = make_float4(a.y*b.z - a.z*b.y,a.z*b.x - a.x*b.z,a.x*b.y - a.y*b.x,0.f); - - // float4 c = make_float4(a.y*b.z - a.z*b.y,1.f,a.x*b.y - a.y*b.x,0.f); - - //return c; -} - -__inline -float dot3F4(float4 a, float4 b) -{ - float4 a1 = make_float4(a.xyz,0.f); - float4 b1 = make_float4(b.xyz,0.f); - return dot(a1, b1); -} - -__inline -float4 fastNormalize4(float4 v) -{ - v = make_float4(v.xyz,0.f); - return fast_normalize(v); -} - - -/////////////////////////////////////// -// Quaternion -/////////////////////////////////////// - -typedef float4 Quaternion; - -__inline -Quaternion qtMul(Quaternion a, Quaternion b); - -__inline -Quaternion qtNormalize(Quaternion in); - -__inline -float4 qtRotate(Quaternion q, float4 vec); - -__inline -Quaternion qtInvert(Quaternion q); - - - - -__inline -Quaternion qtMul(Quaternion a, Quaternion b) -{ - Quaternion ans; - ans = cross3( a, b ); - ans += a.w*b+b.w*a; -// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z); - ans.w = a.w*b.w - dot3F4(a, b); - return ans; -} - -__inline -Quaternion qtNormalize(Quaternion in) -{ - return fastNormalize4(in); -// in /= length( in ); -// return in; -} -__inline -float4 qtRotate(Quaternion q, float4 vec) -{ - Quaternion qInv = qtInvert( q ); - float4 vcpy = vec; - vcpy.w = 0.f; - float4 out = qtMul(qtMul(q,vcpy),qInv); - return out; -} - -__inline -Quaternion qtInvert(Quaternion q) -{ - return (Quaternion)(-q.xyz, q.w); -} - -__inline -float4 qtInvRotate(const Quaternion q, float4 vec) -{ - return qtRotate( qtInvert( q ), vec ); -} - -__inline -float4 transform(const float4* p, const float4* translation, const Quaternion* orientation) -{ - return qtRotate( *orientation, *p ) + (*translation); -} - - - -__inline -float4 normalize3(const float4 a) -{ - float4 n = make_float4(a.x, a.y, a.z, 0.f); - return fastNormalize4( n ); -} - -inline void projectLocal(const ConvexPolyhedronCL* hull, const float4 pos, const float4 orn, -const float4* dir, const float4* vertices, float* min, float* max) -{ - min[0] = FLT_MAX; - max[0] = -FLT_MAX; - int numVerts = hull->m_numVertices; - - const float4 localDir = qtInvRotate(orn,*dir); - float offset = dot(pos,*dir); - for(int i=0;i<numVerts;i++) - { - float dp = dot(vertices[hull->m_vertexOffset+i],localDir); - if(dp < min[0]) - min[0] = dp; - if(dp > max[0]) - max[0] = dp; - } - if(min[0]>max[0]) - { - float tmp = min[0]; - min[0] = max[0]; - max[0] = tmp; - } - min[0] += offset; - max[0] += offset; -} - -inline void project(__global const ConvexPolyhedronCL* hull, const float4 pos, const float4 orn, -const float4* dir, __global const float4* vertices, float* min, float* max) -{ - min[0] = FLT_MAX; - max[0] = -FLT_MAX; - int numVerts = hull->m_numVertices; - - const float4 localDir = qtInvRotate(orn,*dir); - float offset = dot(pos,*dir); - for(int i=0;i<numVerts;i++) - { - float dp = dot(vertices[hull->m_vertexOffset+i],localDir); - if(dp < min[0]) - min[0] = dp; - if(dp > max[0]) - max[0] = dp; - } - if(min[0]>max[0]) - { - float tmp = min[0]; - min[0] = max[0]; - max[0] = tmp; - } - min[0] += offset; - max[0] += offset; -} - -inline bool TestSepAxisLocalA(const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, - const float4 posA,const float4 ornA, - const float4 posB,const float4 ornB, - float4* sep_axis, const float4* verticesA, __global const float4* verticesB,float* depth) -{ - float Min0,Max0; - float Min1,Max1; - projectLocal(hullA,posA,ornA,sep_axis,verticesA, &Min0, &Max0); - project(hullB,posB,ornB, sep_axis,verticesB, &Min1, &Max1); - - if(Max0<Min1 || Max1<Min0) - return false; - - float d0 = Max0 - Min1; - float d1 = Max1 - Min0; - *depth = d0<d1 ? d0:d1; - return true; -} - - - - -inline bool IsAlmostZero(const float4 v) -{ - if(fabs(v.x)>1e-6f || fabs(v.y)>1e-6f || fabs(v.z)>1e-6f) - return false; - return true; -} - - - -bool findSeparatingAxisLocalA( const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, - const float4 posA1, - const float4 ornA, - const float4 posB1, - const float4 ornB, - const float4 DeltaC2, - - const float4* verticesA, - const float4* uniqueEdgesA, - const btGpuFace* facesA, - const int* indicesA, - - __global const float4* verticesB, - __global const float4* uniqueEdgesB, - __global const btGpuFace* facesB, - __global const int* indicesB, - float4* sep, - float* dmin) -{ - - - float4 posA = posA1; - posA.w = 0.f; - float4 posB = posB1; - posB.w = 0.f; - int curPlaneTests=0; - { - int numFacesA = hullA->m_numFaces; - // Test normals from hullA - for(int i=0;i<numFacesA;i++) - { - const float4 normal = facesA[hullA->m_faceOffset+i].m_plane; - float4 faceANormalWS = qtRotate(ornA,normal); - if (dot3F4(DeltaC2,faceANormalWS)<0) - faceANormalWS*=-1.f; - curPlaneTests++; - float d; - if(!TestSepAxisLocalA( hullA, hullB, posA,ornA,posB,ornB,&faceANormalWS, verticesA, verticesB,&d)) - return false; - if(d<*dmin) - { - *dmin = d; - *sep = faceANormalWS; - } - } - } - if((dot3F4(-DeltaC2,*sep))>0.0f) - { - *sep = -(*sep); - } - return true; -} - -bool findSeparatingAxisLocalB( __global const ConvexPolyhedronCL* hullA, const ConvexPolyhedronCL* hullB, - const float4 posA1, - const float4 ornA, - const float4 posB1, - const float4 ornB, - const float4 DeltaC2, - __global const float4* verticesA, - __global const float4* uniqueEdgesA, - __global const btGpuFace* facesA, - __global const int* indicesA, - const float4* verticesB, - const float4* uniqueEdgesB, - const btGpuFace* facesB, - const int* indicesB, - float4* sep, - float* dmin) -{ - - - float4 posA = posA1; - posA.w = 0.f; - float4 posB = posB1; - posB.w = 0.f; - int curPlaneTests=0; - { - int numFacesA = hullA->m_numFaces; - // Test normals from hullA - for(int i=0;i<numFacesA;i++) - { - const float4 normal = facesA[hullA->m_faceOffset+i].m_plane; - float4 faceANormalWS = qtRotate(ornA,normal); - if (dot3F4(DeltaC2,faceANormalWS)<0) - faceANormalWS *= -1.f; - curPlaneTests++; - float d; - if(!TestSepAxisLocalA( hullB, hullA, posB,ornB,posA,ornA, &faceANormalWS, verticesB,verticesA, &d)) - return false; - if(d<*dmin) - { - *dmin = d; - *sep = faceANormalWS; - } - } - } - if((dot3F4(-DeltaC2,*sep))>0.0f) - { - *sep = -(*sep); - } - return true; -} - - - -bool findSeparatingAxisEdgeEdgeLocalA( const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, - const float4 posA1, - const float4 ornA, - const float4 posB1, - const float4 ornB, - const float4 DeltaC2, - const float4* verticesA, - const float4* uniqueEdgesA, - const btGpuFace* facesA, - const int* indicesA, - __global const float4* verticesB, - __global const float4* uniqueEdgesB, - __global const btGpuFace* facesB, - __global const int* indicesB, - float4* sep, - float* dmin) -{ - - - float4 posA = posA1; - posA.w = 0.f; - float4 posB = posB1; - posB.w = 0.f; - - int curPlaneTests=0; - - int curEdgeEdge = 0; - // Test edges - for(int e0=0;e0<hullA->m_numUniqueEdges;e0++) - { - const float4 edge0 = uniqueEdgesA[hullA->m_uniqueEdgesOffset+e0]; - float4 edge0World = qtRotate(ornA,edge0); - - for(int e1=0;e1<hullB->m_numUniqueEdges;e1++) - { - const float4 edge1 = uniqueEdgesB[hullB->m_uniqueEdgesOffset+e1]; - float4 edge1World = qtRotate(ornB,edge1); - - - float4 crossje = cross3(edge0World,edge1World); - - curEdgeEdge++; - if(!IsAlmostZero(crossje)) - { - crossje = normalize3(crossje); - if (dot3F4(DeltaC2,crossje)<0) - crossje *= -1.f; - - float dist; - bool result = true; - { - float Min0,Max0; - float Min1,Max1; - projectLocal(hullA,posA,ornA,&crossje,verticesA, &Min0, &Max0); - project(hullB,posB,ornB,&crossje,verticesB, &Min1, &Max1); - - if(Max0<Min1 || Max1<Min0) - result = false; - - float d0 = Max0 - Min1; - float d1 = Max1 - Min0; - dist = d0<d1 ? d0:d1; - result = true; - - } - - - if(dist<*dmin) - { - *dmin = dist; - *sep = crossje; - } - } - } - - } - - - if((dot3F4(-DeltaC2,*sep))>0.0f) - { - *sep = -(*sep); - } - return true; -} - - - -inline int findClippingFaces(const float4 separatingNormal, - const ConvexPolyhedronCL* hullA, - __global const ConvexPolyhedronCL* hullB, - const float4 posA, const Quaternion ornA,const float4 posB, const Quaternion ornB, - __global float4* worldVertsA1, - __global float4* worldNormalsA1, - __global float4* worldVertsB1, - int capacityWorldVerts, - const float minDist, float maxDist, - const float4* verticesA, - const btGpuFace* facesA, - const int* indicesA, - __global const float4* verticesB, - __global const btGpuFace* facesB, - __global const int* indicesB, - __global int4* clippingFaces, int pairIndex) -{ - int numContactsOut = 0; - int numWorldVertsB1= 0; - - - int closestFaceB=0; - float dmax = -FLT_MAX; - - { - for(int face=0;face<hullB->m_numFaces;face++) - { - const float4 Normal = make_float4(facesB[hullB->m_faceOffset+face].m_plane.x, - facesB[hullB->m_faceOffset+face].m_plane.y, facesB[hullB->m_faceOffset+face].m_plane.z,0.f); - const float4 WorldNormal = qtRotate(ornB, Normal); - float d = dot3F4(WorldNormal,separatingNormal); - if (d > dmax) - { - dmax = d; - closestFaceB = face; - } - } - } - - { - const btGpuFace polyB = facesB[hullB->m_faceOffset+closestFaceB]; - int numVertices = polyB.m_numIndices; - if (numVertices>capacityWorldVerts) - numVertices = capacityWorldVerts; - if (numVertices<0) - numVertices = 0; - - for(int e0=0;e0<numVertices;e0++) - { - if (e0<capacityWorldVerts) - { - const float4 b = verticesB[hullB->m_vertexOffset+indicesB[polyB.m_indexOffset+e0]]; - worldVertsB1[pairIndex*capacityWorldVerts+numWorldVertsB1++] = transform(&b,&posB,&ornB); - } - } - } - - int closestFaceA=0; - { - float dmin = FLT_MAX; - for(int face=0;face<hullA->m_numFaces;face++) - { - const float4 Normal = make_float4( - facesA[hullA->m_faceOffset+face].m_plane.x, - facesA[hullA->m_faceOffset+face].m_plane.y, - facesA[hullA->m_faceOffset+face].m_plane.z, - 0.f); - const float4 faceANormalWS = qtRotate(ornA,Normal); - - float d = dot3F4(faceANormalWS,separatingNormal); - if (d < dmin) - { - dmin = d; - closestFaceA = face; - worldNormalsA1[pairIndex] = faceANormalWS; - } - } - } - - int numVerticesA = facesA[hullA->m_faceOffset+closestFaceA].m_numIndices; - if (numVerticesA>capacityWorldVerts) - numVerticesA = capacityWorldVerts; - if (numVerticesA<0) - numVerticesA=0; - - for(int e0=0;e0<numVerticesA;e0++) - { - if (e0<capacityWorldVerts) - { - const float4 a = verticesA[hullA->m_vertexOffset+indicesA[facesA[hullA->m_faceOffset+closestFaceA].m_indexOffset+e0]]; - worldVertsA1[pairIndex*capacityWorldVerts+e0] = transform(&a, &posA,&ornA); - } - } - - clippingFaces[pairIndex].x = closestFaceA; - clippingFaces[pairIndex].y = closestFaceB; - clippingFaces[pairIndex].z = numVerticesA; - clippingFaces[pairIndex].w = numWorldVertsB1; - - - return numContactsOut; -} - - - - -// work-in-progress -__kernel void findConcaveSeparatingAxisVertexFaceKernel( __global int4* concavePairs, - __global const BodyData* rigidBodies, - __global const btCollidableGpu* collidables, - __global const ConvexPolyhedronCL* convexShapes, - __global const float4* vertices, - __global const float4* uniqueEdges, - __global const btGpuFace* faces, - __global const int* indices, - __global const btGpuChildShape* gpuChildShapes, - __global btAabbCL* aabbs, - __global float4* concaveSeparatingNormalsOut, - __global int* concaveHasSeparatingNormals, - __global int4* clippingFacesOut, - __global float4* worldVertsA1GPU, - __global float4* worldNormalsAGPU, - __global float4* worldVertsB1GPU, - __global float* dmins, - int vertexFaceCapacity, - int numConcavePairs - ) -{ - - int i = get_global_id(0); - if (i>=numConcavePairs) - return; - - concaveHasSeparatingNormals[i] = 0; - - int pairIdx = i; - - int bodyIndexA = concavePairs[i].x; - int bodyIndexB = concavePairs[i].y; - - int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; - int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; - - int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; - int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; - - if (collidables[collidableIndexB].m_shapeType!=SHAPE_CONVEX_HULL&& - collidables[collidableIndexB].m_shapeType!=SHAPE_COMPOUND_OF_CONVEX_HULLS) - { - concavePairs[pairIdx].w = -1; - return; - } - - - - int numFacesA = convexShapes[shapeIndexA].m_numFaces; - int numActualConcaveConvexTests = 0; - - int f = concavePairs[i].z; - - bool overlap = false; - - ConvexPolyhedronCL convexPolyhedronA; - - //add 3 vertices of the triangle - convexPolyhedronA.m_numVertices = 3; - convexPolyhedronA.m_vertexOffset = 0; - float4 localCenter = make_float4(0.f,0.f,0.f,0.f); - - btGpuFace face = faces[convexShapes[shapeIndexA].m_faceOffset+f]; - float4 triMinAabb, triMaxAabb; - btAabbCL triAabb; - triAabb.m_min = make_float4(1e30f,1e30f,1e30f,0.f); - triAabb.m_max = make_float4(-1e30f,-1e30f,-1e30f,0.f); - - float4 verticesA[3]; - for (int i=0;i<3;i++) - { - int index = indices[face.m_indexOffset+i]; - float4 vert = vertices[convexShapes[shapeIndexA].m_vertexOffset+index]; - verticesA[i] = vert; - localCenter += vert; - - triAabb.m_min = min(triAabb.m_min,vert); - triAabb.m_max = max(triAabb.m_max,vert); - - } - - overlap = true; - overlap = (triAabb.m_min.x > aabbs[bodyIndexB].m_max.x || triAabb.m_max.x < aabbs[bodyIndexB].m_min.x) ? false : overlap; - overlap = (triAabb.m_min.z > aabbs[bodyIndexB].m_max.z || triAabb.m_max.z < aabbs[bodyIndexB].m_min.z) ? false : overlap; - overlap = (triAabb.m_min.y > aabbs[bodyIndexB].m_max.y || triAabb.m_max.y < aabbs[bodyIndexB].m_min.y) ? false : overlap; - - if (overlap) - { - float dmin = FLT_MAX; - int hasSeparatingAxis=5; - float4 sepAxis=make_float4(1,2,3,4); - - int localCC=0; - numActualConcaveConvexTests++; - - //a triangle has 3 unique edges - convexPolyhedronA.m_numUniqueEdges = 3; - convexPolyhedronA.m_uniqueEdgesOffset = 0; - float4 uniqueEdgesA[3]; - - uniqueEdgesA[0] = (verticesA[1]-verticesA[0]); - uniqueEdgesA[1] = (verticesA[2]-verticesA[1]); - uniqueEdgesA[2] = (verticesA[0]-verticesA[2]); - - - convexPolyhedronA.m_faceOffset = 0; - - float4 normal = make_float4(face.m_plane.x,face.m_plane.y,face.m_plane.z,0.f); - - btGpuFace facesA[TRIANGLE_NUM_CONVEX_FACES]; - int indicesA[3+3+2+2+2]; - int curUsedIndices=0; - int fidx=0; - - //front size of triangle - { - facesA[fidx].m_indexOffset=curUsedIndices; - indicesA[0] = 0; - indicesA[1] = 1; - indicesA[2] = 2; - curUsedIndices+=3; - float c = face.m_plane.w; - facesA[fidx].m_plane.x = normal.x; - facesA[fidx].m_plane.y = normal.y; - facesA[fidx].m_plane.z = normal.z; - facesA[fidx].m_plane.w = c; - facesA[fidx].m_numIndices=3; - } - fidx++; - //back size of triangle - { - facesA[fidx].m_indexOffset=curUsedIndices; - indicesA[3]=2; - indicesA[4]=1; - indicesA[5]=0; - curUsedIndices+=3; - float c = dot(normal,verticesA[0]); - float c1 = -face.m_plane.w; - facesA[fidx].m_plane.x = -normal.x; - facesA[fidx].m_plane.y = -normal.y; - facesA[fidx].m_plane.z = -normal.z; - facesA[fidx].m_plane.w = c; - facesA[fidx].m_numIndices=3; - } - fidx++; - - bool addEdgePlanes = true; - if (addEdgePlanes) - { - int numVertices=3; - int prevVertex = numVertices-1; - for (int i=0;i<numVertices;i++) - { - float4 v0 = verticesA[i]; - float4 v1 = verticesA[prevVertex]; - - float4 edgeNormal = normalize(cross(normal,v1-v0)); - float c = -dot(edgeNormal,v0); - - facesA[fidx].m_numIndices = 2; - facesA[fidx].m_indexOffset=curUsedIndices; - indicesA[curUsedIndices++]=i; - indicesA[curUsedIndices++]=prevVertex; - - facesA[fidx].m_plane.x = edgeNormal.x; - facesA[fidx].m_plane.y = edgeNormal.y; - facesA[fidx].m_plane.z = edgeNormal.z; - facesA[fidx].m_plane.w = c; - fidx++; - prevVertex = i; - } - } - convexPolyhedronA.m_numFaces = TRIANGLE_NUM_CONVEX_FACES; - convexPolyhedronA.m_localCenter = localCenter*(1.f/3.f); - - - float4 posA = rigidBodies[bodyIndexA].m_pos; - posA.w = 0.f; - float4 posB = rigidBodies[bodyIndexB].m_pos; - posB.w = 0.f; - - float4 ornA = rigidBodies[bodyIndexA].m_quat; - float4 ornB =rigidBodies[bodyIndexB].m_quat; - - - - - /////////////////// - ///compound shape support - - if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) - { - int compoundChild = concavePairs[pairIdx].w; - int childShapeIndexB = compoundChild;//collidables[collidableIndexB].m_shapeIndex+compoundChild; - int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex; - float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition; - float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation; - float4 newPosB = transform(&childPosB,&posB,&ornB); - float4 newOrnB = qtMul(ornB,childOrnB); - posB = newPosB; - ornB = newOrnB; - shapeIndexB = collidables[childColIndexB].m_shapeIndex; - } - ////////////////// - - float4 c0local = convexPolyhedronA.m_localCenter; - float4 c0 = transform(&c0local, &posA, &ornA); - float4 c1local = convexShapes[shapeIndexB].m_localCenter; - float4 c1 = transform(&c1local,&posB,&ornB); - const float4 DeltaC2 = c0 - c1; - - - bool sepA = findSeparatingAxisLocalA( &convexPolyhedronA, &convexShapes[shapeIndexB], - posA,ornA, - posB,ornB, - DeltaC2, - verticesA,uniqueEdgesA,facesA,indicesA, - vertices,uniqueEdges,faces,indices, - &sepAxis,&dmin); - hasSeparatingAxis = 4; - if (!sepA) - { - hasSeparatingAxis = 0; - } else - { - bool sepB = findSeparatingAxisLocalB( &convexShapes[shapeIndexB],&convexPolyhedronA, - posB,ornB, - posA,ornA, - DeltaC2, - vertices,uniqueEdges,faces,indices, - verticesA,uniqueEdgesA,facesA,indicesA, - &sepAxis,&dmin); - - if (!sepB) - { - hasSeparatingAxis = 0; - } else - { - hasSeparatingAxis = 1; - } - } - - if (hasSeparatingAxis) - { - dmins[i] = dmin; - concaveSeparatingNormalsOut[pairIdx]=sepAxis; - concaveHasSeparatingNormals[i]=1; - - } else - { - //mark this pair as in-active - concavePairs[pairIdx].w = -1; - } - } - else - { - //mark this pair as in-active - concavePairs[pairIdx].w = -1; - } -} - - - - -// work-in-progress -__kernel void findConcaveSeparatingAxisEdgeEdgeKernel( __global int4* concavePairs, - __global const BodyData* rigidBodies, - __global const btCollidableGpu* collidables, - __global const ConvexPolyhedronCL* convexShapes, - __global const float4* vertices, - __global const float4* uniqueEdges, - __global const btGpuFace* faces, - __global const int* indices, - __global const btGpuChildShape* gpuChildShapes, - __global btAabbCL* aabbs, - __global float4* concaveSeparatingNormalsOut, - __global int* concaveHasSeparatingNormals, - __global int4* clippingFacesOut, - __global float4* worldVertsA1GPU, - __global float4* worldNormalsAGPU, - __global float4* worldVertsB1GPU, - __global float* dmins, - int vertexFaceCapacity, - int numConcavePairs - ) -{ - - int i = get_global_id(0); - if (i>=numConcavePairs) - return; - - if (!concaveHasSeparatingNormals[i]) - return; - - int pairIdx = i; - - int bodyIndexA = concavePairs[i].x; - int bodyIndexB = concavePairs[i].y; - - int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx; - int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; - - int shapeIndexA = collidables[collidableIndexA].m_shapeIndex; - int shapeIndexB = collidables[collidableIndexB].m_shapeIndex; - - - int numFacesA = convexShapes[shapeIndexA].m_numFaces; - int numActualConcaveConvexTests = 0; - - int f = concavePairs[i].z; - - bool overlap = false; - - ConvexPolyhedronCL convexPolyhedronA; - - //add 3 vertices of the triangle - convexPolyhedronA.m_numVertices = 3; - convexPolyhedronA.m_vertexOffset = 0; - float4 localCenter = make_float4(0.f,0.f,0.f,0.f); - - btGpuFace face = faces[convexShapes[shapeIndexA].m_faceOffset+f]; - float4 triMinAabb, triMaxAabb; - btAabbCL triAabb; - triAabb.m_min = make_float4(1e30f,1e30f,1e30f,0.f); - triAabb.m_max = make_float4(-1e30f,-1e30f,-1e30f,0.f); - - float4 verticesA[3]; - for (int i=0;i<3;i++) - { - int index = indices[face.m_indexOffset+i]; - float4 vert = vertices[convexShapes[shapeIndexA].m_vertexOffset+index]; - verticesA[i] = vert; - localCenter += vert; - - triAabb.m_min = min(triAabb.m_min,vert); - triAabb.m_max = max(triAabb.m_max,vert); - - } - - overlap = true; - overlap = (triAabb.m_min.x > aabbs[bodyIndexB].m_max.x || triAabb.m_max.x < aabbs[bodyIndexB].m_min.x) ? false : overlap; - overlap = (triAabb.m_min.z > aabbs[bodyIndexB].m_max.z || triAabb.m_max.z < aabbs[bodyIndexB].m_min.z) ? false : overlap; - overlap = (triAabb.m_min.y > aabbs[bodyIndexB].m_max.y || triAabb.m_max.y < aabbs[bodyIndexB].m_min.y) ? false : overlap; - - if (overlap) - { - float dmin = dmins[i]; - int hasSeparatingAxis=5; - float4 sepAxis=make_float4(1,2,3,4); - sepAxis = concaveSeparatingNormalsOut[pairIdx]; - - int localCC=0; - numActualConcaveConvexTests++; - - //a triangle has 3 unique edges - convexPolyhedronA.m_numUniqueEdges = 3; - convexPolyhedronA.m_uniqueEdgesOffset = 0; - float4 uniqueEdgesA[3]; - - uniqueEdgesA[0] = (verticesA[1]-verticesA[0]); - uniqueEdgesA[1] = (verticesA[2]-verticesA[1]); - uniqueEdgesA[2] = (verticesA[0]-verticesA[2]); - - - convexPolyhedronA.m_faceOffset = 0; - - float4 normal = make_float4(face.m_plane.x,face.m_plane.y,face.m_plane.z,0.f); - - btGpuFace facesA[TRIANGLE_NUM_CONVEX_FACES]; - int indicesA[3+3+2+2+2]; - int curUsedIndices=0; - int fidx=0; - - //front size of triangle - { - facesA[fidx].m_indexOffset=curUsedIndices; - indicesA[0] = 0; - indicesA[1] = 1; - indicesA[2] = 2; - curUsedIndices+=3; - float c = face.m_plane.w; - facesA[fidx].m_plane.x = normal.x; - facesA[fidx].m_plane.y = normal.y; - facesA[fidx].m_plane.z = normal.z; - facesA[fidx].m_plane.w = c; - facesA[fidx].m_numIndices=3; - } - fidx++; - //back size of triangle - { - facesA[fidx].m_indexOffset=curUsedIndices; - indicesA[3]=2; - indicesA[4]=1; - indicesA[5]=0; - curUsedIndices+=3; - float c = dot(normal,verticesA[0]); - float c1 = -face.m_plane.w; - facesA[fidx].m_plane.x = -normal.x; - facesA[fidx].m_plane.y = -normal.y; - facesA[fidx].m_plane.z = -normal.z; - facesA[fidx].m_plane.w = c; - facesA[fidx].m_numIndices=3; - } - fidx++; - - bool addEdgePlanes = true; - if (addEdgePlanes) - { - int numVertices=3; - int prevVertex = numVertices-1; - for (int i=0;i<numVertices;i++) - { - float4 v0 = verticesA[i]; - float4 v1 = verticesA[prevVertex]; - - float4 edgeNormal = normalize(cross(normal,v1-v0)); - float c = -dot(edgeNormal,v0); - - facesA[fidx].m_numIndices = 2; - facesA[fidx].m_indexOffset=curUsedIndices; - indicesA[curUsedIndices++]=i; - indicesA[curUsedIndices++]=prevVertex; - - facesA[fidx].m_plane.x = edgeNormal.x; - facesA[fidx].m_plane.y = edgeNormal.y; - facesA[fidx].m_plane.z = edgeNormal.z; - facesA[fidx].m_plane.w = c; - fidx++; - prevVertex = i; - } - } - convexPolyhedronA.m_numFaces = TRIANGLE_NUM_CONVEX_FACES; - convexPolyhedronA.m_localCenter = localCenter*(1.f/3.f); - - - float4 posA = rigidBodies[bodyIndexA].m_pos; - posA.w = 0.f; - float4 posB = rigidBodies[bodyIndexB].m_pos; - posB.w = 0.f; - - float4 ornA = rigidBodies[bodyIndexA].m_quat; - float4 ornB =rigidBodies[bodyIndexB].m_quat; - - - - - /////////////////// - ///compound shape support - - if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) - { - int compoundChild = concavePairs[pairIdx].w; - int childShapeIndexB = compoundChild;//collidables[collidableIndexB].m_shapeIndex+compoundChild; - int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex; - float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition; - float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation; - float4 newPosB = transform(&childPosB,&posB,&ornB); - float4 newOrnB = qtMul(ornB,childOrnB); - posB = newPosB; - ornB = newOrnB; - shapeIndexB = collidables[childColIndexB].m_shapeIndex; - } - ////////////////// - - float4 c0local = convexPolyhedronA.m_localCenter; - float4 c0 = transform(&c0local, &posA, &ornA); - float4 c1local = convexShapes[shapeIndexB].m_localCenter; - float4 c1 = transform(&c1local,&posB,&ornB); - const float4 DeltaC2 = c0 - c1; - - - { - bool sepEE = findSeparatingAxisEdgeEdgeLocalA( &convexPolyhedronA, &convexShapes[shapeIndexB], - posA,ornA, - posB,ornB, - DeltaC2, - verticesA,uniqueEdgesA,facesA,indicesA, - vertices,uniqueEdges,faces,indices, - &sepAxis,&dmin); - - if (!sepEE) - { - hasSeparatingAxis = 0; - } else - { - hasSeparatingAxis = 1; - } - } - - - if (hasSeparatingAxis) - { - sepAxis.w = dmin; - dmins[i] = dmin; - concaveSeparatingNormalsOut[pairIdx]=sepAxis; - concaveHasSeparatingNormals[i]=1; - - float minDist = -1e30f; - float maxDist = 0.02f; - - - findClippingFaces(sepAxis, - &convexPolyhedronA, - &convexShapes[shapeIndexB], - posA,ornA, - posB,ornB, - worldVertsA1GPU, - worldNormalsAGPU, - worldVertsB1GPU, - vertexFaceCapacity, - minDist, maxDist, - verticesA, - facesA, - indicesA, - vertices, - faces, - indices, - clippingFacesOut, pairIdx); - - - } else - { - //mark this pair as in-active - concavePairs[pairIdx].w = -1; - } - } - else - { - //mark this pair as in-active - concavePairs[pairIdx].w = -1; - } - - concavePairs[i].z = -1;//for the next stage, z is used to determine existing contact points -} - diff --git a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/kernels/satConcaveKernels.h b/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/kernels/satConcaveKernels.h deleted file mode 100644 index 611569cacf..0000000000 --- a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/kernels/satConcaveKernels.h +++ /dev/null @@ -1,1457 +0,0 @@ -//this file is autogenerated using stringify.bat (premake --stringify) in the build folder of this project -static const char* satConcaveKernelsCL= \ -"//keep this enum in sync with the CPU version (in btCollidable.h)\n" -"//written by Erwin Coumans\n" -"#define SHAPE_CONVEX_HULL 3\n" -"#define SHAPE_CONCAVE_TRIMESH 5\n" -"#define TRIANGLE_NUM_CONVEX_FACES 5\n" -"#define SHAPE_COMPOUND_OF_CONVEX_HULLS 6\n" -"#define B3_MAX_STACK_DEPTH 256\n" -"typedef unsigned int u32;\n" -"///keep this in sync with btCollidable.h\n" -"typedef struct\n" -"{\n" -" union {\n" -" int m_numChildShapes;\n" -" int m_bvhIndex;\n" -" };\n" -" union\n" -" {\n" -" float m_radius;\n" -" int m_compoundBvhIndex;\n" -" };\n" -" \n" -" int m_shapeType;\n" -" int m_shapeIndex;\n" -" \n" -"} btCollidableGpu;\n" -"#define MAX_NUM_PARTS_IN_BITS 10\n" -"///b3QuantizedBvhNode is a compressed aabb node, 16 bytes.\n" -"///Node can be used for leafnode or internal node. Leafnodes can point to 32-bit triangle index (non-negative range).\n" -"typedef struct\n" -"{\n" -" //12 bytes\n" -" unsigned short int m_quantizedAabbMin[3];\n" -" unsigned short int m_quantizedAabbMax[3];\n" -" //4 bytes\n" -" int m_escapeIndexOrTriangleIndex;\n" -"} b3QuantizedBvhNode;\n" -"typedef struct\n" -"{\n" -" float4 m_aabbMin;\n" -" float4 m_aabbMax;\n" -" float4 m_quantization;\n" -" int m_numNodes;\n" -" int m_numSubTrees;\n" -" int m_nodeOffset;\n" -" int m_subTreeOffset;\n" -"} b3BvhInfo;\n" -"int getTriangleIndex(const b3QuantizedBvhNode* rootNode)\n" -"{\n" -" unsigned int x=0;\n" -" unsigned int y = (~(x&0))<<(31-MAX_NUM_PARTS_IN_BITS);\n" -" // Get only the lower bits where the triangle index is stored\n" -" return (rootNode->m_escapeIndexOrTriangleIndex&~(y));\n" -"}\n" -"int getTriangleIndexGlobal(__global const b3QuantizedBvhNode* rootNode)\n" -"{\n" -" unsigned int x=0;\n" -" unsigned int y = (~(x&0))<<(31-MAX_NUM_PARTS_IN_BITS);\n" -" // Get only the lower bits where the triangle index is stored\n" -" return (rootNode->m_escapeIndexOrTriangleIndex&~(y));\n" -"}\n" -"int isLeafNode(const b3QuantizedBvhNode* rootNode)\n" -"{\n" -" //skipindex is negative (internal node), triangleindex >=0 (leafnode)\n" -" return (rootNode->m_escapeIndexOrTriangleIndex >= 0)? 1 : 0;\n" -"}\n" -"int isLeafNodeGlobal(__global const b3QuantizedBvhNode* rootNode)\n" -"{\n" -" //skipindex is negative (internal node), triangleindex >=0 (leafnode)\n" -" return (rootNode->m_escapeIndexOrTriangleIndex >= 0)? 1 : 0;\n" -"}\n" -" \n" -"int getEscapeIndex(const b3QuantizedBvhNode* rootNode)\n" -"{\n" -" return -rootNode->m_escapeIndexOrTriangleIndex;\n" -"}\n" -"int getEscapeIndexGlobal(__global const b3QuantizedBvhNode* rootNode)\n" -"{\n" -" return -rootNode->m_escapeIndexOrTriangleIndex;\n" -"}\n" -"typedef struct\n" -"{\n" -" //12 bytes\n" -" unsigned short int m_quantizedAabbMin[3];\n" -" unsigned short int m_quantizedAabbMax[3];\n" -" //4 bytes, points to the root of the subtree\n" -" int m_rootNodeIndex;\n" -" //4 bytes\n" -" int m_subtreeSize;\n" -" int m_padding[3];\n" -"} b3BvhSubtreeInfo;\n" -"typedef struct\n" -"{\n" -" float4 m_childPosition;\n" -" float4 m_childOrientation;\n" -" int m_shapeIndex;\n" -" int m_unused0;\n" -" int m_unused1;\n" -" int m_unused2;\n" -"} btGpuChildShape;\n" -"typedef struct\n" -"{\n" -" float4 m_pos;\n" -" float4 m_quat;\n" -" float4 m_linVel;\n" -" float4 m_angVel;\n" -" u32 m_collidableIdx;\n" -" float m_invMass;\n" -" float m_restituitionCoeff;\n" -" float m_frictionCoeff;\n" -"} BodyData;\n" -"typedef struct \n" -"{\n" -" float4 m_localCenter;\n" -" float4 m_extents;\n" -" float4 mC;\n" -" float4 mE;\n" -" \n" -" float m_radius;\n" -" int m_faceOffset;\n" -" int m_numFaces;\n" -" int m_numVertices;\n" -" int m_vertexOffset;\n" -" int m_uniqueEdgesOffset;\n" -" int m_numUniqueEdges;\n" -" int m_unused;\n" -"} ConvexPolyhedronCL;\n" -"typedef struct \n" -"{\n" -" union\n" -" {\n" -" float4 m_min;\n" -" float m_minElems[4];\n" -" int m_minIndices[4];\n" -" };\n" -" union\n" -" {\n" -" float4 m_max;\n" -" float m_maxElems[4];\n" -" int m_maxIndices[4];\n" -" };\n" -"} btAabbCL;\n" -"#ifndef B3_AABB_H\n" -"#define B3_AABB_H\n" -"#ifndef B3_FLOAT4_H\n" -"#define B3_FLOAT4_H\n" -"#ifndef B3_PLATFORM_DEFINITIONS_H\n" -"#define B3_PLATFORM_DEFINITIONS_H\n" -"struct MyTest\n" -"{\n" -" int bla;\n" -"};\n" -"#ifdef __cplusplus\n" -"#else\n" -"//keep B3_LARGE_FLOAT*B3_LARGE_FLOAT < FLT_MAX\n" -"#define B3_LARGE_FLOAT 1e18f\n" -"#define B3_INFINITY 1e18f\n" -"#define b3Assert(a)\n" -"#define b3ConstArray(a) __global const a*\n" -"#define b3AtomicInc atomic_inc\n" -"#define b3AtomicAdd atomic_add\n" -"#define b3Fabs fabs\n" -"#define b3Sqrt native_sqrt\n" -"#define b3Sin native_sin\n" -"#define b3Cos native_cos\n" -"#define B3_STATIC\n" -"#endif\n" -"#endif\n" -"#ifdef __cplusplus\n" -"#else\n" -" typedef float4 b3Float4;\n" -" #define b3Float4ConstArg const b3Float4\n" -" #define b3MakeFloat4 (float4)\n" -" float b3Dot3F4(b3Float4ConstArg v0,b3Float4ConstArg v1)\n" -" {\n" -" float4 a1 = b3MakeFloat4(v0.xyz,0.f);\n" -" float4 b1 = b3MakeFloat4(v1.xyz,0.f);\n" -" return dot(a1, b1);\n" -" }\n" -" b3Float4 b3Cross3(b3Float4ConstArg v0,b3Float4ConstArg v1)\n" -" {\n" -" float4 a1 = b3MakeFloat4(v0.xyz,0.f);\n" -" float4 b1 = b3MakeFloat4(v1.xyz,0.f);\n" -" return cross(a1, b1);\n" -" }\n" -" #define b3MinFloat4 min\n" -" #define b3MaxFloat4 max\n" -" #define b3Normalized(a) normalize(a)\n" -"#endif \n" -" \n" -"inline bool b3IsAlmostZero(b3Float4ConstArg v)\n" -"{\n" -" if(b3Fabs(v.x)>1e-6 || b3Fabs(v.y)>1e-6 || b3Fabs(v.z)>1e-6) \n" -" return false;\n" -" return true;\n" -"}\n" -"inline int b3MaxDot( b3Float4ConstArg vec, __global const b3Float4* vecArray, int vecLen, float* dotOut )\n" -"{\n" -" float maxDot = -B3_INFINITY;\n" -" int i = 0;\n" -" int ptIndex = -1;\n" -" for( i = 0; i < vecLen; i++ )\n" -" {\n" -" float dot = b3Dot3F4(vecArray[i],vec);\n" -" \n" -" if( dot > maxDot )\n" -" {\n" -" maxDot = dot;\n" -" ptIndex = i;\n" -" }\n" -" }\n" -" b3Assert(ptIndex>=0);\n" -" if (ptIndex<0)\n" -" {\n" -" ptIndex = 0;\n" -" }\n" -" *dotOut = maxDot;\n" -" return ptIndex;\n" -"}\n" -"#endif //B3_FLOAT4_H\n" -"#ifndef B3_MAT3x3_H\n" -"#define B3_MAT3x3_H\n" -"#ifndef B3_QUAT_H\n" -"#define B3_QUAT_H\n" -"#ifndef B3_PLATFORM_DEFINITIONS_H\n" -"#ifdef __cplusplus\n" -"#else\n" -"#endif\n" -"#endif\n" -"#ifndef B3_FLOAT4_H\n" -"#ifdef __cplusplus\n" -"#else\n" -"#endif \n" -"#endif //B3_FLOAT4_H\n" -"#ifdef __cplusplus\n" -"#else\n" -" typedef float4 b3Quat;\n" -" #define b3QuatConstArg const b3Quat\n" -" \n" -" \n" -"inline float4 b3FastNormalize4(float4 v)\n" -"{\n" -" v = (float4)(v.xyz,0.f);\n" -" return fast_normalize(v);\n" -"}\n" -" \n" -"inline b3Quat b3QuatMul(b3Quat a, b3Quat b);\n" -"inline b3Quat b3QuatNormalized(b3QuatConstArg in);\n" -"inline b3Quat b3QuatRotate(b3QuatConstArg q, b3QuatConstArg vec);\n" -"inline b3Quat b3QuatInvert(b3QuatConstArg q);\n" -"inline b3Quat b3QuatInverse(b3QuatConstArg q);\n" -"inline b3Quat b3QuatMul(b3QuatConstArg a, b3QuatConstArg b)\n" -"{\n" -" b3Quat ans;\n" -" ans = b3Cross3( a, b );\n" -" ans += a.w*b+b.w*a;\n" -"// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z);\n" -" ans.w = a.w*b.w - b3Dot3F4(a, b);\n" -" return ans;\n" -"}\n" -"inline b3Quat b3QuatNormalized(b3QuatConstArg in)\n" -"{\n" -" b3Quat q;\n" -" q=in;\n" -" //return b3FastNormalize4(in);\n" -" float len = native_sqrt(dot(q, q));\n" -" if(len > 0.f)\n" -" {\n" -" q *= 1.f / len;\n" -" }\n" -" else\n" -" {\n" -" q.x = q.y = q.z = 0.f;\n" -" q.w = 1.f;\n" -" }\n" -" return q;\n" -"}\n" -"inline float4 b3QuatRotate(b3QuatConstArg q, b3QuatConstArg vec)\n" -"{\n" -" b3Quat qInv = b3QuatInvert( q );\n" -" float4 vcpy = vec;\n" -" vcpy.w = 0.f;\n" -" float4 out = b3QuatMul(b3QuatMul(q,vcpy),qInv);\n" -" return out;\n" -"}\n" -"inline b3Quat b3QuatInverse(b3QuatConstArg q)\n" -"{\n" -" return (b3Quat)(-q.xyz, q.w);\n" -"}\n" -"inline b3Quat b3QuatInvert(b3QuatConstArg q)\n" -"{\n" -" return (b3Quat)(-q.xyz, q.w);\n" -"}\n" -"inline float4 b3QuatInvRotate(b3QuatConstArg q, b3QuatConstArg vec)\n" -"{\n" -" return b3QuatRotate( b3QuatInvert( q ), vec );\n" -"}\n" -"inline b3Float4 b3TransformPoint(b3Float4ConstArg point, b3Float4ConstArg translation, b3QuatConstArg orientation)\n" -"{\n" -" return b3QuatRotate( orientation, point ) + (translation);\n" -"}\n" -" \n" -"#endif \n" -"#endif //B3_QUAT_H\n" -"#ifdef __cplusplus\n" -"#else\n" -"typedef struct\n" -"{\n" -" b3Float4 m_row[3];\n" -"}b3Mat3x3;\n" -"#define b3Mat3x3ConstArg const b3Mat3x3\n" -"#define b3GetRow(m,row) (m.m_row[row])\n" -"inline b3Mat3x3 b3QuatGetRotationMatrix(b3Quat quat)\n" -"{\n" -" b3Float4 quat2 = (b3Float4)(quat.x*quat.x, quat.y*quat.y, quat.z*quat.z, 0.f);\n" -" b3Mat3x3 out;\n" -" out.m_row[0].x=1-2*quat2.y-2*quat2.z;\n" -" out.m_row[0].y=2*quat.x*quat.y-2*quat.w*quat.z;\n" -" out.m_row[0].z=2*quat.x*quat.z+2*quat.w*quat.y;\n" -" out.m_row[0].w = 0.f;\n" -" out.m_row[1].x=2*quat.x*quat.y+2*quat.w*quat.z;\n" -" out.m_row[1].y=1-2*quat2.x-2*quat2.z;\n" -" out.m_row[1].z=2*quat.y*quat.z-2*quat.w*quat.x;\n" -" out.m_row[1].w = 0.f;\n" -" out.m_row[2].x=2*quat.x*quat.z-2*quat.w*quat.y;\n" -" out.m_row[2].y=2*quat.y*quat.z+2*quat.w*quat.x;\n" -" out.m_row[2].z=1-2*quat2.x-2*quat2.y;\n" -" out.m_row[2].w = 0.f;\n" -" return out;\n" -"}\n" -"inline b3Mat3x3 b3AbsoluteMat3x3(b3Mat3x3ConstArg matIn)\n" -"{\n" -" b3Mat3x3 out;\n" -" out.m_row[0] = fabs(matIn.m_row[0]);\n" -" out.m_row[1] = fabs(matIn.m_row[1]);\n" -" out.m_row[2] = fabs(matIn.m_row[2]);\n" -" return out;\n" -"}\n" -"__inline\n" -"b3Mat3x3 mtZero();\n" -"__inline\n" -"b3Mat3x3 mtIdentity();\n" -"__inline\n" -"b3Mat3x3 mtTranspose(b3Mat3x3 m);\n" -"__inline\n" -"b3Mat3x3 mtMul(b3Mat3x3 a, b3Mat3x3 b);\n" -"__inline\n" -"b3Float4 mtMul1(b3Mat3x3 a, b3Float4 b);\n" -"__inline\n" -"b3Float4 mtMul3(b3Float4 a, b3Mat3x3 b);\n" -"__inline\n" -"b3Mat3x3 mtZero()\n" -"{\n" -" b3Mat3x3 m;\n" -" m.m_row[0] = (b3Float4)(0.f);\n" -" m.m_row[1] = (b3Float4)(0.f);\n" -" m.m_row[2] = (b3Float4)(0.f);\n" -" return m;\n" -"}\n" -"__inline\n" -"b3Mat3x3 mtIdentity()\n" -"{\n" -" b3Mat3x3 m;\n" -" m.m_row[0] = (b3Float4)(1,0,0,0);\n" -" m.m_row[1] = (b3Float4)(0,1,0,0);\n" -" m.m_row[2] = (b3Float4)(0,0,1,0);\n" -" return m;\n" -"}\n" -"__inline\n" -"b3Mat3x3 mtTranspose(b3Mat3x3 m)\n" -"{\n" -" b3Mat3x3 out;\n" -" out.m_row[0] = (b3Float4)(m.m_row[0].x, m.m_row[1].x, m.m_row[2].x, 0.f);\n" -" out.m_row[1] = (b3Float4)(m.m_row[0].y, m.m_row[1].y, m.m_row[2].y, 0.f);\n" -" out.m_row[2] = (b3Float4)(m.m_row[0].z, m.m_row[1].z, m.m_row[2].z, 0.f);\n" -" return out;\n" -"}\n" -"__inline\n" -"b3Mat3x3 mtMul(b3Mat3x3 a, b3Mat3x3 b)\n" -"{\n" -" b3Mat3x3 transB;\n" -" transB = mtTranspose( b );\n" -" b3Mat3x3 ans;\n" -" // why this doesn't run when 0ing in the for{}\n" -" a.m_row[0].w = 0.f;\n" -" a.m_row[1].w = 0.f;\n" -" a.m_row[2].w = 0.f;\n" -" for(int i=0; i<3; i++)\n" -" {\n" -"// a.m_row[i].w = 0.f;\n" -" ans.m_row[i].x = b3Dot3F4(a.m_row[i],transB.m_row[0]);\n" -" ans.m_row[i].y = b3Dot3F4(a.m_row[i],transB.m_row[1]);\n" -" ans.m_row[i].z = b3Dot3F4(a.m_row[i],transB.m_row[2]);\n" -" ans.m_row[i].w = 0.f;\n" -" }\n" -" return ans;\n" -"}\n" -"__inline\n" -"b3Float4 mtMul1(b3Mat3x3 a, b3Float4 b)\n" -"{\n" -" b3Float4 ans;\n" -" ans.x = b3Dot3F4( a.m_row[0], b );\n" -" ans.y = b3Dot3F4( a.m_row[1], b );\n" -" ans.z = b3Dot3F4( a.m_row[2], b );\n" -" ans.w = 0.f;\n" -" return ans;\n" -"}\n" -"__inline\n" -"b3Float4 mtMul3(b3Float4 a, b3Mat3x3 b)\n" -"{\n" -" b3Float4 colx = b3MakeFloat4(b.m_row[0].x, b.m_row[1].x, b.m_row[2].x, 0);\n" -" b3Float4 coly = b3MakeFloat4(b.m_row[0].y, b.m_row[1].y, b.m_row[2].y, 0);\n" -" b3Float4 colz = b3MakeFloat4(b.m_row[0].z, b.m_row[1].z, b.m_row[2].z, 0);\n" -" b3Float4 ans;\n" -" ans.x = b3Dot3F4( a, colx );\n" -" ans.y = b3Dot3F4( a, coly );\n" -" ans.z = b3Dot3F4( a, colz );\n" -" return ans;\n" -"}\n" -"#endif\n" -"#endif //B3_MAT3x3_H\n" -"typedef struct b3Aabb b3Aabb_t;\n" -"struct b3Aabb\n" -"{\n" -" union\n" -" {\n" -" float m_min[4];\n" -" b3Float4 m_minVec;\n" -" int m_minIndices[4];\n" -" };\n" -" union\n" -" {\n" -" float m_max[4];\n" -" b3Float4 m_maxVec;\n" -" int m_signedMaxIndices[4];\n" -" };\n" -"};\n" -"inline void b3TransformAabb2(b3Float4ConstArg localAabbMin,b3Float4ConstArg localAabbMax, float margin,\n" -" b3Float4ConstArg pos,\n" -" b3QuatConstArg orn,\n" -" b3Float4* aabbMinOut,b3Float4* aabbMaxOut)\n" -"{\n" -" b3Float4 localHalfExtents = 0.5f*(localAabbMax-localAabbMin);\n" -" localHalfExtents+=b3MakeFloat4(margin,margin,margin,0.f);\n" -" b3Float4 localCenter = 0.5f*(localAabbMax+localAabbMin);\n" -" b3Mat3x3 m;\n" -" m = b3QuatGetRotationMatrix(orn);\n" -" b3Mat3x3 abs_b = b3AbsoluteMat3x3(m);\n" -" b3Float4 center = b3TransformPoint(localCenter,pos,orn);\n" -" \n" -" b3Float4 extent = b3MakeFloat4(b3Dot3F4(localHalfExtents,b3GetRow(abs_b,0)),\n" -" b3Dot3F4(localHalfExtents,b3GetRow(abs_b,1)),\n" -" b3Dot3F4(localHalfExtents,b3GetRow(abs_b,2)),\n" -" 0.f);\n" -" *aabbMinOut = center-extent;\n" -" *aabbMaxOut = center+extent;\n" -"}\n" -"/// conservative test for overlap between two aabbs\n" -"inline bool b3TestAabbAgainstAabb(b3Float4ConstArg aabbMin1,b3Float4ConstArg aabbMax1,\n" -" b3Float4ConstArg aabbMin2, b3Float4ConstArg aabbMax2)\n" -"{\n" -" bool overlap = true;\n" -" overlap = (aabbMin1.x > aabbMax2.x || aabbMax1.x < aabbMin2.x) ? false : overlap;\n" -" overlap = (aabbMin1.z > aabbMax2.z || aabbMax1.z < aabbMin2.z) ? false : overlap;\n" -" overlap = (aabbMin1.y > aabbMax2.y || aabbMax1.y < aabbMin2.y) ? false : overlap;\n" -" return overlap;\n" -"}\n" -"#endif //B3_AABB_H\n" -"/*\n" -"Bullet Continuous Collision Detection and Physics Library\n" -"Copyright (c) 2003-2013 Erwin Coumans http://bulletphysics.org\n" -"This software is provided 'as-is', without any express or implied warranty.\n" -"In no event will the authors be held liable for any damages arising from the use of this software.\n" -"Permission is granted to anyone to use this software for any purpose,\n" -"including commercial applications, and to alter it and redistribute it freely,\n" -"subject to the following restrictions:\n" -"1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.\n" -"2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.\n" -"3. This notice may not be removed or altered from any source distribution.\n" -"*/\n" -"#ifndef B3_INT2_H\n" -"#define B3_INT2_H\n" -"#ifdef __cplusplus\n" -"#else\n" -"#define b3UnsignedInt2 uint2\n" -"#define b3Int2 int2\n" -"#define b3MakeInt2 (int2)\n" -"#endif //__cplusplus\n" -"#endif\n" -"typedef struct\n" -"{\n" -" float4 m_plane;\n" -" int m_indexOffset;\n" -" int m_numIndices;\n" -"} btGpuFace;\n" -"#define make_float4 (float4)\n" -"__inline\n" -"float4 cross3(float4 a, float4 b)\n" -"{\n" -" return cross(a,b);\n" -" \n" -"// float4 a1 = make_float4(a.xyz,0.f);\n" -"// float4 b1 = make_float4(b.xyz,0.f);\n" -"// return cross(a1,b1);\n" -"//float4 c = make_float4(a.y*b.z - a.z*b.y,a.z*b.x - a.x*b.z,a.x*b.y - a.y*b.x,0.f);\n" -" \n" -" // float4 c = make_float4(a.y*b.z - a.z*b.y,1.f,a.x*b.y - a.y*b.x,0.f);\n" -" \n" -" //return c;\n" -"}\n" -"__inline\n" -"float dot3F4(float4 a, float4 b)\n" -"{\n" -" float4 a1 = make_float4(a.xyz,0.f);\n" -" float4 b1 = make_float4(b.xyz,0.f);\n" -" return dot(a1, b1);\n" -"}\n" -"__inline\n" -"float4 fastNormalize4(float4 v)\n" -"{\n" -" v = make_float4(v.xyz,0.f);\n" -" return fast_normalize(v);\n" -"}\n" -"///////////////////////////////////////\n" -"// Quaternion\n" -"///////////////////////////////////////\n" -"typedef float4 Quaternion;\n" -"__inline\n" -"Quaternion qtMul(Quaternion a, Quaternion b);\n" -"__inline\n" -"Quaternion qtNormalize(Quaternion in);\n" -"__inline\n" -"float4 qtRotate(Quaternion q, float4 vec);\n" -"__inline\n" -"Quaternion qtInvert(Quaternion q);\n" -"__inline\n" -"Quaternion qtMul(Quaternion a, Quaternion b)\n" -"{\n" -" Quaternion ans;\n" -" ans = cross3( a, b );\n" -" ans += a.w*b+b.w*a;\n" -"// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z);\n" -" ans.w = a.w*b.w - dot3F4(a, b);\n" -" return ans;\n" -"}\n" -"__inline\n" -"Quaternion qtNormalize(Quaternion in)\n" -"{\n" -" return fastNormalize4(in);\n" -"// in /= length( in );\n" -"// return in;\n" -"}\n" -"__inline\n" -"float4 qtRotate(Quaternion q, float4 vec)\n" -"{\n" -" Quaternion qInv = qtInvert( q );\n" -" float4 vcpy = vec;\n" -" vcpy.w = 0.f;\n" -" float4 out = qtMul(qtMul(q,vcpy),qInv);\n" -" return out;\n" -"}\n" -"__inline\n" -"Quaternion qtInvert(Quaternion q)\n" -"{\n" -" return (Quaternion)(-q.xyz, q.w);\n" -"}\n" -"__inline\n" -"float4 qtInvRotate(const Quaternion q, float4 vec)\n" -"{\n" -" return qtRotate( qtInvert( q ), vec );\n" -"}\n" -"__inline\n" -"float4 transform(const float4* p, const float4* translation, const Quaternion* orientation)\n" -"{\n" -" return qtRotate( *orientation, *p ) + (*translation);\n" -"}\n" -"__inline\n" -"float4 normalize3(const float4 a)\n" -"{\n" -" float4 n = make_float4(a.x, a.y, a.z, 0.f);\n" -" return fastNormalize4( n );\n" -"}\n" -"inline void projectLocal(const ConvexPolyhedronCL* hull, const float4 pos, const float4 orn, \n" -"const float4* dir, const float4* vertices, float* min, float* max)\n" -"{\n" -" min[0] = FLT_MAX;\n" -" max[0] = -FLT_MAX;\n" -" int numVerts = hull->m_numVertices;\n" -" const float4 localDir = qtInvRotate(orn,*dir);\n" -" float offset = dot(pos,*dir);\n" -" for(int i=0;i<numVerts;i++)\n" -" {\n" -" float dp = dot(vertices[hull->m_vertexOffset+i],localDir);\n" -" if(dp < min[0]) \n" -" min[0] = dp;\n" -" if(dp > max[0]) \n" -" max[0] = dp;\n" -" }\n" -" if(min[0]>max[0])\n" -" {\n" -" float tmp = min[0];\n" -" min[0] = max[0];\n" -" max[0] = tmp;\n" -" }\n" -" min[0] += offset;\n" -" max[0] += offset;\n" -"}\n" -"inline void project(__global const ConvexPolyhedronCL* hull, const float4 pos, const float4 orn, \n" -"const float4* dir, __global const float4* vertices, float* min, float* max)\n" -"{\n" -" min[0] = FLT_MAX;\n" -" max[0] = -FLT_MAX;\n" -" int numVerts = hull->m_numVertices;\n" -" const float4 localDir = qtInvRotate(orn,*dir);\n" -" float offset = dot(pos,*dir);\n" -" for(int i=0;i<numVerts;i++)\n" -" {\n" -" float dp = dot(vertices[hull->m_vertexOffset+i],localDir);\n" -" if(dp < min[0]) \n" -" min[0] = dp;\n" -" if(dp > max[0]) \n" -" max[0] = dp;\n" -" }\n" -" if(min[0]>max[0])\n" -" {\n" -" float tmp = min[0];\n" -" min[0] = max[0];\n" -" max[0] = tmp;\n" -" }\n" -" min[0] += offset;\n" -" max[0] += offset;\n" -"}\n" -"inline bool TestSepAxisLocalA(const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, \n" -" const float4 posA,const float4 ornA,\n" -" const float4 posB,const float4 ornB,\n" -" float4* sep_axis, const float4* verticesA, __global const float4* verticesB,float* depth)\n" -"{\n" -" float Min0,Max0;\n" -" float Min1,Max1;\n" -" projectLocal(hullA,posA,ornA,sep_axis,verticesA, &Min0, &Max0);\n" -" project(hullB,posB,ornB, sep_axis,verticesB, &Min1, &Max1);\n" -" if(Max0<Min1 || Max1<Min0)\n" -" return false;\n" -" float d0 = Max0 - Min1;\n" -" float d1 = Max1 - Min0;\n" -" *depth = d0<d1 ? d0:d1;\n" -" return true;\n" -"}\n" -"inline bool IsAlmostZero(const float4 v)\n" -"{\n" -" if(fabs(v.x)>1e-6f || fabs(v.y)>1e-6f || fabs(v.z)>1e-6f)\n" -" return false;\n" -" return true;\n" -"}\n" -"bool findSeparatingAxisLocalA( const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, \n" -" const float4 posA1,\n" -" const float4 ornA,\n" -" const float4 posB1,\n" -" const float4 ornB,\n" -" const float4 DeltaC2,\n" -" \n" -" const float4* verticesA, \n" -" const float4* uniqueEdgesA, \n" -" const btGpuFace* facesA,\n" -" const int* indicesA,\n" -" __global const float4* verticesB, \n" -" __global const float4* uniqueEdgesB, \n" -" __global const btGpuFace* facesB,\n" -" __global const int* indicesB,\n" -" float4* sep,\n" -" float* dmin)\n" -"{\n" -" \n" -" float4 posA = posA1;\n" -" posA.w = 0.f;\n" -" float4 posB = posB1;\n" -" posB.w = 0.f;\n" -" int curPlaneTests=0;\n" -" {\n" -" int numFacesA = hullA->m_numFaces;\n" -" // Test normals from hullA\n" -" for(int i=0;i<numFacesA;i++)\n" -" {\n" -" const float4 normal = facesA[hullA->m_faceOffset+i].m_plane;\n" -" float4 faceANormalWS = qtRotate(ornA,normal);\n" -" if (dot3F4(DeltaC2,faceANormalWS)<0)\n" -" faceANormalWS*=-1.f;\n" -" curPlaneTests++;\n" -" float d;\n" -" if(!TestSepAxisLocalA( hullA, hullB, posA,ornA,posB,ornB,&faceANormalWS, verticesA, verticesB,&d))\n" -" return false;\n" -" if(d<*dmin)\n" -" {\n" -" *dmin = d;\n" -" *sep = faceANormalWS;\n" -" }\n" -" }\n" -" }\n" -" if((dot3F4(-DeltaC2,*sep))>0.0f)\n" -" {\n" -" *sep = -(*sep);\n" -" }\n" -" return true;\n" -"}\n" -"bool findSeparatingAxisLocalB( __global const ConvexPolyhedronCL* hullA, const ConvexPolyhedronCL* hullB, \n" -" const float4 posA1,\n" -" const float4 ornA,\n" -" const float4 posB1,\n" -" const float4 ornB,\n" -" const float4 DeltaC2,\n" -" __global const float4* verticesA, \n" -" __global const float4* uniqueEdgesA, \n" -" __global const btGpuFace* facesA,\n" -" __global const int* indicesA,\n" -" const float4* verticesB,\n" -" const float4* uniqueEdgesB, \n" -" const btGpuFace* facesB,\n" -" const int* indicesB,\n" -" float4* sep,\n" -" float* dmin)\n" -"{\n" -" float4 posA = posA1;\n" -" posA.w = 0.f;\n" -" float4 posB = posB1;\n" -" posB.w = 0.f;\n" -" int curPlaneTests=0;\n" -" {\n" -" int numFacesA = hullA->m_numFaces;\n" -" // Test normals from hullA\n" -" for(int i=0;i<numFacesA;i++)\n" -" {\n" -" const float4 normal = facesA[hullA->m_faceOffset+i].m_plane;\n" -" float4 faceANormalWS = qtRotate(ornA,normal);\n" -" if (dot3F4(DeltaC2,faceANormalWS)<0)\n" -" faceANormalWS *= -1.f;\n" -" curPlaneTests++;\n" -" float d;\n" -" if(!TestSepAxisLocalA( hullB, hullA, posB,ornB,posA,ornA, &faceANormalWS, verticesB,verticesA, &d))\n" -" return false;\n" -" if(d<*dmin)\n" -" {\n" -" *dmin = d;\n" -" *sep = faceANormalWS;\n" -" }\n" -" }\n" -" }\n" -" if((dot3F4(-DeltaC2,*sep))>0.0f)\n" -" {\n" -" *sep = -(*sep);\n" -" }\n" -" return true;\n" -"}\n" -"bool findSeparatingAxisEdgeEdgeLocalA( const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, \n" -" const float4 posA1,\n" -" const float4 ornA,\n" -" const float4 posB1,\n" -" const float4 ornB,\n" -" const float4 DeltaC2,\n" -" const float4* verticesA, \n" -" const float4* uniqueEdgesA, \n" -" const btGpuFace* facesA,\n" -" const int* indicesA,\n" -" __global const float4* verticesB, \n" -" __global const float4* uniqueEdgesB, \n" -" __global const btGpuFace* facesB,\n" -" __global const int* indicesB,\n" -" float4* sep,\n" -" float* dmin)\n" -"{\n" -" float4 posA = posA1;\n" -" posA.w = 0.f;\n" -" float4 posB = posB1;\n" -" posB.w = 0.f;\n" -" int curPlaneTests=0;\n" -" int curEdgeEdge = 0;\n" -" // Test edges\n" -" for(int e0=0;e0<hullA->m_numUniqueEdges;e0++)\n" -" {\n" -" const float4 edge0 = uniqueEdgesA[hullA->m_uniqueEdgesOffset+e0];\n" -" float4 edge0World = qtRotate(ornA,edge0);\n" -" for(int e1=0;e1<hullB->m_numUniqueEdges;e1++)\n" -" {\n" -" const float4 edge1 = uniqueEdgesB[hullB->m_uniqueEdgesOffset+e1];\n" -" float4 edge1World = qtRotate(ornB,edge1);\n" -" float4 crossje = cross3(edge0World,edge1World);\n" -" curEdgeEdge++;\n" -" if(!IsAlmostZero(crossje))\n" -" {\n" -" crossje = normalize3(crossje);\n" -" if (dot3F4(DeltaC2,crossje)<0)\n" -" crossje *= -1.f;\n" -" float dist;\n" -" bool result = true;\n" -" {\n" -" float Min0,Max0;\n" -" float Min1,Max1;\n" -" projectLocal(hullA,posA,ornA,&crossje,verticesA, &Min0, &Max0);\n" -" project(hullB,posB,ornB,&crossje,verticesB, &Min1, &Max1);\n" -" \n" -" if(Max0<Min1 || Max1<Min0)\n" -" result = false;\n" -" \n" -" float d0 = Max0 - Min1;\n" -" float d1 = Max1 - Min0;\n" -" dist = d0<d1 ? d0:d1;\n" -" result = true;\n" -" }\n" -" \n" -" if(dist<*dmin)\n" -" {\n" -" *dmin = dist;\n" -" *sep = crossje;\n" -" }\n" -" }\n" -" }\n" -" }\n" -" \n" -" if((dot3F4(-DeltaC2,*sep))>0.0f)\n" -" {\n" -" *sep = -(*sep);\n" -" }\n" -" return true;\n" -"}\n" -"inline int findClippingFaces(const float4 separatingNormal,\n" -" const ConvexPolyhedronCL* hullA, \n" -" __global const ConvexPolyhedronCL* hullB,\n" -" const float4 posA, const Quaternion ornA,const float4 posB, const Quaternion ornB,\n" -" __global float4* worldVertsA1,\n" -" __global float4* worldNormalsA1,\n" -" __global float4* worldVertsB1,\n" -" int capacityWorldVerts,\n" -" const float minDist, float maxDist,\n" -" const float4* verticesA,\n" -" const btGpuFace* facesA,\n" -" const int* indicesA,\n" -" __global const float4* verticesB,\n" -" __global const btGpuFace* facesB,\n" -" __global const int* indicesB,\n" -" __global int4* clippingFaces, int pairIndex)\n" -"{\n" -" int numContactsOut = 0;\n" -" int numWorldVertsB1= 0;\n" -" \n" -" \n" -" int closestFaceB=0;\n" -" float dmax = -FLT_MAX;\n" -" \n" -" {\n" -" for(int face=0;face<hullB->m_numFaces;face++)\n" -" {\n" -" const float4 Normal = make_float4(facesB[hullB->m_faceOffset+face].m_plane.x,\n" -" facesB[hullB->m_faceOffset+face].m_plane.y, facesB[hullB->m_faceOffset+face].m_plane.z,0.f);\n" -" const float4 WorldNormal = qtRotate(ornB, Normal);\n" -" float d = dot3F4(WorldNormal,separatingNormal);\n" -" if (d > dmax)\n" -" {\n" -" dmax = d;\n" -" closestFaceB = face;\n" -" }\n" -" }\n" -" }\n" -" \n" -" {\n" -" const btGpuFace polyB = facesB[hullB->m_faceOffset+closestFaceB];\n" -" int numVertices = polyB.m_numIndices;\n" -" if (numVertices>capacityWorldVerts)\n" -" numVertices = capacityWorldVerts;\n" -" if (numVertices<0)\n" -" numVertices = 0;\n" -" \n" -" for(int e0=0;e0<numVertices;e0++)\n" -" {\n" -" if (e0<capacityWorldVerts)\n" -" {\n" -" const float4 b = verticesB[hullB->m_vertexOffset+indicesB[polyB.m_indexOffset+e0]];\n" -" worldVertsB1[pairIndex*capacityWorldVerts+numWorldVertsB1++] = transform(&b,&posB,&ornB);\n" -" }\n" -" }\n" -" }\n" -" \n" -" int closestFaceA=0;\n" -" {\n" -" float dmin = FLT_MAX;\n" -" for(int face=0;face<hullA->m_numFaces;face++)\n" -" {\n" -" const float4 Normal = make_float4(\n" -" facesA[hullA->m_faceOffset+face].m_plane.x,\n" -" facesA[hullA->m_faceOffset+face].m_plane.y,\n" -" facesA[hullA->m_faceOffset+face].m_plane.z,\n" -" 0.f);\n" -" const float4 faceANormalWS = qtRotate(ornA,Normal);\n" -" \n" -" float d = dot3F4(faceANormalWS,separatingNormal);\n" -" if (d < dmin)\n" -" {\n" -" dmin = d;\n" -" closestFaceA = face;\n" -" worldNormalsA1[pairIndex] = faceANormalWS;\n" -" }\n" -" }\n" -" }\n" -" \n" -" int numVerticesA = facesA[hullA->m_faceOffset+closestFaceA].m_numIndices;\n" -" if (numVerticesA>capacityWorldVerts)\n" -" numVerticesA = capacityWorldVerts;\n" -" if (numVerticesA<0)\n" -" numVerticesA=0;\n" -" \n" -" for(int e0=0;e0<numVerticesA;e0++)\n" -" {\n" -" if (e0<capacityWorldVerts)\n" -" {\n" -" const float4 a = verticesA[hullA->m_vertexOffset+indicesA[facesA[hullA->m_faceOffset+closestFaceA].m_indexOffset+e0]];\n" -" worldVertsA1[pairIndex*capacityWorldVerts+e0] = transform(&a, &posA,&ornA);\n" -" }\n" -" }\n" -" \n" -" clippingFaces[pairIndex].x = closestFaceA;\n" -" clippingFaces[pairIndex].y = closestFaceB;\n" -" clippingFaces[pairIndex].z = numVerticesA;\n" -" clippingFaces[pairIndex].w = numWorldVertsB1;\n" -" \n" -" \n" -" return numContactsOut;\n" -"}\n" -"// work-in-progress\n" -"__kernel void findConcaveSeparatingAxisVertexFaceKernel( __global int4* concavePairs,\n" -" __global const BodyData* rigidBodies,\n" -" __global const btCollidableGpu* collidables,\n" -" __global const ConvexPolyhedronCL* convexShapes,\n" -" __global const float4* vertices,\n" -" __global const float4* uniqueEdges,\n" -" __global const btGpuFace* faces,\n" -" __global const int* indices,\n" -" __global const btGpuChildShape* gpuChildShapes,\n" -" __global btAabbCL* aabbs,\n" -" __global float4* concaveSeparatingNormalsOut,\n" -" __global int* concaveHasSeparatingNormals,\n" -" __global int4* clippingFacesOut,\n" -" __global float4* worldVertsA1GPU,\n" -" __global float4* worldNormalsAGPU,\n" -" __global float4* worldVertsB1GPU,\n" -" __global float* dmins,\n" -" int vertexFaceCapacity,\n" -" int numConcavePairs\n" -" )\n" -"{\n" -" \n" -" int i = get_global_id(0);\n" -" if (i>=numConcavePairs)\n" -" return;\n" -" \n" -" concaveHasSeparatingNormals[i] = 0;\n" -" \n" -" int pairIdx = i;\n" -" \n" -" int bodyIndexA = concavePairs[i].x;\n" -" int bodyIndexB = concavePairs[i].y;\n" -" \n" -" int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" -" int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" -" \n" -" int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" -" int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" -" \n" -" if (collidables[collidableIndexB].m_shapeType!