diff options
Diffstat (limited to 'thirdparty/bullet/src/Bullet3OpenCL/BroadphaseCollision/b3GpuParallelLinearBvh.h')
-rw-r--r-- | thirdparty/bullet/src/Bullet3OpenCL/BroadphaseCollision/b3GpuParallelLinearBvh.h | 125 |
1 files changed, 0 insertions, 125 deletions
diff --git a/thirdparty/bullet/src/Bullet3OpenCL/BroadphaseCollision/b3GpuParallelLinearBvh.h b/thirdparty/bullet/src/Bullet3OpenCL/BroadphaseCollision/b3GpuParallelLinearBvh.h deleted file mode 100644 index effe617b7b..0000000000 --- a/thirdparty/bullet/src/Bullet3OpenCL/BroadphaseCollision/b3GpuParallelLinearBvh.h +++ /dev/null @@ -1,125 +0,0 @@ -/* -This software is provided 'as-is', without any express or implied warranty. -In no event will the authors be held liable for any damages arising from the use of this software. -Permission is granted to anyone to use this software for any purpose, -including commercial applications, and to alter it and redistribute it freely, -subject to the following restrictions: - -1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. -2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. -3. This notice may not be removed or altered from any source distribution. -*/ -//Initial Author Jackson Lee, 2014 - -#ifndef B3_GPU_PARALLEL_LINEAR_BVH_H -#define B3_GPU_PARALLEL_LINEAR_BVH_H - -//#include "Bullet3Collision/BroadPhaseCollision/shared/b3Aabb.h" -#include "Bullet3OpenCL/BroadphaseCollision/b3SapAabb.h" -#include "Bullet3Common/shared/b3Int2.h" -#include "Bullet3Common/shared/b3Int4.h" -#include "Bullet3Collision/NarrowPhaseCollision/b3RaycastInfo.h" - -#include "Bullet3OpenCL/ParallelPrimitives/b3FillCL.h" -#include "Bullet3OpenCL/ParallelPrimitives/b3RadixSort32CL.h" -#include "Bullet3OpenCL/ParallelPrimitives/b3PrefixScanCL.h" - -#include "Bullet3OpenCL/BroadphaseCollision/kernels/parallelLinearBvhKernels.h" - -#define b3Int64 cl_long - -///@brief GPU Parallel Linearized Bounding Volume Heirarchy(LBVH) that is reconstructed every frame -///@remarks -///See presentation in docs/b3GpuParallelLinearBvh.pdf for algorithm details. -///@par -///Related papers: \n -///"Fast BVH Construction on GPUs" [Lauterbach et al. 2009] \n -///"Maximizing Parallelism in the Construction of BVHs, Octrees, and k-d trees" [Karras 2012] \n -///@par -///The basic algorithm for building the BVH as presented in [Lauterbach et al. 2009] consists of 4 stages: -/// - [fully parallel] Assign morton codes for each AABB using its center (after quantizing the AABB centers into a virtual grid) -/// - [fully parallel] Sort morton codes -/// - [somewhat parallel] Build binary radix tree (assign parent/child pointers for internal nodes of the BVH) -/// - [somewhat parallel] Set internal node AABBs -///@par -///[Karras 2012] improves on the algorithm by introducing fully parallel methods for the last 2 stages. -///The BVH implementation here shares many concepts with [Karras 2012], but a different method is used for constructing the tree. -///Instead of searching for the child nodes of each internal node, we search for the parent node of each node. -///Additionally, a non-atomic traversal that starts from the leaf nodes and moves towards the root node is used to set the AABBs. -class b3GpuParallelLinearBvh -{ - cl_command_queue m_queue; - - cl_program m_parallelLinearBvhProgram; - - cl_kernel m_separateAabbsKernel; - cl_kernel m_findAllNodesMergedAabbKernel; - cl_kernel m_assignMortonCodesAndAabbIndiciesKernel; - - //Binary radix tree construction kernels - cl_kernel m_computeAdjacentPairCommonPrefixKernel; - cl_kernel