diff options
Diffstat (limited to 'thirdparty/bullet/src/Bullet3Common/b3Quaternion.h')
-rw-r--r-- | thirdparty/bullet/src/Bullet3Common/b3Quaternion.h | 918 |
1 files changed, 918 insertions, 0 deletions
diff --git a/thirdparty/bullet/src/Bullet3Common/b3Quaternion.h b/thirdparty/bullet/src/Bullet3Common/b3Quaternion.h new file mode 100644 index 0000000000..ad20543348 --- /dev/null +++ b/thirdparty/bullet/src/Bullet3Common/b3Quaternion.h @@ -0,0 +1,918 @@ +/* +Copyright (c) 2003-2013 Gino van den Bergen / Erwin Coumans http://bulletphysics.org + +This software is provided 'as-is', without any express or implied warranty. +In no event will the authors be held liable for any damages arising from the use of this software. +Permission is granted to anyone to use this software for any purpose, +including commercial applications, and to alter it and redistribute it freely, +subject to the following restrictions: + +1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. +2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. +3. This notice may not be removed or altered from any source distribution. +*/ + + + +#ifndef B3_SIMD__QUATERNION_H_ +#define B3_SIMD__QUATERNION_H_ + + +#include "b3Vector3.h" +#include "b3QuadWord.h" + + + + + +#ifdef B3_USE_SSE + +const __m128 B3_ATTRIBUTE_ALIGNED16(b3vOnes) = {1.0f, 1.0f, 1.0f, 1.0f}; + +#endif + +#if defined(B3_USE_SSE) || defined(B3_USE_NEON) + +const b3SimdFloat4 B3_ATTRIBUTE_ALIGNED16(b3vQInv) = {-0.0f, -0.0f, -0.0f, +0.0f}; +const b3SimdFloat4 B3_ATTRIBUTE_ALIGNED16(b3vPPPM) = {+0.0f, +0.0f, +0.0f, -0.0f}; + +#endif + +/**@brief The b3Quaternion implements quaternion to perform linear algebra rotations in combination with b3Matrix3x3, b3Vector3 and b3Transform. */ +class b3Quaternion : public b3QuadWord { +public: + /**@brief No initialization constructor */ + b3Quaternion() {} + +#if (defined(B3_USE_SSE_IN_API) && defined(B3_USE_SSE))|| defined(B3_USE_NEON) + // Set Vector + B3_FORCE_INLINE b3Quaternion(const b3SimdFloat4 vec) + { + mVec128 = vec; + } + + // Copy constructor + B3_FORCE_INLINE b3Quaternion(const b3Quaternion& rhs) + { + mVec128 = rhs.mVec128; + } + + // Assignment Operator + B3_FORCE_INLINE b3Quaternion& + operator=(const b3Quaternion& v) + { + mVec128 = v.mVec128; + + return *this; + } + +#endif + + // template <typename b3Scalar> + // explicit Quaternion(const b3Scalar *v) : Tuple4<b3Scalar>(v) {} + /**@brief Constructor from scalars */ + b3Quaternion(const b3Scalar& _x, const b3Scalar& _y, const b3Scalar& _z, const b3Scalar& _w) + : b3QuadWord(_x, _y, _z, _w) + { + //b3Assert(!((_x==1.f) && (_y==0.f) && (_z==0.f) && (_w==0.f))); + } + /**@brief Axis angle Constructor + * @param axis The axis which the rotation is around + * @param angle The magnitude of the rotation around the angle (Radians) */ + b3Quaternion(const b3Vector3& _axis, const b3Scalar& _angle) + { + setRotation(_axis, _angle); + } + /**@brief Constructor from Euler angles + * @param yaw Angle around Y unless B3_EULER_DEFAULT_ZYX defined then Z + * @param pitch Angle around X unless B3_EULER_DEFAULT_ZYX defined then Y + * @param roll Angle around Z unless B3_EULER_DEFAULT_ZYX defined then X */ + b3Quaternion(const b3Scalar& yaw, const b3Scalar& pitch, const b3Scalar& roll) + { +#ifndef B3_EULER_DEFAULT_ZYX + setEuler(yaw, pitch, roll); +#else + setEulerZYX(yaw, pitch, roll); +#endif + } + /**@brief Set the rotation using axis angle notation + * @param axis The axis around which to rotate + * @param angle The magnitude of the rotation in Radians */ + void setRotation(const