summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/LinearMath/btVector3.h
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/bullet/LinearMath/btVector3.h')
-rw-r--r--thirdparty/bullet/LinearMath/btVector3.h1073
1 files changed, 523 insertions, 550 deletions
diff --git a/thirdparty/bullet/LinearMath/btVector3.h b/thirdparty/bullet/LinearMath/btVector3.h
index c69effa96e..61fd8d1e46 100644
--- a/thirdparty/bullet/LinearMath/btVector3.h
+++ b/thirdparty/bullet/LinearMath/btVector3.h
@@ -12,8 +12,6 @@ subject to the following restrictions:
3. This notice may not be removed or altered from any source distribution.
*/
-
-
#ifndef BT_VECTOR3_H
#define BT_VECTOR3_H
@@ -28,25 +26,24 @@ subject to the following restrictions:
#else
#define btVector3Data btVector3FloatData
#define btVector3DataName "btVector3FloatData"
-#endif //BT_USE_DOUBLE_PRECISION
+#endif //BT_USE_DOUBLE_PRECISION
#if defined BT_USE_SSE
//typedef uint32_t __m128i __attribute__ ((vector_size(16)));
#ifdef _MSC_VER
-#pragma warning(disable: 4556) // value of intrinsic immediate argument '4294967239' is out of range '0 - 255'
+#pragma warning(disable : 4556) // value of intrinsic immediate argument '4294967239' is out of range '0 - 255'
#endif
-
-#define BT_SHUFFLE(x,y,z,w) ((w)<<6 | (z)<<4 | (y)<<2 | (x))
+#define BT_SHUFFLE(x, y, z, w) ((w) << 6 | (z) << 4 | (y) << 2 | (x))
//#define bt_pshufd_ps( _a, _mask ) (__m128) _mm_shuffle_epi32((__m128i)(_a), (_mask) )
-#define bt_pshufd_ps( _a, _mask ) _mm_shuffle_ps((_a), (_a), (_mask) )
-#define bt_splat3_ps( _a, _i ) bt_pshufd_ps((_a), BT_SHUFFLE(_i,_i,_i, 3) )
-#define bt_splat_ps( _a, _i ) bt_pshufd_ps((_a), BT_SHUFFLE(_i,_i,_i,_i) )
+#define bt_pshufd_ps(_a, _mask) _mm_shuffle_ps((_a), (_a), (_mask))
+#define bt_splat3_ps(_a, _i) bt_pshufd_ps((_a), BT_SHUFFLE(_i, _i, _i, 3))
+#define bt_splat_ps(_a, _i) bt_pshufd_ps((_a), BT_SHUFFLE(_i, _i, _i, _i))
#define btv3AbsiMask (_mm_set_epi32(0x00000000, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF))
-#define btvAbsMask (_mm_set_epi32( 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF))
+#define btvAbsMask (_mm_set_epi32(0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF))
#define btvFFF0Mask (_mm_set_epi32(0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF))
#define btv3AbsfMask btCastiTo128f(btv3AbsiMask)
#define btvFFF0fMask btCastiTo128f(btvFFF0Mask)
@@ -55,9 +52,9 @@ subject to the following restrictions:
//there is an issue with XCode 3.2 (LCx errors)
#define btvMzeroMask (_mm_set_ps(-0.0f, -0.0f, -0.0f, -0.0f))
-#define v1110 (_mm_set_ps(0.0f, 1.0f, 1.0f, 1.0f))
-#define vHalf (_mm_set_ps(0.5f, 0.5f, 0.5f, 0.5f))
-#define v1_5 (_mm_set_ps(1.5f, 1.5f, 1.5f, 1.5f))
+#define v1110 (_mm_set_ps(0.0f, 1.0f, 1.0f, 1.0f))
+#define vHalf (_mm_set_ps(0.5f, 0.5f, 0.5f, 0.5f))
+#define v1_5 (_mm_set_ps(1.5f, 1.5f, 1.5f, 1.5f))
//const __m128 ATTRIBUTE_ALIGNED16(btvMzeroMask) = {-0.0f, -0.0f, -0.0f, -0.0f};
//const __m128 ATTRIBUTE_ALIGNED16(v1110) = {1.0f, 1.0f, 1.0f, 0.0f};
@@ -70,7 +67,7 @@ subject to the following restrictions:
const float32x4_t ATTRIBUTE_ALIGNED16(btvMzeroMask) = (float32x4_t){-0.0f, -0.0f, -0.0f, -0.0f};
const int32x4_t ATTRIBUTE_ALIGNED16(btvFFF0Mask) = (int32x4_t){static_cast<int32_t>(0xFFFFFFFF),
- static_cast<int32_t>(0xFFFFFFFF), static_cast<int32_t>(0xFFFFFFFF), 0x0};
+ static_cast<int32_t>(0xFFFFFFFF), static_cast<int32_t>(0xFFFFFFFF), 0x0};
const int32x4_t ATTRIBUTE_ALIGNED16(btvAbsMask) = (int32x4_t){0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF};
const int32x4_t ATTRIBUTE_ALIGNED16(btv3AbsMask) = (int32x4_t){0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x0};
@@ -80,50 +77,48 @@ const int32x4_t ATTRIBUTE_ALIGNED16(btv3AbsMask) = (int32x4_t){0x7FFFFFFF, 0x7FF
* It has an un-used w component to suit 16-byte alignment when btVector3 is stored in containers. This extra component can be used by derived classes (Quaternion?) or by user
* Ideally, this class should be replaced by a platform optimized SIMD version that keeps the data in registers
*/
-ATTRIBUTE_ALIGNED16(class) btVector3
+ATTRIBUTE_ALIGNED16(class)
+btVector3
{
public:
-
BT_DECLARE_ALIGNED_ALLOCATOR();