m_buildBinaryRadixTreeLeafNodesKernel; - cl_kernel m_buildBinaryRadixTreeInternalNodesKernel; - cl_kernel m_findDistanceFromRootKernel; - cl_kernel m_buildBinaryRadixTreeAabbsRecursiveKernel; - - cl_kernel m_findLeafIndexRangesKernel; - - //Traversal kernels - cl_kernel m_plbvhCalculateOverlappingPairsKernel; - cl_kernel m_plbvhRayTraverseKernel; - cl_kernel m_plbvhLargeAabbAabbTestKernel; - cl_kernel m_plbvhLargeAabbRayTestKernel; - - b3RadixSort32CL m_radixSorter; - - //1 element - b3OpenCLArray<int> m_rootNodeIndex; //Most significant bit(0x80000000) is set to indicate internal node - b3OpenCLArray<int> m_maxDistanceFromRoot; //Max number of internal nodes between an internal node and the root node - b3OpenCLArray<int> m_temp; //Used to hold the number of pairs in calculateOverlappingPairs() - - //1 element per internal node (number_of_internal_nodes == number_of_leaves - 1) - b3OpenCLArray<b3SapAabb> m_internalNodeAabbs; - b3OpenCLArray<b3Int2> m_internalNodeLeafIndexRanges; //x == min leaf index, y == max leaf index - b3OpenCLArray<b3Int2> m_internalNodeChildNodes; //x == left child, y == right child; msb(0x80000000) is set to indicate internal node - b3OpenCLArray<int> m_internalNodeParentNodes; //For parent node index, msb(0x80000000) is not set since it is always internal - - //1 element per internal node; for binary radix tree construction - b3OpenCLArray<b3Int64> m_commonPrefixes; - b3OpenCLArray<int> m_commonPrefixLengths; - b3OpenCLArray<int> m_distanceFromRoot; //Number of internal nodes between this node and the root - - //1 element per leaf node (leaf nodes only include small AABBs) - b3OpenCLArray<int> m_leafNodeParentNodes; //For parent node index, msb(0x80000000) is not set since it is always internal - b3OpenCLArray<b3SortData> m_mortonCodesAndAabbIndicies; //m_key == morton code, m_value == aabb index in m_leafNodeAabbs - b3OpenCLArray<b3SapAabb> m_mergedAabb; //m_mergedAabb[0] contains the merged AABB of all leaf nodes - b3OpenCLArray<b3SapAabb> m_leafNodeAabbs; //Contains only small AABBs - - //1 element per large AABB, which is not stored in the BVH - b3OpenCLArray<b3SapAabb> m_largeAabbs; - -public: - b3GpuParallelLinearBvh(cl_context context, cl_device_id device, cl_command_queue queue); - virtual ~b3GpuParallelLinearBvh(); - - ///Must be called before any other function - void build(const b3OpenCLArray<b3SapAabb>& worldSpaceAabbs, const b3OpenCLArray<int>& smallAabbIndices, - const b3OpenCLArray<int>& largeAabbIndices); - - ///calculateOverlappingPairs() uses the worldSpaceAabbs parameter of b3GpuParallelLinearBvh::build() as the query AABBs. - ///@param out_overlappingPairs The size() of this array is used to determine the max number of pairs. - ///If the number of overlapping pairs is < out_overlappingPairs.size(), out_overlappingPairs is resized. - void calculateOverlappingPairs(b3OpenCLArray<b3Int4>& out_overlappingPairs); - - ///@param out_numRigidRayPairs Array of length 1; contains the number of detected ray-rigid AABB intersections; - ///this value may be greater than out_rayRigidPairs.size() if out_rayRigidPairs is not large enough. - ///@param out_rayRigidPairs Contains an array of rays intersecting rigid AABBs; x == ray index, y == rigid body index. - ///If the size of this array is insufficient to hold all ray-rigid AABB intersections, additional intersections are discarded. - void testRaysAgainstBvhAabbs(const b3OpenCLArray<b3RayInfo>& rays, - b3OpenCLArray<int>& out_numRayRigidPairs, b3OpenCLArray<b3Int2>& out_rayRigidPairs); - -private: - void constructBinaryRadixTree(); -}; - -#endif |