=SHAPE_CONVEX_HULL&&\n" -" collidables[collidableIndexB].m_shapeType!=SHAPE_COMPOUND_OF_CONVEX_HULLS)\n" -" {\n" -" concavePairs[pairIdx].w = -1;\n" -" return;\n" -" }\n" -" \n" -" \n" -" \n" -" int numFacesA = convexShapes[shapeIndexA].m_numFaces;\n" -" int numActualConcaveConvexTests = 0;\n" -" \n" -" int f = concavePairs[i].z;\n" -" \n" -" bool overlap = false;\n" -" \n" -" ConvexPolyhedronCL convexPolyhedronA;\n" -" \n" -" //add 3 vertices of the triangle\n" -" convexPolyhedronA.m_numVertices = 3;\n" -" convexPolyhedronA.m_vertexOffset = 0;\n" -" float4 localCenter = make_float4(0.f,0.f,0.f,0.f);\n" -" \n" -" btGpuFace face = faces[convexShapes[shapeIndexA].m_faceOffset+f];\n" -" float4 triMinAabb, triMaxAabb;\n" -" btAabbCL triAabb;\n" -" triAabb.m_min = make_float4(1e30f,1e30f,1e30f,0.f);\n" -" triAabb.m_max = make_float4(-1e30f,-1e30f,-1e30f,0.f);\n" -" \n" -" float4 verticesA[3];\n" -" for (int i=0;i<3;i++)\n" -" {\n" -" int index = indices[face.m_indexOffset+i];\n" -" float4 vert = vertices[convexShapes[shapeIndexA].m_vertexOffset+index];\n" -" verticesA[i] = vert;\n" -" localCenter += vert;\n" -" \n" -" triAabb.m_min = min(triAabb.m_min,vert);\n" -" triAabb.m_max = max(triAabb.m_max,vert);\n" -" \n" -" }\n" -" \n" -" overlap = true;\n" -" overlap = (triAabb.m_min.x > aabbs[bodyIndexB].m_max.x || triAabb.m_max.x < aabbs[bodyIndexB].m_min.x) ? false : overlap;\n" -" overlap = (triAabb.m_min.z > aabbs[bodyIndexB].m_max.z || triAabb.m_max.z < aabbs[bodyIndexB].m_min.z) ? false : overlap;\n" -" overlap = (triAabb.m_min.y > aabbs[bodyIndexB].m_max.y || triAabb.m_max.y < aabbs[bodyIndexB].m_min.y) ? false : overlap;\n" -" \n" -" if (overlap)\n" -" {\n" -" float dmin = FLT_MAX;\n" -" int hasSeparatingAxis=5;\n" -" float4 sepAxis=make_float4(1,2,3,4);\n" -" \n" -" int localCC=0;\n" -" numActualConcaveConvexTests++;\n" -" \n" -" //a triangle has 3 unique edges\n" -" convexPolyhedronA.m_numUniqueEdges = 3;\n" -" convexPolyhedronA.m_uniqueEdgesOffset = 0;\n" -" float4 uniqueEdgesA[3];\n" -" \n" -" uniqueEdgesA[0] = (verticesA[1]-verticesA[0]);\n" -" uniqueEdgesA[1] = (verticesA[2]-verticesA[1]);\n" -" uniqueEdgesA[2] = (verticesA[0]-verticesA[2]);\n" -" \n" -" \n" -" convexPolyhedronA.m_faceOffset = 0;\n" -" \n" -" float4 normal = make_float4(face.m_plane.x,face.m_plane.y,face.m_plane.z,0.f);\n" -" \n" -" btGpuFace facesA[TRIANGLE_NUM_CONVEX_FACES];\n" -" int indicesA[3+3+2+2+2];\n" -" int curUsedIndices=0;\n" -" int fidx=0;\n" -" \n" -" //front size of triangle\n" -" {\n" -" facesA[fidx].m_indexOffset=curUsedIndices;\n" -" indicesA[0] = 0;\n" -" indicesA[1] = 1;\n" -" indicesA[2] = 2;\n" -" curUsedIndices+=3;\n" -" float c = face.m_plane.w;\n" -" facesA[fidx].m_plane.x = normal.x;\n" -" facesA[fidx].m_plane.y = normal.y;\n" -" facesA[fidx].m_plane.z = normal.z;\n" -" facesA[fidx].m_plane.w = c;\n" -" facesA[fidx].m_numIndices=3;\n" -" }\n" -" fidx++;\n" -" //back size of triangle\n" -" {\n" -" facesA[fidx].m_indexOffset=curUsedIndices;\n" -" indicesA[3]=2;\n" -" indicesA[4]=1;\n" -" indicesA[5]=0;\n" -" curUsedIndices+=3;\n" -" float c = dot(normal,verticesA[0]);\n" -" float c1 = -face.m_plane.w;\n" -" facesA[fidx].m_plane.x = -normal.x;\n" -" facesA[fidx].m_plane.y = -normal.y;\n" -" facesA[fidx].m_plane.z = -normal.z;\n" -" facesA[fidx].m_plane.w = c;\n" -" facesA[fidx].m_numIndices=3;\n" -" }\n" -" fidx++;\n" -" \n" -" bool addEdgePlanes = true;\n" -" if (addEdgePlanes)\n" -" {\n" -" int numVertices=3;\n" -" int prevVertex = numVertices-1;\n" -" for (int i=0;i<numVertices;i++)\n" -" {\n" -" float4 v0 = verticesA[i];\n" -" float4 v1 = verticesA[prevVertex];\n" -" \n" -" float4 edgeNormal = normalize(cross(normal,v1-v0));\n" -" float c = -dot(edgeNormal,v0);\n" -" \n" -" facesA[fidx].m_numIndices = 2;\n" -" facesA[fidx].m_indexOffset=curUsedIndices;\n" -" indicesA[curUsedIndices++]=i;\n" -" indicesA[curUsedIndices++]=prevVertex;\n" -" \n" -" facesA[fidx].m_plane.x = edgeNormal.x;\n" -" facesA[fidx].m_plane.y = edgeNormal.y;\n" -" facesA[fidx].m_plane.z = edgeNormal.z;\n" -" facesA[fidx].m_plane.w = c;\n" -" fidx++;\n" -" prevVertex = i;\n" -" }\n" -" }\n" -" convexPolyhedronA.m_numFaces = TRIANGLE_NUM_CONVEX_FACES;\n" -" convexPolyhedronA.m_localCenter = localCenter*(1.f/3.f);\n" -" \n" -" \n" -" float4 posA = rigidBodies[bodyIndexA].m_pos;\n" -" posA.w = 0.f;\n" -" float4 posB = rigidBodies[bodyIndexB].m_pos;\n" -" posB.w = 0.f;\n" -" \n" -" float4 ornA = rigidBodies[bodyIndexA].m_quat;\n" -" float4 ornB =rigidBodies[bodyIndexB].m_quat;\n" -" \n" -" \n" -" \n" -" \n" -" ///////////////////\n" -" ///compound shape support\n" -" \n" -" if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)\n" -" {\n" -" int compoundChild = concavePairs[pairIdx].w;\n" -" int childShapeIndexB = compoundChild;//collidables[collidableIndexB].m_shapeIndex+compoundChild;\n" -" int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex;\n" -" float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition;\n" -" float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation;\n" -" float4 newPosB = transform(&childPosB,&posB,&ornB);\n" -" float4 newOrnB = qtMul(ornB,childOrnB);\n" -" posB = newPosB;\n" -" ornB = newOrnB;\n" -" shapeIndexB = collidables[childColIndexB].m_shapeIndex;\n" -" }\n" -" //////////////////\n" -" \n" -" float4 c0local = convexPolyhedronA.m_localCenter;\n" -" float4 c0 = transform(&c0local, &posA, &ornA);\n" -" float4 c1local = convexShapes[shapeIndexB].m_localCenter;\n" -" float4 c1 = transform(&c1local,&posB,&ornB);\n" -" const float4 DeltaC2 = c0 - c1;\n" -" \n" -" \n" -" bool sepA = findSeparatingAxisLocalA( &convexPolyhedronA, &convexShapes[shapeIndexB],\n" -" posA,ornA,\n" -" posB,ornB,\n" -" DeltaC2,\n" -" verticesA,uniqueEdgesA,facesA,indicesA,\n" -" vertices,uniqueEdges,faces,indices,\n" -" &sepAxis,&dmin);\n" -" hasSeparatingAxis = 4;\n" -" if (!sepA)\n" -" {\n" -" hasSeparatingAxis = 0;\n" -" } else\n" -" {\n" -" bool sepB = findSeparatingAxisLocalB( &convexShapes[shapeIndexB],&convexPolyhedronA,\n" -" posB,ornB,\n" -" posA,ornA,\n" -" DeltaC2,\n" -" vertices,uniqueEdges,faces,indices,\n" -" verticesA,uniqueEdgesA,facesA,indicesA,\n" -" &sepAxis,&dmin);\n" -" \n" -" if (!sepB)\n" -" {\n" -" hasSeparatingAxis = 0;\n" -" } else\n" -" {\n" -" hasSeparatingAxis = 1;\n" -" }\n" -" } \n" -" \n" -" if (hasSeparatingAxis)\n" -" {\n" -" dmins[i] = dmin;\n" -" concaveSeparatingNormalsOut[pairIdx]=sepAxis;\n" -" concaveHasSeparatingNormals[i]=1;\n" -" \n" -" } else\n" -" { \n" -" //mark this pair as in-active\n" -" concavePairs[pairIdx].w = -1;\n" -" }\n" -" }\n" -" else\n" -" { \n" -" //mark this pair as in-active\n" -" concavePairs[pairIdx].w = -1;\n" -" }\n" -"}\n" -"// work-in-progress\n" -"__kernel void findConcaveSeparatingAxisEdgeEdgeKernel( __global int4* concavePairs,\n" -" __global const BodyData* rigidBodies,\n" -" __global const btCollidableGpu* collidables,\n" -" __global const ConvexPolyhedronCL* convexShapes,\n" -" __global const float4* vertices,\n" -" __global const float4* uniqueEdges,\n" -" __global const btGpuFace* faces,\n" -" __global const int* indices,\n" -" __global const btGpuChildShape* gpuChildShapes,\n" -" __global btAabbCL* aabbs,\n" -" __global float4* concaveSeparatingNormalsOut,\n" -" __global int* concaveHasSeparatingNormals,\n" -" __global int4* clippingFacesOut,\n" -" __global float4* worldVertsA1GPU,\n" -" __global float4* worldNormalsAGPU,\n" -" __global float4* worldVertsB1GPU,\n" -" __global float* dmins,\n" -" int vertexFaceCapacity,\n" -" int numConcavePairs\n" -" )\n" -"{\n" -" \n" -" int i = get_global_id(0);\n" -" if (i>=numConcavePairs)\n" -" return;\n" -" \n" -" if (!concaveHasSeparatingNormals[i])\n" -" return;\n" -" \n" -" int pairIdx = i;\n" -" \n" -" int bodyIndexA = concavePairs[i].x;\n" -" int bodyIndexB = concavePairs[i].y;\n" -" \n" -" int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" -" int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" -" \n" -" int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" -" int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" -" \n" -" \n" -" int numFacesA = convexShapes[shapeIndexA].m_numFaces;\n" -" int numActualConcaveConvexTests = 0;\n" -" \n" -" int f = concavePairs[i].z;\n" -" \n" -" bool overlap = false;\n" -" \n" -" ConvexPolyhedronCL convexPolyhedronA;\n" -" \n" -" //add 3 vertices of the triangle\n" -" convexPolyhedronA.m_numVertices = 3;\n" -" convexPolyhedronA.m_vertexOffset = 0;\n" -" float4 localCenter = make_float4(0.f,0.f,0.f,0.f);\n" -" \n" -" btGpuFace face = faces[convexShapes[shapeIndexA].m_faceOffset+f];\n" -" float4 triMinAabb, triMaxAabb;\n" -" btAabbCL triAabb;\n" -" triAabb.m_min = make_float4(1e30f,1e30f,1e30f,0.f);\n" -" triAabb.m_max = make_float4(-1e30f,-1e30f,-1e30f,0.f);\n" -" \n" -" float4 verticesA[3];\n" -" for (int i=0;i<3;i++)\n" -" {\n" -" int index = indices[face.m_indexOffset+i];\n" -" float4 vert = vertices[convexShapes[shapeIndexA].m_vertexOffset+index];\n" -" verticesA[i] = vert;\n" -" localCenter += vert;\n" -" \n" -" triAabb.m_min = min(triAabb.m_min,vert);\n" -" triAabb.m_max = max(triAabb.m_max,vert);\n" -" \n" -" }\n" -" \n" -" overlap = true;\n" -" overlap = (triAabb.m_min.x > aabbs[bodyIndexB].m_max.x || triAabb.m_max.x < aabbs[bodyIndexB].m_min.x) ? false : overlap;\n" -" overlap = (triAabb.m_min.z > aabbs[bodyIndexB].m_max.z || triAabb.m_max.z < aabbs[bodyIndexB].m_min.z) ? false : overlap;\n" -" overlap = (triAabb.m_min.y > aabbs[bodyIndexB].m_max.y || triAabb.m_max.y < aabbs[bodyIndexB].m_min.y) ? false : overlap;\n" -" \n" -" if (overlap)\n" -" {\n" -" float dmin = dmins[i];\n" -" int hasSeparatingAxis=5;\n" -" float4 sepAxis=make_float4(1,2,3,4);\n" -" sepAxis = concaveSeparatingNormalsOut[pairIdx];\n" -" \n" -" int localCC=0;\n" -" numActualConcaveConvexTests++;\n" -" \n" -" //a triangle has 3 unique edges\n" -" convexPolyhedronA.m_numUniqueEdges = 3;\n" -" convexPolyhedronA.m_uniqueEdgesOffset = 0;\n" -" float4 uniqueEdgesA[3];\n" -" \n" -" uniqueEdgesA[0] = (verticesA[1]-verticesA[0]);\n" -" uniqueEdgesA[1] = (verticesA[2]-verticesA[1]);\n" -" uniqueEdgesA[2] = (verticesA[0]-verticesA[2]);\n" -" \n" -" \n" -" convexPolyhedronA.m_faceOffset = 0;\n" -" \n" -" float4 normal = make_float4(face.m_plane.x,face.m_plane.y,face.m_plane.z,0.f);\n" -" \n" -" btGpuFace facesA[TRIANGLE_NUM_CONVEX_FACES];\n" -" int indicesA[3+3+2+2+2];\n" -" int curUsedIndices=0;\n" -" int fidx=0;\n" -" \n" -" //front size of triangle\n" -" {\n" -" facesA[fidx].m_indexOffset=curUsedIndices;\n" -" indicesA[0] = 0;\n" -" indicesA[1] = 1;\n" -" indicesA[2] = 2;\n" -" curUsedIndices+=3;\n" -" float c = face.m_plane.w;\n" -" facesA[fidx].m_plane.x = normal.x;\n" -" facesA[fidx].m_plane.y = normal.y;\n" -" facesA[fidx].m_plane.z = normal.z;\n" -" facesA[fidx].m_plane.w = c;\n" -" facesA[fidx].m_numIndices=3;\n" -" }\n" -" fidx++;\n" -" //back size of triangle\n" -" {\n" -" facesA[fidx].m_indexOffset=curUsedIndices;\n" -" indicesA[3]=2;\n" -" indicesA[4]=1;\n" -" indicesA[5]=0;\n" -" curUsedIndices+=3;\n" -" float c = dot(normal,verticesA[0]);\n" -" float c1 = -face.m_plane.w;\n" -" facesA[fidx].m_plane.x = -normal.x;\n" -" facesA[fidx].m_plane.y = -normal.y;\n" -" facesA[fidx].m_plane.z = -normal.z;\n" -" facesA[fidx].m_plane.w = c;\n" -" facesA[fidx].m_numIndices=3;\n" -" }\n" -" fidx++;\n" -" \n" -" bool addEdgePlanes = true;\n" -" if (addEdgePlanes)\n" -" {\n" -" int numVertices=3;\n" -" int prevVertex = numVertices-1;\n" -" for (int i=0;i<numVertices;i++)\n" -" {\n" -" float4 v0 = verticesA[i];\n" -" float4 v1 = verticesA[prevVertex];\n" -" \n" -" float4 edgeNormal = normalize(cross(normal,v1-v0));\n" -" float c = -dot(edgeNormal,v0);\n" -" \n" -" facesA[fidx].m_numIndices = 2;\n" -" facesA[fidx].m_indexOffset=curUsedIndices;\n" -" indicesA[curUsedIndices++]=i;\n" -" indicesA[curUsedIndices++]=prevVertex;\n" -" \n" -" facesA[fidx].m_plane.x = edgeNormal.x;\n" -" facesA[fidx].m_plane.y = edgeNormal.y;\n" -" facesA[fidx].m_plane.z = edgeNormal.z;\n" -" facesA[fidx].m_plane.w = c;\n" -" fidx++;\n" -" prevVertex = i;\n" -" }\n" -" }\n" -" convexPolyhedronA.m_numFaces = TRIANGLE_NUM_CONVEX_FACES;\n" -" convexPolyhedronA.m_localCenter = localCenter*(1.f/3.f);\n" -" \n" -" \n" -" float4 posA = rigidBodies[bodyIndexA].m_pos;\n" -" posA.w = 0.f;\n" -" float4 posB = rigidBodies[bodyIndexB].m_pos;\n" -" posB.w = 0.f;\n" -" \n" -" float4 ornA = rigidBodies[bodyIndexA].m_quat;\n" -" float4 ornB =rigidBodies[bodyIndexB].m_quat;\n" -" \n" -" \n" -" \n" -" \n" -" ///////////////////\n" -" ///compound shape support\n" -" \n" -" if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)\n" -" {\n" -" int compoundChild = concavePairs[pairIdx].w;\n" -" int childShapeIndexB = compoundChild;//collidables[collidableIndexB].m_shapeIndex+compoundChild;\n" -" int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex;\n" -" float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition;\n" -" float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation;\n" -" float4 newPosB = transform(&childPosB,&posB,&ornB);\n" -" float4 newOrnB = qtMul(ornB,childOrnB);\n" -" posB = newPosB;\n" -" ornB = newOrnB;\n" -" shapeIndexB = collidables[childColIndexB].m_shapeIndex;\n" -" }\n" -" //////////////////\n" -" \n" -" float4 c0local = convexPolyhedronA.m_localCenter;\n" -" float4 c0 = transform(&c0local, &posA, &ornA);\n" -" float4 c1local = convexShapes[shapeIndexB].m_localCenter;\n" -" float4 c1 = transform(&c1local,&posB,&ornB);\n" -" const float4 DeltaC2 = c0 - c1;\n" -" \n" -" \n" -" {\n" -" bool sepEE = findSeparatingAxisEdgeEdgeLocalA( &convexPolyhedronA, &convexShapes[shapeIndexB],\n" -" posA,ornA,\n" -" posB,ornB,\n" -" DeltaC2,\n" -" verticesA,uniqueEdgesA,facesA,indicesA,\n" -" vertices,uniqueEdges,faces,indices,\n" -" &sepAxis,&dmin);\n" -" \n" -" if (!sepEE)\n" -" {\n" -" hasSeparatingAxis = 0;\n" -" } else\n" -" {\n" -" hasSeparatingAxis = 1;\n" -" }\n" -" }\n" -" \n" -" \n" -" if (hasSeparatingAxis)\n" -" {\n" -" sepAxis.w = dmin;\n" -" dmins[i] = dmin;\n" -" concaveSeparatingNormalsOut[pairIdx]=sepAxis;\n" -" concaveHasSeparatingNormals[i]=1;\n" -" \n" -" float minDist = -1e30f;\n" -" float maxDist = 0.02f;\n" -" \n" -" findClippingFaces(sepAxis,\n" -" &convexPolyhedronA,\n" -" &convexShapes[shapeIndexB],\n" -" posA,ornA,\n" -" posB,ornB,\n" -" worldVertsA1GPU,\n" -" worldNormalsAGPU,\n" -" worldVertsB1GPU,\n" -" vertexFaceCapacity,\n" -" minDist, maxDist,\n" -" verticesA,\n" -" facesA,\n" -" indicesA,\n" -" vertices,\n" -" faces,\n" -" indices,\n" -" clippingFacesOut, pairIdx);\n" -" \n" -" \n" -" } else\n" -" { \n" -" //mark this pair as in-active\n" -" concavePairs[pairIdx].w = -1;\n" -" }\n" -" }\n" -" else\n" -" { \n" -" //mark this pair as in-active\n" -" concavePairs[pairIdx].w = -1;\n" -" }\n" -" \n" -" concavePairs[i].z = -1;//for the next stage, z is used to determine existing contact points\n" -"}\n" -; diff --git a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/kernels/satKernels.h b/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/kernels/satKernels.h deleted file mode 100644 index 6f8b0a90db..0000000000 --- a/thirdparty/bullet/src/Bullet3OpenCL/NarrowphaseCollision/kernels/satKernels.h +++ /dev/null @@ -1,2104 +0,0 @@ -//this file is autogenerated using stringify.bat (premake --stringify) in the build folder of this project -static const char* satKernelsCL= \ -"//keep this enum in sync with the CPU version (in btCollidable.h)\n" -"//written by Erwin Coumans\n" -"#define SHAPE_CONVEX_HULL 3\n" -"#define SHAPE_CONCAVE_TRIMESH 5\n" -"#define TRIANGLE_NUM_CONVEX_FACES 5\n" -"#define SHAPE_COMPOUND_OF_CONVEX_HULLS 6\n" -"#define B3_MAX_STACK_DEPTH 256\n" -"typedef unsigned int u32;\n" -"///keep this in sync with btCollidable.h\n" -"typedef struct\n" -"{\n" -" union {\n" -" int m_numChildShapes;\n" -" int m_bvhIndex;\n" -" };\n" -" union\n" -" {\n" -" float m_radius;\n" -" int m_compoundBvhIndex;\n" -" };\n" -" \n" -" int m_shapeType;\n" -" int m_shapeIndex;\n" -" \n" -"} btCollidableGpu;\n" -"#define MAX_NUM_PARTS_IN_BITS 10\n" -"///b3QuantizedBvhNode is a compressed aabb node, 16 bytes.