-#if defined (__SPU__) && defined (__CELLOS_LV2__)
- btScalar m_floats[4];
+#if defined(__SPU__) && defined(__CELLOS_LV2__)
+ btScalar m_floats[4];
+
public:
- SIMD_FORCE_INLINE const vec_float4& get128() const
+ SIMD_FORCE_INLINE const vec_float4& get128() const
{
return *((const vec_float4*)&m_floats[0]);
}
+
public:
-#else //__CELLOS_LV2__ __SPU__
- #if defined (BT_USE_SSE) || defined(BT_USE_NEON) // _WIN32 || ARM
- union {
- btSimdFloat4 mVec128;
- btScalar m_floats[4];
- };
- SIMD_FORCE_INLINE btSimdFloat4 get128() const
- {
- return mVec128;
- }
- SIMD_FORCE_INLINE void set128(btSimdFloat4 v128)
- {
- mVec128 = v128;
- }
- #else
- btScalar m_floats[4];
- #endif
-#endif //__CELLOS_LV2__ __SPU__
-
- public:
-
- /**@brief No initialization constructor */
- SIMD_FORCE_INLINE btVector3()
+#else //__CELLOS_LV2__ __SPU__
+#if defined(BT_USE_SSE) || defined(BT_USE_NEON) // _WIN32 || ARM
+ union {
+ btSimdFloat4 mVec128;
+ btScalar m_floats[4];
+ };
+ SIMD_FORCE_INLINE btSimdFloat4 get128() const
+ {
+ return mVec128;
+ }
+ SIMD_FORCE_INLINE void set128(btSimdFloat4 v128)
{
+ mVec128 = v128;
+ }
+#else
+ btScalar m_floats[4];
+#endif
+#endif //__CELLOS_LV2__ __SPU__
+public:
+ /**@brief No initialization constructor */
+ SIMD_FORCE_INLINE btVector3()
+ {
}
-
-
- /**@brief Constructor from scalars
+ /**@brief Constructor from scalars
* @param x X value
* @param y Y value
* @param z Z value
@@ -136,9 +131,9 @@ public:
m_floats[3] = btScalar(0.f);
}
-#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE) )|| defined (BT_USE_NEON)
- // Set Vector
- SIMD_FORCE_INLINE btVector3( btSimdFloat4 v)
+#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
+ // Set Vector
+ SIMD_FORCE_INLINE btVector3(btSimdFloat4 v)
{
mVec128 = v;
}
@@ -150,73 +145,72 @@ public:
}
// Assignment Operator
- SIMD_FORCE_INLINE btVector3&
- operator=(const btVector3& v)
+ SIMD_FORCE_INLINE btVector3&
+ operator=(const btVector3& v)
{
mVec128 = v.mVec128;
-
+
return *this;
}
-#endif // #if defined (BT_USE_SSE_IN_API) || defined (BT_USE_NEON)
-
-/**@brief Add a vector to this one
+#endif // #if defined (BT_USE_SSE_IN_API) || defined (BT_USE_NEON)
+
+ /**@brief Add a vector to this one
* @param The vector to add to this one */
SIMD_FORCE_INLINE btVector3& operator+=(const btVector3& v)
{
-#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
mVec128 = _mm_add_ps(mVec128, v.mVec128);
#elif defined(BT_USE_NEON)
mVec128 = vaddq_f32(mVec128, v.mVec128);
#else
- m_floats[0] += v.m_floats[0];
+ m_floats[0] += v.m_floats[0];
m_floats[1] += v.m_floats[1];
m_floats[2] += v.m_floats[2];
#endif
return *this;
}
-
- /**@brief Subtract a vector from this one
+ /**@brief Subtract a vector from this one
* @param The vector to subtract */
- SIMD_FORCE_INLINE btVector3& operator-=(const btVector3& v)
+ SIMD_FORCE_INLINE btVector3& operator-=(const btVector3& v)
{
-#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
mVec128 = _mm_sub_ps(mVec128, v.mVec128);
#elif defined(BT_USE_NEON)
mVec128 = vsubq_f32(mVec128, v.mVec128);
#else
- m_floats[0] -= v.m_floats[0];
+ m_floats[0] -= v.m_floats[0];
m_floats[1] -= v.m_floats[1];
m_floats[2] -= v.m_floats[2];
#endif
return *this;
}
-
- /**@brief Scale the vector
+
+ /**@brief Scale the vector
* @param s Scale factor */
SIMD_FORCE_INLINE btVector3& operator*=(const btScalar& s)
{
-#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
- __m128 vs = _mm_load_ss(&s); // (S 0 0 0)
- vs = bt_pshufd_ps(vs, 0x80); // (S S S 0.0)
+#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
+ __m128 vs = _mm_load_ss(&s); // (S 0 0 0)
+ vs = bt_pshufd_ps(vs, 0x80); // (S S S 0.0)
mVec128 = _mm_mul_ps(mVec128, vs);
#elif defined(BT_USE_NEON)
mVec128 = vmulq_n_f32(mVec128, s);
#else
- m_floats[0] *= s;
+ m_floats[0] *= s;
m_floats[1] *= s;
m_floats[2] *= s;
#endif
return *this;
}
- /**@brief Inversely scale the vector
+ /**@brief Inversely scale the vector
* @param s Scale factor to divide by */
- SIMD_FORCE_INLINE btVector3& operator/=(const btScalar& s)
+ SIMD_FORCE_INLINE btVector3& operator/=(const btScalar& s)
{
btFullAssert(s != btScalar(0.0));
-#if 0 //defined(BT_USE_SSE_IN_API)
+#if 0 //defined(BT_USE_SSE_IN_API)
// this code is not faster !