b3Vector3& axis, const b3Scalar& _angle) + { + b3Scalar d = axis.length(); + b3Assert(d != b3Scalar(0.0)); + b3Scalar s = b3Sin(_angle * b3Scalar(0.5)) / d; + setValue(axis.getX() * s, axis.getY() * s, axis.getZ() * s, + b3Cos(_angle * b3Scalar(0.5))); + } + /**@brief Set the quaternion using Euler angles + * @param yaw Angle around Y + * @param pitch Angle around X + * @param roll Angle around Z */ + void setEuler(const b3Scalar& yaw, const b3Scalar& pitch, const b3Scalar& roll) + { + b3Scalar halfYaw = b3Scalar(yaw) * b3Scalar(0.5); + b3Scalar halfPitch = b3Scalar(pitch) * b3Scalar(0.5); + b3Scalar halfRoll = b3Scalar(roll) * b3Scalar(0.5); + b3Scalar cosYaw = b3Cos(halfYaw); + b3Scalar sinYaw = b3Sin(halfYaw); + b3Scalar cosPitch = b3Cos(halfPitch); + b3Scalar sinPitch = b3Sin(halfPitch); + b3Scalar cosRoll = b3Cos(halfRoll); + b3Scalar sinRoll = b3Sin(halfRoll); + setValue(cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw, + cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw, + sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw, + cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw); + } + + /**@brief Set the quaternion using euler angles + * @param yaw Angle around Z + * @param pitch Angle around Y + * @param roll Angle around X */ + void setEulerZYX(const b3Scalar& yawZ, const b3Scalar& pitchY, const b3Scalar& rollX) + { + b3Scalar halfYaw = b3Scalar(yawZ) * b3Scalar(0.5); + b3Scalar halfPitch = b3Scalar(pitchY) * b3Scalar(0.5); + b3Scalar halfRoll = b3Scalar(rollX) * b3Scalar(0.5); + b3Scalar cosYaw = b3Cos(halfYaw); + b3Scalar sinYaw = b3Sin(halfYaw); + b3Scalar cosPitch = b3Cos(halfPitch); + b3Scalar sinPitch = b3Sin(halfPitch); + b3Scalar cosRoll = b3Cos(halfRoll); + b3Scalar sinRoll = b3Sin(halfRoll); + setValue(sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw, //x + cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw, //y + cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw, //z + cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw); //formerly yzx + normalize(); + } + + /**@brief Get the euler angles from this quaternion + * @param yaw Angle around Z + * @param pitch Angle around Y + * @param roll Angle around X */ + void getEulerZYX(b3Scalar& yawZ, b3Scalar& pitchY, b3Scalar& rollX) const + { + b3Scalar squ; + b3Scalar sqx; + b3Scalar sqy; + b3Scalar sqz; + b3Scalar sarg; + sqx = m_floats[0] * m_floats[0]; + sqy = m_floats[1] * m_floats[1]; + sqz = m_floats[2] * m_floats[2]; + squ = m_floats[3] * m_floats[3]; + rollX = b3Atan2(2 * (m_floats[1] * m_floats[2] + m_floats[3] * m_floats[0]), squ - sqx - sqy + sqz); + sarg = b3Scalar(-2.) * (m_floats[0] * m_floats[2] - m_floats[3] * m_floats[1]); + pitchY = sarg <= b3Scalar(-1.0) ? b3Scalar(-0.5) * B3_PI: (sarg >= b3Scalar(1.0) ? b3Scalar(0.5) * B3_PI : b3Asin(sarg)); + yawZ = b3Atan2(2 * (m_floats[0] * m_floats[1] + m_floats[3] * m_floats[2]), squ + sqx - sqy - sqz); + } + + /**@brief Add two quaternions + * @param q The quaternion to add to this one */ + B3_FORCE_INLINE b3Quaternion& operator+=(const b3Quaternion& q) + { +#if defined (B3_USE_SSE_IN_API) && defined (B3_USE_SSE) + mVec128 = _mm_add_ps(mVec128, q.mVec128); +#elif defined(B3_USE_NEON) + mVec128 = vaddq_f32(mVec128, q.mVec128); +#else + m_floats[0] += q.getX(); + m_floats[1] += q.getY(); + m_floats[2] += q.getZ(); + m_floats[3] += q.m_floats[3]; +#endif + return *this; + } + + /**@brief Subtract out a quaternion + * @param q The quaternion to subtract from this one */ + b3Quaternion& operator-=(const b3Quaternion& q) + { +#if defined (B3_USE_SSE_IN_API) && defined (B3_USE_SSE) + mVec128 = _mm_sub_ps(mVec128, q.mVec128); +#elif defined(B3_USE_NEON) + mVec128 = vsubq_f32(mVec128, q.mVec128); +#else + m_floats[0] -= q.getX(); + m_floats[1] -= q.getY(); + m_floats[2] -= q.getZ(); + m_floats[3] -= q.m_floats[3]; +#endif + return *this; + } + + /**@brief Scale this quaternion + * @param s The scalar to scale by */ + b3Quaternion& operator*=(const b3Scalar& s) + { +#if defined (B3_USE_SSE_IN_API) && defined (B3_USE_SSE) + __m128 vs = _mm_load_ss(&s); // (S 0 0 0) + vs = b3_pshufd_ps(vs, 0); // (S S S S) + mVec128 = _mm_mul_ps(mVec128, vs); +#elif defined(B3_USE_NEON) + mVec128 = vmulq_n_f32(mVec128, s); +#else + m_floats[0] *= s; + m_floats[1] *= s; + m_floats[2] *= s; + m_floats[3] *= s; +#endif + return *this; + } + + /**@brief Multiply this quaternion by q on the right + * @param q The other quaternion + * Equivilant to this = this * q */ + b3Quaternion& operator*=(const b3Quaternion& q) + { +#if defined (B3_USE_SSE_IN_API) && defined (B3_USE_SSE) + __m128 vQ2 = q.get128(); + + __m128 A1 = b3_pshufd_ps(mVec128, B3_SHUFFLE(0,1,2,0)); + __m128 B1 = b3_pshufd_ps(vQ2, B3_SHUFFLE(3,3,3,0)); + + A1 = A1 * B1; + + __m128 A2 = b3_pshufd_ps(mVec128, B3_SHUFFLE(1,2,0,1)); + __m128 B2 = b3_pshufd_ps(vQ2, B3_SHUFFLE(2,0,1,1)); + + A2 = A2 * B2; + + B1 = b3_pshufd_ps(mVec128, B3_SHUFFLE(2,0,1,2)); + B2 = b3_pshufd_ps(vQ2, B3_SHUFFLE(1,2,0,2)); + + B1 = B1 * B2; // A3 *= B3 + + mVec128 = b3_splat_ps(mVec128, 3); // A0 + mVec128 = mVec128 * vQ2; // A0 * B0 + + A1 = A1 + A2; // AB12 + mVec128 = mVec128 - B1; // AB03 = AB0 - AB3 + A1 = _mm_xor_ps(A1, b3vPPPM); // change sign of the last element + mVec128 = mVec128+ A1; // AB03 + AB12 + +#elif defined(B3_USE_NEON) + + float32x4_t vQ1 = mVec128; + float32x4_t vQ2 = q.get128(); + float32x4_t A0, A1, B1, A2, B2, A3, B3; + float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz; + + { + float32x2x2_t tmp; + tmp = vtrn_f32( vget_high_f32(vQ1), vget_low_f32(vQ1) ); // {z x}, {w y} + vQ1zx = tmp.val[0]; + + tmp = vtrn_f32( vget_high_f32(vQ2), vget_low_f32(vQ2) ); // {z x}, {w y} + vQ2zx = tmp.val[0]; + } + vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1); + + vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1); + + vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1); + vQ2xz = vext_f32(vQ2zx, vQ2zx, 1); + + A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx); // X Y z x + B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx); // W W W X + + A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1)); + B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1)); + + A3 = vcombine_f32(vQ1zx, vQ1yz); // Z X Y Z + B3 = vcombine_f32(vQ2yz, vQ2xz); // Y Z x z + + A1 = vmulq_f32(A1, B1); + A2 = vmulq_f32(A2, B2); + A3 = vmulq_f32(A3, B3); // A3 *= B3 + A0 = vmulq_lane_f32(vQ2, vget_high_f32(vQ1), 1); // A0 * B0 + + A1 = vaddq_f32(A1, A2); // AB12 = AB1 + AB2 + A0 = vsubq_f32(A0, A3); // AB03 = AB0 - AB3 + + // change the sign of the last element + A1 = (b3SimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)b3vPPPM); + A0 = vaddq_f32(A0, A1); // AB03 + AB12 + + mVec128 = A0; +#else + setValue( + m_floats[3] * q.getX() + m_floats[0] * q.m_floats[3] + m_floats[1] * q.getZ() - m_floats[2] * q.getY(), + m_floats[3] * q.getY() + m_floats[1] * q.m_floats[3] + m_floats[2] * q.getX() - m_floats[0] * q.getZ(), + m_floats[3] * q.getZ() + m_floats[2] * q.m_floats[3] + m_floats[0] * q.getY() - m_floats[1] * q.getX(), + m_floats[3] * q.m_floats[3] - m_floats[0] * q.getX() - m_floats[1] * q.getY() - m_floats[2] * q.getZ()); +#endif + return *this; + } + /**@brief Return the dot product between this quaternion and another + * @param q The other quaternion */ + b3Scalar dot(const b3Quaternion& q) const + { +#if defined (B3_USE_SSE_IN_API) && defined (B3_USE_SSE) + __m128 vd; + + vd = _mm_mul_ps(mVec128, q.mVec128); + + __m128 t = _mm_movehl_ps(vd, vd); + vd = _mm_add_ps(vd, t); + t = _mm_shuffle_ps(vd, vd, 0x55); + vd = _mm_add_ss(vd, t); + + return _mm_cvtss_f32(vd); +#elif defined(B3_USE_NEON) + float32x4_t vd = vmulq_f32(mVec128, q.mVec128); + float32x2_t x = vpadd_f32(vget_low_f32(vd), vget_high_f32(vd)); + x = vpadd_f32(x, x); + return vget_lane_f32(x, 0); +#else + return m_floats[0] * q.getX() + + m_floats[1] * q.getY() + + m_floats[2] * q.getZ() + + m_floats[3] * q.m_floats[3]; +#endif + } + + /**@brief Return the length squared of the quaternion */ + b3Scalar length2() const + { + return dot(*this); + } + + /**@brief Return the length of the quaternion */ + b3Scalar length() const + { + return b3Sqrt(length2()); + } + + /**@brief Normalize the quaternion + * Such that x^2 + y^2 + z^2 +w^2 = 1 */ + b3Quaternion& normalize() + { +#if defined (B3_USE_SSE_IN_API) && defined (B3_USE_SSE) + __m128 vd; + + vd = _mm_mul_ps(mVec128, mVec128); + + __m128 t = _mm_movehl_ps(vd, vd); + vd = _mm_add_ps(vd, t); + t = _mm_shuffle_ps(vd, vd, 0x55); + vd = _mm_add_ss(vd, t); + + vd = _mm_sqrt_ss(vd); + vd = _mm_div_ss(b3vOnes, vd); + vd = b3_pshufd_ps(vd, 0); // splat + mVec128 = _mm_mul_ps(mVec128, vd); + + return *this; +#else + return *this /= length(); +#endif + } + + /**@brief Return a scaled version of this quaternion + * @param s The scale factor */ + B3_FORCE_INLINE b3Quaternion + operator*(const b3Scalar& s) const + { +#if defined (B3_USE_SSE_IN_API) && defined (B3_USE_SSE) + __m128 vs = _mm_load_ss(&s); // (S 0 0 0) + vs = b3_pshufd_ps(vs, 0x00); // (S S S S) + + return b3Quaternion(_mm_mul_ps(mVec128, vs)); +#elif defined(B3_USE_NEON) + return b3Quaternion(vmulq_n_f32(mVec128, s)); +#else + return b3Quaternion(getX() * s, getY() * s, getZ() * s, m_floats[3] * s); +#endif + } + + /**@brief Return an inversely scaled versionof this quaternion + * @param s The inverse scale factor */ + b3Quaternion operator/(const b3Scalar& s) const + { + b3Assert(s != b3Scalar(0.0)); + return *this * (b3Scalar(1.0) / s); + } + + /**@brief Inversely scale this quaternion + * @param s The scale factor */ + b3Quaternion& operator/=(const b3Scalar& s) + { + b3Assert(s != b3Scalar(0.0)); + return *this *= b3Scalar(1.0) / s; + } + + /**@brief Return a normalized version of this quaternion */ + b3Quaternion normalized() const + { + return *this / length(); + } + /**@brief Return the angle between this quaternion and the other + * @param q The other quaternion */ + b3Scalar angle(const b3Quaternion& q) const + { + b3Scalar s = b3Sqrt(length2() * q.length2()); + b3Assert(s != b3Scalar(0.0)); + return b3Acos(dot(q) / s); + } + /**@brief Return the angle of rotation represented by this quaternion */ + b3Scalar getAngle() const + { + b3Scalar s = b3Scalar(2.) * b3Acos(m_floats[3]); + return s; + } + + /**@brief Return the axis of the rotation represented by this quaternion */ + b3Vector3 getAxis() const + { + b3Scalar s_squared = 1.f-m_floats[3]*m_floats[3]; + + if (s_squared < b3Scalar(10.) * B3_EPSILON) //Check for divide by zero + return b3MakeVector3(1.0, 0.0, 0.0); // Arbitrary + b3Scalar s = 1.f/b3Sqrt(s_squared); + return b3MakeVector3(m_floats[0] * s, m_floats[1] * s, m_floats[2] * s); + } + + /**@brief