\n" -"///Node can be used for leafnode or internal node. Leafnodes can point to 32-bit triangle index (non-negative range).\n" -"typedef struct\n" -"{\n" -" //12 bytes\n" -" unsigned short int m_quantizedAabbMin[3];\n" -" unsigned short int m_quantizedAabbMax[3];\n" -" //4 bytes\n" -" int m_escapeIndexOrTriangleIndex;\n" -"} b3QuantizedBvhNode;\n" -"typedef struct\n" -"{\n" -" float4 m_aabbMin;\n" -" float4 m_aabbMax;\n" -" float4 m_quantization;\n" -" int m_numNodes;\n" -" int m_numSubTrees;\n" -" int m_nodeOffset;\n" -" int m_subTreeOffset;\n" -"} b3BvhInfo;\n" -"int getTriangleIndex(const b3QuantizedBvhNode* rootNode)\n" -"{\n" -" unsigned int x=0;\n" -" unsigned int y = (~(x&0))<<(31-MAX_NUM_PARTS_IN_BITS);\n" -" // Get only the lower bits where the triangle index is stored\n" -" return (rootNode->m_escapeIndexOrTriangleIndex&~(y));\n" -"}\n" -"int getTriangleIndexGlobal(__global const b3QuantizedBvhNode* rootNode)\n" -"{\n" -" unsigned int x=0;\n" -" unsigned int y = (~(x&0))<<(31-MAX_NUM_PARTS_IN_BITS);\n" -" // Get only the lower bits where the triangle index is stored\n" -" return (rootNode->m_escapeIndexOrTriangleIndex&~(y));\n" -"}\n" -"int isLeafNode(const b3QuantizedBvhNode* rootNode)\n" -"{\n" -" //skipindex is negative (internal node), triangleindex >=0 (leafnode)\n" -" return (rootNode->m_escapeIndexOrTriangleIndex >= 0)? 1 : 0;\n" -"}\n" -"int isLeafNodeGlobal(__global const b3QuantizedBvhNode* rootNode)\n" -"{\n" -" //skipindex is negative (internal node), triangleindex >=0 (leafnode)\n" -" return (rootNode->m_escapeIndexOrTriangleIndex >= 0)? 1 : 0;\n" -"}\n" -" \n" -"int getEscapeIndex(const b3QuantizedBvhNode* rootNode)\n" -"{\n" -" return -rootNode->m_escapeIndexOrTriangleIndex;\n" -"}\n" -"int getEscapeIndexGlobal(__global const b3QuantizedBvhNode* rootNode)\n" -"{\n" -" return -rootNode->m_escapeIndexOrTriangleIndex;\n" -"}\n" -"typedef struct\n" -"{\n" -" //12 bytes\n" -" unsigned short int m_quantizedAabbMin[3];\n" -" unsigned short int m_quantizedAabbMax[3];\n" -" //4 bytes, points to the root of the subtree\n" -" int m_rootNodeIndex;\n" -" //4 bytes\n" -" int m_subtreeSize;\n" -" int m_padding[3];\n" -"} b3BvhSubtreeInfo;\n" -"typedef struct\n" -"{\n" -" float4 m_childPosition;\n" -" float4 m_childOrientation;\n" -" int m_shapeIndex;\n" -" int m_unused0;\n" -" int m_unused1;\n" -" int m_unused2;\n" -"} btGpuChildShape;\n" -"typedef struct\n" -"{\n" -" float4 m_pos;\n" -" float4 m_quat;\n" -" float4 m_linVel;\n" -" float4 m_angVel;\n" -" u32 m_collidableIdx;\n" -" float m_invMass;\n" -" float m_restituitionCoeff;\n" -" float m_frictionCoeff;\n" -"} BodyData;\n" -"typedef struct \n" -"{\n" -" float4 m_localCenter;\n" -" float4 m_extents;\n" -" float4 mC;\n" -" float4 mE;\n" -" \n" -" float m_radius;\n" -" int m_faceOffset;\n" -" int m_numFaces;\n" -" int m_numVertices;\n" -" int m_vertexOffset;\n" -" int m_uniqueEdgesOffset;\n" -" int m_numUniqueEdges;\n" -" int m_unused;\n" -"} ConvexPolyhedronCL;\n" -"typedef struct \n" -"{\n" -" union\n" -" {\n" -" float4 m_min;\n" -" float m_minElems[4];\n" -" int m_minIndices[4];\n" -" };\n" -" union\n" -" {\n" -" float4 m_max;\n" -" float m_maxElems[4];\n" -" int m_maxIndices[4];\n" -" };\n" -"} btAabbCL;\n" -"#ifndef B3_AABB_H\n" -"#define B3_AABB_H\n" -"#ifndef B3_FLOAT4_H\n" -"#define B3_FLOAT4_H\n" -"#ifndef B3_PLATFORM_DEFINITIONS_H\n" -"#define B3_PLATFORM_DEFINITIONS_H\n" -"struct MyTest\n" -"{\n" -" int bla;\n" -"};\n" -"#ifdef __cplusplus\n" -"#else\n" -"//keep B3_LARGE_FLOAT*B3_LARGE_FLOAT < FLT_MAX\n" -"#define B3_LARGE_FLOAT 1e18f\n" -"#define B3_INFINITY 1e18f\n" -"#define b3Assert(a)\n" -"#define b3ConstArray(a) __global const a*\n" -"#define b3AtomicInc atomic_inc\n" -"#define b3AtomicAdd atomic_add\n" -"#define b3Fabs fabs\n" -"#define b3Sqrt native_sqrt\n" -"#define b3Sin native_sin\n" -"#define b3Cos native_cos\n" -"#define B3_STATIC\n" -"#endif\n" -"#endif\n" -"#ifdef __cplusplus\n" -"#else\n" -" typedef float4 b3Float4;\n" -" #define b3Float4ConstArg const b3Float4\n" -" #define b3MakeFloat4 (float4)\n" -" float b3Dot3F4(b3Float4ConstArg v0,b3Float4ConstArg v1)\n" -" {\n" -" float4 a1 = b3MakeFloat4(v0.xyz,0.f);\n" -" float4 b1 = b3MakeFloat4(v1.xyz,0.f);\n" -" return dot(a1, b1);\n" -" }\n" -" b3Float4 b3Cross3(b3Float4ConstArg v0,b3Float4ConstArg v1)\n" -" {\n" -" float4 a1 = b3MakeFloat4(v0.xyz,0.f);\n" -" float4 b1 = b3MakeFloat4(v1.xyz,0.f);\n" -" return cross(a1, b1);\n" -" }\n" -" #define b3MinFloat4 min\n" -" #define b3MaxFloat4 max\n" -" #define b3Normalized(a) normalize(a)\n" -"#endif \n" -" \n" -"inline bool b3IsAlmostZero(b3Float4ConstArg v)\n" -"{\n" -" if(b3Fabs(v.x)>1e-6 || b3Fabs(v.y)>1e-6 || b3Fabs(v.z)>1e-6) \n" -" return false;\n" -" return true;\n" -"}\n" -"inline int b3MaxDot( b3Float4ConstArg vec, __global const b3Float4* vecArray, int vecLen, float* dotOut )\n" -"{\n" -" float maxDot = -B3_INFINITY;\n" -" int i = 0;\n" -" int ptIndex = -1;\n" -" for( i = 0; i < vecLen; i++ )\n" -" {\n" -" float dot = b3Dot3F4(vecArray[i],vec);\n" -" \n" -" if( dot > maxDot )\n" -" {\n" -" maxDot = dot;\n" -" ptIndex = i;\n" -" }\n" -" }\n" -" b3Assert(ptIndex>=0);\n" -" if (ptIndex<0)\n" -" {\n" -" ptIndex = 0;\n" -" }\n" -" *dotOut = maxDot;\n" -" return ptIndex;\n" -"}\n" -"#endif //B3_FLOAT4_H\n" -"#ifndef B3_MAT3x3_H\n" -"#define B3_MAT3x3_H\n" -"#ifndef B3_QUAT_H\n" -"#define B3_QUAT_H\n" -"#ifndef B3_PLATFORM_DEFINITIONS_H\n" -"#ifdef __cplusplus\n" -"#else\n" -"#endif\n" -"#endif\n" -"#ifndef B3_FLOAT4_H\n" -"#ifdef __cplusplus\n" -"#else\n" -"#endif \n" -"#endif //B3_FLOAT4_H\n" -"#ifdef __cplusplus\n" -"#else\n" -" typedef float4 b3Quat;\n" -" #define b3QuatConstArg const b3Quat\n" -" \n" -" \n" -"inline float4 b3FastNormalize4(float4 v)\n" -"{\n" -" v = (float4)(v.xyz,0.f);\n" -" return fast_normalize(v);\n" -"}\n" -" \n" -"inline b3Quat b3QuatMul(b3Quat a, b3Quat b);\n" -"inline b3Quat b3QuatNormalized(b3QuatConstArg in);\n" -"inline b3Quat b3QuatRotate(b3QuatConstArg q, b3QuatConstArg vec);\n" -"inline b3Quat b3QuatInvert(b3QuatConstArg q);\n" -"inline b3Quat b3QuatInverse(b3QuatConstArg q);\n" -"inline b3Quat b3QuatMul(b3QuatConstArg a, b3QuatConstArg b)\n" -"{\n" -" b3Quat ans;\n" -" ans = b3Cross3( a, b );\n" -" ans += a.w*b+b.w*a;\n" -"// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z);\n" -" ans.w = a.w*b.w - b3Dot3F4(a, b);\n" -" return ans;\n" -"}\n" -"inline b3Quat b3QuatNormalized(b3QuatConstArg in)\n" -"{\n" -" b3Quat q;\n" -" q=in;\n" -" //return b3FastNormalize4(in);\n" -" float len = native_sqrt(dot(q, q));\n" -" if(len > 0.f)\n" -" {\n" -" q *= 1.f / len;\n" -" }\n" -" else\n" -" {\n" -" q.x = q.y = q.z = 0.f;\n" -" q.w = 1.f;\n" -" }\n" -" return q;\n" -"}\n" -"inline float4 b3QuatRotate(b3QuatConstArg q, b3QuatConstArg vec)\n" -"{\n" -" b3Quat qInv = b3QuatInvert( q );\n" -" float4 vcpy = vec;\n" -" vcpy.w = 0.f;\n" -" float4 out = b3QuatMul(b3QuatMul(q,vcpy),qInv);\n" -" return out;\n" -"}\n" -"inline b3Quat b3QuatInverse(b3QuatConstArg q)\n" -"{\n" -" return (b3Quat)(-q.xyz, q.w);\n" -"}\n" -"inline b3Quat b3QuatInvert(b3QuatConstArg q)\n" -"{\n" -" return (b3Quat)(-q.xyz, q.w);\n" -"}\n" -"inline float4 b3QuatInvRotate(b3QuatConstArg q, b3QuatConstArg vec)\n" -"{\n" -" return b3QuatRotate( b3QuatInvert( q ), vec );\n" -"}\n" -"inline b3Float4 b3TransformPoint(b3Float4ConstArg point, b3Float4ConstArg translation, b3QuatConstArg orientation)\n" -"{\n" -" return b3QuatRotate( orientation, point ) + (translation);\n" -"}\n" -" \n" -"#endif \n" -"#endif //B3_QUAT_H\n" -"#ifdef __cplusplus\n" -"#else\n" -"typedef struct\n" -"{\n" -" b3Float4 m_row[3];\n" -"}b3Mat3x3;\n" -"#define b3Mat3x3ConstArg const b3Mat3x3\n" -"#define b3GetRow(m,row) (m.m_row[row])\n" -"inline b3Mat3x3 b3QuatGetRotationMatrix(b3Quat quat)\n" -"{\n" -" b3Float4 quat2 = (b3Float4)(quat.x*quat.x, quat.y*quat.y, quat.z*quat.z, 0.f);\n" -" b3Mat3x3 out;\n" -" out.m_row[0].x=1-2*quat2.y-2*quat2.z;\n" -" out.m_row[0].y=2*quat.x*quat.y-2*quat.w*quat.z;\n" -" out.m_row[0].z=2*quat.x*quat.z+2*quat.w*quat.y;\n" -" out.m_row[0].w = 0.f;\n" -" out.m_row[1].x=2*quat.x*quat.y+2*quat.w*quat.z;\n" -" out.m_row[1].y=1-2*quat2.x-2*quat2.z;\n" -" out.m_row[1].z=2*quat.y*quat.z-2*quat.w*quat.x;\n" -" out.m_row[1].w = 0.f;\n" -" out.m_row[2].x=2*quat.x*quat.z-2*quat.w*quat.y;\n" -" out.m_row[2].y=2*quat.y*quat.z+2*quat.w*quat.x;\n" -" out.m_row[2].z=1-2*quat2.x-2*quat2.y;\n" -" out.m_row[2].w = 0.f;\n" -" return out;\n" -"}\n" -"inline b3Mat3x3 b3AbsoluteMat3x3(b3Mat3x3ConstArg matIn)\n" -"{\n" -" b3Mat3x3 out;\n" -" out.m_row[0] = fabs(matIn.m_row[0]);\n" -" out.m_row[1] = fabs(matIn.m_row[1]);\n" -" out.m_row[2] = fabs(matIn.m_row[2]);\n" -" return out;\n" -"}\n" -"__inline\n" -"b3Mat3x3 mtZero();\n" -"__inline\n" -"b3Mat3x3 mtIdentity();\n" -"__inline\n" -"b3Mat3x3 mtTranspose(b3Mat3x3 m);\n" -"__inline\n" -"b3Mat3x3 mtMul(b3Mat3x3 a, b3Mat3x3 b);\n" -"__inline\n" -"b3Float4 mtMul1(b3Mat3x3 a, b3Float4 b);\n" -"__inline\n" -"b3Float4 mtMul3(b3Float4 a, b3Mat3x3 b);\n" -"__inline\n" -"b3Mat3x3 mtZero()\n" -"{\n" -" b3Mat3x3 m;\n" -" m.m_row[0] = (b3Float4)(0.f);\n" -" m.m_row[1] = (b3Float4)(0.f);\n" -" m.m_row[2] = (b3Float4)(0.f);\n" -" return m;\n" -"}\n" -"__inline\n" -"b3Mat3x3 mtIdentity()\n" -"{\n" -" b3Mat3x3 m;\n" -" m.m_row[0] = (b3Float4)(1,0,0,0);\n" -" m.m_row[1] = (b3Float4)(0,1,0,0);\n" -" m.m_row[2] = (b3Float4)(0,0,1,0);\n" -" return m;\n" -"}\n" -"__inline\n" -"b3Mat3x3 mtTranspose(b3Mat3x3 m)\n" -"{\n" -" b3Mat3x3 out;\n" -" out.m_row[0] = (b3Float4)(m.m_row[0].x, m.m_row[1].x, m.m_row[2].x, 0.f);\n" -" out.m_row[1] = (b3Float4)(m.m_row[0].y, m.m_row[1].y, m.m_row[2].y, 0.f);\n" -" out.m_row[2] = (b3Float4)(m.m_row[0].z, m.m_row[1].z, m.m_row[2].z, 0.f);\n" -" return out;\n" -"}\n" -"__inline\n" -"b3Mat3x3 mtMul(b3Mat3x3 a, b3Mat3x3 b)\n" -"{\n" -" b3Mat3x3 transB;\n" -" transB = mtTranspose( b );\n" -" b3Mat3x3 ans;\n" -" // why this doesn't run when 0ing in the for{}\n" -" a.m_row[0].w = 0.f;\n" -" a.m_row[1].w = 0.f;\n" -" a.m_row[2].w = 0.f;\n" -" for(int i=0; i<3; i++)\n" -" {\n" -"// a.m_row[i].w = 0.f;\n" -" ans.m_row[i].x = b3Dot3F4(a.m_row[i],transB.m_row[0]);\n" -" ans.m_row[i].y = b3Dot3F4(a.m_row[i],transB.m_row[1]);\n" -" ans.m_row[i].z = b3Dot3F4(a.m_row[i],transB.m_row[2]);\n" -" ans.m_row[i].w = 0.f;\n" -" }\n" -" return ans;\n" -"}\n" -"__inline\n" -"b3Float4 mtMul1(b3Mat3x3 a, b3Float4 b)\n" -"{\n" -" b3Float4 ans;\n" -" ans.x = b3Dot3F4( a.m_row[0], b );\n" -" ans.y = b3Dot3F4( a.m_row[1], b );\n" -" ans.z = b3Dot3F4( a.m_row[2], b );\n" -" ans.w = 0.f;\n" -" return ans;\n" -"}\n" -"__inline\n" -"b3Float4 mtMul3(b3Float4 a, b3Mat3x3 b)\n" -"{\n" -" b3Float4 colx = b3MakeFloat4(b.m_row[0].x, b.m_row[1].x, b.m_row[2].x, 0);\n" -" b3Float4 coly = b3MakeFloat4(b.m_row[0].y, b.m_row[1].y, b.m_row[2].y, 0);\n" -" b3Float4 colz = b3MakeFloat4(b.m_row[0].z, b.m_row[1].z, b.m_row[2].z, 0);\n" -" b3Float4 ans;\n" -" ans.x = b3Dot3F4( a, colx );\n" -" ans.y = b3Dot3F4( a, coly );\n" -" ans.z = b3Dot3F4( a, colz );\n" -" return ans;\n" -"}\n" -"#endif\n" -"#endif //B3_MAT3x3_H\n" -"typedef struct b3Aabb b3Aabb_t;\n" -"struct b3Aabb\n" -"{\n" -" union\n" -" {\n" -" float m_min[4];\n" -" b3Float4 m_minVec;\n" -" int m_minIndices[4];\n" -" };\n" -" union\n" -" {\n" -" float m_max[4];\n" -" b3Float4 m_maxVec;\n" -" int m_signedMaxIndices[4];\n" -" };\n" -"};\n" -"inline void b3TransformAabb2(b3Float4ConstArg localAabbMin,b3Float4ConstArg localAabbMax, float margin,\n" -" b3Float4ConstArg pos,\n" -" b3QuatConstArg orn,\n" -" b3Float4* aabbMinOut,b3Float4* aabbMaxOut)\n" -"{\n" -" b3Float4 localHalfExtents = 0.5f*(localAabbMax-localAabbMin);\n" -" localHalfExtents+=b3MakeFloat4(margin,margin,margin,0.f);\n" -" b3Float4 localCenter = 0.5f*(localAabbMax+localAabbMin);\n" -" b3Mat3x3 m;\n" -" m = b3QuatGetRotationMatrix(orn);\n" -" b3Mat3x3 abs_b = b3AbsoluteMat3x3(m);\n" -" b3Float4 center = b3TransformPoint(localCenter,pos,orn);\n" -" \n" -" b3Float4 extent = b3MakeFloat4(b3Dot3F4(localHalfExtents,b3GetRow(abs_b,0)),\n" -" b3Dot3F4(localHalfExtents,b3GetRow(abs_b,1)),\n" -" b3Dot3F4(localHalfExtents,b3GetRow(abs_b,2)),\n" -" 0.f);\n" -" *aabbMinOut = center-extent;\n" -" *aabbMaxOut = center+extent;\n" -"}\n" -"/// conservative test for overlap between two aabbs\n" -"inline bool b3TestAabbAgainstAabb(b3Float4ConstArg aabbMin1,b3Float4ConstArg aabbMax1,\n" -" b3Float4ConstArg aabbMin2, b3Float4ConstArg aabbMax2)\n" -"{\n" -" bool overlap = true;\n" -" overlap = (aabbMin1.x > aabbMax2.x || aabbMax1.x < aabbMin2.x) ? false : overlap;\n" -" overlap = (aabbMin1.z > aabbMax2.z || aabbMax1.z < aabbMin2.z) ? false : overlap;\n" -" overlap = (aabbMin1.y > aabbMax2.y || aabbMax1.y < aabbMin2.y) ? false : overlap;\n" -" return overlap;\n" -"}\n" -"#endif //B3_AABB_H\n" -"/*\n" -"Bullet Continuous Collision Detection and Physics Library\n" -"Copyright (c) 2003-2013 Erwin Coumans http://bulletphysics.org\n" -"This software is provided 'as-is', without any express or implied warranty.\n" -"In no event will the authors be held liable for any damages arising from the use of this software.\n" -"Permission is granted to anyone to use this software for any purpose,\n" -"including commercial applications, and to alter it and redistribute it freely,\n" -"subject to the following restrictions:\n" -"1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.\n" -"2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.\n" -"3. This notice may not be removed or altered from any source distribution.