__m128 vs = _mm_load_ss(&s);
vs = _mm_div_ss(v1110, vs);
@@ -230,11 +224,11 @@ public:
#endif
}
- /**@brief Return the dot product
+ /**@brief Return the dot product
* @param v The other vector in the dot product */
SIMD_FORCE_INLINE btScalar dot(const btVector3& v) const
{
-#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+#if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
__m128 vd = _mm_mul_ps(mVec128, v.mVec128);
__m128 z = _mm_movehl_ps(vd, vd);
__m128 y = _mm_shuffle_ps(vd, vd, 0x55);
@@ -243,23 +237,23 @@ public:
return _mm_cvtss_f32(vd);
#elif defined(BT_USE_NEON)
float32x4_t vd = vmulq_f32(mVec128, v.mVec128);
- float32x2_t x = vpadd_f32(vget_low_f32(vd), vget_low_f32(vd));
+ float32x2_t x = vpadd_f32(vget_low_f32(vd), vget_low_f32(vd));
x = vadd_f32(x, vget_high_f32(vd));
return vget_lane_f32(x, 0);
-#else
- return m_floats[0] * v.m_floats[0] +
- m_floats[1] * v.m_floats[1] +
- m_floats[2] * v.m_floats[2];
+#else
+ return m_floats[0] * v.m_floats[0] +
+ m_floats[1] * v.m_floats[1] +
+ m_floats[2] * v.m_floats[2];
#endif
}
- /**@brief Return the length of the vector squared */
+ /**@brief Return the length of the vector squared */
SIMD_FORCE_INLINE btScalar length2() const
{
return dot(*this);
}
- /**@brief Return the length of the vector */
+ /**@brief Return the length of the vector */
SIMD_FORCE_INLINE btScalar length() const
{
return btSqrt(length2());
@@ -267,7 +261,7 @@ public:
/**@brief Return the norm (length) of the vector */
SIMD_FORCE_INLINE btScalar norm() const
- {
+ {
return length();
}
@@ -276,24 +270,24 @@ public:
{
btScalar d = length2();
//workaround for some clang/gcc issue of sqrtf(tiny number) = -INF
- if (d>SIMD_EPSILON)
+ if (d > SIMD_EPSILON)
return btSqrt(d);
return btScalar(0);
}
- /**@brief Return the distance squared between the ends of this and another vector
+ /**@brief Return the distance squared between the ends of this and another vector
* This is symantically treating the vector like a point */
SIMD_FORCE_INLINE btScalar distance2(const btVector3& v) const;
- /**@brief Return the distance between the ends of this and another vector
+ /**@brief Return the distance between the ends of this and another vector
* This is symantically treating the vector like a point */
SIMD_FORCE_INLINE btScalar distance(const btVector3& v) const;
- SIMD_FORCE_INLINE btVector3& safeNormalize()
+ SIMD_FORCE_INLINE btVector3& safeNormalize()
{
btScalar l2 = length2();
//triNormal.normalize();
- if (l2 >= SIMD_EPSILON*SIMD_EPSILON)
+ if (l2 >= SIMD_EPSILON * SIMD_EPSILON)
{
(*this) /= btSqrt(l2);
}
@@ -304,100 +298,97 @@ public:
return *this;
}
- /**@brief Normalize this vector
+ /**@brief Normalize this vector
* x^2 + y^2 + z^2 = 1 */
- SIMD_FORCE_INLINE btVector3& normalize()
+ SIMD_FORCE_INLINE btVector3& normalize()
{
-
btAssert(!fuzzyZero());
-#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
- // dot product first
+#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
+ // dot product first
__m128 vd = _mm_mul_ps(mVec128, mVec128);
__m128 z = _mm_movehl_ps(vd, vd);
__m128 y = _mm_shuffle_ps(vd, vd, 0x55);
vd = _mm_add_ss(vd, y);
vd = _mm_add_ss(vd, z);
-
- #if 0
+
+#if 0
vd = _mm_sqrt_ss(vd);
vd = _mm_div_ss(v1110, vd);
vd = bt_splat_ps(vd, 0x80);
mVec128 = _mm_mul_ps(mVec128, vd);
- #else
-
- // NR step 1/sqrt(x) - vd is x, y is output
- y = _mm_rsqrt_ss(vd); // estimate
-
- // one step NR
- z = v1_5;
- vd = _mm_mul_ss(vd, vHalf); // vd * 0.5
- //x2 = vd;
- vd = _mm_mul_ss(vd, y); // vd * 0.5 * y0
- vd = _mm_mul_ss(vd, y); // vd * 0.5 * y0 * y0
- z = _mm_sub_ss(z, vd); // 1.5 - vd * 0.5 * y0 * y0
-
- y = _mm_mul_ss(y, z); // y0 * (1.5 - vd * 0.5 * y0 * y0)
+#else
+
+ // NR step 1/sqrt(x) - vd is x, y is output
+ y = _mm_rsqrt_ss(vd); // estimate
+
+ // one step NR
+ z = v1_5;
+ vd = _mm_mul_ss(vd, vHalf); // vd * 0.5
+ //x2 = vd;
+ vd = _mm_mul_ss(vd, y); // vd * 0.5 * y0
+ vd = _mm_mul_ss(vd, y); // vd * 0.5 * y0 * y0
+ z = _mm_sub_ss(z, vd); // 1.5 - vd * 0.5 * y0 * y0
+
+ y = _mm_mul_ss(y, z); // y0 * (1.5 - vd * 0.5 * y0 * y0)
y = bt_splat_ps(y, 0x80);
mVec128 = _mm_mul_ps(mVec128, y);
- #endif
+#endif
-
return *this;
-#else
+#else
return *this /= length();
#endif
}
- /**@brief Return a normalized version of this vector */
+ /**@brief Return a normalized version of this vector */
SIMD_FORCE_INLINE btVector3 normalized() const;
- /**@brief Return a rotated version of this vector
+ /**@brief Return a rotated version of this vector
* @param wAxis The axis to rotate about
* @param angle The angle to rotate by */
- SIMD_FORCE_INLINE btVector3 rotate( const btVector3& wAxis, const btScalar angle ) const;
+ SIMD_FORCE_INLINE btVector3 rotate(const btVector3& wAxis, const btScalar angle) const;
- /**@brief Return the angle between this and another vector
+ /**@brief Return the angle between this and another vector
* @param v The other vector */
- SIMD_FORCE_INLINE btScalar angle(const btVector3& v) const
+ SIMD_FORCE_INLINE btScalar angle(const btVector3& v) const
{
btScalar s = btSqrt(length2() * v.length2());
btFullAssert(s != btScalar(0.0));
return btAcos(dot(v) / s);
}
-
- /**@brief Return a vector with the absolute values of each element */
- SIMD_FORCE_INLINE btVector3 absolute() const
