diff options
Diffstat (limited to 'thirdparty/bullet/src/Bullet3Dynamics/ConstraintSolver/b3PgsJacobiSolver.cpp')
-rw-r--r-- | thirdparty/bullet/src/Bullet3Dynamics/ConstraintSolver/b3PgsJacobiSolver.cpp | 1815 |
1 files changed, 0 insertions, 1815 deletions
diff --git a/thirdparty/bullet/src/Bullet3Dynamics/ConstraintSolver/b3PgsJacobiSolver.cpp b/thirdparty/bullet/src/Bullet3Dynamics/ConstraintSolver/b3PgsJacobiSolver.cpp deleted file mode 100644 index de729d4556..0000000000 --- a/thirdparty/bullet/src/Bullet3Dynamics/ConstraintSolver/b3PgsJacobiSolver.cpp +++ /dev/null @@ -1,1815 +0,0 @@ -/* -Bullet Continuous Collision Detection and Physics Library -Copyright (c) 2003-2012 Erwin Coumans http://bulletphysics.org - -This software is provided 'as-is', without any express or implied warranty. -In no event will the authors be held liable for any damages arising from the use of this software. -Permission is granted to anyone to use this software for any purpose, -including commercial applications, and to alter it and redistribute it freely, -subject to the following restrictions: - -1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. -2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. -3. This notice may not be removed or altered from any source distribution. -*/ - -//enable B3_SOLVER_DEBUG if you experience solver crashes -//#define B3_SOLVER_DEBUG -//#define COMPUTE_IMPULSE_DENOM 1 -//It is not necessary (redundant) to refresh contact manifolds, this refresh has been moved to the collision algorithms. - -//#define DISABLE_JOINTS - -#include "b3PgsJacobiSolver.h" -#include "Bullet3Common/b3MinMax.h" -#include "b3TypedConstraint.h" -#include <new> -#include "Bullet3Common/b3StackAlloc.h" - -//#include "b3SolverBody.h" -//#include "b3SolverConstraint.h" -#include "Bullet3Common/b3AlignedObjectArray.h" -#include <string.h> //for memset -//#include "../../dynamics/basic_demo/Stubs/AdlContact4.h" -#include "Bullet3Collision/NarrowPhaseCollision/b3Contact4.h" - - -#include "Bullet3Collision/NarrowPhaseCollision/shared/b3RigidBodyData.h" - -static b3Transform getWorldTransform(b3RigidBodyData* rb) -{ - b3Transform newTrans; - newTrans.setOrigin(rb->m_pos); - newTrans.setRotation(rb->m_quat); - return newTrans; -} - -static const b3Matrix3x3& getInvInertiaTensorWorld(b3InertiaData* inertia) -{ - return inertia->m_invInertiaWorld; -} - - - -static const b3Vector3& getLinearVelocity(b3RigidBodyData* rb) -{ - return rb->m_linVel; -} - -static const b3Vector3& getAngularVelocity(b3RigidBodyData* rb) -{ - return rb->m_angVel; -} - -static b3Vector3 getVelocityInLocalPoint(b3RigidBodyData* rb, const b3Vector3& rel_pos) -{ - //we also calculate lin/ang velocity for kinematic objects - return getLinearVelocity(rb) + getAngularVelocity(rb).cross(rel_pos); - -} - -struct b3ContactPoint -{ - b3Vector3 m_positionWorldOnA; - b3Vector3 m_positionWorldOnB; - b3Vector3 m_normalWorldOnB; - b3Scalar m_appliedImpulse; - b3Scalar m_distance; - b3Scalar m_combinedRestitution; - - ///information related to friction - b3Scalar m_combinedFriction; - b3Vector3 m_lateralFrictionDir1; - b3Vector3 m_lateralFrictionDir2; - b3Scalar m_appliedImpulseLateral1; - b3Scalar m_appliedImpulseLateral2; - b3Scalar m_combinedRollingFriction; - b3Scalar m_contactMotion1; - b3Scalar m_contactMotion2; - b3Scalar m_contactCFM1; - b3Scalar m_contactCFM2; - - bool m_lateralFrictionInitialized; - - b3Vector3 getPositionWorldOnA() - { - return m_positionWorldOnA; - } - b3Vector3 getPositionWorldOnB() - { - return m_positionWorldOnB; - } - b3Scalar getDistance() - { - return m_distance; - } -}; - -void getContactPoint(b3Contact4* contact, int contactIndex, b3ContactPoint& pointOut) -{ - pointOut.m_appliedImpulse = 0.f; - pointOut.m_appliedImpulseLateral1 = 0.f; - pointOut.m_appliedImpulseLateral2 = 0.f; - pointOut.m_combinedFriction = contact->getFrictionCoeff(); - pointOut.m_combinedRestitution = contact->getRestituitionCoeff(); - pointOut.m_combinedRollingFriction = 0.f; - pointOut.m_contactCFM1 = 0.f; - pointOut.m_contactCFM2 = 0.f; - pointOut.m_contactMotion1 = 0.f; - pointOut.m_contactMotion2 = 0.f; - pointOut.m_distance = contact->getPenetration(contactIndex);//??0.01f - b3Vector3 normalOnB = contact->m_worldNormalOnB; - normalOnB.normalize();//is this needed? - - b3Vector3 l1,l2; - b3PlaneSpace1(normalOnB,l1,l2); - - pointOut.m_normalWorldOnB = normalOnB; - //printf("normalOnB = %f,%f,%f\n",normalOnB.getX(),normalOnB.getY(),normalOnB.getZ()); - pointOut.m_lateralFrictionDir1 = l1; - pointOut.m_lateralFrictionDir2 = l2; - pointOut.m_lateralFrictionInitialized = true; - - - b3Vector3 worldPosB = contact->m_worldPosB[contactIndex]; - pointOut.m_positionWorldOnB = worldPosB; - pointOut.m_positionWorldOnA = worldPosB+normalOnB*pointOut.m_distance; -} - -int getNumContacts(b3Contact4* contact) -{ - return contact->getNPoints(); -} - -b3PgsJacobiSolver::b3PgsJacobiSolver(bool usePgs) -:m_usePgs(usePgs), -m_numSplitImpulseRecoveries(0), -m_btSeed2(0) -{ - -} - -b3PgsJacobiSolver::~b3PgsJacobiSolver() -{ -} - -void b3PgsJacobiSolver::solveContacts(int numBodies, b3RigidBodyData* bodies, b3InertiaData* inertias, int numContacts, b3Contact4* contacts, int numConstraints, b3TypedConstraint** constraints) -{ - b3ContactSolverInfo infoGlobal; - infoGlobal.m_splitImpulse = false; - infoGlobal.m_timeStep = 1.f/60.f; - infoGlobal.m_numIterations = 4;//4; -// infoGlobal.m_solverMode|=B3_SOLVER_USE_2_FRICTION_DIRECTIONS|B3_SOLVER_INTERLEAVE_CONTACT_AND_FRICTION_CONSTRAINTS|B3_SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION; - //infoGlobal.m_solverMode|=B3_SOLVER_USE_2_FRICTION_DIRECTIONS|B3_SOLVER_INTERLEAVE_CONTACT_AND_FRICTION_CONSTRAINTS; - infoGlobal.m_solverMode|=B3_SOLVER_USE_2_FRICTION_DIRECTIONS; - - //if (infoGlobal.m_solverMode & B3_SOLVER_INTERLEAVE_CONTACT_AND_FRICTION_CONSTRAINTS) - //if ((infoGlobal.m_solverMode & B3_SOLVER_USE_2_FRICTION_DIRECTIONS) && (infoGlobal.m_solverMode & B3_SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION)) - - - solveGroup(bodies,inertias,numBodies,contacts,numContacts,constraints,numConstraints,infoGlobal); - - if (!numContacts) - return; -} - - - - -/// b3PgsJacobiSolver Sequentially applies impulses -b3Scalar b3PgsJacobiSolver::solveGroup(b3RigidBodyData* bodies, - b3InertiaData* inertias, - int numBodies, - b3Contact4* manifoldPtr, - int numManifolds, - b3TypedConstraint** constraints, - int numConstraints, - const b3ContactSolverInfo& infoGlobal) -{ - - B3_PROFILE("solveGroup"); - //you need to provide at least some bodies - - solveGroupCacheFriendlySetup( bodies, inertias,numBodies, manifoldPtr, numManifolds,constraints, numConstraints,infoGlobal); - - solveGroupCacheFriendlyIterations(constraints, numConstraints,infoGlobal); - - solveGroupCacheFriendlyFinish(bodies, inertias,numBodies, infoGlobal); - - return 0.f; -} - - - - - - - - - -#ifdef USE_SIMD -#include <emmintrin.h> -#define b3VecSplat(x, e) _mm_shuffle_ps(x, x, _MM_SHUFFLE(e,e,e,e)) -static inline __m128 b3SimdDot3( __m128 vec0, __m128 vec1 ) -{ - __m128 result = _mm_mul_ps( vec0, vec1); - return _mm_add_ps( b3VecSplat( result, 0 ), _mm_add_ps( b3VecSplat( result, 1 ), b3VecSplat( result, 2 ) ) ); -} -#endif//USE_SIMD - -// Project Gauss Seidel or the equivalent Sequential Impulse -void b3PgsJacobiSolver::resolveSingleConstraintRowGenericSIMD(b3SolverBody& body1,b3SolverBody& body2,const b3SolverConstraint& c) -{ -#ifdef USE_SIMD - __m128 cpAppliedImp = _mm_set1_ps(c.m_appliedImpulse); - __m128 lowerLimit1 = _mm_set1_ps(c.m_lowerLimit); - __m128 upperLimit1 = _mm_set1_ps(c.m_upperLimit); - __m128 deltaImpulse = _mm_sub_ps(_mm_set1_ps(c.m_rhs), _mm_mul_ps(_mm_set1_ps(c.m_appliedImpulse),_mm_set1_ps(c.m_cfm))); - __m128 deltaVel1Dotn = _mm_add_ps(b3SimdDot3(c.m_contactNormal.mVec128,body1.internalGetDeltaLinearVelocity().mVec128), b3SimdDot3(c.m_relpos1CrossNormal.mVec128,body1.internalGetDeltaAngularVelocity().mVec128)); - __m128 deltaVel2Dotn = _mm_sub_ps(b3SimdDot3(c.m_relpos2CrossNormal.mVec128,body2.internalGetDeltaAngularVelocity().mVec128),b3SimdDot3((c.m_contactNormal).mVec128,body2.internalGetDeltaLinearVelocity().mVec128)); - deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel1Dotn,_mm_set1_ps(c.m_jacDiagABInv))); - deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel2Dotn,_mm_set1_ps(c.m_jacDiagABInv))); - b3SimdScalar sum = _mm_add_ps(cpAppliedImp,deltaImpulse); - b3SimdScalar resultLowerLess,resultUpperLess; - resultLowerLess = _mm_cmplt_ps(sum,lowerLimit1); - resultUpperLess = _mm_cmplt_ps(sum,upperLimit1); - __m128 lowMinApplied = _mm_sub_ps(lowerLimit1,cpAppliedImp); - deltaImpulse = _mm_or_ps( _mm_and_ps(resultLowerLess, lowMinApplied), _mm_andnot_ps(resultLowerLess, deltaImpulse) ); - c.m_appliedImpulse = _mm_or_ps( _mm_and_ps(resultLowerLess, lowerLimit1), _mm_andnot_ps(resultLowerLess, sum) ); - __m128 upperMinApplied = _mm_sub_ps(upperLimit1,cpAppliedImp); - deltaImpulse = _mm_or_ps( _mm_and_ps(resultUpperLess, deltaImpulse), _mm_andnot_ps(resultUpperLess, upperMinApplied) ); - c.m_appliedImpulse = _mm_or_ps( _mm_and_ps(resultUpperLess, c.m_appliedImpulse), _mm_andnot_ps(resultUpperLess, upperLimit1) ); - __m128 linearComponentA = _mm_mul_ps(c.m_contactNormal.mVec128,body1.internalGetInvMass().mVec128); - __m128 linearComponentB = _mm_mul_ps((c.m_contactNormal).mVec128,body2.internalGetInvMass().mVec128); - __m128 impulseMagnitude = deltaImpulse; - body1.internalGetDeltaLinearVelocity().mVec128 = _mm_add_ps(body1.internalGetDeltaLinearVelocity().mVec128,_mm_mul_ps(linearComponentA,impulseMagnitude)); - body1.