Return the inverse of this quaternion */ + b3Quaternion inverse() const + { +#if defined (B3_USE_SSE_IN_API) && defined (B3_USE_SSE) + return b3Quaternion(_mm_xor_ps(mVec128, b3vQInv)); +#elif defined(B3_USE_NEON) + return b3Quaternion((b3SimdFloat4)veorq_s32((int32x4_t)mVec128, (int32x4_t)b3vQInv)); +#else + return b3Quaternion(-m_floats[0], -m_floats[1], -m_floats[2], m_floats[3]); +#endif + } + + /**@brief Return the sum of this quaternion and the other + * @param q2 The other quaternion */ + B3_FORCE_INLINE b3Quaternion + operator+(const b3Quaternion& q2) const + { +#if defined (B3_USE_SSE_IN_API) && defined (B3_USE_SSE) + return b3Quaternion(_mm_add_ps(mVec128, q2.mVec128)); +#elif defined(B3_USE_NEON) + return b3Quaternion(vaddq_f32(mVec128, q2.mVec128)); +#else + const b3Quaternion& q1 = *this; + return b3Quaternion(q1.getX() + q2.getX(), q1.getY() + q2.getY(), q1.getZ() + q2.getZ(), q1.m_floats[3] + q2.m_floats[3]); +#endif + } + + /**@brief Return the difference between this quaternion and the other + * @param q2 The other quaternion */ + B3_FORCE_INLINE b3Quaternion + operator-(const b3Quaternion& q2) const + { +#if defined (B3_USE_SSE_IN_API) && defined (B3_USE_SSE) + return b3Quaternion(_mm_sub_ps(mVec128, q2.mVec128)); +#elif defined(B3_USE_NEON) + return b3Quaternion(vsubq_f32(mVec128, q2.mVec128)); +#else + const b3Quaternion& q1 = *this; + return b3Quaternion(q1.getX() - q2.getX(), q1.getY() - q2.getY(), q1.getZ() - q2.getZ(), q1.m_floats[3] - q2.m_floats[3]); +#endif + } + + /**@brief Return the negative of this quaternion + * This simply negates each element */ + B3_FORCE_INLINE b3Quaternion operator-() const + { +#if defined (B3_USE_SSE_IN_API) && defined (B3_USE_SSE) + return b3Quaternion(_mm_xor_ps(mVec128, b3vMzeroMask)); +#elif defined(B3_USE_NEON) + return b3Quaternion((b3SimdFloat4)veorq_s32((int32x4_t)mVec128, (int32x4_t)b3vMzeroMask) ); +#else + const b3Quaternion& q2 = *this; + return b3Quaternion( - q2.getX(), - q2.getY(), - q2.getZ(), - q2.m_floats[3]); +#endif + } + /**@todo document this and it's use */ + B3_FORCE_INLINE b3Quaternion farthest( const b3Quaternion& qd) const + { + b3Quaternion diff,sum; + diff = *this - qd; + sum = *this + qd; + if( diff.dot(diff) > sum.dot(sum) ) + return qd; + return (-qd); + } + + /**@todo document this and it's use */ + B3_FORCE_INLINE b3Quaternion nearest( const b3Quaternion& qd) const + { + b3Quaternion diff,sum; + diff = *this - qd; + sum = *this + qd; + if( diff.dot(diff) < sum.dot(sum) ) + return qd; + return (-qd); + } + + + /**@brief Return the quaternion which is the result of Spherical Linear Interpolation between this and the other quaternion + * @param q The other quaternion to interpolate with + * @param t The ratio between this and q to interpolate. If t = 0 the result is this, if t=1 the result is q. + * Slerp interpolates assuming constant velocity. */ + b3Quaternion slerp(const b3Quaternion& q, const b3Scalar& t) const + { + b3Scalar magnitude = b3Sqrt(length2() * q.length2()); + b3Assert(magnitude > b3Scalar(0)); + + b3Scalar product = dot(q) / magnitude; + if (b3Fabs(product) < b3Scalar(1)) + { + // Take care of long angle case see http://en.wikipedia.org/wiki/Slerp + const b3Scalar sign = (product < 0) ? b3Scalar(-1) : b3Scalar(1); + + const b3Scalar theta = b3Acos(sign * product); + const b3Scalar s1 = b3Sin(sign * t * theta); + const b3Scalar d = b3Scalar(1.0) / b3Sin(theta); + const b3Scalar s0 = b3Sin((b3Scalar(1.0) - t) * theta); + + return b3Quaternion( + (m_floats[0] * s0 + q.getX() * s1) * d, + (m_floats[1] * s0 + q.getY() * s1) * d, + (m_floats[2] * s0 + q.getZ() * s1) * d, + (m_floats[3] * s0 + q.m_floats[3] * s1) * d); + } + else + { + return *this; + } + } + + static const b3Quaternion& getIdentity() + { + static const b3Quaternion identityQuat(b3Scalar(0.),b3Scalar(0.),b3Scalar(0.),b3Scalar(1.)); + return identityQuat; + } + + B3_FORCE_INLINE const b3Scalar& getW() const { return m_floats[3]; } + + +}; + + + + + +/**@brief Return the product of two quaternions */ +B3_FORCE_INLINE b3Quaternion +operator*(const b3Quaternion& q1, const b3Quaternion& q2) +{ +#if defined (B3_USE_SSE_IN_API) && defined (B3_USE_SSE) + __m128 vQ1 = q1.get128(); + __m128 vQ2 = q2.get128(); + __m128 A0, A1, B1, A2, B2; + + A1 = b3_pshufd_ps(vQ1, B3_SHUFFLE(0,1,2,0)); // X Y z x // vtrn + B1 = b3_pshufd_ps(vQ2, B3_SHUFFLE(3,3,3,0)); // W W W X // vdup vext + + A1 = A1 * B1; + + A2 = b3_pshufd_ps(vQ1, B3_SHUFFLE(1,2,0,1)); // Y Z X Y // vext + B2 = b3_pshufd_ps(vQ2, B3_SHUFFLE(2,0,1,1)); // z x Y Y // vtrn vdup + + A2 = A2 * B2; + + B1 = b3_pshufd_ps(vQ1, B3_SHUFFLE(2,0,1,2)); // z x Y Z // vtrn vext + B2 = b3_pshufd_ps(vQ2, B3_SHUFFLE(1,2,0,2)); // Y Z x z // vext vtrn + + B1 = B1 * B2; // A3 *= B3 + + A0 = b3_splat_ps(vQ1, 3); // A0 + A0 = A0 * vQ2; // A0 * B0 + + A1 = A1 + A2; // AB12 + A0 = A0 - B1; // AB03 = AB0 - AB3 + + A1 = _mm_xor_ps(A1, b3vPPPM); // change sign of the last element + A0 = A0 + A1; // AB03 + AB12 + + return b3Quaternion(A0); + +#elif defined(B3_USE_NEON) + + float32x4_t vQ1 = q1.get128(); + float32x4_t vQ2 = q2.get128(); + float32x4_t A0, A1, B1, A2, B2, A3, B3; + float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz; + + { + float32x2x2_t tmp; + tmp = vtrn_f32( vget_high_f32(vQ1), vget_low_f32(vQ1) ); // {z x}, {w y} + vQ1zx = tmp.val[0]; + + tmp = vtrn_f32( vget_high_f32(vQ2), vget_low_f32(vQ2) ); // {z x}, {w y} + vQ2zx = tmp.val[0]; + } + vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1); + + vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1); + + vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1); + vQ2xz = vext_f32(vQ2zx, vQ2zx, 1); + + A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx); // X Y z x + B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx); // W W W X + + A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1)); + B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1)); + + A3 = vcombine_f32(vQ1zx, vQ1yz); // Z X Y Z + B3 = vcombine_f32(vQ2yz, vQ2xz); // Y Z x z + + A1 = vmulq_f32(A1, B1); + A2 = vmulq_f32(A2, B2); + A3 = vmulq_f32(A3, B3); // A3 *= B3 + A0 = vmulq_lane_f32(vQ2, vget_high_f32(vQ1), 1); // A0 * B0 + + A1 = vaddq_f32(A1, A2); // AB12 = AB1 + AB2 + A0 = vsubq_f32(A0, A3); // AB03 = AB0 - AB3 + + // change the sign of the last element + A1 = (b3SimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)b3vPPPM); + A0 = vaddq_f32(A0, A1); // AB03 + AB12 + + return b3Quaternion(A0); + +#else + return b3Quaternion( + q1.getW() * q2.getX() + q1.getX() * q2.getW() + q1.getY() * q2.getZ() - q1.getZ() * q2.getY(), + q1.getW() * q2.getY() + q1.getY() * q2.getW() + q1.getZ() * q2.getX() - q1.getX() * q2.getZ(), + q1.getW() * q2.getZ() + q1.getZ() * q2.getW() + q1.getX() * q2.getY() - q1.getY() * q2.getX(), + q1.getW() * q2.getW() - q1.getX() * q2.getX() - q1.getY() * q2.getY() - q1.getZ() * q2.getZ()); +#endif +} + +B3_FORCE_INLINE b3Quaternion +operator*(const b3Quaternion& q, const b3Vector3& w) +{ +#if defined (B3_USE_SSE_IN_API) && defined (B3_USE_SSE) + __m128 vQ1 = q.get128(); + __m128 vQ2 = w.get128(); + __m128 