\n" -"*/\n" -"#ifndef B3_INT2_H\n" -"#define B3_INT2_H\n" -"#ifdef __cplusplus\n" -"#else\n" -"#define b3UnsignedInt2 uint2\n" -"#define b3Int2 int2\n" -"#define b3MakeInt2 (int2)\n" -"#endif //__cplusplus\n" -"#endif\n" -"typedef struct\n" -"{\n" -" float4 m_plane;\n" -" int m_indexOffset;\n" -" int m_numIndices;\n" -"} btGpuFace;\n" -"#define make_float4 (float4)\n" -"__inline\n" -"float4 cross3(float4 a, float4 b)\n" -"{\n" -" return cross(a,b);\n" -" \n" -"// float4 a1 = make_float4(a.xyz,0.f);\n" -"// float4 b1 = make_float4(b.xyz,0.f);\n" -"// return cross(a1,b1);\n" -"//float4 c = make_float4(a.y*b.z - a.z*b.y,a.z*b.x - a.x*b.z,a.x*b.y - a.y*b.x,0.f);\n" -" \n" -" // float4 c = make_float4(a.y*b.z - a.z*b.y,1.f,a.x*b.y - a.y*b.x,0.f);\n" -" \n" -" //return c;\n" -"}\n" -"__inline\n" -"float dot3F4(float4 a, float4 b)\n" -"{\n" -" float4 a1 = make_float4(a.xyz,0.f);\n" -" float4 b1 = make_float4(b.xyz,0.f);\n" -" return dot(a1, b1);\n" -"}\n" -"__inline\n" -"float4 fastNormalize4(float4 v)\n" -"{\n" -" v = make_float4(v.xyz,0.f);\n" -" return fast_normalize(v);\n" -"}\n" -"///////////////////////////////////////\n" -"// Quaternion\n" -"///////////////////////////////////////\n" -"typedef float4 Quaternion;\n" -"__inline\n" -"Quaternion qtMul(Quaternion a, Quaternion b);\n" -"__inline\n" -"Quaternion qtNormalize(Quaternion in);\n" -"__inline\n" -"float4 qtRotate(Quaternion q, float4 vec);\n" -"__inline\n" -"Quaternion qtInvert(Quaternion q);\n" -"__inline\n" -"Quaternion qtMul(Quaternion a, Quaternion b)\n" -"{\n" -" Quaternion ans;\n" -" ans = cross3( a, b );\n" -" ans += a.w*b+b.w*a;\n" -"// ans.w = a.w*b.w - (a.x*b.x+a.y*b.y+a.z*b.z);\n" -" ans.w = a.w*b.w - dot3F4(a, b);\n" -" return ans;\n" -"}\n" -"__inline\n" -"Quaternion qtNormalize(Quaternion in)\n" -"{\n" -" return fastNormalize4(in);\n" -"// in /= length( in );\n" -"// return in;\n" -"}\n" -"__inline\n" -"float4 qtRotate(Quaternion q, float4 vec)\n" -"{\n" -" Quaternion qInv = qtInvert( q );\n" -" float4 vcpy = vec;\n" -" vcpy.w = 0.f;\n" -" float4 out = qtMul(qtMul(q,vcpy),qInv);\n" -" return out;\n" -"}\n" -"__inline\n" -"Quaternion qtInvert(Quaternion q)\n" -"{\n" -" return (Quaternion)(-q.xyz, q.w);\n" -"}\n" -"__inline\n" -"float4 qtInvRotate(const Quaternion q, float4 vec)\n" -"{\n" -" return qtRotate( qtInvert( q ), vec );\n" -"}\n" -"__inline\n" -"float4 transform(const float4* p, const float4* translation, const Quaternion* orientation)\n" -"{\n" -" return qtRotate( *orientation, *p ) + (*translation);\n" -"}\n" -"__inline\n" -"float4 normalize3(const float4 a)\n" -"{\n" -" float4 n = make_float4(a.x, a.y, a.z, 0.f);\n" -" return fastNormalize4( n );\n" -"}\n" -"inline void projectLocal(const ConvexPolyhedronCL* hull, const float4 pos, const float4 orn, \n" -"const float4* dir, const float4* vertices, float* min, float* max)\n" -"{\n" -" min[0] = FLT_MAX;\n" -" max[0] = -FLT_MAX;\n" -" int numVerts = hull->m_numVertices;\n" -" const float4 localDir = qtInvRotate(orn,*dir);\n" -" float offset = dot(pos,*dir);\n" -" for(int i=0;i<numVerts;i++)\n" -" {\n" -" float dp = dot(vertices[hull->m_vertexOffset+i],localDir);\n" -" if(dp < min[0]) \n" -" min[0] = dp;\n" -" if(dp > max[0]) \n" -" max[0] = dp;\n" -" }\n" -" if(min[0]>max[0])\n" -" {\n" -" float tmp = min[0];\n" -" min[0] = max[0];\n" -" max[0] = tmp;\n" -" }\n" -" min[0] += offset;\n" -" max[0] += offset;\n" -"}\n" -"inline void project(__global const ConvexPolyhedronCL* hull, const float4 pos, const float4 orn, \n" -"const float4* dir, __global const float4* vertices, float* min, float* max)\n" -"{\n" -" min[0] = FLT_MAX;\n" -" max[0] = -FLT_MAX;\n" -" int numVerts = hull->m_numVertices;\n" -" const float4 localDir = qtInvRotate(orn,*dir);\n" -" float offset = dot(pos,*dir);\n" -" for(int i=0;i<numVerts;i++)\n" -" {\n" -" float dp = dot(vertices[hull->m_vertexOffset+i],localDir);\n" -" if(dp < min[0]) \n" -" min[0] = dp;\n" -" if(dp > max[0]) \n" -" max[0] = dp;\n" -" }\n" -" if(min[0]>max[0])\n" -" {\n" -" float tmp = min[0];\n" -" min[0] = max[0];\n" -" max[0] = tmp;\n" -" }\n" -" min[0] += offset;\n" -" max[0] += offset;\n" -"}\n" -"inline bool TestSepAxisLocalA(const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, \n" -" const float4 posA,const float4 ornA,\n" -" const float4 posB,const float4 ornB,\n" -" float4* sep_axis, const float4* verticesA, __global const float4* verticesB,float* depth)\n" -"{\n" -" float Min0,Max0;\n" -" float Min1,Max1;\n" -" projectLocal(hullA,posA,ornA,sep_axis,verticesA, &Min0, &Max0);\n" -" project(hullB,posB,ornB, sep_axis,verticesB, &Min1, &Max1);\n" -" if(Max0<Min1 || Max1<Min0)\n" -" return false;\n" -" float d0 = Max0 - Min1;\n" -" float d1 = Max1 - Min0;\n" -" *depth = d0<d1 ? d0:d1;\n" -" return true;\n" -"}\n" -"inline bool IsAlmostZero(const float4 v)\n" -"{\n" -" if(fabs(v.x)>1e-6f || fabs(v.y)>1e-6f || fabs(v.z)>1e-6f)\n" -" return false;\n" -" return true;\n" -"}\n" -"bool findSeparatingAxisLocalA( const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, \n" -" const float4 posA1,\n" -" const float4 ornA,\n" -" const float4 posB1,\n" -" const float4 ornB,\n" -" const float4 DeltaC2,\n" -" \n" -" const float4* verticesA, \n" -" const float4* uniqueEdgesA, \n" -" const btGpuFace* facesA,\n" -" const int* indicesA,\n" -" __global const float4* verticesB, \n" -" __global const float4* uniqueEdgesB, \n" -" __global const btGpuFace* facesB,\n" -" __global const int* indicesB,\n" -" float4* sep,\n" -" float* dmin)\n" -"{\n" -" \n" -" float4 posA = posA1;\n" -" posA.w = 0.f;\n" -" float4 posB = posB1;\n" -" posB.w = 0.f;\n" -" int curPlaneTests=0;\n" -" {\n" -" int numFacesA = hullA->m_numFaces;\n" -" // Test normals from hullA\n" -" for(int i=0;i<numFacesA;i++)\n" -" {\n" -" const float4 normal = facesA[hullA->m_faceOffset+i].m_plane;\n" -" float4 faceANormalWS = qtRotate(ornA,normal);\n" -" if (dot3F4(DeltaC2,faceANormalWS)<0)\n" -" faceANormalWS*=-1.f;\n" -" curPlaneTests++;\n" -" float d;\n" -" if(!TestSepAxisLocalA( hullA, hullB, posA,ornA,posB,ornB,&faceANormalWS, verticesA, verticesB,&d))\n" -" return false;\n" -" if(d<*dmin)\n" -" {\n" -" *dmin = d;\n" -" *sep = faceANormalWS;\n" -" }\n" -" }\n" -" }\n" -" if((dot3F4(-DeltaC2,*sep))>0.0f)\n" -" {\n" -" *sep = -(*sep);\n" -" }\n" -" return true;\n" -"}\n" -"bool findSeparatingAxisLocalB( __global const ConvexPolyhedronCL* hullA, const ConvexPolyhedronCL* hullB, \n" -" const float4 posA1,\n" -" const float4 ornA,\n" -" const float4 posB1,\n" -" const float4 ornB,\n" -" const float4 DeltaC2,\n" -" __global const float4* verticesA, \n" -" __global const float4* uniqueEdgesA, \n" -" __global const btGpuFace* facesA,\n" -" __global const int* indicesA,\n" -" const float4* verticesB,\n" -" const float4* uniqueEdgesB, \n" -" const btGpuFace* facesB,\n" -" const int* indicesB,\n" -" float4* sep,\n" -" float* dmin)\n" -"{\n" -" float4 posA = posA1;\n" -" posA.w = 0.f;\n" -" float4 posB = posB1;\n" -" posB.w = 0.f;\n" -" int curPlaneTests=0;\n" -" {\n" -" int numFacesA = hullA->m_numFaces;\n" -" // Test normals from hullA\n" -" for(int i=0;i<numFacesA;i++)\n" -" {\n" -" const float4 normal = facesA[hullA->m_faceOffset+i].m_plane;\n" -" float4 faceANormalWS = qtRotate(ornA,normal);\n" -" if (dot3F4(DeltaC2,faceANormalWS)<0)\n" -" faceANormalWS *= -1.f;\n" -" curPlaneTests++;\n" -" float d;\n" -" if(!TestSepAxisLocalA( hullB, hullA, posB,ornB,posA,ornA, &faceANormalWS, verticesB,verticesA, &d))\n" -" return false;\n" -" if(d<*dmin)\n" -" {\n" -" *dmin = d;\n" -" *sep = faceANormalWS;\n" -" }\n" -" }\n" -" }\n" -" if((dot3F4(-DeltaC2,*sep))>0.0f)\n" -" {\n" -" *sep = -(*sep);\n" -" }\n" -" return true;\n" -"}\n" -"bool findSeparatingAxisEdgeEdgeLocalA( const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, \n" -" const float4 posA1,\n" -" const float4 ornA,\n" -" const float4 posB1,\n" -" const float4 ornB,\n" -" const float4 DeltaC2,\n" -" const float4* verticesA, \n" -" const float4* uniqueEdgesA, \n" -" const btGpuFace* facesA,\n" -" const int* indicesA,\n" -" __global const float4* verticesB, \n" -" __global const float4* uniqueEdgesB, \n" -" __global const btGpuFace* facesB,\n" -" __global const int* indicesB,\n" -" float4* sep,\n" -" float* dmin)\n" -"{\n" -" float4 posA = posA1;\n" -" posA.w = 0.f;\n" -" float4 posB = posB1;\n" -" posB.w = 0.f;\n" -" int curPlaneTests=0;\n" -" int curEdgeEdge = 0;\n" -" // Test edges\n" -" for(int e0=0;e0<hullA->m_numUniqueEdges;e0++)\n" -" {\n" -" const float4 edge0 = uniqueEdgesA[hullA->m_uniqueEdgesOffset+e0];\n" -" float4 edge0World = qtRotate(ornA,edge0);\n" -" for(int e1=0;e1<hullB->m_numUniqueEdges;e1++)\n" -" {\n" -" const float4 edge1 = uniqueEdgesB[hullB->m_uniqueEdgesOffset+e1];\n" -" float4 edge1World = qtRotate(ornB,edge1);\n" -" float4 crossje = cross3(edge0World,edge1World);\n" -" curEdgeEdge++;\n" -" if(!IsAlmostZero(crossje))\n" -" {\n" -" crossje = normalize3(crossje);\n" -" if (dot3F4(DeltaC2,crossje)<0)\n" -" crossje *= -1.f;\n" -" float dist;\n" -" bool result = true;\n" -" {\n" -" float Min0,Max0;\n" -" float Min1,Max1;\n" -" projectLocal(hullA,posA,ornA,&crossje,verticesA, &Min0, &Max0);\n" -" project(hullB,posB,ornB,&crossje,verticesB, &Min1, &Max1);\n" -" \n" -" if(Max0<Min1 || Max1<Min0)\n" -" result = false;\n" -" \n" -" float d0 = Max0 - Min1;\n" -" float d1 = Max1 - Min0;\n" -" dist = d0<d1 ? d0:d1;\n" -" result = true;\n" -" }\n" -" \n" -" if(dist<*dmin)\n" -" {\n" -" *dmin = dist;\n" -" *sep = crossje;\n" -" }\n" -" }\n" -" }\n" -" }\n" -" \n" -" if((dot3F4(-DeltaC2,*sep))>0.0f)\n" -" {\n" -" *sep = -(*sep);\n" -" }\n" -" return true;\n" -"}\n" -"inline bool TestSepAxis(__global const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, \n" -" const float4 posA,const float4 ornA,\n" -" const float4 posB,const float4 ornB,\n" -" float4* sep_axis, __global const float4* vertices,float* depth)\n" -"{\n" -" float Min0,Max0;\n" -" float Min1,Max1;\n" -" project(hullA,posA,ornA,sep_axis,vertices, &Min0, &Max0);\n" -" project(hullB,posB,ornB, sep_axis,vertices, &Min1, &Max1);\n" -" if(Max0<Min1 || Max1<Min0)\n" -" return false;\n" -" float d0 = Max0 - Min1;\n" -" float d1 = Max1 - Min0;\n" -" *depth = d0<d1 ? d0:d1;\n" -" return true;\n" -"}\n" -"bool findSeparatingAxis( __global const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, \n" -" const float4 posA1,\n" -" const float4 ornA,\n" -" const float4 posB1,\n" -" const float4 ornB,\n" -" const float4 DeltaC2,\n" -" __global const float4* vertices, \n" -" __global const float4* uniqueEdges, \n" -" __global const btGpuFace* faces,\n" -" __global const int* indices,\n" -" float4* sep,\n" -" float* dmin)\n" -"{\n" -" \n" -" float4 posA = posA1;\n" -" posA.w = 0.f;\n" -" float4 posB = posB1;\n" -" posB.w = 0.f;\n" -" \n" -" int curPlaneTests=0;\n" -" {\n" -" int numFacesA = hullA->m_numFaces;\n" -" // Test normals from hullA\n" -" for(int i=0;i<numFacesA;i++)\n" -" {\n" -" const float4 normal = faces[hullA->m_faceOffset+i].m_plane;\n" -" float4 faceANormalWS = qtRotate(ornA,normal);\n" -" \n" -" if (dot3F4(DeltaC2,faceANormalWS)<0)\n" -" faceANormalWS*=-1.f;\n" -" \n" -" curPlaneTests++;\n" -" \n" -" float d;\n" -" if(!TestSepAxis( hullA, hullB, posA,ornA,posB,ornB,&faceANormalWS, vertices,&d))\n" -" return false;\n" -" \n" -" if(d<*dmin)\n" -" {\n" -" *dmin = d;\n" -" *sep = faceANormalWS;\n" -" }\n" -" }\n" -" }\n" -" if((dot3F4(-DeltaC2,*sep))>0.0f)\n" -" {\n" -" *sep = -(*sep);\n" -" }\n" -" \n" -" return true;\n" -"}\n" -"bool findSeparatingAxisUnitSphere( __global const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, \n" -" const float4 posA1,\n" -" const float4 ornA,\n" -" const float4 posB1,\n" -" const float4 ornB,\n" -" const float4 DeltaC2,\n" -" __global const float4* vertices,\n" -" __global const float4* unitSphereDirections,\n" -" int numUnitSphereDirections,\n" -" float4* sep,\n" -" float* dmin)\n" -"{\n" -" \n" -" float4 posA = posA1;\n" -" posA.w = 0.f;\n" -" float4 posB = posB1;\n" -" posB.w = 0.f;\n" -" int curPlaneTests=0;\n" -" int curEdgeEdge = 0;\n" -" // Test unit sphere directions\n" -" for (int i=0;i<numUnitSphereDirections;i++)\n" -" {\n" -" float4 crossje;\n" -" crossje = unitSphereDirections[i]; \n" -" if (dot3F4(DeltaC2,crossje)>0)\n" -" crossje *= -1.f;\n" -" {\n" -" float dist;\n" -" bool result = true;\n" -" float Min0,Max0;\n" -" float Min1,Max1;\n" -" project(hullA,posA,ornA,&crossje,vertices, &Min0, &Max0);\n" -" project(hullB,posB,ornB,&crossje,vertices, &Min1, &Max1);\n" -" \n" -" if(Max0<Min1 || Max1<Min0)\n" -" return false;\n" -" \n" -" float d0 = Max0 - Min1;\n" -" float d1 = Max1 - Min0;\n" -" dist = d0<d1 ? d0:d1;\n" -" result = true;\n" -" \n" -" if(dist<*dmin)\n" -" {\n" -" *dmin = dist;\n" -" *sep = crossje;\n" -" }\n" -" }\n" -" }\n" -" \n" -" if((dot3F4(-DeltaC2,*sep))>0.0f)\n" -" {\n" -" *sep = -(*sep);\n" -" }\n" -" return true;\n" -"}\n" -"bool findSeparatingAxisEdgeEdge( __global const ConvexPolyhedronCL* hullA, __global const ConvexPolyhedronCL* hullB, \n" -" const float4 posA1,\n" -" const float4 ornA,\n" -" const float4 posB1,\n" -" const float4 ornB,\n" -" const float4 DeltaC2,\n" -" __global const float4* vertices, \n" -" __global const float4* uniqueEdges, \n" -" __global const btGpuFace* faces,\n" -" __global const int* indices,\n" -" float4* sep,\n" -" float* dmin)\n" -"{\n" -" \n" -" float4 posA = posA1;\n" -" posA.w = 0.f;\n" -" float4 posB = posB1;\n" -" posB.w = 0.f;\n" -" int curPlaneTests=0;\n" -" int curEdgeEdge = 0;\n" -" // Test edges\n" -" for(int e0=0;e0<hullA->m_numUniqueEdges;e0++)\n" -" {\n" -" const float4 edge0 = uniqueEdges[hullA->m_uniqueEdgesOffset+e0];\n" -" float4 edge0World = qtRotate(ornA,edge0);\n" -" for(int e1=0;e1<hullB->m_numUniqueEdges;e1++)\n" -" {\n" -" const float4 edge1 = uniqueEdges[hullB->m_uniqueEdgesOffset+e1];\n" -" float4 edge1World = qtRotate(ornB,edge1);\n" -" float4 crossje = cross3(edge0World,edge1World);\n" -" curEdgeEdge++;\n" -" if(!IsAlmostZero(crossje))\n" -" {\n" -" crossje = normalize3(crossje);\n" -" if (dot3F4(DeltaC2,crossje)<0)\n" -" crossje*=-1.f;\n" -" \n" -" float dist;\n" -" bool result = true;\n" -" {\n" -" float Min0,Max0;\n" -" float Min1,Max1;\n" -" project(hullA,posA,ornA,&crossje,vertices, &Min0, &Max0);\n" -" project(hullB,posB,ornB,&crossje,vertices, &Min1, &Max1);\n" -" \n" -" if(Max0<Min1 || Max1<Min0)\n" -" return false;\n" -" \n" -" float d0 = Max0 - Min1;\n" -" float d1 = Max1 - Min0;\n" -" dist = d0<d1 ? d0:d1;\n" -" result = true;\n" -" }\n" -" \n" -" if(dist<*dmin)\n" -" {\n" -" *dmin = dist;\n" -" *sep = crossje;\n" -" }\n" -" }\n" -" }\n" -" }\n" -" \n" -" if((dot3F4(-DeltaC2,*sep))>0.0f)\n" -" {\n" -" *sep = -(*sep);\n" -" }\n" -" return true;\n" -"}\n" -"// work-in-progress\n" -"__kernel void processCompoundPairsKernel( __global const int4* gpuCompoundPairs,\n" -" __global const BodyData* rigidBodies, \n" -" __global const btCollidableGpu* collidables,\n" -" __global const ConvexPolyhedronCL* convexShapes, \n" -" __global const float4* vertices,\n" -" __global const float4* uniqueEdges,\n" -" __global const btGpuFace* faces,\n" -" __global const int* indices,\n" -" __global btAabbCL* aabbs,\n" -" __global const btGpuChildShape* gpuChildShapes,\n" -" __global volatile float4* gpuCompoundSepNormalsOut,\n" -" __global volatile int* gpuHasCompoundSepNormalsOut,\n" -" int numCompoundPairs\n" -" )\n" -"{\n" -" int i = get_global_id(0);\n" -" if (i<numCompoundPairs)\n" -" {\n" -" int bodyIndexA = gpuCompoundPairs[i].x;\n" -" int bodyIndexB = gpuCompoundPairs[i].y;\n" -" int childShapeIndexA = gpuCompoundPairs[i].z;\n" -" int childShapeIndexB = gpuCompoundPairs[i].w;\n" -" \n" -" int collidableIndexA = -1;\n" -" int collidableIndexB = -1;\n" -" \n" -" float4 ornA = rigidBodies[bodyIndexA].m_quat;\n" -" float4 posA = rigidBodies[bodyIndexA].m_pos;\n" -" \n" -" float4 ornB = rigidBodies[bodyIndexB].m_quat;\n" -" float4 posB = rigidBodies[bodyIndexB].m_pos;\n" -" \n" -" if (childShapeIndexA >= 0)\n" -" {\n" -" collidableIndexA = gpuChildShapes[childShapeIndexA].m_shapeIndex;\n" -" float4 childPosA = gpuChildShapes[childShapeIndexA].m_childPosition;\n" -" float4 childOrnA = gpuChildShapes[childShapeIndexA].m_childOrientation;\n" -" float4 newPosA = qtRotate(ornA,childPosA)+posA;\n" -" float4 newOrnA = qtMul(ornA,childOrnA);\n" -" posA = newPosA;\n" -" ornA = newOrnA;\n" -" } else\n" -" {\n" -" collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" -" }\n" -" \n" -" if (childShapeIndexB>=0)\n" -" {\n" -" collidableIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex;\n" -" float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition;\n" -" float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation;\n" -" float4 newPosB = transform(&childPosB,&posB,&ornB);\n" -" float4 newOrnB = qtMul(ornB,childOrnB);\n" -" posB = newPosB;\n" -" ornB = newOrnB;\n" -" } else\n" -" {\n" -" collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx; \n" -" }\n" -" \n" -" gpuHasCompoundSepNormalsOut[i] = 0;\n" -" \n" -" int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" -" int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" -" \n" -" int shapeTypeA = collidables[collidableIndexA].m_shapeType;\n" -" int shapeTypeB = collidables[collidableIndexB].m_shapeType;\n" -" \n" -" if ((shapeTypeA != SHAPE_CONVEX_HULL) || (shapeTypeB != SHAPE_CONVEX_HULL))\n" -" {\n" -" return;\n" -" }\n" -" int hasSeparatingAxis = 5;\n" -" \n" -" int numFacesA = convexShapes[shapeIndexA].m_numFaces;\n" -" float dmin = FLT_MAX;\n" -" posA.w = 0.f;\n" -" posB.w = 0.f;\n" -" float4 c0local = convexShapes[shapeIndexA].m_localCenter;\n" -" float4 c0 = transform(&c0local, &posA, &ornA);\n" -" float4 c1local = convexShapes[shapeIndexB].m_localCenter;\n" -" float4 c1 = transform(&c1local,&posB,&ornB);\n" -" const float4 DeltaC2 = c0 - c1;\n" -" float4 sepNormal = make_float4(1,0,0,0);\n" -" bool sepA = findSeparatingAxis( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA,posB,ornB,DeltaC2,vertices,uniqueEdges,faces,indices,&sepNormal,&dmin);\n" -" hasSeparatingAxis = 4;\n" -" if (!sepA)\n" -" {\n" -" hasSeparatingAxis = 0;\n" -" } else\n" -" {\n" -" bool sepB = findSeparatingAxis( &convexShapes[shapeIndexB],&convexShapes[shapeIndexA],posB,ornB,posA,ornA,DeltaC2,vertices,uniqueEdges,faces,indices,&sepNormal,&dmin);\n" -" if (!sepB)\n" -" {\n" -" hasSeparatingAxis = 0;\n" -" } else//(!sepB)\n" -" {\n" -" bool sepEE = findSeparatingAxisEdgeEdge( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA,posB,ornB,DeltaC2,vertices,uniqueEdges,faces,indices,&sepNormal,&dmin);\n" -" if (sepEE)\n" -" {\n" -" gpuCompoundSepNormalsOut[i] = sepNormal;//fastNormalize4(sepNormal);\n" -" gpuHasCompoundSepNormalsOut[i] = 1;\n" -" }//sepEE\n" -" }//(!sepB)\n" -" }//(!sepA)\n" -" \n" -" \n" -" }\n" -" \n" -"}\n" -"inline b3Float4 MyUnQuantize(const unsigned short* vecIn, b3Float4 quantization, b3Float4 bvhAabbMin)\n" -"{\n" -" b3Float4 vecOut;\n" -" vecOut = b3MakeFloat4(\n" -" (float)(vecIn[0]) / (quantization.x),\n" -" (float)(vecIn[1]) / (quantization.y),\n" -" (float)(vecIn[2]) / (quantization.z),\n" -" 0.f);\n" -" vecOut += bvhAabbMin;\n" -" return vecOut;\n" -"}\n" -"inline b3Float4 MyUnQuantizeGlobal(__global const unsigned short* vecIn, b3Float4 quantization, b3Float4 bvhAabbMin)\n" -"{\n" -" b3Float4 vecOut;\n" -" vecOut = b3MakeFloat4(\n" -" (float)(vecIn[0]) / (quantization.x),\n" -" (float)(vecIn[1]) / (quantization.y),\n" -" (float)(vecIn[2]) / (quantization.z),\n" -" 0.f);\n" -" vecOut += bvhAabbMin;\n" -" return vecOut;\n" -"}\n" -"// work-in-progress\n" -"__kernel void findCompoundPairsKernel( __global const int4* pairs, \n" -" __global const BodyData* rigidBodies, \n" -" __global const btCollidableGpu* collidables,\n" -" __global const ConvexPolyhedronCL* convexShapes, \n" -" __global const float4* vertices,\n" -" __global const float4* uniqueEdges,\n" -" __global const btGpuFace* faces,\n" -" __global const int* indices,\n" -" __global b3Aabb_t* aabbLocalSpace,\n" -" __global const btGpuChildShape* gpuChildShapes,\n" -" __global volatile int4* gpuCompoundPairsOut,\n" -" __global volatile int* numCompoundPairsOut,\n" -" __global const b3BvhSubtreeInfo* subtrees,\n" -" __global const b3QuantizedBvhNode* quantizedNodes,\n" -" __global const b3BvhInfo* bvhInfos,\n" -" int numPairs,\n" -" int maxNumCompoundPairsCapacity\n" -" )\n" -"{\n" -" int i = get_global_id(0);\n" -" if (i<numPairs)\n" -" {\n" -" int bodyIndexA = pairs[i].x;\n" -" int bodyIndexB = pairs[i].y;\n" -" int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" -" int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" -" int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" -" int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" -" //once the broadphase avoids static-static pairs, we can remove this test\n" -" if ((rigidBodies[bodyIndexA].m_invMass==0) &&(rigidBodies[bodyIndexB].m_invMass==0))\n" -" {\n" -" return;\n" -" }\n" -" if ((collidables[collidableIndexA].