- {
-#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+ /**@brief Return a vector with the absolute values of each element */
+ SIMD_FORCE_INLINE btVector3 absolute() const
+ {
+#if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
return btVector3(_mm_and_ps(mVec128, btv3AbsfMask));
#elif defined(BT_USE_NEON)
return btVector3(vabsq_f32(mVec128));
-#else
+#else
return btVector3(
- btFabs(m_floats[0]),
- btFabs(m_floats[1]),
+ btFabs(m_floats[0]),
+ btFabs(m_floats[1]),
btFabs(m_floats[2]));
#endif
}
-
- /**@brief Return the cross product between this and another vector
+
+ /**@brief Return the cross product between this and another vector
* @param v The other vector */
SIMD_FORCE_INLINE btVector3 cross(const btVector3& v) const
{
-#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
- __m128 T, V;
-
- T = bt_pshufd_ps(mVec128, BT_SHUFFLE(1, 2, 0, 3)); // (Y Z X 0)
- V = bt_pshufd_ps(v.mVec128, BT_SHUFFLE(1, 2, 0, 3)); // (Y Z X 0)
-
+#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
+ __m128 T, V;
+
+ T = bt_pshufd_ps(mVec128, BT_SHUFFLE(1, 2, 0, 3)); // (Y Z X 0)
+ V = bt_pshufd_ps(v.mVec128, BT_SHUFFLE(1, 2, 0, 3)); // (Y Z X 0)
+
V = _mm_mul_ps(V, mVec128);
T = _mm_mul_ps(T, v.mVec128);
V = _mm_sub_ps(V, T);
-
+
V = bt_pshufd_ps(V, BT_SHUFFLE(1, 2, 0, 3));
return btVector3(V);
#elif defined(BT_USE_NEON)
@@ -407,7 +398,7 @@ public:
float32x2_t Vlow = vget_low_f32(v.mVec128);
T = vcombine_f32(vext_f32(Tlow, vget_high_f32(mVec128), 1), Tlow);
V = vcombine_f32(vext_f32(Vlow, vget_high_f32(v.mVec128), 1), Vlow);
-
+
V = vmulq_f32(V, mVec128);
T = vmulq_f32(T, v.mVec128);
V = vsubq_f32(V, T);
@@ -415,7 +406,7 @@ public:
// form (Y, Z, X, _);
V = vcombine_f32(vext_f32(Vlow, vget_high_f32(V), 1), Vlow);
V = (float32x4_t)vandq_s32((int32x4_t)V, btvFFF0Mask);
-
+
return btVector3(V);
#else
return btVector3(
@@ -427,18 +418,18 @@ public:
SIMD_FORCE_INLINE btScalar triple(const btVector3& v1, const btVector3& v2) const
{
-#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+#if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
// cross:
- __m128 T = _mm_shuffle_ps(v1.mVec128, v1.mVec128, BT_SHUFFLE(1, 2, 0, 3)); // (Y Z X 0)
- __m128 V = _mm_shuffle_ps(v2.mVec128, v2.mVec128, BT_SHUFFLE(1, 2, 0, 3)); // (Y Z X 0)
-
+ __m128 T = _mm_shuffle_ps(v1.mVec128, v1.mVec128, BT_SHUFFLE(1, 2, 0, 3)); // (Y Z X 0)
+ __m128 V = _mm_shuffle_ps(v2.mVec128, v2.mVec128, BT_SHUFFLE(1, 2, 0, 3)); // (Y Z X 0)
+
V = _mm_mul_ps(V, v1.mVec128);
T = _mm_mul_ps(T, v2.mVec128);
V = _mm_sub_ps(V, T);
-
+
V = _mm_shuffle_ps(V, V, BT_SHUFFLE(1, 2, 0, 3));
- // dot:
+ // dot:
V = _mm_mul_ps(V, mVec128);
__m128 z = _mm_movehl_ps(V, V);
__m128 y = _mm_shuffle_ps(V, V, 0x55);
@@ -454,7 +445,7 @@ public:
float32x2_t Vlow = vget_low_f32(v2.mVec128);
T = vcombine_f32(vext_f32(Tlow, vget_high_f32(v1.mVec128), 1), Tlow);
V = vcombine_f32(vext_f32(Vlow, vget_high_f32(v2.mVec128), 1), Vlow);
-
+
V = vmulq_f32(V, v1.mVec128);
T = vmulq_f32(T, v2.mVec128);
V = vsubq_f32(V, T);
@@ -462,31 +453,30 @@ public:
// form (Y, Z, X, _);
V = vcombine_f32(vext_f32(Vlow, vget_high_f32(V), 1), Vlow);
- // dot:
+ // dot:
V = vmulq_f32(mVec128, V);
- float32x2_t x = vpadd_f32(vget_low_f32(V), vget_low_f32(V));
+ float32x2_t x = vpadd_f32(vget_low_f32(V), vget_low_f32(V));
x = vadd_f32(x, vget_high_f32(V));
return vget_lane_f32(x, 0);
#else
- return
- m_floats[0] * (v1.m_floats[1] * v2.m_floats[2] - v1.m_floats[2] * v2.m_floats[1]) +
- m_floats[1] * (v1.m_floats[2] * v2.m_floats[0] - v1.m_floats[0] * v2.m_floats[2]) +
- m_floats[2] * (v1.m_floats[0] * v2.m_floats[1] - v1.m_floats[1] * v2.m_floats[0]);
+ return m_floats[0] * (v1.m_floats[1] * v2.m_floats[2] - v1.m_floats[2] * v2.m_floats[1]) +
+ m_floats[1] * (v1.m_floats[2] * v2.m_floats[0] - v1.m_floats[0] * v2.m_floats[2]) +
+ m_floats[2] * (v1.m_floats[0] * v2.m_floats[1] - v1.m_floats[1] * v2.m_floats[0]);
#endif
}
- /**@brief Return the axis with the smallest value
+ /**@brief Return the axis with the smallest value
* Note return values are 0,1,2 for x, y, or z */
SIMD_FORCE_INLINE int minAxis() const
{
- return m_floats[0] < m_floats[1] ? (m_floats[0] <m_floats[2] ? 0 : 2) : (m_floats[1] <m_floats[2] ? 1 : 2);
+ return m_floats[0] < m_floats[1] ? (m_floats[0] < m_floats[2] ? 0 : 2) : (m_floats[1] < m_floats[2] ? 1 : 2);
}
- /**@brief Return the axis with the largest value
+ /**@brief Return the axis with the largest value
* Note return values are 0,1,2 for x, y, or z */
- SIMD_FORCE_INLINE int maxAxis() const
+ SIMD_FORCE_INLINE int maxAxis() const
{
- return m_floats[0] < m_floats[1] ? (m_floats[1] <m_floats[2] ? 2 : 1) : (m_floats[0] <m_floats[2] ? 2 : 0);
+ return m_floats[0] < m_floats[1] ? (m_floats[1] < m_floats[2] ? 2 : 1) : (m_floats[0] < m_floats[2] ? 2 : 0);
}
SIMD_FORCE_INLINE int furthestAxis() const
@@ -494,23 +484,22 @@ public:
return absolute().minAxis();
}
- SIMD_FORCE_INLINE int closestAxis() const
+ SIMD_FORCE_INLINE int closestAxis() const
{
return absolute().maxAxis();
}
-
SIMD_FORCE_INLINE void setInterpolate3(const btVector3& v0, const btVector3& v1, btScalar rt)
{
-#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
- __m128 vrt = _mm_load_ss(&rt); // (rt 0 0 0)