A1, B1, A2, B2, A3, B3; + + A1 = b3_pshufd_ps(vQ1, B3_SHUFFLE(3,3,3,0)); + B1 = b3_pshufd_ps(vQ2, B3_SHUFFLE(0,1,2,0)); + + A1 = A1 * B1; + + A2 = b3_pshufd_ps(vQ1, B3_SHUFFLE(1,2,0,1)); + B2 = b3_pshufd_ps(vQ2, B3_SHUFFLE(2,0,1,1)); + + A2 = A2 * B2; + + A3 = b3_pshufd_ps(vQ1, B3_SHUFFLE(2,0,1,2)); + B3 = b3_pshufd_ps(vQ2, B3_SHUFFLE(1,2,0,2)); + + A3 = A3 * B3; // A3 *= B3 + + A1 = A1 + A2; // AB12 + A1 = _mm_xor_ps(A1, b3vPPPM); // change sign of the last element + A1 = A1 - A3; // AB123 = AB12 - AB3 + + return b3Quaternion(A1); + +#elif defined(B3_USE_NEON) + + float32x4_t vQ1 = q.get128(); + float32x4_t vQ2 = w.get128(); + float32x4_t A1, B1, A2, B2, A3, B3; + float32x2_t vQ1wx, vQ2zx, vQ1yz, vQ2yz, vQ1zx, vQ2xz; + + vQ1wx = vext_f32(vget_high_f32(vQ1), vget_low_f32(vQ1), 1); + { + float32x2x2_t tmp; + + tmp = vtrn_f32( vget_high_f32(vQ2), vget_low_f32(vQ2) ); // {z x}, {w y} + vQ2zx = tmp.val[0]; + + tmp = vtrn_f32( vget_high_f32(vQ1), vget_low_f32(vQ1) ); // {z x}, {w y} + vQ1zx = tmp.val[0]; + } + + vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1); + + vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1); + vQ2xz = vext_f32(vQ2zx, vQ2zx, 1); + + A1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ1), 1), vQ1wx); // W W W X + B1 = vcombine_f32(vget_low_f32(vQ2), vQ2zx); // X Y z x + + A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1)); + B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1)); + + A3 = vcombine_f32(vQ1zx, vQ1yz); // Z X Y Z + B3 = vcombine_f32(vQ2yz, vQ2xz); // Y Z x z + + A1 = vmulq_f32(A1, B1); + A2 = vmulq_f32(A2, B2); + A3 = vmulq_f32(A3, B3); // A3 *= B3 + + A1 = vaddq_f32(A1, A2); // AB12 = AB1 + AB2 + + // change the sign of the last element + A1 = (b3SimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)b3vPPPM); + + A1 = vsubq_f32(A1, A3); // AB123 = AB12 - AB3 + + return b3Quaternion(A1); + +#else + return b3Quaternion( + q.getW() * w.getX() + q.getY() * w.getZ() - q.getZ() * w.getY(), + q.getW() * w.getY() + q.getZ() * w.getX() - q.getX() * w.getZ(), + q.getW() * w.getZ() + q.getX() * w.getY() - q.getY() * w.getX(), + -q.getX() * w.getX() - q.getY() * w.getY() - q.getZ() * w.getZ()); +#endif +} + +B3_FORCE_INLINE b3Quaternion +operator*(const b3Vector3& w, const b3Quaternion& q) +{ +#if defined (B3_USE_SSE_IN_API) && defined (B3_USE_SSE) + __m128 vQ1 = w.get128(); + __m128 vQ2 = q.get128(); + __m128 A1, B1, A2, B2, A3, B3; + + A1 = b3_pshufd_ps(vQ1, B3_SHUFFLE(0,1,2,0)); // X Y z x + B1 = b3_pshufd_ps(vQ2, B3_SHUFFLE(3,3,3,0)); // W W W X + + A1 = A1 * B1; + + A2 = b3_pshufd_ps(vQ1, B3_SHUFFLE(1,2,0,1)); + B2 = b3_pshufd_ps(vQ2, B3_SHUFFLE(2,0,1,1)); + + A2 = A2 *B2; + + A3 = b3_pshufd_ps(vQ1, B3_SHUFFLE(2,0,1,2)); + B3 = b3_pshufd_ps(vQ2, B3_SHUFFLE(1,2,0,2)); + + A3 = A3 * B3; // A3 *= B3 + + A1 = A1 + A2; // AB12 + A1 = _mm_xor_ps(A1, b3vPPPM); // change sign of the last element + A1 = A1 - A3; // AB123 = AB12 - AB3 + + return b3Quaternion(A1); + +#elif defined(B3_USE_NEON) + + float32x4_t vQ1 = w.get128(); + float32x4_t vQ2 = q.get128(); + float32x4_t A1, B1, A2, B2, A3, B3; + float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz; + + { + float32x2x2_t tmp; + + tmp = vtrn_f32( vget_high_f32(vQ1), vget_low_f32(vQ1) ); // {z x}, {w y} + vQ1zx = tmp.val[0]; + + tmp = vtrn_f32( vget_high_f32(vQ2), vget_low_f32(vQ2) ); // {z x}, {w y} + vQ2zx = tmp.val[0]; + } + vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1); + + vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1); + + vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1); + vQ2xz = vext_f32(vQ2zx, vQ2zx, 1); + + A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx); // X Y z x + B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx); // W W W X + + A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1)); + B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1)); + + A3 = vcombine_f32(vQ1zx, vQ1yz); // Z X Y Z + B3 = vcombine_f32(vQ2yz, vQ2xz); // Y Z x z + + A1 = vmulq_f32(A1, B1); + A2 = vmulq_f32(A2, B2); + A3 = vmulq_f32(A3, B3); // A3 *= B3 + + A1 = vaddq_f32(A1, A2); // AB12 = AB1 + AB2 + + // change the sign of the last element + A1 = (b3SimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)b3vPPPM); + + A1 = vsubq_f32(A1, A3); // AB123 = AB12 - AB3 + + return b3Quaternion(A1); + +#else + return b3Quaternion( + +w.getX() * q.getW() + w.getY() * q.getZ() - w.getZ() * q.getY(), + +w.getY() * q.getW() + w.getZ() * q.getX() - w.getX() * q.getZ(), + +w.getZ() * q.getW() + w.getX() * q.getY() - w.getY() * q.getX(), + -w.getX() * q.getX() - w.getY() * q.getY() - w.getZ() * q.getZ()); +#endif +} + +/**@brief Calculate the dot product between two quaternions */ +B3_FORCE_INLINE b3Scalar +b3Dot(const b3Quaternion& q1, const b3Quaternion& q2) +{ + return q1.dot(q2); +} + + +/**@brief Return the length of a quaternion */ +B3_FORCE_INLINE b3Scalar +b3Length(const b3Quaternion& q) +{ + return q.length(); +} + +/**@brief Return the angle between two quaternions*/ +B3_FORCE_INLINE b3Scalar +b3Angle(const b3Quaternion& q1, const b3Quaternion& q2) +{ + return q1.angle(q2); +} + +/**@brief Return the inverse of a quaternion*/ +B3_FORCE_INLINE b3Quaternion +b3Inverse(const b3Quaternion& q) +{ + return q.inverse(); +} + +/**@brief Return the result of spherical linear interpolation betwen two quaternions + * @param q1 The first quaternion + * @param q2 The second quaternion + * @param t The ration between q1 and q2. t = 0 return q1, t=1 returns q2 + * Slerp assumes constant velocity between positions. */ +B3_FORCE_INLINE b3Quaternion +b3Slerp(const b3Quaternion& q1, const b3Quaternion& q2, const b3Scalar& t) +{ + return q1.slerp(q2, t); +} + +B3_FORCE_INLINE b3Quaternion +b3QuatMul(const b3Quaternion& rot0, const b3Quaternion& rot1) +{ + return rot0*rot1; +} + +B3_FORCE_INLINE b3Quaternion +b3QuatNormalized(const b3Quaternion& orn) +{ + return orn.normalized(); +} + + + +B3_FORCE_INLINE b3Vector3 +b3QuatRotate(const b3Quaternion& rotation, const b3Vector3& v) +{ + b3Quaternion q = rotation * v; + q *= rotation.inverse(); +#if defined (B3_USE_SSE_IN_API) && defined (B3_USE_SSE) + return b3MakeVector3(_mm_and_ps(q.get128(), b3vFFF0fMask)); +#elif defined(B3_USE_NEON) + return b3MakeVector3((float32x4_t)vandq_s32((int32x4_t)q.get128(), b3vFFF0Mask)); +#else + return b3MakeVector3(q.getX(),q.getY(),q.getZ()); +#endif +} + +B3_FORCE_INLINE b3Quaternion +b3ShortestArcQuat(const b3Vector3& v0, const b3Vector3& v1) // Game Programming Gems 2.10. make sure v0,v1 are normalized +{ + b3Vector3 c = v0.cross(v1); + b3Scalar d = v0.dot(v1); + + if (d < -1.0 + B3_EPSILON) + { + b3Vector3 n,unused; + b3PlaneSpace1(v0,n,unused); + return b3Quaternion(n.getX(),n.getY(),n.getZ(),0.0f); // just pick any vector that is orthogonal to v0 + } + + b3Scalar s = b3Sqrt((1.0f + d) * 2.0f); + b3Scalar rs = 1.0f / s; + + return b3Quaternion(c.getX()*rs,c.getY()*rs,c.getZ()*rs,s * 0.5f); + +} + +B3_FORCE_INLINE b3Quaternion +b3ShortestArcQuatNormalize2(b3Vector3& v0,b3Vector3& v1) +{ + v0.normalize(); + v1.normalize(); + return b3ShortestArcQuat(v0,v1); +} + +#endif //B3_SIMD__QUATERNION_H_ + + + |