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) &&(collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS))\n" -" {\n" -" int bvhA = collidables[collidableIndexA].m_compoundBvhIndex;\n" -" int bvhB = collidables[collidableIndexB].m_compoundBvhIndex;\n" -" int numSubTreesA = bvhInfos[bvhA].m_numSubTrees;\n" -" int subTreesOffsetA = bvhInfos[bvhA].m_subTreeOffset;\n" -" int subTreesOffsetB = bvhInfos[bvhB].m_subTreeOffset;\n" -" int numSubTreesB = bvhInfos[bvhB].m_numSubTrees;\n" -" \n" -" float4 posA = rigidBodies[bodyIndexA].m_pos;\n" -" b3Quat ornA = rigidBodies[bodyIndexA].m_quat;\n" -" b3Quat ornB = rigidBodies[bodyIndexB].m_quat;\n" -" float4 posB = rigidBodies[bodyIndexB].m_pos;\n" -" \n" -" for (int p=0;p<numSubTreesA;p++)\n" -" {\n" -" b3BvhSubtreeInfo subtreeA = subtrees[subTreesOffsetA+p];\n" -" //bvhInfos[bvhA].m_quantization\n" -" b3Float4 treeAminLocal = MyUnQuantize(subtreeA.m_quantizedAabbMin,bvhInfos[bvhA].m_quantization,bvhInfos[bvhA].m_aabbMin);\n" -" b3Float4 treeAmaxLocal = MyUnQuantize(subtreeA.m_quantizedAabbMax,bvhInfos[bvhA].m_quantization,bvhInfos[bvhA].m_aabbMin);\n" -" b3Float4 aabbAMinOut,aabbAMaxOut;\n" -" float margin=0.f;\n" -" b3TransformAabb2(treeAminLocal,treeAmaxLocal, margin,posA,ornA,&aabbAMinOut,&aabbAMaxOut);\n" -" \n" -" for (int q=0;q<numSubTreesB;q++)\n" -" {\n" -" b3BvhSubtreeInfo subtreeB = subtrees[subTreesOffsetB+q];\n" -" b3Float4 treeBminLocal = MyUnQuantize(subtreeB.m_quantizedAabbMin,bvhInfos[bvhB].m_quantization,bvhInfos[bvhB].m_aabbMin);\n" -" b3Float4 treeBmaxLocal = MyUnQuantize(subtreeB.m_quantizedAabbMax,bvhInfos[bvhB].m_quantization,bvhInfos[bvhB].m_aabbMin);\n" -" b3Float4 aabbBMinOut,aabbBMaxOut;\n" -" float margin=0.f;\n" -" b3TransformAabb2(treeBminLocal,treeBmaxLocal, margin,posB,ornB,&aabbBMinOut,&aabbBMaxOut);\n" -" \n" -" \n" -" bool aabbOverlap = b3TestAabbAgainstAabb(aabbAMinOut,aabbAMaxOut,aabbBMinOut,aabbBMaxOut);\n" -" if (aabbOverlap)\n" -" {\n" -" \n" -" int startNodeIndexA = subtreeA.m_rootNodeIndex+bvhInfos[bvhA].m_nodeOffset;\n" -" int endNodeIndexA = startNodeIndexA+subtreeA.m_subtreeSize;\n" -" int startNodeIndexB = subtreeB.m_rootNodeIndex+bvhInfos[bvhB].m_nodeOffset;\n" -" int endNodeIndexB = startNodeIndexB+subtreeB.m_subtreeSize;\n" -" b3Int2 nodeStack[B3_MAX_STACK_DEPTH];\n" -" b3Int2 node0;\n" -" node0.x = startNodeIndexA;\n" -" node0.y = startNodeIndexB;\n" -" int maxStackDepth = B3_MAX_STACK_DEPTH;\n" -" int depth=0;\n" -" nodeStack[depth++]=node0;\n" -" do\n" -" {\n" -" b3Int2 node = nodeStack[--depth];\n" -" b3Float4 aMinLocal = MyUnQuantizeGlobal(quantizedNodes[node.x].m_quantizedAabbMin,bvhInfos[bvhA].m_quantization,bvhInfos[bvhA].m_aabbMin);\n" -" b3Float4 aMaxLocal = MyUnQuantizeGlobal(quantizedNodes[node.x].m_quantizedAabbMax,bvhInfos[bvhA].m_quantization,bvhInfos[bvhA].m_aabbMin);\n" -" b3Float4 bMinLocal = MyUnQuantizeGlobal(quantizedNodes[node.y].m_quantizedAabbMin,bvhInfos[bvhB].m_quantization,bvhInfos[bvhB].m_aabbMin);\n" -" b3Float4 bMaxLocal = MyUnQuantizeGlobal(quantizedNodes[node.y].m_quantizedAabbMax,bvhInfos[bvhB].m_quantization,bvhInfos[bvhB].m_aabbMin);\n" -" float margin=0.f;\n" -" b3Float4 aabbAMinOut,aabbAMaxOut;\n" -" b3TransformAabb2(aMinLocal,aMaxLocal, margin,posA,ornA,&aabbAMinOut,&aabbAMaxOut);\n" -" b3Float4 aabbBMinOut,aabbBMaxOut;\n" -" b3TransformAabb2(bMinLocal,bMaxLocal, margin,posB,ornB,&aabbBMinOut,&aabbBMaxOut);\n" -" \n" -" bool nodeOverlap = b3TestAabbAgainstAabb(aabbAMinOut,aabbAMaxOut,aabbBMinOut,aabbBMaxOut);\n" -" if (nodeOverlap)\n" -" {\n" -" bool isLeafA = isLeafNodeGlobal(&quantizedNodes[node.x]);\n" -" bool isLeafB = isLeafNodeGlobal(&quantizedNodes[node.y]);\n" -" bool isInternalA = !isLeafA;\n" -" bool isInternalB = !isLeafB;\n" -" //fail, even though it might hit two leaf nodes\n" -" if (depth+4>maxStackDepth && !(isLeafA && isLeafB))\n" -" {\n" -" //printf(\"Error: traversal exceeded maxStackDepth\");\n" -" continue;\n" -" }\n" -" if(isInternalA)\n" -" {\n" -" int nodeAleftChild = node.x+1;\n" -" bool isNodeALeftChildLeaf = isLeafNodeGlobal(&quantizedNodes[node.x+1]);\n" -" int nodeArightChild = isNodeALeftChildLeaf? node.x+2 : node.x+1 + getEscapeIndexGlobal(&quantizedNodes[node.x+1]);\n" -" if(isInternalB)\n" -" { \n" -" int nodeBleftChild = node.y+1;\n" -" bool isNodeBLeftChildLeaf = isLeafNodeGlobal(&quantizedNodes[node.y+1]);\n" -" int nodeBrightChild = isNodeBLeftChildLeaf? node.y+2 : node.y+1 + getEscapeIndexGlobal(&quantizedNodes[node.y+1]);\n" -" nodeStack[depth++] = b3MakeInt2(nodeAleftChild, nodeBleftChild);\n" -" nodeStack[depth++] = b3MakeInt2(nodeArightChild, nodeBleftChild);\n" -" nodeStack[depth++] = b3MakeInt2(nodeAleftChild, nodeBrightChild);\n" -" nodeStack[depth++] = b3MakeInt2(nodeArightChild, nodeBrightChild);\n" -" }\n" -" else\n" -" {\n" -" nodeStack[depth++] = b3MakeInt2(nodeAleftChild,node.y);\n" -" nodeStack[depth++] = b3MakeInt2(nodeArightChild,node.y);\n" -" }\n" -" }\n" -" else\n" -" {\n" -" if(isInternalB)\n" -" {\n" -" int nodeBleftChild = node.y+1;\n" -" bool isNodeBLeftChildLeaf = isLeafNodeGlobal(&quantizedNodes[node.y+1]);\n" -" int nodeBrightChild = isNodeBLeftChildLeaf? node.y+2 : node.y+1 + getEscapeIndexGlobal(&quantizedNodes[node.y+1]);\n" -" nodeStack[depth++] = b3MakeInt2(node.x,nodeBleftChild);\n" -" nodeStack[depth++] = b3MakeInt2(node.x,nodeBrightChild);\n" -" }\n" -" else\n" -" {\n" -" int compoundPairIdx = atomic_inc(numCompoundPairsOut);\n" -" if (compoundPairIdx<maxNumCompoundPairsCapacity)\n" -" {\n" -" int childShapeIndexA = getTriangleIndexGlobal(&quantizedNodes[node.x]);\n" -" int childShapeIndexB = getTriangleIndexGlobal(&quantizedNodes[node.y]);\n" -" gpuCompoundPairsOut[compoundPairIdx] = (int4)(bodyIndexA,bodyIndexB,childShapeIndexA,childShapeIndexB);\n" -" }\n" -" }\n" -" }\n" -" }\n" -" } while (depth);\n" -" }\n" -" }\n" -" }\n" -" \n" -" return;\n" -" }\n" -" if ((collidables[collidableIndexA].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) ||(collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS))\n" -" {\n" -" if (collidables[collidableIndexA].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) \n" -" {\n" -" int numChildrenA = collidables[collidableIndexA].m_numChildShapes;\n" -" for (int c=0;c<numChildrenA;c++)\n" -" {\n" -" int childShapeIndexA = collidables[collidableIndexA].m_shapeIndex+c;\n" -" int childColIndexA = gpuChildShapes[childShapeIndexA].m_shapeIndex;\n" -" float4 posA = rigidBodies[bodyIndexA].m_pos;\n" -" float4 ornA = rigidBodies[bodyIndexA].m_quat;\n" -" float4 childPosA = gpuChildShapes[childShapeIndexA].m_childPosition;\n" -" float4 childOrnA = gpuChildShapes[childShapeIndexA].m_childOrientation;\n" -" float4 newPosA = qtRotate(ornA,childPosA)+posA;\n" -" float4 newOrnA = qtMul(ornA,childOrnA);\n" -" int shapeIndexA = collidables[childColIndexA].m_shapeIndex;\n" -" b3Aabb_t aabbAlocal = aabbLocalSpace[shapeIndexA];\n" -" float margin = 0.f;\n" -" \n" -" b3Float4 aabbAMinWS;\n" -" b3Float4 aabbAMaxWS;\n" -" \n" -" b3TransformAabb2(aabbAlocal.m_minVec,aabbAlocal.m_maxVec,margin,\n" -" newPosA,\n" -" newOrnA,\n" -" &aabbAMinWS,&aabbAMaxWS);\n" -" \n" -" \n" -" if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)\n" -" {\n" -" int numChildrenB = collidables[collidableIndexB].m_numChildShapes;\n" -" for (int b=0;b<numChildrenB;b++)\n" -" {\n" -" int childShapeIndexB = collidables[collidableIndexB].m_shapeIndex+b;\n" -" int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex;\n" -" float4 ornB = rigidBodies[bodyIndexB].m_quat;\n" -" float4 posB = rigidBodies[bodyIndexB].m_pos;\n" -" float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition;\n" -" float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation;\n" -" float4 newPosB = transform(&childPosB,&posB,&ornB);\n" -" float4 newOrnB = qtMul(ornB,childOrnB);\n" -" int shapeIndexB = collidables[childColIndexB].m_shapeIndex;\n" -" b3Aabb_t aabbBlocal = aabbLocalSpace[shapeIndexB];\n" -" \n" -" b3Float4 aabbBMinWS;\n" -" b3Float4 aabbBMaxWS;\n" -" \n" -" b3TransformAabb2(aabbBlocal.m_minVec,aabbBlocal.m_maxVec,margin,\n" -" newPosB,\n" -" newOrnB,\n" -" &aabbBMinWS,&aabbBMaxWS);\n" -" \n" -" \n" -" \n" -" bool aabbOverlap = b3TestAabbAgainstAabb(aabbAMinWS,aabbAMaxWS,aabbBMinWS,aabbBMaxWS);\n" -" if (aabbOverlap)\n" -" {\n" -" int numFacesA = convexShapes[shapeIndexA].m_numFaces;\n" -" float dmin = FLT_MAX;\n" -" float4 posA = newPosA;\n" -" posA.w = 0.f;\n" -" float4 posB = newPosB;\n" -" posB.w = 0.f;\n" -" float4 c0local = convexShapes[shapeIndexA].m_localCenter;\n" -" float4 ornA = newOrnA;\n" -" float4 c0 = transform(&c0local, &posA, &ornA);\n" -" float4 c1local = convexShapes[shapeIndexB].m_localCenter;\n" -" float4 ornB =newOrnB;\n" -" float4 c1 = transform(&c1local,&posB,&ornB);\n" -" const float4 DeltaC2 = c0 - c1;\n" -" {//\n" -" int compoundPairIdx = atomic_inc(numCompoundPairsOut);\n" -" if (compoundPairIdx<maxNumCompoundPairsCapacity)\n" -" {\n" -" gpuCompoundPairsOut[compoundPairIdx] = (int4)(bodyIndexA,bodyIndexB,childShapeIndexA,childShapeIndexB);\n" -" }\n" -" }//\n" -" }//fi(1)\n" -" } //for (int b=0\n" -" }//if (collidables[collidableIndexB].\n" -" else//if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)\n" -" {\n" -" if (1)\n" -" {\n" -" int numFacesA = convexShapes[shapeIndexA].m_numFaces;\n" -" float dmin = FLT_MAX;\n" -" float4 posA = newPosA;\n" -" posA.w = 0.f;\n" -" float4 posB = rigidBodies[bodyIndexB].m_pos;\n" -" posB.w = 0.f;\n" -" float4 c0local = convexShapes[shapeIndexA].m_localCenter;\n" -" float4 ornA = newOrnA;\n" -" float4 c0 = transform(&c0local, &posA, &ornA);\n" -" float4 c1local = convexShapes[shapeIndexB].m_localCenter;\n" -" float4 ornB = rigidBodies[bodyIndexB].m_quat;\n" -" float4 c1 = transform(&c1local,&posB,&ornB);\n" -" const float4 DeltaC2 = c0 - c1;\n" -" {\n" -" int compoundPairIdx = atomic_inc(numCompoundPairsOut);\n" -" if (compoundPairIdx<maxNumCompoundPairsCapacity)\n" -" {\n" -" gpuCompoundPairsOut[compoundPairIdx] = (int4)(bodyIndexA,bodyIndexB,childShapeIndexA,-1);\n" -" }//if (compoundPairIdx<maxNumCompoundPairsCapacity)\n" -" }//\n" -" }//fi (1)\n" -" }//if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)\n" -" }//for (int b=0;b<numChildrenB;b++) \n" -" return;\n" -" }//if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)\n" -" if ((collidables[collidableIndexA].m_shapeType!=SHAPE_CONCAVE_TRIMESH) \n" -" && (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS))\n" -" {\n" -" int numChildrenB = collidables[collidableIndexB].m_numChildShapes;\n" -" for (int b=0;b<numChildrenB;b++)\n" -" {\n" -" int childShapeIndexB = collidables[collidableIndexB].m_shapeIndex+b;\n" -" int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex;\n" -" float4 ornB = rigidBodies[bodyIndexB].m_quat;\n" -" float4 posB = rigidBodies[bodyIndexB].m_pos;\n" -" float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition;\n" -" float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation;\n" -" float4 newPosB = qtRotate(ornB,childPosB)+posB;\n" -" float4 newOrnB = qtMul(ornB,childOrnB);\n" -" int shapeIndexB = collidables[childColIndexB].m_shapeIndex;\n" -" //////////////////////////////////////\n" -" if (1)\n" -" {\n" -" int numFacesA = convexShapes[shapeIndexA].m_numFaces;\n" -" float dmin = FLT_MAX;\n" -" float4 posA = rigidBodies[bodyIndexA].m_pos;\n" -" posA.w = 0.f;\n" -" float4 posB = newPosB;\n" -" posB.w = 0.f;\n" -" float4 c0local = convexShapes[shapeIndexA].m_localCenter;\n" -" float4 ornA = rigidBodies[bodyIndexA].m_quat;\n" -" float4 c0 = transform(&c0local, &posA, &ornA);\n" -" float4 c1local = convexShapes[shapeIndexB].m_localCenter;\n" -" float4 ornB =newOrnB;\n" -" float4 c1 = transform(&c1local,&posB,&ornB);\n" -" const float4 DeltaC2 = c0 - c1;\n" -" {//\n" -" int compoundPairIdx = atomic_inc(numCompoundPairsOut);\n" -" if (compoundPairIdx<maxNumCompoundPairsCapacity)\n" -" {\n" -" gpuCompoundPairsOut[compoundPairIdx] = (int4)(bodyIndexA,bodyIndexB,-1,childShapeIndexB);\n" -" }//fi (compoundPairIdx<maxNumCompoundPairsCapacity)\n" -" }//\n" -" }//fi (1) \n" -" }//for (int b=0;b<numChildrenB;b++)\n" -" return;\n" -" }//if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)\n" -" return;\n" -" }//fi ((collidables[collidableIndexA].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS) ||(collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS))\n" -" }//i<numPairs\n" -"}\n" -"// work-in-progress\n" -"__kernel void findSeparatingAxisKernel( __global const int4* pairs, \n" -" __global const BodyData* rigidBodies, \n" -" __global const btCollidableGpu* collidables,\n" -" __global const ConvexPolyhedronCL* convexShapes, \n" -" __global const float4* vertices,\n" -" __global const float4* uniqueEdges,\n" -" __global const btGpuFace* faces,\n" -" __global const int* indices,\n" -" __global btAabbCL* aabbs,\n" -" __global volatile float4* separatingNormals,\n" -" __global volatile int* hasSeparatingAxis,\n" -" int numPairs\n" -" )\n" -"{\n" -" int i = get_global_id(0);\n" -" \n" -" if (i<numPairs)\n" -" {\n" -" \n" -" int bodyIndexA = pairs[i].x;\n" -" int bodyIndexB = pairs[i].y;\n" -" int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" -" int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" -" \n" -" int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" -" int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" -" \n" -" \n" -" //once the broadphase avoids static-static pairs, we can remove this test\n" -" if ((rigidBodies[bodyIndexA].m_invMass==0) &&(rigidBodies[bodyIndexB].m_invMass==0))\n" -" {\n" -" hasSeparatingAxis[i] = 0;\n" -" return;\n" -" }\n" -" \n" -" if ((collidables[collidableIndexA].m_shapeType!=SHAPE_CONVEX_HULL) ||(collidables[collidableIndexB].m_shapeType!=SHAPE_CONVEX_HULL))\n" -" {\n" -" hasSeparatingAxis[i] = 0;\n" -" return;\n" -" }\n" -" \n" -" if ((collidables[collidableIndexA].m_shapeType==SHAPE_CONCAVE_TRIMESH))\n" -" {\n" -" hasSeparatingAxis[i] = 0;\n" -" return;\n" -" }\n" -" int numFacesA = convexShapes[shapeIndexA].m_numFaces;\n" -" float dmin = FLT_MAX;\n" -" float4 posA = rigidBodies[bodyIndexA].m_pos;\n" -" posA.w = 0.f;\n" -" float4 posB = rigidBodies[bodyIndexB].m_pos;\n" -" posB.w = 0.f;\n" -" float4 c0local = convexShapes[shapeIndexA].m_localCenter;\n" -" float4 ornA = rigidBodies[bodyIndexA].m_quat;\n" -" float4 c0 = transform(&c0local, &posA, &ornA);\n" -" float4 c1local = convexShapes[shapeIndexB].m_localCenter;\n" -" float4 ornB =rigidBodies[bodyIndexB].m_quat;\n" -" float4 c1 = transform(&c1local,&posB,&ornB);\n" -" const float4 DeltaC2 = c0 - c1;\n" -" float4 sepNormal;\n" -" \n" -" bool sepA = findSeparatingAxis( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA,\n" -" posB,ornB,\n" -" DeltaC2,\n" -" vertices,uniqueEdges,faces,\n" -" indices,&sepNormal,&dmin);\n" -" hasSeparatingAxis[i] = 4;\n" -" if (!sepA)\n" -" {\n" -" hasSeparatingAxis[i] = 0;\n" -" } else\n" -" {\n" -" bool sepB = findSeparatingAxis( &convexShapes[shapeIndexB],&convexShapes[shapeIndexA],posB,ornB,\n" -" posA,ornA,\n" -" DeltaC2,\n" -" vertices,uniqueEdges,faces,\n" -" indices,&sepNormal,&dmin);\n" -" if (!sepB)\n" -" {\n" -" hasSeparatingAxis[i] = 0;\n" -" } else\n" -" {\n" -" bool sepEE = findSeparatingAxisEdgeEdge( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA,\n" -" posB,ornB,\n" -" DeltaC2,\n" -" vertices,uniqueEdges,faces,\n" -" indices,&sepNormal,&dmin);\n" -" if (!sepEE)\n" -" {\n" -" hasSeparatingAxis[i] = 0;\n" -" } else\n" -" {\n" -" hasSeparatingAxis[i] = 1;\n" -" separatingNormals[i] = sepNormal;\n" -" }\n" -" }\n" -" }\n" -" \n" -" }\n" -"}\n" -"__kernel void findSeparatingAxisVertexFaceKernel( __global const int4* pairs, \n" -" __global const BodyData* rigidBodies, \n" -" __global const btCollidableGpu* collidables,\n" -" __global const ConvexPolyhedronCL* convexShapes, \n" -" __global const float4* vertices,\n" -" __global const float4* uniqueEdges,\n" -" __global const btGpuFace* faces,\n" -" __global const int* indices,\n" -" __global btAabbCL* aabbs,\n" -" __global volatile float4* separatingNormals,\n" -" __global volatile int* hasSeparatingAxis,\n" -" __global float* dmins,\n" -" int numPairs\n" -" )\n" -"{\n" -" int i = get_global_id(0);\n" -" \n" -" if (i<numPairs)\n" -" {\n" -" \n" -" int bodyIndexA = pairs[i].x;\n" -" int bodyIndexB = pairs[i].y;\n" -" int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" -" int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" -" \n" -" int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" -" int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" -" \n" -" hasSeparatingAxis[i] = 0; \n" -" \n" -" //once the broadphase avoids static-static pairs, we can remove this test\n" -" if ((rigidBodies[bodyIndexA].m_invMass==0) &&(rigidBodies[bodyIndexB].m_invMass==0))\n" -" {\n" -" return;\n" -" }\n" -" \n" -" if ((collidables[collidableIndexA].m_shapeType!