+#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
+ __m128 vrt = _mm_load_ss(&rt); // (rt 0 0 0)
btScalar s = btScalar(1.0) - rt;
- __m128 vs = _mm_load_ss(&s); // (S 0 0 0)
- vs = bt_pshufd_ps(vs, 0x80); // (S S S 0.0)
+ __m128 vs = _mm_load_ss(&s); // (S 0 0 0)
+ vs = bt_pshufd_ps(vs, 0x80); // (S S S 0.0)
__m128 r0 = _mm_mul_ps(v0.mVec128, vs);
- vrt = bt_pshufd_ps(vrt, 0x80); // (rt rt rt 0.0)
+ vrt = bt_pshufd_ps(vrt, 0x80); // (rt rt rt 0.0)
__m128 r1 = _mm_mul_ps(v1.mVec128, vrt);
- __m128 tmp3 = _mm_add_ps(r0,r1);
+ __m128 tmp3 = _mm_add_ps(r0, r1);
mVec128 = tmp3;
#elif defined(BT_USE_NEON)
float32x4_t vl = vsubq_f32(v1.mVec128, v0.mVec128);
@@ -526,101 +515,100 @@ public:
#endif
}
- /**@brief Return the linear interpolation between this and another vector
+ /**@brief Return the linear interpolation between this and another vector
* @param v The other vector
* @param t The ration of this to v (t = 0 => return this, t=1 => return other) */
- SIMD_FORCE_INLINE btVector3 lerp(const btVector3& v, const btScalar& t) const
+ SIMD_FORCE_INLINE btVector3 lerp(const btVector3& v, const btScalar& t) const
{
-#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
- __m128 vt = _mm_load_ss(&t); // (t 0 0 0)
- vt = bt_pshufd_ps(vt, 0x80); // (rt rt rt 0.0)
+#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
+ __m128 vt = _mm_load_ss(&t); // (t 0 0 0)
+ vt = bt_pshufd_ps(vt, 0x80); // (rt rt rt 0.0)
__m128 vl = _mm_sub_ps(v.mVec128, mVec128);
vl = _mm_mul_ps(vl, vt);
vl = _mm_add_ps(vl, mVec128);
-
+
return btVector3(vl);
#elif defined(BT_USE_NEON)
float32x4_t vl = vsubq_f32(v.mVec128, mVec128);
vl = vmulq_n_f32(vl, t);
vl = vaddq_f32(vl, mVec128);
-
+
return btVector3(vl);
-#else
- return
- btVector3( m_floats[0] + (v.m_floats[0] - m_floats[0]) * t,
- m_floats[1] + (v.m_floats[1] - m_floats[1]) * t,
- m_floats[2] + (v.m_floats[2] - m_floats[2]) * t);
+#else
+ return btVector3(m_floats[0] + (v.m_floats[0] - m_floats[0]) * t,
+ m_floats[1] + (v.m_floats[1] - m_floats[1]) * t,
+ m_floats[2] + (v.m_floats[2] - m_floats[2]) * t);
#endif
}
- /**@brief Elementwise multiply this vector by the other
+ /**@brief Elementwise multiply this vector by the other
* @param v The other vector */
SIMD_FORCE_INLINE btVector3& operator*=(const btVector3& v)
{
-#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
mVec128 = _mm_mul_ps(mVec128, v.mVec128);
#elif defined(BT_USE_NEON)
mVec128 = vmulq_f32(mVec128, v.mVec128);
-#else
- m_floats[0] *= v.m_floats[0];
+#else
+ m_floats[0] *= v.m_floats[0];
m_floats[1] *= v.m_floats[1];
m_floats[2] *= v.m_floats[2];
#endif
return *this;
}
- /**@brief Return the x value */
- SIMD_FORCE_INLINE const btScalar& getX() const { return m_floats[0]; }
- /**@brief Return the y value */
- SIMD_FORCE_INLINE const btScalar& getY() const { return m_floats[1]; }
- /**@brief Return the z value */
- SIMD_FORCE_INLINE const btScalar& getZ() const { return m_floats[2]; }
- /**@brief Set the x value */
- SIMD_FORCE_INLINE void setX(btScalar _x) { m_floats[0] = _x;};
- /**@brief Set the y value */
- SIMD_FORCE_INLINE void setY(btScalar _y) { m_floats[1] = _y;};
- /**@brief Set the z value */
- SIMD_FORCE_INLINE void setZ(btScalar _z) { m_floats[2] = _z;};
- /**@brief Set the w value */
- SIMD_FORCE_INLINE void setW(btScalar _w) { m_floats[3] = _w;};
- /**@brief Return the x value */
- SIMD_FORCE_INLINE const btScalar& x() const { return m_floats[0]; }
- /**@brief Return the y value */
- SIMD_FORCE_INLINE const btScalar& y() const { return m_floats[1]; }
- /**@brief Return the z value */
- SIMD_FORCE_INLINE const btScalar& z() const { return m_floats[2]; }
- /**@brief Return the w value */
- SIMD_FORCE_INLINE const btScalar& w() const { return m_floats[3]; }
-
- //SIMD_FORCE_INLINE btScalar& operator[](int i) { return (&m_floats[0])[i]; }
+ /**@brief Return the x value */
+ SIMD_FORCE_INLINE const btScalar& getX() const { return m_floats[0]; }
+ /**@brief Return the y value */
+ SIMD_FORCE_INLINE const btScalar& getY() const { return m_floats[1]; }
+ /**@brief Return the z value */
+ SIMD_FORCE_INLINE const btScalar& getZ() const { return m_floats[2]; }
+ /**@brief Set the x value */
+ SIMD_FORCE_INLINE void setX(btScalar _x) { m_floats[0] = _x; };
+ /**@brief Set the y value */
+ SIMD_FORCE_INLINE void setY(btScalar _y) { m_floats[1] = _y; };
+ /**@brief Set the z value */
+ SIMD_FORCE_INLINE void setZ(btScalar _z) { m_floats[2] = _z; };
+ /**@brief Set the w value */
+ SIMD_FORCE_INLINE void setW(btScalar _w) { m_floats[3] = _w; };
+ /**@brief Return the x value */
+ SIMD_FORCE_INLINE const btScalar& x() const { return m_floats[0]; }
+ /**@brief Return the y value */
+ SIMD_FORCE_INLINE const btScalar& y() const { return m_floats[1]; }
+ /**@brief Return the z value */
+ SIMD_FORCE_INLINE const btScalar& z() const { return m_floats[2]; }
+ /**@brief Return the w value */
+ SIMD_FORCE_INLINE const btScalar& w() const { return m_floats[3]; }
+
+ //SIMD_FORCE_INLINE btScalar& operator[](int i) { return (&m_floats[0])[i]; }
//SIMD_FORCE_INLINE const btScalar& operator[](int i) const { return (&m_floats[0])[i]; }
///operator btScalar*() replaces operator[], using implicit conversion. We added operator != and operator == to avoid pointer comparisons.