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(body1.internalGetDeltaAngularVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentA.mVec128,impulseMagnitude)); - body2.internalGetDeltaLinearVelocity().mVec128 = _mm_sub_ps(body2.internalGetDeltaLinearVelocity().mVec128,_mm_mul_ps(linearComponentB,impulseMagnitude)); - body2.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(body2.internalGetDeltaAngularVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentB.mVec128,impulseMagnitude)); -#else - resolveSingleConstraintRowGeneric(body1,body2,c); -#endif -} - -// Project Gauss Seidel or the equivalent Sequential Impulse - void b3PgsJacobiSolver::resolveSingleConstraintRowGeneric(b3SolverBody& body1,b3SolverBody& body2,const b3SolverConstraint& c) -{ - b3Scalar deltaImpulse = c.m_rhs-b3Scalar(c.m_appliedImpulse)*c.m_cfm; - const b3Scalar deltaVel1Dotn = c.m_contactNormal.dot(body1.internalGetDeltaLinearVelocity()) + c.m_relpos1CrossNormal.dot(body1.internalGetDeltaAngularVelocity()); - const b3Scalar deltaVel2Dotn = -c.m_contactNormal.dot(body2.internalGetDeltaLinearVelocity()) + c.m_relpos2CrossNormal.dot(body2.internalGetDeltaAngularVelocity()); - -// const b3Scalar delta_rel_vel = deltaVel1Dotn-deltaVel2Dotn; - deltaImpulse -= deltaVel1Dotn*c.m_jacDiagABInv; - deltaImpulse -= deltaVel2Dotn*c.m_jacDiagABInv; - - const b3Scalar sum = b3Scalar(c.m_appliedImpulse) + deltaImpulse; - if (sum < c.m_lowerLimit) - { - deltaImpulse = c.m_lowerLimit-c.m_appliedImpulse; - c.m_appliedImpulse = c.m_lowerLimit; - } - else if (sum > c.m_upperLimit) - { - deltaImpulse = c.m_upperLimit-c.m_appliedImpulse; - c.m_appliedImpulse = c.m_upperLimit; - } - else - { - c.m_appliedImpulse = sum; - } - - body1.internalApplyImpulse(c.m_contactNormal*body1.internalGetInvMass(),c.m_angularComponentA,deltaImpulse); - body2.internalApplyImpulse(-c.m_contactNormal*body2.internalGetInvMass(),c.m_angularComponentB,deltaImpulse); -} - - void b3PgsJacobiSolver::resolveSingleConstraintRowLowerLimitSIMD(b3SolverBody& body1,b3SolverBody& body2,const b3SolverConstraint& c) -{ -#ifdef USE_SIMD - __m128 cpAppliedImp = _mm_set1_ps(c.m_appliedImpulse); - __m128 lowerLimit1 = _mm_set1_ps(c.m_lowerLimit); - __m128 upperLimit1 = _mm_set1_ps(c.m_upperLimit); - __m128 deltaImpulse = _mm_sub_ps(_mm_set1_ps(c.m_rhs), _mm_mul_ps(_mm_set1_ps(c.m_appliedImpulse),_mm_set1_ps(c.m_cfm))); - __m128 deltaVel1Dotn = _mm_add_ps(b3SimdDot3(c.m_contactNormal.mVec128,body1.internalGetDeltaLinearVelocity().mVec128), b3SimdDot3(c.m_relpos1CrossNormal.mVec128,body1.internalGetDeltaAngularVelocity().mVec128)); - __m128 deltaVel2Dotn = _mm_sub_ps(b3SimdDot3(c.m_relpos2CrossNormal.mVec128,body2.internalGetDeltaAngularVelocity().mVec128),b3SimdDot3((c.m_contactNormal).mVec128,body2.internalGetDeltaLinearVelocity().mVec128)); - deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel1Dotn,_mm_set1_ps(c.m_jacDiagABInv))); - deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel2Dotn,_mm_set1_ps(c.m_jacDiagABInv))); - b3SimdScalar sum = _mm_add_ps(cpAppliedImp,deltaImpulse); - b3SimdScalar resultLowerLess,resultUpperLess; - resultLowerLess = _mm_cmplt_ps(sum,lowerLimit1); - resultUpperLess = _mm_cmplt_ps(sum,upperLimit1); - __m128 lowMinApplied = _mm_sub_ps(lowerLimit1,cpAppliedImp); - deltaImpulse = _mm_or_ps( _mm_and_ps(resultLowerLess, lowMinApplied), _mm_andnot_ps(resultLowerLess, deltaImpulse) ); - c.m_appliedImpulse = _mm_or_ps( _mm_and_ps(resultLowerLess, lowerLimit1), _mm_andnot_ps(resultLowerLess, sum) ); - __m128 linearComponentA = _mm_mul_ps(c.m_contactNormal.mVec128,body1.internalGetInvMass().mVec128); - __m128 linearComponentB = _mm_mul_ps((c.m_contactNormal).mVec128,body2.internalGetInvMass().mVec128); - __m128 impulseMagnitude = deltaImpulse; - body1.internalGetDeltaLinearVelocity().mVec128 = _mm_add_ps(body1.internalGetDeltaLinearVelocity().mVec128,_mm_mul_ps(linearComponentA,impulseMagnitude)); - body1.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(body1.internalGetDeltaAngularVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentA.mVec128,impulseMagnitude)); - body2.internalGetDeltaLinearVelocity().mVec128 = _mm_sub_ps(body2.internalGetDeltaLinearVelocity().mVec128,_mm_mul_ps(linearComponentB,impulseMagnitude)); - body2.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(body2.internalGetDeltaAngularVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentB.mVec128,impulseMagnitude)); -#else - resolveSingleConstraintRowLowerLimit(body1,body2,c); -#endif -} - -// Project Gauss Seidel or the equivalent Sequential Impulse - void b3PgsJacobiSolver::resolveSingleConstraintRowLowerLimit(b3SolverBody& body1,b3SolverBody& body2,const b3SolverConstraint& c) -{ - b3Scalar deltaImpulse = c.m_rhs-b3Scalar(c.m_appliedImpulse)*c.m_cfm; - const b3Scalar deltaVel1Dotn = c.m_contactNormal.dot(body1.internalGetDeltaLinearVelocity()) + c.m_relpos1CrossNormal.dot(body1.internalGetDeltaAngularVelocity()); - const b3Scalar deltaVel2Dotn = -c.m_contactNormal.dot(body2.internalGetDeltaLinearVelocity()) + c.m_relpos2CrossNormal.dot(body2.internalGetDeltaAngularVelocity()); - - deltaImpulse -= deltaVel1Dotn*c.m_jacDiagABInv; - deltaImpulse -= deltaVel2Dotn*c.m_jacDiagABInv; - const b3Scalar sum = b3Scalar(c.m_appliedImpulse) + deltaImpulse; - if (sum < c.m_lowerLimit) - { - deltaImpulse = c.m_lowerLimit-c.m_appliedImpulse; - c.m_appliedImpulse = c.m_lowerLimit; - } - else - { - c.m_appliedImpulse = sum; - } - body1.internalApplyImpulse(c.m_contactNormal*body1.internalGetInvMass(),c.m_angularComponentA,deltaImpulse); - body2.internalApplyImpulse(-c.m_contactNormal*body2.internalGetInvMass(),c.m_angularComponentB,deltaImpulse); -} - - -void b3PgsJacobiSolver::resolveSplitPenetrationImpulseCacheFriendly( - b3SolverBody& body1, - b3SolverBody& body2, - const b3SolverConstraint& c) -{ - if (c.m_rhsPenetration) - { - m_numSplitImpulseRecoveries++; - b3Scalar deltaImpulse = c.m_rhsPenetration-b3Scalar(c.m_appliedPushImpulse)*c.m_cfm; - const b3Scalar deltaVel1Dotn = c.m_contactNormal.dot(body1.internalGetPushVelocity()) + c.m_relpos1CrossNormal.dot(body1.internalGetTurnVelocity()); - const b3Scalar deltaVel2Dotn = -c.m_contactNormal.dot(body2.internalGetPushVelocity()) + c.m_relpos2CrossNormal.dot(body2.internalGetTurnVelocity()); - - deltaImpulse -= deltaVel1Dotn*c.m_jacDiagABInv; - deltaImpulse -= deltaVel2Dotn*c.m_jacDiagABInv; - const b3Scalar sum = b3Scalar(c.m_appliedPushImpulse) + deltaImpulse; - if (sum < c.m_lowerLimit) - { - deltaImpulse = c.m_lowerLimit-c.m_appliedPushImpulse; - c.m_appliedPushImpulse = c.m_lowerLimit; - } - else - { - c.m_appliedPushImpulse = sum; - } - body1.internalApplyPushImpulse(c.m_contactNormal*body1.internalGetInvMass(),c.m_angularComponentA,deltaImpulse); - body2.internalApplyPushImpulse(-c.m_contactNormal*body2.internalGetInvMass(),c.m_angularComponentB,deltaImpulse); - } -} - - void b3PgsJacobiSolver::resolveSplitPenetrationSIMD(b3SolverBody& body1,b3SolverBody& body2,const b3SolverConstraint& c) -{ -#ifdef USE_SIMD - if (!c.m_rhsPenetration) - return; - - m_numSplitImpulseRecoveries++; - - __m128 cpAppliedImp = _mm_set1_ps(c.m_appliedPushImpulse); - __m128 lowerLimit1 = _mm_set1_ps(c.m_lowerLimit); - __m128 upperLimit1 = _mm_set1_ps(c.m_upperLimit); - __m128 deltaImpulse = _mm_sub_ps(_mm_set1_ps(c.m_rhsPenetration), _mm_mul_ps(_mm_set1_ps(c.m_appliedPushImpulse),_mm_set1_ps(c.m_cfm))); - __m128 deltaVel1Dotn = _mm_add_ps(b3SimdDot3(c.m_contactNormal.mVec128,body1.internalGetPushVelocity().mVec128), b3SimdDot3(c.m_relpos1CrossNormal.mVec128,body1.internalGetTurnVelocity().mVec128)); - __m128 deltaVel2Dotn = _mm_sub_ps(b3SimdDot3(c.m_relpos2CrossNormal.mVec128,body2.internalGetTurnVelocity().mVec128),b3SimdDot3((c.m_contactNormal).mVec128,body2.internalGetPushVelocity().mVec128)); - deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel1Dotn,_mm_set1_ps(c.m_jacDiagABInv))); - deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel2Dotn,_mm_set1_ps(c.m_jacDiagABInv))); - b3SimdScalar sum = _mm_add_ps(cpAppliedImp,deltaImpulse); - b3SimdScalar resultLowerLess,resultUpperLess; - resultLowerLess = _mm_cmplt_ps(sum,lowerLimit1); - resultUpperLess = _mm_cmplt_ps(sum,upperLimit1); - __m128 lowMinApplied = _mm_sub_ps(lowerLimit1,cpAppliedImp); - deltaImpulse = _mm_or_ps( _mm_and_ps(resultLowerLess, lowMinApplied), _mm_andnot_ps(resultLowerLess, deltaImpulse) ); - c.m_appliedPushImpulse = _mm_or_ps( _mm_and_ps(resultLowerLess, lowerLimit1), _mm_andnot_ps(resultLowerLess, sum) ); - __m128 linearComponentA = _mm_mul_ps(c.m_contactNormal.mVec128,body1.internalGetInvMass().mVec128); - __m128 linearComponentB = _mm_mul_ps((c.m_contactNormal).mVec128,body2.internalGetInvMass().mVec128); - __m128 impulseMagnitude = deltaImpulse; - body1.internalGetPushVelocity().mVec128 = _mm_add_ps(body1.internalGetPushVelocity().mVec128,_mm_mul_ps(linearComponentA,impulseMagnitude)); - body1.internalGetTurnVelocity().mVec128 = _mm_add_ps(body1.internalGetTurnVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentA.mVec128,impulseMagnitude)); - body2.internalGetPushVelocity().mVec128 = _mm_sub_ps(body2.internalGetPushVelocity().mVec128,_mm_mul_ps(linearComponentB,impulseMagnitude)); - body2.internalGetTurnVelocity().mVec128 = _mm_add_ps(body2.internalGetTurnVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentB.mVec128,impulseMagnitude)); -#else - resolveSplitPenetrationImpulseCacheFriendly(body1,body2,c); -#endif -} - - - -unsigned long b3PgsJacobiSolver::b3Rand2() -{ - m_btSeed2 = (1664525L*m_btSeed2 + 1013904223L) & 0xffffffff; - return m_btSeed2; -} - - - -//See ODE: adam's all-int straightforward(?) dRandInt (0..n-1) -int b3PgsJacobiSolver::b3RandInt2 (int n) -{ - // seems good; xor-fold and modulus - const unsigned long un = static_cast<unsigned long>(n); - unsigned long r = b3Rand2(); - - // note: probably more aggressive than it needs to be -- might be - // able to get away without one or two of the innermost branches. - if (un <= 0x00010000UL) { - r ^= (r >> 16); - if (un <= 0x00000100UL) { - r ^= (r >> 8); - if (un <= 0x00000010UL) { - r ^= (r >> 4); - if (un <= 0x00000004UL) { - r ^= (r >> 2); - if (un <= 0x00000002UL) { - r ^= (r >> 1); - } - } - } - } - } - - return (int) (r % un); -} - - - -void b3PgsJacobiSolver::initSolverBody(int bodyIndex, b3SolverBody* solverBody, b3RigidBodyData* rb) -{ - - solverBody->m_deltaLinearVelocity.setValue(0.f,0.f,0.f); - solverBody->m_deltaAngularVelocity.setValue(0.f,0.f,0.f); - solverBody->internalGetPushVelocity().setValue(0.f,0.f,0.f); - solverBody->internalGetTurnVelocity().setValue(0.f,0.f,0.f); - - if (rb) - { - solverBody->m_worldTransform = getWorldTransform(rb); - solverBody->internalSetInvMass(b3MakeVector3(rb->m_invMass,rb->m_invMass,rb->m_invMass)); - solverBody->m_originalBodyIndex = bodyIndex; - solverBody->m_angularFactor = b3MakeVector3(1,1,1); - solverBody->m_linearFactor = b3MakeVector3(1,1,1); - solverBody->m_linearVelocity = getLinearVelocity(rb); - solverBody->m_angularVelocity = getAngularVelocity(rb); - } else - { - solverBody->m_worldTransform.setIdentity(); - solverBody->internalSetInvMass(b3MakeVector3(0,0,0)); - solverBody->m_originalBodyIndex = bodyIndex; - solverBody->m_angularFactor.setValue(1,1,1); - solverBody->m_linearFactor.setValue(1,1,1); - solverBody->m_linearVelocity.setValue(0,0,0); - solverBody->m_angularVelocity.setValue(0,0,0); - } - - -} - - - - - - -b3Scalar b3PgsJacobiSolver::restitutionCurve(b3Scalar rel_vel, b3Scalar restitution) -{ - b3Scalar rest = restitution * -rel_vel; - return rest; -} - - - - - - -void b3PgsJacobiSolver::setupFrictionConstraint(b3RigidBodyData* bodies,b3InertiaData* inertias, b3SolverConstraint& solverConstraint, const b3Vector3& normalAxis,int solverBodyIdA,int solverBodyIdB,b3ContactPoint& cp,const b3Vector3& rel_pos1,const b3Vector3& rel_pos2,b3RigidBodyData* colObj0,b3RigidBodyData* colObj1, b3Scalar relaxation, b3Scalar desiredVelocity, b3Scalar cfmSlip) -{ - - - solverConstraint.m_contactNormal = normalAxis; - b3SolverBody& solverBodyA = m_tmpSolverBodyPool[solverBodyIdA]; - b3SolverBody& solverBodyB = m_tmpSolverBodyPool[solverBodyIdB]; - - b3RigidBodyData* body0 = &bodies[solverBodyA.m_originalBodyIndex]; - b3RigidBodyData* body1 = &bodies[solverBodyB.m_originalBodyIndex]; - - - solverConstraint.m_solverBodyIdA = solverBodyIdA; - solverConstraint.m_solverBodyIdB = solverBodyIdB; - - solverConstraint.m_friction = cp.m_combinedFriction; - solverConstraint.m_originalContactPoint = 0; - - solverConstraint.m_appliedImpulse = 0.f; - solverConstraint.m_appliedPushImpulse = 0.f; - - { - b3Vector3 ftorqueAxis1 = rel_pos1.cross(solverConstraint.m_contactNormal); - solverConstraint.m_relpos1CrossNormal = ftorqueAxis1; - solverConstraint.m_angularComponentA = body0 ? getInvInertiaTensorWorld(&inertias[solverBodyA.m_originalBodyIndex])*ftorqueAxis1 : b3MakeVector3(0,0,0); - } - { - b3Vector3 ftorqueAxis1 = rel_pos2.cross(-solverConstraint.m_contactNormal); - solverConstraint.m_relpos2CrossNormal = ftorqueAxis1; - solverConstraint.m_angularComponentB = body1 ? getInvInertiaTensorWorld(&inertias[solverBodyB.m_originalBodyIndex])*ftorqueAxis1 : b3MakeVector3(0,0,0); - } - - b3Scalar scaledDenom; - - { - b3Vector3 vec; - b3Scalar denom0 = 0.f; - b3Scalar denom1 = 0.f; - if (body0) - { - vec = ( solverConstraint.m_angularComponentA).cross(rel_pos1); - denom0 = body0->m_invMass + normalAxis.dot(vec); - } - if (body1) - { - vec = ( -solverConstraint.m_angularComponentB).cross(rel_pos2); - denom1 = body1->m_invMass + normalAxis.dot(vec); - } - - b3Scalar denom; - if (m_usePgs) - { - scaledDenom = denom = relaxation/(denom0+denom1); - } else - { - denom = relaxation/(denom0+denom1); - b3Scalar countA = body0->m_invMass ? b3Scalar(m_bodyCount[solverBodyA.m_originalBodyIndex]): 1.f; - b3Scalar countB = body1->m_invMass ? b3Scalar(m_bodyCount[solverBodyB.m_originalBodyIndex]): 1.f; - - scaledDenom = relaxation/(denom0*countA+denom1*countB); - } - - solverConstraint.m_jacDiagABInv = denom; - } - - { - - - b3Scalar rel_vel; - b3Scalar vel1Dotn = solverConstraint.m_contactNormal.dot(body0?solverBodyA.m_linearVelocity:b3MakeVector3(0,0,0)) - + solverConstraint.m_relpos1CrossNormal.dot(body0?solverBodyA.m_angularVelocity:b3MakeVector3(0,0,0)); - b3Scalar vel2Dotn = -solverConstraint.m_contactNormal.dot(body1?solverBodyB.m_linearVelocity:b3MakeVector3(0,0,0)) - + solverConstraint.m_relpos2CrossNormal.dot(body1?solverBodyB.m_angularVelocity:b3MakeVector3(0,0,0)); - - rel_vel = vel1Dotn+vel2Dotn; - -// b3Scalar positionalError = 0.f; - - b3SimdScalar velocityError = desiredVelocity - rel_vel; - b3SimdScalar velocityImpulse = velocityError * b3SimdScalar(scaledDenom);//solverConstraint.m_jacDiagABInv); - solverConstraint.m_rhs = velocityImpulse; - solverConstraint.m_cfm = cfmSlip; - solverConstraint.m_lowerLimit = 0; - solverConstraint.m_upperLimit = 1e10f; - - } -} - -b3SolverConstraint& b3PgsJacobiSolver::addFrictionConstraint(b3RigidBodyData* bodies,b3InertiaData* inertias, const b3Vector3& normalAxis,int solverBodyIdA,int solverBodyIdB,int frictionIndex,b3ContactPoint& cp,const b3Vector3& rel_pos1,const b3Vector3& rel_pos2,b3RigidBodyData* colObj0,b3RigidBodyData* colObj1, b3Scalar relaxation, b3Scalar desiredVelocity, b3Scalar cfmSlip) -{ - b3SolverConstraint& solverConstraint = m_tmpSolverContactFrictionConstraintPool.expandNonInitializing(); - solverConstraint.m_frictionIndex = frictionIndex; - setupFrictionConstraint(bodies,inertias,solverConstraint, normalAxis, solverBodyIdA, solverBodyIdB, cp, rel_pos1, rel_pos2, - colObj0, colObj1, relaxation, desiredVelocity, cfmSlip); - return solverConstraint; -} - - -void b3PgsJacobiSolver::setupRollingFrictionConstraint(b3RigidBodyData* bodies,b3InertiaData* inertias, b3SolverConstraint& solverConstraint, const b3Vector3& normalAxis1,int solverBodyIdA,int solverBodyIdB, - b3ContactPoint& cp,const b3Vector3& rel_pos1,const b3Vector3& rel_pos2, - b3RigidBodyData* colObj0,b3RigidBodyData* colObj1, b3Scalar relaxation, - b3Scalar desiredVelocity, b3Scalar cfmSlip) - -{ - b3Vector3 normalAxis=b3MakeVector3(0,0,0); - - - solverConstraint.m_contactNormal = normalAxis; - b3SolverBody& solverBodyA = m_tmpSolverBodyPool[solverBodyIdA]; - b3SolverBody& solverBodyB = m_tmpSolverBodyPool[solverBodyIdB]; - - b3RigidBodyData* body0 = &bodies[m_tmpSolverBodyPool[solverBodyIdA].m_originalBodyIndex]; - b3RigidBodyData* body1 = &bodies[m_tmpSolverBodyPool[solverBodyIdB].m_originalBodyIndex]; - - solverConstraint.m_solverBodyIdA = solverBodyIdA; - solverConstraint.m_solverBodyIdB = solverBodyIdB; - - solverConstraint.m_friction = cp.m_combinedRollingFriction; - solverConstraint.m_originalContactPoint = 0; - - solverConstraint.m_appliedImpulse = 0.f; - solverConstraint.m_appliedPushImpulse = 0.f; - - { - b3Vector3 ftorqueAxis1 = -normalAxis1; - solverConstraint.m_relpos1CrossNormal = ftorqueAxis1; - solverConstraint.m_angularComponentA = body0 ? getInvInertiaTensorWorld(&inertias[solverBodyA.m_originalBodyIndex])*ftorqueAxis1 : b3MakeVector3(0,0,0); - } - { - b3Vector3 ftorqueAxis1 = normalAxis1; - solverConstraint.m_relpos2CrossNormal = ftorqueAxis1; - solverConstraint.m_angularComponentB = body1 ? getInvInertiaTensorWorld(&inertias[solverBodyB.m_originalBodyIndex])*ftorqueAxis1 : b3MakeVector3(0,0,0); - } - - - { - b3Vector3 iMJaA = body0?getInvInertiaTensorWorld(&inertias[solverBodyA.m_originalBodyIndex])*solverConstraint.m_relpos1CrossNormal:b3MakeVector3(0,0,0); - b3Vector3 iMJaB = body1?getInvInertiaTensorWorld(&inertias[solverBodyB.m_originalBodyIndex])*solverConstraint.m_relpos2CrossNormal:b3MakeVector3(0,0,0); - b3Scalar sum = 0; - sum += iMJaA.dot(solverConstraint.m_relpos1CrossNormal); - sum += iMJaB.dot(solverConstraint.m_relpos2CrossNormal); - solverConstraint.m_jacDiagABInv = b3Scalar(1.)/sum; - } - - { - - - b3Scalar rel_vel; - b3Scalar vel1Dotn = solverConstraint.m_contactNormal.dot(body0?solverBodyA.m_linearVelocity:b3MakeVector3(0,0,0)) - + solverConstraint.m_relpos1CrossNormal.dot(body0?solverBodyA.m_angularVelocity:b3MakeVector3(0,0,0)); - b3Scalar vel2Dotn = -solverConstraint.m_contactNormal.dot(body1?solverBodyB.m_linearVelocity:b3MakeVector3(0,0,0)) - + solverConstraint.m_relpos2CrossNormal.dot(body1?solverBodyB.m_angularVelocity:b3MakeVector3(0,0,0)); - - rel_vel = vel1Dotn+vel2Dotn; - -// b3Scalar positionalError = 0.f; - - b3SimdScalar velocityError = desiredVelocity - rel_vel; - b3SimdScalar velocityImpulse = velocityError * b3SimdScalar(solverConstraint.m_jacDiagABInv); - solverConstraint.m_rhs = velocityImpulse; - solverConstraint.m_cfm = cfmSlip; - solverConstraint.m_lowerLimit = 0; - solverConstraint.m_upperLimit = 1e10f; - - } -} - - - - - - - - -b3SolverConstraint& b3PgsJacobiSolver::addRollingFrictionConstraint(b3RigidBodyData* bodies,b3InertiaData* inertias,const b3Vector3& normalAxis,int solverBodyIdA,int solverBodyIdB,int frictionIndex,b3ContactPoint& cp,const b3Vector3& rel_pos1,const b3Vector3& rel_pos2,b3RigidBodyData* colObj0,b3RigidBodyData* colObj1, b3Scalar relaxation, b3Scalar desiredVelocity, b3Scalar cfmSlip) -{ - b3SolverConstraint& solverConstraint = m_tmpSolverContactRollingFrictionConstraintPool.expandNonInitializing(); - solverConstraint.m_frictionIndex = frictionIndex; - setupRollingFrictionConstraint(bodies,inertias,solverConstraint, normalAxis, solverBodyIdA, solverBodyIdB, cp, rel_pos1, rel_pos2, - colObj0, colObj1, relaxation, desiredVelocity, cfmSlip); - return solverConstraint; -} - - -int b3PgsJacobiSolver::getOrInitSolverBody(int bodyIndex, b3RigidBodyData* bodies,b3InertiaData* inertias) -{ - //b3Assert(bodyIndex< m_tmpSolverBodyPool.size()); - - b3RigidBodyData& body = bodies[bodyIndex]; - int curIndex = -1; - if (m_usePgs || body.m_invMass==0.f) - { - if (m_bodyCount[bodyIndex]<0) - { - curIndex = m_tmpSolverBodyPool.size(); - b3SolverBody& solverBody = m_tmpSolverBodyPool.expand(); - initSolverBody(bodyIndex,&solverBody,&body); - solverBody.m_originalBodyIndex = bodyIndex; - m_bodyCount[bodyIndex] = curIndex; - } else - { - curIndex = m_bodyCount[bodyIndex]; - } - } else - { - b3Assert(m_bodyCount[bodyIndex]>0); - m_bodyCountCheck[bodyIndex]++; - curIndex = m_tmpSolverBodyPool.size(); - b3SolverBody& solverBody = m_tmpSolverBodyPool.expand(); - initSolverBody(bodyIndex,&solverBody,&body); - solverBody.m_originalBodyIndex = bodyIndex; - } - - b3Assert(curIndex>=0); - return curIndex; - -} -#include <stdio.h> - - -void b3PgsJacobiSolver::setupContactConstraint(b3RigidBodyData* bodies, b3InertiaData* inertias,b3SolverConstraint& solverConstraint, - int solverBodyIdA, int solverBodyIdB, - b3ContactPoint& cp, const b3ContactSolverInfo& infoGlobal, - b3Vector3& vel, b3Scalar& rel_vel, b3Scalar& relaxation, - b3Vector3& rel_pos1, b3Vector3& rel_pos2) -{ - - const b3Vector3& pos1 = cp.getPositionWorldOnA(); - const b3Vector3& pos2 = cp.getPositionWorldOnB(); - - b3SolverBody* bodyA = &m_tmpSolverBodyPool[solverBodyIdA]; - b3SolverBody* bodyB = &m_tmpSolverBodyPool[solverBodyIdB]; - - b3RigidBodyData* rb0 = &bodies[bodyA->m_originalBodyIndex]; - b3RigidBodyData* rb1 = &bodies[bodyB->m_originalBodyIndex]; - -// b3Vector3 rel_pos1 = pos1 - colObj0->getWorldTransform().getOrigin(); -// b3Vector3 rel_pos2 = pos2 - colObj1->getWorldTransform().getOrigin(); - rel_pos1 = pos1 - bodyA->getWorldTransform().getOrigin(); - rel_pos2 = pos2 - bodyB->getWorldTransform().getOrigin(); - - relaxation = 1.f; - - b3Vector3 torqueAxis0 = rel_pos1.cross(cp.m_normalWorldOnB); - solverConstraint.m_angularComponentA = rb0 ? getInvInertiaTensorWorld(&inertias[bodyA->m_originalBodyIndex])*torqueAxis0 : b3MakeVector3(0,0,0); - b3Vector3 torqueAxis1 = rel_pos2.cross(cp.m_normalWorldOnB); - solverConstraint.m_angularComponentB = rb1 ? getInvInertiaTensorWorld(&inertias[bodyB->m_originalBodyIndex])*-torqueAxis1 : b3MakeVector3(0,0,0); - - b3Scalar scaledDenom; - { -#ifdef COMPUTE_IMPULSE_DENOM - b3Scalar denom0 = rb0->computeImpulseDenominator(pos1,cp.m_normalWorldOnB); - b3Scalar denom1 = rb1->computeImpulseDenominator(pos2,cp.m_normalWorldOnB); -#else - b3Vector3 vec; - b3Scalar denom0 = 0.f; - b3Scalar denom1 = 0.f; - if (rb0) - { - vec = ( solverConstraint.m_angularComponentA).cross(rel_pos1); - denom0 = rb0->m_invMass + cp.m_normalWorldOnB.dot(vec); - } - if (rb1) - { - vec = ( -solverConstraint.m_angularComponentB).cross(rel_pos2); - denom1 = rb1->m_invMass + cp.m_normalWorldOnB.dot(vec); - } -#endif //COMPUTE_IMPULSE_DENOM - - - b3Scalar denom; - if (m_usePgs) - { - scaledDenom = denom = relaxation/(denom0+denom1); - } else - { - denom = relaxation/(denom0+denom1); - - b3Scalar countA = rb0->m_invMass? b3Scalar(m_bodyCount[bodyA->m_originalBodyIndex]) : 1.f; - b3Scalar countB = rb1->m_invMass? b3Scalar(m_bodyCount[bodyB->m_originalBodyIndex]) : 1.f; - scaledDenom = relaxation/(denom0*countA+denom1*countB); - } - solverConstraint.m_jacDiagABInv = denom; - } - - solverConstraint.m_contactNormal = cp.m_normalWorldOnB; - solverConstraint.m_relpos1CrossNormal = torqueAxis0; - solverConstraint.m_relpos2CrossNormal = -torqueAxis1; - - b3Scalar restitution = 0.f; - b3Scalar penetration = cp.getDistance()+infoGlobal.m_linearSlop; - - { - b3Vector3 vel1,vel2; - - vel1 = rb0? getVelocityInLocalPoint(rb0,rel_pos1) : b3MakeVector3(0,0,0); - vel2 = rb1? getVelocityInLocalPoint(rb1, rel_pos2) : b3MakeVector3(0,0,0); - - // b3Vector3 vel2 = rb1 ? rb1->getVelocityInLocalPoint(rel_pos2) : b3Vector3(0,0,0); - vel = vel1 - vel2; - rel_vel = cp.m_normalWorldOnB.dot(vel); - - - - solverConstraint.m_friction = cp.m_combinedFriction; - - - restitution = restitutionCurve(rel_vel, cp.m_combinedRestitution); - if (restitution <= b3Scalar(0.)) - { - restitution = 0.f; - }; - } - - - ///warm starting (or zero if disabled) - if (infoGlobal.m_solverMode & B3_SOLVER_USE_WARMSTARTING) - { - solverConstraint.m_appliedImpulse = cp.m_appliedImpulse * infoGlobal.m_warmstartingFactor; - if (rb0) - bodyA->internalApplyImpulse(solverConstraint.m_contactNormal*bodyA->internalGetInvMass(),solverConstraint.m_angularComponentA,solverConstraint.m_appliedImpulse); - if (rb1) - bodyB->internalApplyImpulse(solverConstraint.m_contactNormal*bodyB->internalGetInvMass(),-solverConstraint.m_angularComponentB,-(b3Scalar)solverConstraint.m_appliedImpulse); - } else - { - solverConstraint.m_appliedImpulse = 0.f; - } - - solverConstraint.m_appliedPushImpulse = 0.f; - - { - b3Scalar vel1Dotn = solverConstraint.m_contactNormal.dot(rb0?bodyA->m_linearVelocity:b3MakeVector3(0,0,0)) - + solverConstraint.m_relpos1CrossNormal.dot(rb0?bodyA->m_angularVelocity:b3MakeVector3(0,0,0)); - b3Scalar vel2Dotn = -solverConstraint.m_contactNormal.dot(rb1?bodyB->m_linearVelocity:b3MakeVector3(0,0,0)) - + solverConstraint.m_relpos2CrossNormal.dot(rb1?bodyB->m_angularVelocity:b3MakeVector3(0,0,0)); - b3Scalar rel_vel = vel1Dotn+vel2Dotn; - - b3Scalar positionalError = 0.f; - b3Scalar velocityError = restitution - rel_vel;// * damping; - - - b3Scalar erp = infoGlobal.m_erp2; - if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold)) - { - erp = infoGlobal.m_erp; - } - - if (penetration>0) - { - positionalError = 0; - - velocityError -= penetration / infoGlobal.m_timeStep; - } else - { - positionalError = -penetration * erp/infoGlobal.m_timeStep; - } - - b3Scalar penetrationImpulse = positionalError*scaledDenom;//solverConstraint.m_jacDiagABInv; - b3Scalar velocityImpulse = velocityError *scaledDenom;//solverConstraint.m_jacDiagABInv; - - if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold)) - { - //combine position and velocity into rhs - solverConstraint.m_rhs = penetrationImpulse+velocityImpulse; - solverConstraint.m_rhsPenetration = 0.f; - - } else - { - //split position and velocity into rhs and m_rhsPenetration - solverConstraint.m_rhs = velocityImpulse; - solverConstraint.m_rhsPenetration = penetrationImpulse; - } - solverConstraint.m_cfm = 0.f; - solverConstraint.m_lowerLimit = 0; - solverConstraint.m_upperLimit = 1e10f; - } - - - - -} - - - -void b3PgsJacobiSolver::setFrictionConstraintImpulse( b3RigidBodyData* bodies, b3InertiaData* inertias,b3SolverConstraint& solverConstraint, - int solverBodyIdA, int solverBodyIdB, - b3ContactPoint& cp, const b3ContactSolverInfo& infoGlobal) -{ - - b3SolverBody* bodyA = &m_tmpSolverBodyPool[solverBodyIdA]; - b3SolverBody* bodyB = &m_tmpSolverBodyPool[solverBodyIdB]; - - - { - b3SolverConstraint& frictionConstraint1 = m_tmpSolverContactFrictionConstraintPool[solverConstraint.m_frictionIndex]; - if (infoGlobal.m_solverMode & B3_SOLVER_USE_WARMSTARTING) - { - frictionConstraint1.m_appliedImpulse = cp.m_appliedImpulseLateral1 * infoGlobal.m_warmstartingFactor; - if (bodies[bodyA->m_originalBodyIndex].m_invMass) - bodyA->internalApplyImpulse(frictionConstraint1.m_contactNormal*bodies[bodyA->m_originalBodyIndex].m_invMass,frictionConstraint1.m_angularComponentA,frictionConstraint1.m_appliedImpulse); - if (bodies[bodyB->m_originalBodyIndex].m_invMass) - bodyB->internalApplyImpulse(frictionConstraint1.m_contactNormal*bodies[bodyB->m_originalBodyIndex].m_invMass,-frictionConstraint1.m_angularComponentB,-(b3Scalar)frictionConstraint1.m_appliedImpulse); - } else - { - frictionConstraint1.m_appliedImpulse = 0.f; - } - } - - if ((infoGlobal.m_solverMode & B3_SOLVER_USE_2_FRICTION_DIRECTIONS)) - { - b3SolverConstraint& frictionConstraint2 = m_tmpSolverContactFrictionConstraintPool[solverConstraint.m_frictionIndex+1]; - if (infoGlobal.m_solverMode & B3_SOLVER_USE_WARMSTARTING) - { - frictionConstraint2.m_appliedImpulse = cp.m_appliedImpulseLateral2 * infoGlobal.m_warmstartingFactor; - if (bodies[bodyA->m_originalBodyIndex].m_invMass) - bodyA->internalApplyImpulse(frictionConstraint2.m_contactNormal*bodies[bodyA->m_originalBodyIndex].m_invMass,frictionConstraint2.m_angularComponentA,frictionConstraint2.m_appliedImpulse); - if (bodies[bodyB->m_originalBodyIndex].m_invMass) - bodyB->internalApplyImpulse(frictionConstraint2.m_contactNormal*bodies[bodyB->m_originalBodyIndex].m_invMass,-frictionConstraint2.m_angularComponentB,-(b3Scalar)frictionConstraint2.m_appliedImpulse); - } else - { - frictionConstraint2.m_appliedImpulse = 0.f; - } - } -} - - - - -void b3PgsJacobiSolver::convertContact(b3RigidBodyData* bodies, b3InertiaData* inertias,b3Contact4* manifold,const b3ContactSolverInfo& infoGlobal) -{ - b3RigidBodyData* colObj0=0,*colObj1=0; - - - int solverBodyIdA = getOrInitSolverBody(manifold->getBodyA(),bodies,inertias); - int solverBodyIdB = getOrInitSolverBody(manifold->getBodyB(),bodies,inertias); - -// b3RigidBody* bodyA = b3RigidBody::upcast(colObj0); -// b3RigidBody* bodyB = b3RigidBody::upcast(colObj1); - - b3SolverBody* solverBodyA = &m_tmpSolverBodyPool[solverBodyIdA]; - b3SolverBody* solverBodyB = &m_tmpSolverBodyPool[solverBodyIdB]; - - - - ///avoid collision response between two static objects - if (solverBodyA->m_invMass.isZero() && solverBodyB->m_invMass.isZero()) - return; - - int rollingFriction=1; - int numContacts = getNumContacts(manifold); - for (int j=0;j<numContacts;j++) - { - - b3ContactPoint cp; - getContactPoint(manifold,j,cp); - - if (cp.getDistance() <= getContactProcessingThreshold(manifold)) - { - b3Vector3 rel_pos1; - b3Vector3 rel_pos2; - b3Scalar relaxation; - b3Scalar rel_vel; - b3Vector3 vel; - - int frictionIndex = m_tmpSolverContactConstraintPool.size(); - b3SolverConstraint& solverConstraint = m_tmpSolverContactConstraintPool.expandNonInitializing(); -// b3RigidBody* rb0 = b3RigidBody::upcast(colObj0); -// b3RigidBody* rb1 = b3RigidBody::upcast(colObj1); - solverConstraint.m_solverBodyIdA = solverBodyIdA; - solverConstraint.m_solverBodyIdB = solverBodyIdB; - - solverConstraint.m_originalContactPoint = &cp; - - setupContactConstraint(bodies,inertias,solverConstraint, solverBodyIdA, solverBodyIdB, cp, infoGlobal, vel, rel_vel, relaxation, rel_pos1, rel_pos2); - -// const b3Vector3& pos1 = cp.getPositionWorldOnA(); -// const b3Vector3& pos2 = cp.getPositionWorldOnB(); - - /////setup the friction constraints - - solverConstraint.m_frictionIndex = m_tmpSolverContactFrictionConstraintPool.size(); - - b3Vector3 angVelA,angVelB; - solverBodyA->getAngularVelocity(angVelA); - solverBodyB->getAngularVelocity(angVelB); - b3Vector3 relAngVel = angVelB-angVelA; - - if ((cp.m_combinedRollingFriction>0.f) && (rollingFriction>0)) - { - //only a single rollingFriction per manifold - rollingFriction--; - if (relAngVel.length()>infoGlobal.m_singleAxisRollingFrictionThreshold) - { - relAngVel.normalize(); - if (relAngVel.length()>0.001) - addRollingFrictionConstraint(bodies,inertias,relAngVel,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation); - - } else - { - addRollingFrictionConstraint(bodies,inertias,cp.m_normalWorldOnB,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation); - b3Vector3 axis0,axis1; - b3PlaneSpace1(cp.m_normalWorldOnB,axis0,axis1); - if (axis0.length()>0.001) - addRollingFrictionConstraint(bodies,inertias,axis0,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation); - if (axis1.length()>0.001) - addRollingFrictionConstraint(bodies,inertias,axis1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation); - - } - } - - ///Bullet has several options to set the friction directions - ///By default, each contact has only a single friction direction that is recomputed automatically very frame - ///based on the relative linear velocity. - ///If the relative velocity it zero, it will automatically compute a friction direction. - - ///You can also enable two friction directions, using the B3_SOLVER_USE_2_FRICTION_DIRECTIONS. - ///In that case, the second friction direction will be orthogonal to both contact normal and first friction direction. - /// - ///If you choose B3_SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION, then the friction will be independent from the relative projected velocity. - /// - ///The user can manually override the friction directions for certain contacts using a contact callback, - ///and set the cp.m_lateralFrictionInitialized to true - ///In that case, you can set the target relative motion in each friction direction (cp.m_contactMotion1 and cp.m_contactMotion2) - ///this will give a conveyor belt effect - /// - if (!(infoGlobal.m_solverMode & B3_SOLVER_ENABLE_FRICTION_DIRECTION_CACHING) || !cp.m_lateralFrictionInitialized) - { - cp.m_lateralFrictionDir1 = vel - cp.m_normalWorldOnB * rel_vel; - b3Scalar lat_rel_vel = cp.m_lateralFrictionDir1.length2(); - if (!(infoGlobal.m_solverMode & B3_SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION) && lat_rel_vel > B3_EPSILON) - { - cp.m_lateralFrictionDir1 *= 1.f/b3Sqrt(lat_rel_vel); - if((infoGlobal.m_solverMode & B3_SOLVER_USE_2_FRICTION_DIRECTIONS)) - { - cp.m_lateralFrictionDir2 = cp.m_lateralFrictionDir1.cross(cp.m_normalWorldOnB); - cp.m_lateralFrictionDir2.normalize();//?? - addFrictionConstraint(bodies,inertias,cp.m_lateralFrictionDir2,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation); - - } - - addFrictionConstraint(bodies,inertias,cp.m_lateralFrictionDir1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation); - - } else - { - b3PlaneSpace1(cp.m_normalWorldOnB,cp.m_lateralFrictionDir1,cp.m_lateralFrictionDir2); - - if ((infoGlobal.m_solverMode & B3_SOLVER_USE_2_FRICTION_DIRECTIONS)) - { - addFrictionConstraint(bodies,inertias,cp.m_lateralFrictionDir2,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation); - } - - addFrictionConstraint(bodies,inertias,cp.m_lateralFrictionDir1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation); - - if ((infoGlobal.m_solverMode & B3_SOLVER_USE_2_FRICTION_DIRECTIONS) && (infoGlobal.m_solverMode & B3_SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION)) - { - cp.m_lateralFrictionInitialized = true; - } - } - - } else - { - addFrictionConstraint(bodies,inertias,cp.m_lateralFrictionDir1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation,cp.m_contactMotion1, cp.m_contactCFM1); - - if ((infoGlobal.m_solverMode & B3_SOLVER_USE_2_FRICTION_DIRECTIONS)) - addFrictionConstraint(bodies,inertias,cp.m_lateralFrictionDir2,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation, cp.m_contactMotion2, cp.m_contactCFM2); - - setFrictionConstraintImpulse( bodies,inertias,solverConstraint, solverBodyIdA, solverBodyIdB, cp, infoGlobal); - } - - - - - } - } -} - -b3Scalar b3PgsJacobiSolver::solveGroupCacheFriendlySetup(b3RigidBodyData* bodies, b3InertiaData* inertias, int numBodies, b3Contact4* manifoldPtr, int numManifolds,b3TypedConstraint** constraints,int numConstraints,const b3ContactSolverInfo& infoGlobal) -{ - B3_PROFILE("solveGroupCacheFriendlySetup"); - - - m_maxOverrideNumSolverIterations = 0; - - - - m_tmpSolverBodyPool.resize(0); - - - m_bodyCount.resize(0); - m_bodyCount.resize(numBodies,0); - m_bodyCountCheck.resize(0); - m_bodyCountCheck.resize(numBodies,0); - - m_deltaLinearVelocities.resize(0); - m_deltaLinearVelocities.resize(numBodies,b3MakeVector3(0,0,0)); - m_deltaAngularVelocities.resize(0); - m_deltaAngularVelocities.resize(numBodies,b3MakeVector3(0,0,0)); - - //int totalBodies = 0; - - for (int i=0;i<numConstraints;i++) - { - int bodyIndexA = constraints[i]->getRigidBodyA(); - int bodyIndexB = constraints[i]->getRigidBodyB(); - if (m_usePgs) - { - m_bodyCount[bodyIndexA]=-1; - m_bodyCount[bodyIndexB]=-1; - } else - { - //didn't implement joints with Jacobi version yet - b3Assert(0); - } - - } - for (int i=0;i<numManifolds;i++) - { - int bodyIndexA = manifoldPtr[i].getBodyA(); - int bodyIndexB = manifoldPtr[i].getBodyB(); - if (m_usePgs) - { - m_bodyCount[bodyIndexA]=-1; - m_bodyCount[bodyIndexB]=-1; - } else - { - if (bodies[bodyIndexA].m_invMass) - { - //m_bodyCount[bodyIndexA]+=manifoldPtr[i].getNPoints(); - m_bodyCount[bodyIndexA]++; - } - else - m_bodyCount[bodyIndexA]=-1; - - if (bodies[bodyIndexB].m_invMass) - // m_bodyCount[bodyIndexB]+=manifoldPtr[i].getNPoints(); - m_bodyCount[bodyIndexB]++; - else - m_bodyCount[bodyIndexB]=-1; - } - - } - - - - if (1) - { - int j; - for (j=0;j<numConstraints;j++) - { - b3TypedConstraint* constraint = constraints[j]; - - constraint->internalSetAppliedImpulse(0.0f); - } - } - - //b3RigidBody* rb0=0,*rb1=0; - //if (1) - { - { - - int totalNumRows = 0; - int i; - - m_tmpConstraintSizesPool.resizeNoInitialize(numConstraints); - //calculate the total number of contraint rows - for (i=0;i<numConstraints;i++) - { - b3TypedConstraint::b3ConstraintInfo1& info1 = m_tmpConstraintSizesPool[i]; - b3JointFeedback* fb = constraints[i]->getJointFeedback(); - if (fb) - { - fb->m_appliedForceBodyA.setZero(); - fb->m_appliedTorqueBodyA.setZero(); - fb->m_appliedForceBodyB.setZero(); - fb->m_appliedTorqueBodyB.setZero(); - } - - if (constraints[i]->isEnabled()) - { - } - if (constraints[i]->isEnabled()) - { - constraints[i]->getInfo1(&info1,bodies); - } else - { - info1.m_numConstraintRows = 0; - info1.nub = 0; - } - totalNumRows += info1.m_numConstraintRows; - } - m_tmpSolverNonContactConstraintPool.resizeNoInitialize(totalNumRows); - - -#ifndef DISABLE_JOINTS - ///setup the b3SolverConstraints - int currentRow = 0; - - for (i=0;i<numConstraints;i++) - { - const b3TypedConstraint::b3ConstraintInfo1& info1 = m_tmpConstraintSizesPool[i]; - - if (info1.m_numConstraintRows) - { - b3Assert(currentRow<totalNumRows); - - b3SolverConstraint* currentConstraintRow = &m_tmpSolverNonContactConstraintPool[currentRow]; - b3TypedConstraint* constraint = constraints[i]; - - b3RigidBodyData& rbA = bodies[ constraint->getRigidBodyA()]; - //b3RigidBody& rbA = constraint->getRigidBodyA(); - // b3RigidBody& rbB = constraint->getRigidBodyB(); - b3RigidBodyData& rbB = bodies[ constraint->getRigidBodyB()]; - - int solverBodyIdA = getOrInitSolverBody(constraint->getRigidBodyA(),bodies,inertias); - int solverBodyIdB = getOrInitSolverBody(constraint->getRigidBodyB(),bodies,inertias); - - b3SolverBody* bodyAPtr = &m_tmpSolverBodyPool[solverBodyIdA]; - b3SolverBody* bodyBPtr = &m_tmpSolverBodyPool[solverBodyIdB]; - - - - - int overrideNumSolverIterations = constraint->getOverrideNumSolverIterations() > 0 ? constraint->getOverrideNumSolverIterations() : infoGlobal.m_numIterations; - if (overrideNumSolverIterations>m_maxOverrideNumSolverIterations) - m_maxOverrideNumSolverIterations = overrideNumSolverIterations; - - - int j; - for ( j=0;j<info1.m_numConstraintRows;j++) - { - memset(¤tConstraintRow[j],0,sizeof(b3SolverConstraint)); - currentConstraintRow[j].m_lowerLimit = -B3_INFINITY; - currentConstraintRow[j].m_upperLimit = B3_INFINITY; - currentConstraintRow[j].m_appliedImpulse = 0.f; - currentConstraintRow[j].m_appliedPushImpulse = 0.f; - currentConstraintRow[j].m_solverBodyIdA = solverBodyIdA; - currentConstraintRow[j].m_solverBodyIdB = solverBodyIdB; - currentConstraintRow[j].m_overrideNumSolverIterations = overrideNumSolverIterations; - } - - bodyAPtr->internalGetDeltaLinearVelocity().setValue(0.f,0.f,0.f); - bodyAPtr->internalGetDeltaAngularVelocity().setValue(0.f,0.f,0.f); - bodyAPtr->internalGetPushVelocity().setValue(0.f,0.f,0.f); - bodyAPtr->internalGetTurnVelocity().setValue(0.f,0.f,0.f); - bodyBPtr->internalGetDeltaLinearVelocity().setValue(0.f,0.f,0.f); - bodyBPtr->internalGetDeltaAngularVelocity().setValue(0.f,0.f,0.f); - bodyBPtr->internalGetPushVelocity().setValue(0.f,0.f,0.f); - bodyBPtr->internalGetTurnVelocity().setValue(0.f,0.f,0.f); - - - b3TypedConstraint::b3ConstraintInfo2 info2; - info2.fps = 1.f/infoGlobal.m_timeStep; - info2.erp = infoGlobal.m_erp; - info2.m_J1linearAxis = currentConstraintRow->m_contactNormal; - info2.m_J1angularAxis = currentConstraintRow->m_relpos1CrossNormal; - info2.m_J2linearAxis = 0; - info2.m_J2angularAxis = currentConstraintRow->m_relpos2CrossNormal; - info2.rowskip = sizeof(b3SolverConstraint)/sizeof(b3Scalar);//check this - ///the size of b3SolverConstraint needs be a multiple of b3Scalar - b3Assert(info2.rowskip*sizeof(b3Scalar)== sizeof(b3SolverConstraint)); - info2.m_constraintError = ¤tConstraintRow->m_rhs; - currentConstraintRow->m_cfm = infoGlobal.m_globalCfm; - info2.m_damping = infoGlobal.m_damping; - info2.cfm = ¤tConstraintRow->m_cfm; - info2.m_lowerLimit = ¤tConstraintRow->m_lowerLimit; - info2.m_upperLimit = ¤tConstraintRow->m_upperLimit; - info2.m_numIterations = infoGlobal.m_numIterations; - constraints[i]->getInfo2(&info2,bodies); - - ///finalize the constraint setup - for ( j=0;j<info1.m_numConstraintRows;j++) - { - b3SolverConstraint& solverConstraint = currentConstraintRow[j]; - - if (solverConstraint.m_upperLimit>=constraints[i]->getBreakingImpulseThreshold()) - { - solverConstraint.m_upperLimit = constraints[i]->getBreakingImpulseThreshold(); - } - - if (solverConstraint.m_lowerLimit<=-constraints[i]->getBreakingImpulseThreshold()) - { - solverConstraint.m_lowerLimit = -constraints[i]->getBreakingImpulseThreshold(); - } - - solverConstraint.m_originalContactPoint = constraint; - - b3Matrix3x3& invInertiaWorldA= inertias[constraint->getRigidBodyA()].m_invInertiaWorld; - { - - //b3Vector3 angularFactorA(1,1,1); - const b3Vector3& ftorqueAxis1 = solverConstraint.m_relpos1CrossNormal; - solverConstraint.m_angularComponentA = invInertiaWorldA*ftorqueAxis1;//*angularFactorA; - } - - b3Matrix3x3& invInertiaWorldB= inertias[constraint->getRigidBodyB()].m_invInertiaWorld; - { - - const b3Vector3& ftorqueAxis2 = solverConstraint.m_relpos2CrossNormal; - solverConstraint.m_angularComponentB = invInertiaWorldB*ftorqueAxis2;//*constraint->getRigidBodyB().getAngularFactor(); - } - - { - //it is ok to use solverConstraint.m_contactNormal instead of -solverConstraint.m_contactNormal - //because it gets multiplied iMJlB - b3Vector3 iMJlA = solverConstraint.m_contactNormal*rbA.m_invMass; - b3Vector3 iMJaA = invInertiaWorldA*solverConstraint.m_relpos1CrossNormal; - b3Vector3 iMJlB = solverConstraint.m_contactNormal*rbB.m_invMass;//sign of normal? - b3Vector3 iMJaB = invInertiaWorldB*solverConstraint.m_relpos2CrossNormal; - - b3Scalar sum = iMJlA.dot(solverConstraint.m_contactNormal); - sum += iMJaA.dot(solverConstraint.m_relpos1CrossNormal); - sum += iMJlB.dot(solverConstraint.m_contactNormal); - sum += iMJaB.dot(solverConstraint.m_relpos2CrossNormal); - b3Scalar fsum = b3Fabs(sum); - b3Assert(fsum > B3_EPSILON); - solverConstraint.m_jacDiagABInv = fsum>B3_EPSILON?b3Scalar(1.)