=SHAPE_CONVEX_HULL) ||(collidables[collidableIndexB].m_shapeType!=SHAPE_CONVEX_HULL))\n" -" {\n" -" return;\n" -" }\n" -" \n" -" int numFacesA = convexShapes[shapeIndexA].m_numFaces;\n" -" float dmin = FLT_MAX;\n" -" dmins[i] = dmin;\n" -" \n" -" float4 posA = rigidBodies[bodyIndexA].m_pos;\n" -" posA.w = 0.f;\n" -" float4 posB = rigidBodies[bodyIndexB].m_pos;\n" -" posB.w = 0.f;\n" -" float4 c0local = convexShapes[shapeIndexA].m_localCenter;\n" -" float4 ornA = rigidBodies[bodyIndexA].m_quat;\n" -" float4 c0 = transform(&c0local, &posA, &ornA);\n" -" float4 c1local = convexShapes[shapeIndexB].m_localCenter;\n" -" float4 ornB =rigidBodies[bodyIndexB].m_quat;\n" -" float4 c1 = transform(&c1local,&posB,&ornB);\n" -" const float4 DeltaC2 = c0 - c1;\n" -" float4 sepNormal;\n" -" \n" -" bool sepA = findSeparatingAxis( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA,\n" -" posB,ornB,\n" -" DeltaC2,\n" -" vertices,uniqueEdges,faces,\n" -" indices,&sepNormal,&dmin);\n" -" hasSeparatingAxis[i] = 4;\n" -" if (!sepA)\n" -" {\n" -" hasSeparatingAxis[i] = 0;\n" -" } else\n" -" {\n" -" bool sepB = findSeparatingAxis( &convexShapes[shapeIndexB],&convexShapes[shapeIndexA],posB,ornB,\n" -" posA,ornA,\n" -" DeltaC2,\n" -" vertices,uniqueEdges,faces,\n" -" indices,&sepNormal,&dmin);\n" -" if (sepB)\n" -" {\n" -" dmins[i] = dmin;\n" -" hasSeparatingAxis[i] = 1;\n" -" separatingNormals[i] = sepNormal;\n" -" }\n" -" }\n" -" \n" -" }\n" -"}\n" -"__kernel void findSeparatingAxisEdgeEdgeKernel( __global const int4* pairs, \n" -" __global const BodyData* rigidBodies, \n" -" __global const btCollidableGpu* collidables,\n" -" __global const ConvexPolyhedronCL* convexShapes, \n" -" __global const float4* vertices,\n" -" __global const float4* uniqueEdges,\n" -" __global const btGpuFace* faces,\n" -" __global const int* indices,\n" -" __global btAabbCL* aabbs,\n" -" __global float4* separatingNormals,\n" -" __global int* hasSeparatingAxis,\n" -" __global float* dmins,\n" -" __global const float4* unitSphereDirections,\n" -" int numUnitSphereDirections,\n" -" int numPairs\n" -" )\n" -"{\n" -" int i = get_global_id(0);\n" -" \n" -" if (i<numPairs)\n" -" {\n" -" if (hasSeparatingAxis[i])\n" -" {\n" -" \n" -" int bodyIndexA = pairs[i].x;\n" -" int bodyIndexB = pairs[i].y;\n" -" \n" -" int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" -" int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" -" \n" -" int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" -" int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" -" \n" -" \n" -" int numFacesA = convexShapes[shapeIndexA].m_numFaces;\n" -" \n" -" float dmin = dmins[i];\n" -" \n" -" float4 posA = rigidBodies[bodyIndexA].m_pos;\n" -" posA.w = 0.f;\n" -" float4 posB = rigidBodies[bodyIndexB].m_pos;\n" -" posB.w = 0.f;\n" -" float4 c0local = convexShapes[shapeIndexA].m_localCenter;\n" -" float4 ornA = rigidBodies[bodyIndexA].m_quat;\n" -" float4 c0 = transform(&c0local, &posA, &ornA);\n" -" float4 c1local = convexShapes[shapeIndexB].m_localCenter;\n" -" float4 ornB =rigidBodies[bodyIndexB].m_quat;\n" -" float4 c1 = transform(&c1local,&posB,&ornB);\n" -" const float4 DeltaC2 = c0 - c1;\n" -" float4 sepNormal = separatingNormals[i];\n" -" \n" -" \n" -" \n" -" bool sepEE = false;\n" -" int numEdgeEdgeDirections = convexShapes[shapeIndexA].m_numUniqueEdges*convexShapes[shapeIndexB].m_numUniqueEdges;\n" -" if (numEdgeEdgeDirections<=numUnitSphereDirections)\n" -" {\n" -" sepEE = findSeparatingAxisEdgeEdge( &convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA,\n" -" posB,ornB,\n" -" DeltaC2,\n" -" vertices,uniqueEdges,faces,\n" -" indices,&sepNormal,&dmin);\n" -" \n" -" if (!sepEE)\n" -" {\n" -" hasSeparatingAxis[i] = 0;\n" -" } else\n" -" {\n" -" hasSeparatingAxis[i] = 1;\n" -" separatingNormals[i] = sepNormal;\n" -" }\n" -" }\n" -" /*\n" -" ///else case is a separate kernel, to make Mac OSX OpenCL compiler happy\n" -" else\n" -" {\n" -" sepEE = findSeparatingAxisUnitSphere(&convexShapes[shapeIndexA], &convexShapes[shapeIndexB],posA,ornA,\n" -" posB,ornB,\n" -" DeltaC2,\n" -" vertices,unitSphereDirections,numUnitSphereDirections,\n" -" &sepNormal,&dmin);\n" -" if (!sepEE)\n" -" {\n" -" hasSeparatingAxis[i] = 0;\n" -" } else\n" -" {\n" -" hasSeparatingAxis[i] = 1;\n" -" separatingNormals[i] = sepNormal;\n" -" }\n" -" }\n" -" */\n" -" } //if (hasSeparatingAxis[i])\n" -" }//(i<numPairs)\n" -"}\n" -"inline int findClippingFaces(const float4 separatingNormal,\n" -" const ConvexPolyhedronCL* hullA, \n" -" __global const ConvexPolyhedronCL* hullB,\n" -" const float4 posA, const Quaternion ornA,const float4 posB, const Quaternion ornB,\n" -" __global float4* worldVertsA1,\n" -" __global float4* worldNormalsA1,\n" -" __global float4* worldVertsB1,\n" -" int capacityWorldVerts,\n" -" const float minDist, float maxDist,\n" -" const float4* verticesA,\n" -" const btGpuFace* facesA,\n" -" const int* indicesA,\n" -" __global const float4* verticesB,\n" -" __global const btGpuFace* facesB,\n" -" __global const int* indicesB,\n" -" __global int4* clippingFaces, int pairIndex)\n" -"{\n" -" int numContactsOut = 0;\n" -" int numWorldVertsB1= 0;\n" -" \n" -" \n" -" int closestFaceB=0;\n" -" float dmax = -FLT_MAX;\n" -" \n" -" {\n" -" for(int face=0;face<hullB->m_numFaces;face++)\n" -" {\n" -" const float4 Normal = make_float4(facesB[hullB->m_faceOffset+face].m_plane.x,\n" -" facesB[hullB->m_faceOffset+face].m_plane.y, facesB[hullB->m_faceOffset+face].m_plane.z,0.f);\n" -" const float4 WorldNormal = qtRotate(ornB, Normal);\n" -" float d = dot3F4(WorldNormal,separatingNormal);\n" -" if (d > dmax)\n" -" {\n" -" dmax = d;\n" -" closestFaceB = face;\n" -" }\n" -" }\n" -" }\n" -" \n" -" {\n" -" const btGpuFace polyB = facesB[hullB->m_faceOffset+closestFaceB];\n" -" int numVertices = polyB.m_numIndices;\n" -" if (numVertices>capacityWorldVerts)\n" -" numVertices = capacityWorldVerts;\n" -" \n" -" for(int e0=0;e0<numVertices;e0++)\n" -" {\n" -" if (e0<capacityWorldVerts)\n" -" {\n" -" const float4 b = verticesB[hullB->m_vertexOffset+indicesB[polyB.m_indexOffset+e0]];\n" -" worldVertsB1[pairIndex*capacityWorldVerts+numWorldVertsB1++] = transform(&b,&posB,&ornB);\n" -" }\n" -" }\n" -" }\n" -" \n" -" int closestFaceA=0;\n" -" {\n" -" float dmin = FLT_MAX;\n" -" for(int face=0;face<hullA->m_numFaces;face++)\n" -" {\n" -" const float4 Normal = make_float4(\n" -" facesA[hullA->m_faceOffset+face].m_plane.x,\n" -" facesA[hullA->m_faceOffset+face].m_plane.y,\n" -" facesA[hullA->m_faceOffset+face].m_plane.z,\n" -" 0.f);\n" -" const float4 faceANormalWS = qtRotate(ornA,Normal);\n" -" \n" -" float d = dot3F4(faceANormalWS,separatingNormal);\n" -" if (d < dmin)\n" -" {\n" -" dmin = d;\n" -" closestFaceA = face;\n" -" worldNormalsA1[pairIndex] = faceANormalWS;\n" -" }\n" -" }\n" -" }\n" -" \n" -" int numVerticesA = facesA[hullA->m_faceOffset+closestFaceA].m_numIndices;\n" -" if (numVerticesA>capacityWorldVerts)\n" -" numVerticesA = capacityWorldVerts;\n" -" \n" -" for(int e0=0;e0<numVerticesA;e0++)\n" -" {\n" -" if (e0<capacityWorldVerts)\n" -" {\n" -" const float4 a = verticesA[hullA->m_vertexOffset+indicesA[facesA[hullA->m_faceOffset+closestFaceA].m_indexOffset+e0]];\n" -" worldVertsA1[pairIndex*capacityWorldVerts+e0] = transform(&a, &posA,&ornA);\n" -" }\n" -" }\n" -" \n" -" clippingFaces[pairIndex].x = closestFaceA;\n" -" clippingFaces[pairIndex].y = closestFaceB;\n" -" clippingFaces[pairIndex].z = numVerticesA;\n" -" clippingFaces[pairIndex].w = numWorldVertsB1;\n" -" \n" -" \n" -" return numContactsOut;\n" -"}\n" -"// work-in-progress\n" -"__kernel void findConcaveSeparatingAxisKernel( __global int4* concavePairs,\n" -" __global const BodyData* rigidBodies,\n" -" __global const btCollidableGpu* collidables,\n" -" __global const ConvexPolyhedronCL* convexShapes, \n" -" __global const float4* vertices,\n" -" __global const float4* uniqueEdges,\n" -" __global const btGpuFace* faces,\n" -" __global const int* indices,\n" -" __global const btGpuChildShape* gpuChildShapes,\n" -" __global btAabbCL* aabbs,\n" -" __global float4* concaveSeparatingNormalsOut,\n" -" __global int* concaveHasSeparatingNormals,\n" -" __global int4* clippingFacesOut,\n" -" __global float4* worldVertsA1GPU,\n" -" __global float4* worldNormalsAGPU,\n" -" __global float4* worldVertsB1GPU,\n" -" int vertexFaceCapacity,\n" -" int numConcavePairs\n" -" )\n" -"{\n" -" int i = get_global_id(0);\n" -" if (i>=numConcavePairs)\n" -" return;\n" -" concaveHasSeparatingNormals[i] = 0;\n" -" int pairIdx = i;\n" -" int bodyIndexA = concavePairs[i].x;\n" -" int bodyIndexB = concavePairs[i].y;\n" -" int collidableIndexA = rigidBodies[bodyIndexA].m_collidableIdx;\n" -" int collidableIndexB = rigidBodies[bodyIndexB].m_collidableIdx;\n" -" int shapeIndexA = collidables[collidableIndexA].m_shapeIndex;\n" -" int shapeIndexB = collidables[collidableIndexB].m_shapeIndex;\n" -" if (collidables[collidableIndexB].m_shapeType!=SHAPE_CONVEX_HULL&&\n" -" collidables[collidableIndexB].m_shapeType!=SHAPE_COMPOUND_OF_CONVEX_HULLS)\n" -" {\n" -" concavePairs[pairIdx].w = -1;\n" -" return;\n" -" }\n" -" int numFacesA = convexShapes[shapeIndexA].m_numFaces;\n" -" int numActualConcaveConvexTests = 0;\n" -" \n" -" int f = concavePairs[i].z;\n" -" \n" -" bool overlap = false;\n" -" \n" -" ConvexPolyhedronCL convexPolyhedronA;\n" -" //add 3 vertices of the triangle\n" -" convexPolyhedronA.m_numVertices = 3;\n" -" convexPolyhedronA.m_vertexOffset = 0;\n" -" float4 localCenter = make_float4(0.f,0.f,0.f,0.f);\n" -" btGpuFace face = faces[convexShapes[shapeIndexA].m_faceOffset+f];\n" -" float4 triMinAabb, triMaxAabb;\n" -" btAabbCL triAabb;\n" -" triAabb.m_min = make_float4(1e30f,1e30f,1e30f,0.f);\n" -" triAabb.m_max = make_float4(-1e30f,-1e30f,-1e30f,0.f);\n" -" \n" -" float4 verticesA[3];\n" -" for (int i=0;i<3;i++)\n" -" {\n" -" int index = indices[face.m_indexOffset+i];\n" -" float4 vert = vertices[convexShapes[shapeIndexA].m_vertexOffset+index];\n" -" verticesA[i] = vert;\n" -" localCenter += vert;\n" -" \n" -" triAabb.m_min = min(triAabb.m_min,vert); \n" -" triAabb.m_max = max(triAabb.m_max,vert); \n" -" }\n" -" overlap = true;\n" -" overlap = (triAabb.m_min.x > aabbs[bodyIndexB].m_max.x || triAabb.m_max.x < aabbs[bodyIndexB].m_min.x) ? false : overlap;\n" -" overlap = (triAabb.m_min.z > aabbs[bodyIndexB].m_max.z || triAabb.m_max.z < aabbs[bodyIndexB].m_min.z) ? false : overlap;\n" -" overlap = (triAabb.m_min.y > aabbs[bodyIndexB].m_max.y || triAabb.m_max.y < aabbs[bodyIndexB].m_min.y) ? false : overlap;\n" -" \n" -" if (overlap)\n" -" {\n" -" float dmin = FLT_MAX;\n" -" int hasSeparatingAxis=5;\n" -" float4 sepAxis=make_float4(1,2,3,4);\n" -" int localCC=0;\n" -" numActualConcaveConvexTests++;\n" -" //a triangle has 3 unique edges\n" -" convexPolyhedronA.m_numUniqueEdges = 3;\n" -" convexPolyhedronA.m_uniqueEdgesOffset = 0;\n" -" float4 uniqueEdgesA[3];\n" -" \n" -" uniqueEdgesA[0] = (verticesA[1]-verticesA[0]);\n" -" uniqueEdgesA[1] = (verticesA[2]-verticesA[1]);\n" -" uniqueEdgesA[2] = (verticesA[0]-verticesA[2]);\n" -" convexPolyhedronA.m_faceOffset = 0;\n" -" \n" -" float4 normal = make_float4(face.m_plane.x,face.m_plane.y,face.m_plane.z,0.f);\n" -" \n" -" btGpuFace facesA[TRIANGLE_NUM_CONVEX_FACES];\n" -" int indicesA[3+3+2+2+2];\n" -" int curUsedIndices=0;\n" -" int fidx=0;\n" -" //front size of triangle\n" -" {\n" -" facesA[fidx].m_indexOffset=curUsedIndices;\n" -" indicesA[0] = 0;\n" -" indicesA[1] = 1;\n" -" indicesA[2] = 2;\n" -" curUsedIndices+=3;\n" -" float c = face.m_plane.w;\n" -" facesA[fidx].m_plane.x = normal.x;\n" -" facesA[fidx].m_plane.y = normal.y;\n" -" facesA[fidx].m_plane.z = normal.z;\n" -" facesA[fidx].m_plane.w = c;\n" -" facesA[fidx].m_numIndices=3;\n" -" }\n" -" fidx++;\n" -" //back size of triangle\n" -" {\n" -" facesA[fidx].m_indexOffset=curUsedIndices;\n" -" indicesA[3]=2;\n" -" indicesA[4]=1;\n" -" indicesA[5]=0;\n" -" curUsedIndices+=3;\n" -" float c = dot(normal,verticesA[0]);\n" -" float c1 = -face.m_plane.w;\n" -" facesA[fidx].m_plane.x = -normal.x;\n" -" facesA[fidx].m_plane.y = -normal.y;\n" -" facesA[fidx].m_plane.z = -normal.z;\n" -" facesA[fidx].m_plane.w = c;\n" -" facesA[fidx].m_numIndices=3;\n" -" }\n" -" fidx++;\n" -" bool addEdgePlanes = true;\n" -" if (addEdgePlanes)\n" -" {\n" -" int numVertices=3;\n" -" int prevVertex = numVertices-1;\n" -" for (int i=0;i<numVertices;i++)\n" -" {\n" -" float4 v0 = verticesA[i];\n" -" float4 v1 = verticesA[prevVertex];\n" -" \n" -" float4 edgeNormal = normalize(cross(normal,v1-v0));\n" -" float c = -dot(edgeNormal,v0);\n" -" facesA[fidx].m_numIndices = 2;\n" -" facesA[fidx].m_indexOffset=curUsedIndices;\n" -" indicesA[curUsedIndices++]=i;\n" -" indicesA[curUsedIndices++]=prevVertex;\n" -" \n" -" facesA[fidx].m_plane.x = edgeNormal.x;\n" -" facesA[fidx].m_plane.y = edgeNormal.y;\n" -" facesA[fidx].m_plane.z = edgeNormal.z;\n" -" facesA[fidx].m_plane.w = c;\n" -" fidx++;\n" -" prevVertex = i;\n" -" }\n" -" }\n" -" convexPolyhedronA.m_numFaces = TRIANGLE_NUM_CONVEX_FACES;\n" -" convexPolyhedronA.m_localCenter = localCenter*(1.f/3.f);\n" -" float4 posA = rigidBodies[bodyIndexA].m_pos;\n" -" posA.w = 0.f;\n" -" float4 posB = rigidBodies[bodyIndexB].m_pos;\n" -" posB.w = 0.f;\n" -" float4 ornA = rigidBodies[bodyIndexA].m_quat;\n" -" float4 ornB =rigidBodies[bodyIndexB].m_quat;\n" -" \n" -" ///////////////////\n" -" ///compound shape support\n" -" if (collidables[collidableIndexB].m_shapeType==SHAPE_COMPOUND_OF_CONVEX_HULLS)\n" -" {\n" -" int compoundChild = concavePairs[pairIdx].w;\n" -" int childShapeIndexB = compoundChild;//collidables[collidableIndexB].m_shapeIndex+compoundChild;\n" -" int childColIndexB = gpuChildShapes[childShapeIndexB].m_shapeIndex;\n" -" float4 childPosB = gpuChildShapes[childShapeIndexB].m_childPosition;\n" -" float4 childOrnB = gpuChildShapes[childShapeIndexB].m_childOrientation;\n" -" float4 newPosB = transform(&childPosB,&posB,&ornB);\n" -" float4 newOrnB = qtMul(ornB,childOrnB);\n" -" posB = newPosB;\n" -" ornB = newOrnB;\n" -" shapeIndexB = collidables[childColIndexB].m_shapeIndex;\n" -" }\n" -" //////////////////\n" -" float4 c0local = convexPolyhedronA.m_localCenter;\n" -" float4 c0 = transform(&c0local, &posA, &ornA);\n" -" float4 c1local = convexShapes[shapeIndexB].m_localCenter;\n" -" float4 c1 = transform(&c1local,&posB,&ornB);\n" -" const float4 DeltaC2 = c0 - c1;\n" -" bool sepA = findSeparatingAxisLocalA( &convexPolyhedronA, &convexShapes[shapeIndexB],\n" -" posA,ornA,\n" -" posB,ornB,\n" -" DeltaC2,\n" -" verticesA,uniqueEdgesA,facesA,indicesA,\n" -" vertices,uniqueEdges,faces,indices,\n" -" &sepAxis,&dmin);\n" -" hasSeparatingAxis = 4;\n" -" if (!sepA)\n" -" {\n" -" hasSeparatingAxis = 0;\n" -" } else\n" -" {\n" -" bool sepB = findSeparatingAxisLocalB( &convexShapes[shapeIndexB],&convexPolyhedronA,\n" -" posB,ornB,\n" -" posA,ornA,\n" -" DeltaC2,\n" -" vertices,uniqueEdges,faces,indices,\n" -" verticesA,uniqueEdgesA,facesA,indicesA,\n" -" &sepAxis,&dmin);\n" -" if (!sepB)\n" -" {\n" -" hasSeparatingAxis = 0;\n" -" } else\n" -" {\n" -" bool sepEE = findSeparatingAxisEdgeEdgeLocalA( &convexPolyhedronA, &convexShapes[shapeIndexB],\n" -" posA,ornA,\n" -" posB,ornB,\n" -" DeltaC2,\n" -" verticesA,uniqueEdgesA,facesA,indicesA,\n" -" vertices,uniqueEdges,faces,indices,\n" -" &sepAxis,&dmin);\n" -" \n" -" if (!sepEE)\n" -" {\n" -" hasSeparatingAxis = 0;\n" -" } else\n" -" {\n" -" hasSeparatingAxis = 1;\n" -" }\n" -" }\n" -" } \n" -" \n" -" if (hasSeparatingAxis)\n" -" {\n" -" sepAxis.w = dmin;\n" -" concaveSeparatingNormalsOut[pairIdx]=sepAxis;\n" -" concaveHasSeparatingNormals[i]=1;\n" -" float minDist = -1e30f;\n" -" float maxDist = 0.02f;\n" -" \n" -" findClippingFaces(sepAxis,\n" -" &convexPolyhedronA,\n" -" &convexShapes[shapeIndexB],\n" -" posA,ornA,\n" -" posB,ornB,\n" -" worldVertsA1GPU,\n" -" worldNormalsAGPU,\n" -" worldVertsB1GPU,\n" -" vertexFaceCapacity,\n" -" minDist, maxDist,\n" -" verticesA,\n" -" facesA,\n" -" indicesA,\n" -" vertices,\n" -" faces,\n" -" indices,\n" -" clippingFacesOut, pairIdx);\n" -" } else\n" -" { \n" -" //mark this pair as in-active\n" -" concavePairs[pairIdx].w = -1;\n" -" }\n" -" }\n" -" else\n" -" { \n" -" //mark this pair as in-active\n" -" concavePairs[pairIdx].w = -1;\n" -" }\n" -" \n" -" concavePairs[pairIdx].z = -1;//now z is used for existing/persistent contacts\n" -"}\n" -; |