- SIMD_FORCE_INLINE operator btScalar *() { return &m_floats[0]; }
- SIMD_FORCE_INLINE operator const btScalar *() const { return &m_floats[0]; }
+ SIMD_FORCE_INLINE operator btScalar*() { return &m_floats[0]; }
+ SIMD_FORCE_INLINE operator const btScalar*() const { return &m_floats[0]; }
- SIMD_FORCE_INLINE bool operator==(const btVector3& other) const
+ SIMD_FORCE_INLINE bool operator==(const btVector3& other) const
{
-#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
- return (0xf == _mm_movemask_ps((__m128)_mm_cmpeq_ps(mVec128, other.mVec128)));
-#else
- return ((m_floats[3]==other.m_floats[3]) &&
- (m_floats[2]==other.m_floats[2]) &&
- (m_floats[1]==other.m_floats[1]) &&
- (m_floats[0]==other.m_floats[0]));
+#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
+ return (0xf == _mm_movemask_ps((__m128)_mm_cmpeq_ps(mVec128, other.mVec128)));
+#else
+ return ((m_floats[3] == other.m_floats[3]) &&
+ (m_floats[2] == other.m_floats[2]) &&
+ (m_floats[1] == other.m_floats[1]) &&
+ (m_floats[0] == other.m_floats[0]));
#endif
}
- SIMD_FORCE_INLINE bool operator!=(const btVector3& other) const
+ SIMD_FORCE_INLINE bool operator!=(const btVector3& other) const
{
return !(*this == other);
}
- /**@brief Set each element to the max of the current values and the values of another btVector3
+ /**@brief Set each element to the max of the current values and the values of another btVector3
* @param other The other btVector3 to compare with
*/
- SIMD_FORCE_INLINE void setMax(const btVector3& other)
+ SIMD_FORCE_INLINE void setMax(const btVector3& other)
{
-#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
mVec128 = _mm_max_ps(mVec128, other.mVec128);
#elif defined(BT_USE_NEON)
mVec128 = vmaxq_f32(mVec128, other.mVec128);
@@ -632,12 +620,12 @@ public:
#endif
}
- /**@brief Set each element to the min of the current values and the values of another btVector3
+ /**@brief Set each element to the min of the current values and the values of another btVector3
* @param other The other btVector3 to compare with
*/
- SIMD_FORCE_INLINE void setMin(const btVector3& other)
+ SIMD_FORCE_INLINE void setMin(const btVector3& other)
{
-#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
mVec128 = _mm_min_ps(mVec128, other.mVec128);
#elif defined(BT_USE_NEON)
mVec128 = vminq_f32(mVec128, other.mVec128);
@@ -649,154 +637,155 @@ public:
#endif
}
- SIMD_FORCE_INLINE void setValue(const btScalar& _x, const btScalar& _y, const btScalar& _z)
+ SIMD_FORCE_INLINE void setValue(const btScalar& _x, const btScalar& _y, const btScalar& _z)
{
- m_floats[0]=_x;
- m_floats[1]=_y;
- m_floats[2]=_z;
+ m_floats[0] = _x;
+ m_floats[1] = _y;
+ m_floats[2] = _z;
m_floats[3] = btScalar(0.f);
}
- void getSkewSymmetricMatrix(btVector3* v0,btVector3* v1,btVector3* v2) const
+ void getSkewSymmetricMatrix(btVector3 * v0, btVector3 * v1, btVector3 * v2) const
{
-#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
-
- __m128 V = _mm_and_ps(mVec128, btvFFF0fMask);
+#if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
+
+ __m128 V = _mm_and_ps(mVec128, btvFFF0fMask);
__m128 V0 = _mm_xor_ps(btvMzeroMask, V);
__m128 V2 = _mm_movelh_ps(V0, V);
-
+
__m128 V1 = _mm_shuffle_ps(V, V0, 0xCE);
-
- V0 = _mm_shuffle_ps(V0, V, 0xDB);
+
+ V0 = _mm_shuffle_ps(V0, V, 0xDB);
V2 = _mm_shuffle_ps(V2, V, 0xF9);
-
+
v0->mVec128 = V0;
v1->mVec128 = V1;
v2->mVec128 = V2;
#else
- v0->setValue(0. ,-z() ,y());
- v1->setValue(z() ,0. ,-x());
- v2->setValue(-y() ,x() ,0.);
+ v0->setValue(0., -z(), y());
+ v1->setValue(z(), 0., -x());
+ v2->setValue(-y(), x(), 0.);
#endif
}
void setZero()
{
-#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
mVec128 = (__m128)_mm_xor_ps(mVec128, mVec128);
#elif defined(BT_USE_NEON)
- int32x4_t vi = vdupq_n_s32(0);
+ int32x4_t vi = vdupq_n_s32(0);
mVec128 = vreinterpretq_f32_s32(vi);
-#else
- setValue(btScalar(0.),btScalar(0.),btScalar(0.));
+#else
+ setValue(btScalar(0.), btScalar(0.), btScalar(0.));
#endif
}
- SIMD_FORCE_INLINE bool isZero() const
+ SIMD_FORCE_INLINE bool isZero() const
{
return m_floats[0] == btScalar(0) && m_floats[1] == btScalar(0) && m_floats[2] == btScalar(0);
}
-
- SIMD_FORCE_INLINE bool fuzzyZero() const
+ SIMD_FORCE_INLINE bool fuzzyZero() const
{
- return length2() < SIMD_EPSILON*SIMD_EPSILON;
+ return length2() < SIMD_EPSILON * SIMD_EPSILON;
}
- SIMD_FORCE_INLINE void serialize(struct btVector3Data& dataOut) const;