/sum : 0.f; - } - - - ///fix rhs - ///todo: add force/torque accelerators - { - b3Scalar rel_vel; - b3Scalar vel1Dotn = solverConstraint.m_contactNormal.dot(rbA.m_linVel) + solverConstraint.m_relpos1CrossNormal.dot(rbA.m_angVel); - b3Scalar vel2Dotn = -solverConstraint.m_contactNormal.dot(rbB.m_linVel) + solverConstraint.m_relpos2CrossNormal.dot(rbB.m_angVel); - - rel_vel = vel1Dotn+vel2Dotn; - - b3Scalar restitution = 0.f; - b3Scalar positionalError = solverConstraint.m_rhs;//already filled in by getConstraintInfo2 - b3Scalar velocityError = restitution - rel_vel * info2.m_damping; - b3Scalar penetrationImpulse = positionalError*solverConstraint.m_jacDiagABInv; - b3Scalar velocityImpulse = velocityError *solverConstraint.m_jacDiagABInv; - solverConstraint.m_rhs = penetrationImpulse+velocityImpulse; - solverConstraint.m_appliedImpulse = 0.f; - - } - } - } - currentRow+=m_tmpConstraintSizesPool[i].m_numConstraintRows; - } -#endif //DISABLE_JOINTS - } - - - { - int i; - - for (i=0;i<numManifolds;i++) - { - b3Contact4& manifold = manifoldPtr[i]; - convertContact(bodies,inertias,&manifold,infoGlobal); - } - } - } - -// b3ContactSolverInfo info = infoGlobal; - - - int numNonContactPool = m_tmpSolverNonContactConstraintPool.size(); - int numConstraintPool = m_tmpSolverContactConstraintPool.size(); - int numFrictionPool = m_tmpSolverContactFrictionConstraintPool.size(); - - ///@todo: use stack allocator for such temporarily memory, same for solver bodies/constraints - m_orderNonContactConstraintPool.resizeNoInitialize(numNonContactPool); - if ((infoGlobal.m_solverMode & B3_SOLVER_USE_2_FRICTION_DIRECTIONS)) - m_orderTmpConstraintPool.resizeNoInitialize(numConstraintPool*2); - else - m_orderTmpConstraintPool.resizeNoInitialize(numConstraintPool); - - m_orderFrictionConstraintPool.resizeNoInitialize(numFrictionPool); - { - int i; - for (i=0;i<numNonContactPool;i++) - { - m_orderNonContactConstraintPool[i] = i; - } - for (i=0;i<numConstraintPool;i++) - { - m_orderTmpConstraintPool[i] = i; - } - for (i=0;i<numFrictionPool;i++) - { - m_orderFrictionConstraintPool[i] = i; - } - } - - return 0.f; - -} - - -b3Scalar b3PgsJacobiSolver::solveSingleIteration(int iteration,b3TypedConstraint** constraints,int numConstraints,const b3ContactSolverInfo& infoGlobal) -{ - - int numNonContactPool = m_tmpSolverNonContactConstraintPool.size(); - int numConstraintPool = m_tmpSolverContactConstraintPool.size(); - int numFrictionPool = m_tmpSolverContactFrictionConstraintPool.size(); - - if (infoGlobal.m_solverMode & B3_SOLVER_RANDMIZE_ORDER) - { - if (1) // uncomment this for a bit less random ((iteration & 7) == 0) - { - - for (int j=0; j<numNonContactPool; ++j) { - int tmp = m_orderNonContactConstraintPool[j]; - int swapi = b3RandInt2(j+1); - m_orderNonContactConstraintPool[j] = m_orderNonContactConstraintPool[swapi]; - m_orderNonContactConstraintPool[swapi] = tmp; - } - - //contact/friction constraints are not solved more than - if (iteration< infoGlobal.m_numIterations) - { - for (int j=0; j<numConstraintPool; ++j) { - int tmp = m_orderTmpConstraintPool[j]; - int swapi = b3RandInt2(j+1); - m_orderTmpConstraintPool[j] = m_orderTmpConstraintPool[swapi]; - m_orderTmpConstraintPool[swapi] = tmp; - } - - for (int j=0; j<numFrictionPool; ++j) { - int tmp = m_orderFrictionConstraintPool[j]; - int swapi = b3RandInt2(j+1); - m_orderFrictionConstraintPool[j] = m_orderFrictionConstraintPool[swapi]; - m_orderFrictionConstraintPool[swapi] = tmp; - } - } - } - } - - if (infoGlobal.m_solverMode & B3_SOLVER_SIMD) - { - ///solve all joint constraints, using SIMD, if available - for (int j=0;j<m_tmpSolverNonContactConstraintPool.size();j++) - { - b3SolverConstraint& constraint = m_tmpSolverNonContactConstraintPool[m_orderNonContactConstraintPool[j]]; - if (iteration < constraint.m_overrideNumSolverIterations) - resolveSingleConstraintRowGenericSIMD(m_tmpSolverBodyPool[constraint.m_solverBodyIdA],m_tmpSolverBodyPool[constraint.m_solverBodyIdB],constraint); - } - - if (iteration< infoGlobal.m_numIterations) - { - - ///solve all contact constraints using SIMD, if available - if (infoGlobal.m_solverMode & B3_SOLVER_INTERLEAVE_CONTACT_AND_FRICTION_CONSTRAINTS) - { - int numPoolConstraints = m_tmpSolverContactConstraintPool.size(); - int multiplier = (infoGlobal.m_solverMode & B3_SOLVER_USE_2_FRICTION_DIRECTIONS)? 2 : 1; - - for (int c=0;c<numPoolConstraints;c++) - { - b3Scalar totalImpulse =0; - - { - const b3SolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[c]]; - resolveSingleConstraintRowLowerLimitSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold); - totalImpulse = solveManifold.m_appliedImpulse; - } - bool applyFriction = true; - if (applyFriction) - { - { - - b3SolverConstraint& solveManifold = m_tmpSolverContactFrictionConstraintPool[m_orderFrictionConstraintPool[c*multiplier]]; - - if (totalImpulse>b3Scalar(0)) - { - solveManifold.m_lowerLimit = -(solveManifold.m_friction*totalImpulse); - solveManifold.m_upperLimit = solveManifold.m_friction*totalImpulse; - - resolveSingleConstraintRowGenericSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold); - } - } - - if (infoGlobal.m_solverMode & B3_SOLVER_USE_2_FRICTION_DIRECTIONS) - { - - b3SolverConstraint& solveManifold = m_tmpSolverContactFrictionConstraintPool[m_orderFrictionConstraintPool[c*multiplier+1]]; - - if (totalImpulse>b3Scalar(0)) - { - solveManifold.m_lowerLimit = -(solveManifold.m_friction*totalImpulse); - solveManifold.m_upperLimit = solveManifold.m_friction*totalImpulse; - - resolveSingleConstraintRowGenericSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold); - } - } - } - } - - } - else//B3_SOLVER_INTERLEAVE_CONTACT_AND_FRICTION_CONSTRAINTS - { - //solve the friction constraints after all contact constraints, don't interleave them - int numPoolConstraints = m_tmpSolverContactConstraintPool.size(); - int j; - - for (j=0;j<numPoolConstraints;j++) - { - const b3SolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]]; - resolveSingleConstraintRowLowerLimitSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold); - - } - - if (!m_usePgs) - averageVelocities(); - - - ///solve all friction constraints, using SIMD, if available - - int numFrictionPoolConstraints = m_tmpSolverContactFrictionConstraintPool.size(); - for (j=0;j<numFrictionPoolConstraints;j++) - { - b3SolverConstraint& solveManifold = m_tmpSolverContactFrictionConstraintPool[m_orderFrictionConstraintPool[j]]; - b3Scalar totalImpulse = m_tmpSolverContactConstraintPool[solveManifold.m_frictionIndex].m_appliedImpulse; - - if (totalImpulse>b3Scalar(0)) - { - solveManifold.m_lowerLimit = -(solveManifold.m_friction*totalImpulse); - solveManifold.m_upperLimit = solveManifold.m_friction*totalImpulse; - - resolveSingleConstraintRowGenericSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold); - } - } - - - int numRollingFrictionPoolConstraints = m_tmpSolverContactRollingFrictionConstraintPool.size(); - for (j=0;j<numRollingFrictionPoolConstraints;j++) - { - - b3SolverConstraint& rollingFrictionConstraint = m_tmpSolverContactRollingFrictionConstraintPool[j]; - b3Scalar totalImpulse = m_tmpSolverContactConstraintPool[rollingFrictionConstraint.m_frictionIndex].m_appliedImpulse; - if (totalImpulse>b3Scalar(0)) - { - b3Scalar rollingFrictionMagnitude = rollingFrictionConstraint.m_friction*totalImpulse; - if (rollingFrictionMagnitude>rollingFrictionConstraint.m_friction) - rollingFrictionMagnitude = rollingFrictionConstraint.m_friction; - - rollingFrictionConstraint.m_lowerLimit = -rollingFrictionMagnitude; - rollingFrictionConstraint.m_upperLimit = rollingFrictionMagnitude; - - resolveSingleConstraintRowGenericSIMD(m_tmpSolverBodyPool[rollingFrictionConstraint.m_solverBodyIdA],m_tmpSolverBodyPool[rollingFrictionConstraint.m_solverBodyIdB],rollingFrictionConstraint); - } - } - - - } - } - } else - { - //non-SIMD version - ///solve all joint constraints - for (int j=0;j<m_tmpSolverNonContactConstraintPool.size();j++) - { - b3SolverConstraint& constraint = m_tmpSolverNonContactConstraintPool[m_orderNonContactConstraintPool[j]]; - if (iteration < constraint.m_overrideNumSolverIterations) - resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[constraint.m_solverBodyIdA],m_tmpSolverBodyPool[constraint.m_solverBodyIdB],constraint); - } - - if (iteration< infoGlobal.m_numIterations) - { - - ///solve all contact constraints - int numPoolConstraints = m_tmpSolverContactConstraintPool.size(); - for (int j=0;j<numPoolConstraints;j++) - { - const b3SolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]]; - resolveSingleConstraintRowLowerLimit(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold); - } - ///solve all friction constraints - int numFrictionPoolConstraints = m_tmpSolverContactFrictionConstraintPool.size(); - for (int j=0;j<numFrictionPoolConstraints;j++) - { - b3SolverConstraint& solveManifold = m_tmpSolverContactFrictionConstraintPool[m_orderFrictionConstraintPool[j]]; - b3Scalar totalImpulse = m_tmpSolverContactConstraintPool[solveManifold.m_frictionIndex].m_appliedImpulse; - - if (totalImpulse>b3Scalar(0)) - { - solveManifold.m_lowerLimit = -(solveManifold.m_friction*totalImpulse); - solveManifold.m_upperLimit = solveManifold.m_friction*totalImpulse; - - resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold); - } - } - - int numRollingFrictionPoolConstraints = m_tmpSolverContactRollingFrictionConstraintPool.size(); - for (int j=0;j<numRollingFrictionPoolConstraints;j++) - { - b3SolverConstraint& rollingFrictionConstraint = m_tmpSolverContactRollingFrictionConstraintPool[j]; - b3Scalar totalImpulse = m_tmpSolverContactConstraintPool[rollingFrictionConstraint.m_frictionIndex].m_appliedImpulse; - if (totalImpulse>b3Scalar(0)) - { - b3Scalar rollingFrictionMagnitude = rollingFrictionConstraint.m_friction*totalImpulse; - if (rollingFrictionMagnitude>rollingFrictionConstraint.m_friction) - rollingFrictionMagnitude = rollingFrictionConstraint.m_friction; - - rollingFrictionConstraint.m_lowerLimit = -rollingFrictionMagnitude; - rollingFrictionConstraint.m_upperLimit = rollingFrictionMagnitude; - - resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[rollingFrictionConstraint.m_solverBodyIdA],m_tmpSolverBodyPool[rollingFrictionConstraint.m_solverBodyIdB],rollingFrictionConstraint); - } - } - } - } - return 0.f; -} - - -void b3PgsJacobiSolver::solveGroupCacheFriendlySplitImpulseIterations(b3TypedConstraint** constraints,int numConstraints,const b3ContactSolverInfo& infoGlobal) -{ - int iteration; - if (infoGlobal.m_splitImpulse) - { - if (infoGlobal.m_solverMode & B3_SOLVER_SIMD) - { - for ( iteration = 0;iteration<infoGlobal.m_numIterations;iteration++) - { - { - int numPoolConstraints = m_tmpSolverContactConstraintPool.size(); - int j; - for (j=0;j<numPoolConstraints;j++) - { - const b3SolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]]; - - resolveSplitPenetrationSIMD(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold); - } - } - } - } - else - { - for ( iteration = 0;iteration<infoGlobal.m_numIterations;iteration++) - { - { - int numPoolConstraints = m_tmpSolverContactConstraintPool.size(); - int j; - for (j=0;j<numPoolConstraints;j++) - { - const b3SolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]]; - - resolveSplitPenetrationImpulseCacheFriendly(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold); - } - } - } - } - } -} - -b3Scalar b3PgsJacobiSolver::solveGroupCacheFriendlyIterations(b3TypedConstraint** constraints,int numConstraints,const b3ContactSolverInfo& infoGlobal) -{ - B3_PROFILE("solveGroupCacheFriendlyIterations"); - - { - ///this is a special step to resolve penetrations (just for contacts) - solveGroupCacheFriendlySplitImpulseIterations(constraints,numConstraints,infoGlobal); - - int maxIterations = m_maxOverrideNumSolverIterations > infoGlobal.m_numIterations? m_maxOverrideNumSolverIterations : infoGlobal.m_numIterations; - - for ( int iteration = 0 ; iteration< maxIterations ; iteration++) - //for ( int iteration = maxIterations-1 ; iteration >= 0;iteration--) - { - - solveSingleIteration(iteration, constraints,numConstraints,infoGlobal); - - - if (!m_usePgs) - { - averageVelocities(); - } - } - - } - return 0.f; -} - -void b3PgsJacobiSolver::averageVelocities() -{ - B3_PROFILE("averaging"); - //average the velocities - int numBodies = m_bodyCount.size(); - - m_deltaLinearVelocities.resize(0); - m_deltaLinearVelocities.resize(numBodies,b3MakeVector3(0,0,0)); - m_deltaAngularVelocities.resize(0); - m_deltaAngularVelocities.resize(numBodies,b3MakeVector3(0,0,0)); - - for (int i=0;i<m_tmpSolverBodyPool.size();i++) - { - if (!m_tmpSolverBodyPool[i].m_invMass.isZero()) - { - int orgBodyIndex = m_tmpSolverBodyPool[i].m_originalBodyIndex; - m_deltaLinearVelocities[orgBodyIndex]+=m_tmpSolverBodyPool[i].getDeltaLinearVelocity(); - m_deltaAngularVelocities[orgBodyIndex]+=m_tmpSolverBodyPool[i].getDeltaAngularVelocity(); - } - } - - for (int i=0;i<m_tmpSolverBodyPool.size();i++) - { - int orgBodyIndex = m_tmpSolverBodyPool[i].m_originalBodyIndex; - - if (!m_tmpSolverBodyPool[i].m_invMass.isZero()) - { - - b3Assert(m_bodyCount[orgBodyIndex] == m_bodyCountCheck[orgBodyIndex]); - - b3Scalar factor = 1.f/b3Scalar(m_bodyCount[orgBodyIndex]); - - - m_tmpSolverBodyPool[i].m_deltaLinearVelocity = m_deltaLinearVelocities[orgBodyIndex]*factor; - m_tmpSolverBodyPool[i].m_deltaAngularVelocity = m_deltaAngularVelocities[orgBodyIndex]*factor; - } - } -} - -b3Scalar b3PgsJacobiSolver::solveGroupCacheFriendlyFinish(b3RigidBodyData* bodies,b3InertiaData* inertias,int numBodies,const b3ContactSolverInfo& infoGlobal) -{ - B3_PROFILE("solveGroupCacheFriendlyFinish"); - int numPoolConstraints = m_tmpSolverContactConstraintPool.size(); - int i,j; - - if (infoGlobal.m_solverMode & B3_SOLVER_USE_WARMSTARTING) - { - for (j=0;j<numPoolConstraints;j++) - { - const b3SolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[j]; - b3ContactPoint* pt = (b3ContactPoint*) solveManifold.m_originalContactPoint; - b3Assert(pt); - pt->m_appliedImpulse = solveManifold.m_appliedImpulse; - // float f = m_tmpSolverContactFrictionConstraintPool[solveManifold.m_frictionIndex].m_appliedImpulse; - // printf("pt->m_appliedImpulseLateral1 = %f\n", f); - pt->m_appliedImpulseLateral1 = m_tmpSolverContactFrictionConstraintPool[solveManifold.m_frictionIndex].m_appliedImpulse; - //printf("pt->m_appliedImpulseLateral1 = %f\n", pt->m_appliedImpulseLateral1); - if ((infoGlobal.m_solverMode & B3_SOLVER_USE_2_FRICTION_DIRECTIONS)) - { - pt->m_appliedImpulseLateral2 = m_tmpSolverContactFrictionConstraintPool[solveManifold.m_frictionIndex+1].m_appliedImpulse; - } - //do a callback here? - } - } - - numPoolConstraints = m_tmpSolverNonContactConstraintPool.size(); - for (j=0;j<numPoolConstraints;j++) - { - const b3SolverConstraint& solverConstr = m_tmpSolverNonContactConstraintPool[j]; - b3TypedConstraint* constr = (b3TypedConstraint*)solverConstr.m_originalContactPoint; - b3JointFeedback* fb = constr->getJointFeedback(); - if (fb) - { - b3SolverBody* bodyA = &m_tmpSolverBodyPool[solverConstr.m_solverBodyIdA]; - b3SolverBody* bodyB = &m_tmpSolverBodyPool[solverConstr.m_solverBodyIdB]; - - fb->m_appliedForceBodyA += solverConstr.m_contactNormal*solverConstr.m_appliedImpulse*bodyA->m_linearFactor/infoGlobal.m_timeStep; - fb->m_appliedForceBodyB += -solverConstr.m_contactNormal*solverConstr.m_appliedImpulse*bodyB->m_linearFactor/infoGlobal.m_timeStep; - fb->m_appliedTorqueBodyA += solverConstr.m_relpos1CrossNormal* bodyA->m_angularFactor*solverConstr.m_appliedImpulse/infoGlobal.m_timeStep; - fb->m_appliedTorqueBodyB += -solverConstr.m_relpos1CrossNormal* bodyB->m_angularFactor*solverConstr.m_appliedImpulse/infoGlobal.m_timeStep; - - } - - constr->internalSetAppliedImpulse(solverConstr.m_appliedImpulse); - if (b3Fabs(solverConstr.m_appliedImpulse)>=constr->getBreakingImpulseThreshold()) - { - constr->setEnabled(false); - } - } - - { - B3_PROFILE("write back velocities and transforms"); - for ( i=0;i<m_tmpSolverBodyPool.size();i++) - { - int bodyIndex = m_tmpSolverBodyPool[i].m_originalBodyIndex; - //b3Assert(i==bodyIndex); - - b3RigidBodyData* body = &bodies[bodyIndex]; - if (body->m_invMass) - { - if (infoGlobal.m_splitImpulse) - m_tmpSolverBodyPool[i].writebackVelocityAndTransform(infoGlobal.m_timeStep, infoGlobal.m_splitImpulseTurnErp); - else - m_tmpSolverBodyPool[i].writebackVelocity(); - - if (m_usePgs) - { - body->m_linVel = m_tmpSolverBodyPool[i].m_linearVelocity; - body->m_angVel = m_tmpSolverBodyPool[i].m_angularVelocity; - } else - { - b3Scalar factor = 1.f/b3Scalar(m_bodyCount[bodyIndex]); - - b3Vector3 deltaLinVel = m_deltaLinearVelocities[bodyIndex]*factor; - b3Vector3 deltaAngVel = m_deltaAngularVelocities[bodyIndex]*factor; - //printf("body %d\n",bodyIndex); - //printf("deltaLinVel = %f,%f,%f\n",deltaLinVel.getX(),deltaLinVel.getY(),deltaLinVel.getZ()); - //printf("deltaAngVel = %f,%f,%f\n",deltaAngVel.getX(),deltaAngVel.getY(),deltaAngVel.getZ()); - - body->m_linVel += deltaLinVel; - body->m_angVel += deltaAngVel; - } - - if (infoGlobal.m_splitImpulse) - { - body->m_pos = m_tmpSolverBodyPool[i].m_worldTransform.getOrigin(); - b3Quaternion orn; - orn = m_tmpSolverBodyPool[i].m_worldTransform.getRotation(); - body->m_quat = orn; - } - } - } - } - - - m_tmpSolverContactConstraintPool.resizeNoInitialize(0); - m_tmpSolverNonContactConstraintPool.resizeNoInitialize(0); - m_tmpSolverContactFrictionConstraintPool.resizeNoInitialize(0); - m_tmpSolverContactRollingFrictionConstraintPool.resizeNoInitialize(0); - - m_tmpSolverBodyPool.resizeNoInitialize(0); - return 0.f; -} - - - -void b3PgsJacobiSolver::reset() -{ - m_btSeed2 = 0; -}
\ No newline at end of file |