+ SIMD_FORCE_INLINE void serialize(struct btVector3Data & dataOut) const;
+
+ SIMD_FORCE_INLINE void deSerialize(const struct btVector3DoubleData& dataIn);
- SIMD_FORCE_INLINE void deSerialize(const struct btVector3Data& dataIn);
+ SIMD_FORCE_INLINE void deSerialize(const struct btVector3FloatData& dataIn);
- SIMD_FORCE_INLINE void serializeFloat(struct btVector3FloatData& dataOut) const;
+ SIMD_FORCE_INLINE void serializeFloat(struct btVector3FloatData & dataOut) const;
- SIMD_FORCE_INLINE void deSerializeFloat(const struct btVector3FloatData& dataIn);
+ SIMD_FORCE_INLINE void deSerializeFloat(const struct btVector3FloatData& dataIn);
- SIMD_FORCE_INLINE void serializeDouble(struct btVector3DoubleData& dataOut) const;
+ SIMD_FORCE_INLINE void serializeDouble(struct btVector3DoubleData & dataOut) const;
- SIMD_FORCE_INLINE void deSerializeDouble(const struct btVector3DoubleData& dataIn);
-
- /**@brief returns index of maximum dot product between this and vectors in array[]
+ SIMD_FORCE_INLINE void deSerializeDouble(const struct btVector3DoubleData& dataIn);
+
+ /**@brief returns index of maximum dot product between this and vectors in array[]
* @param array The other vectors
* @param array_count The number of other vectors
* @param dotOut The maximum dot product */
- SIMD_FORCE_INLINE long maxDot( const btVector3 *array, long array_count, btScalar &dotOut ) const;
+ SIMD_FORCE_INLINE long maxDot(const btVector3* array, long array_count, btScalar& dotOut) const;
- /**@brief returns index of minimum dot product between this and vectors in array[]
+ /**@brief returns index of minimum dot product between this and vectors in array[]
* @param array The other vectors
* @param array_count The number of other vectors
- * @param dotOut The minimum dot product */
- SIMD_FORCE_INLINE long minDot( const btVector3 *array, long array_count, btScalar &dotOut ) const;
-
- /* create a vector as btVector3( this->dot( btVector3 v0 ), this->dot( btVector3 v1), this->dot( btVector3 v2 )) */
- SIMD_FORCE_INLINE btVector3 dot3( const btVector3 &v0, const btVector3 &v1, const btVector3 &v2 ) const
- {
-#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
-
- __m128 a0 = _mm_mul_ps( v0.mVec128, this->mVec128 );
- __m128 a1 = _mm_mul_ps( v1.mVec128, this->mVec128 );
- __m128 a2 = _mm_mul_ps( v2.mVec128, this->mVec128 );
- __m128 b0 = _mm_unpacklo_ps( a0, a1 );
- __m128 b1 = _mm_unpackhi_ps( a0, a1 );
- __m128 b2 = _mm_unpacklo_ps( a2, _mm_setzero_ps() );
- __m128 r = _mm_movelh_ps( b0, b2 );
- r = _mm_add_ps( r, _mm_movehl_ps( b2, b0 ));
- a2 = _mm_and_ps( a2, btvxyzMaskf);
- r = _mm_add_ps( r, btCastdTo128f (_mm_move_sd( btCastfTo128d(a2), btCastfTo128d(b1) )));
- return btVector3(r);
-
+ * @param dotOut The minimum dot product */
+ SIMD_FORCE_INLINE long minDot(const btVector3* array, long array_count, btScalar& dotOut) const;
+
+ /* create a vector as btVector3( this->dot( btVector3 v0 ), this->dot( btVector3 v1), this->dot( btVector3 v2 )) */
+ SIMD_FORCE_INLINE btVector3 dot3(const btVector3& v0, const btVector3& v1, const btVector3& v2) const
+ {
+#if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
+
+ __m128 a0 = _mm_mul_ps(v0.mVec128, this->mVec128);
+ __m128 a1 = _mm_mul_ps(v1.mVec128, this->mVec128);
+ __m128 a2 = _mm_mul_ps(v2.mVec128, this->mVec128);
+ __m128 b0 = _mm_unpacklo_ps(a0, a1);
+ __m128 b1 = _mm_unpackhi_ps(a0, a1);
+ __m128 b2 = _mm_unpacklo_ps(a2, _mm_setzero_ps());
+ __m128 r = _mm_movelh_ps(b0, b2);
+ r = _mm_add_ps(r, _mm_movehl_ps(b2, b0));
+ a2 = _mm_and_ps(a2, btvxyzMaskf);
+ r = _mm_add_ps(r, btCastdTo128f(_mm_move_sd(btCastfTo128d(a2), btCastfTo128d(b1))));
+ return btVector3(r);
+
#elif defined(BT_USE_NEON)
- static const uint32x4_t xyzMask = (const uint32x4_t){ static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), 0 };
- float32x4_t a0 = vmulq_f32( v0.mVec128, this->mVec128);
- float32x4_t a1 = vmulq_f32( v1.mVec128, this->mVec128);
- float32x4_t a2 = vmulq_f32( v2.mVec128, this->mVec128);
- float32x2x2_t zLo = vtrn_f32( vget_high_f32(a0), vget_high_f32(a1));
- a2 = (float32x4_t) vandq_u32((uint32x4_t) a2, xyzMask );
- float32x2_t b0 = vadd_f32( vpadd_f32( vget_low_f32(a0), vget_low_f32(a1)), zLo.val[0] );
- float32x2_t b1 = vpadd_f32( vpadd_f32( vget_low_f32(a2), vget_high_f32(a2)), vdup_n_f32(0.0f));
- return btVector3( vcombine_f32(b0, b1) );
-#else
- return btVector3( dot(v0), dot(v1), dot(v2));
+ static const uint32x4_t xyzMask = (const uint32x4_t){static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), 0};
+ float32x4_t a0 = vmulq_f32(v0.mVec128, this->mVec128);
+ float32x4_t a1 = vmulq_f32(v1.mVec128, this->mVec128);
+ float32x4_t a2 = vmulq_f32(v2.mVec128, this->mVec128);
+ float32x2x2_t zLo = vtrn_f32(vget_high_f32(a0), vget_high_f32(a1));
+ a2 = (float32x4_t)vandq_u32((uint32x4_t)a2, xyzMask);
+ float32x2_t b0 = vadd_f32(vpadd_f32(vget_low_f32(a0), vget_low_f32(a1)), zLo.val[0]);
+ float32x2_t b1 = vpadd_f32(vpadd_f32(vget_low_f32(a2), vget_high_f32(a2)), vdup_n_f32(0.0f));
+ return btVector3(vcombine_f32(b0, b1));
+#else
+ return btVector3(dot(v0), dot(v1), dot(v2));
#endif
- }
+ }
};
/**@brief Return the sum of two vectors (Point symantics)*/
-SIMD_FORCE_INLINE btVector3
-operator+(const btVector3& v1, const btVector3& v2)
+SIMD_FORCE_INLINE btVector3
+operator+(const btVector3& v1, const btVector3& v2)
{
-#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
return btVector3(_mm_add_ps(v1.mVec128, v2.mVec128));
#elif defined(BT_USE_NEON)
return btVector3(vaddq_f32(v1.mVec128, v2.mVec128));
#else
return btVector3(
- v1.m_floats[0] + v2.m_floats[0],
- v1.m_floats[1] + v2.m_floats[1],
- v1.m_floats[2] + v2.m_floats[2]);
+ v1.m_floats[0] + v2.m_floats[0],
+ v1.m_floats[1] + v2.m_floats[1],
+ v1.m_floats[2] + v2.m_floats[2]);
#endif
}
/**@brief Return the elementwise product of two vectors */
-SIMD_FORCE_INLINE btVector3
-operator*(const btVector3& v1, const btVector3& v2)
+SIMD_FORCE_INLINE btVector3
+operator*(const btVector3& v1, const btVector3& v2)
{
-#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
return btVector3(_mm_mul_ps(v1.mVec128, v2.mVec128));
#elif defined(BT_USE_NEON)
return btVector3(vmulq_f32(v1.mVec128, v2.mVec128));
#else
return btVector3(
- v1.m_floats[0] * v2.m_floats[0],
- v1.m_floats[1] * v2.m_floats[1],
- v1.m_floats[2] * v2.m_floats[2]);
+ v1.m_floats[0] * v2.m_floats[0],
+ v1.m_floats[1] * v2.m_floats[1],
+ v1.m_floats[2] * v2.m_floats[2]);
#endif
}
/**@brief Return the difference between two vectors */
-SIMD_FORCE_INLINE btVector3
+SIMD_FORCE_INLINE btVector3
operator-(const btVector3& v1, const btVector3& v2)
{
-#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))
+#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))
// without _mm_and_ps this code causes slowdown in Concave moving
__m128 r = _mm_sub_ps(v1.mVec128, v2.mVec128);
@@ -806,33 +795,33 @@ operator-(const btVector3& v1, const btVector3& v2)
return btVector3((float32x4_t)vandq_s32((int32x4_t)r, btvFFF0Mask));
#else
return btVector3(
- v1.m_floats[0] - v2.m_floats[0],
- v1.m_floats[1] - v2.m_floats[1],
- v1.m_floats[2] - v2.m_floats[2]);
+ v1.m_floats[0] - v2.m_floats[0],
+ v1.m_floats[1] - v2.m_floats[1],
+ v1.m_floats[2] - v2.m_floats[2]);
#endif
}
/**@brief Return the negative of the vector */
-SIMD_FORCE_INLINE btVector3
+SIMD_FORCE_INLINE btVector3
operator-(const btVector3& v)
{
-#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
+#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))
__m128 r = _mm_xor_ps(v.mVec128, btvMzeroMask);
- return btVector3(_mm_and_ps(r, btvFFF0fMask));
+ return btVector3(_mm_and_ps(r, btvFFF0fMask));
#elif defined(BT_USE_NEON)
return btVector3((btSimdFloat4)veorq_s32((int32x4_t)v.mVec128, (int32x4_t)btvMzeroMask));
-#else
+#else
return btVector3(-v.m_floats[0], -v.m_floats[1], -v.m_floats[2]);
#endif
}
/**@brief Return the vector scaled by s */
-SIMD_FORCE_INLINE btVector3
+SIMD_FORCE_INLINE btVector3
operator*(const btVector3& v, const btScalar& s)
{
-#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
- __m128 vs = _mm_load_ss(&s); // (S 0 0 0)
- vs = bt_pshufd_ps(vs, 0x80); // (S S S 0.0)
+#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
+ __m128 vs = _mm_load_ss(&s); // (S 0 0 0)
+ vs = bt_pshufd_ps(vs, 0x80); // (S S S 0.0)
return btVector3(_mm_mul_ps(v.mVec128, vs));
#elif defined(BT_USE_NEON)
float32x4_t r = vmulq_n_f32(v.mVec128, s);
@@ -843,10 +832,10 @@ operator*(const btVector3& v, const btScalar& s)
}
/**@brief Return the vector scaled by s */
-SIMD_FORCE_INLINE btVector3
+SIMD_FORCE_INLINE btVector3
operator*(const btScalar& s, const btVector3& v)
-{
- return v * s;
+{
+ return v * s;
}
/**@brief Return the vector inversely scaled by s */
@@ -854,7 +843,7 @@ SIMD_FORCE_INLINE btVector3
operator/(const btVector3& v, const btScalar& s)
{
btFullAssert(s != btScalar(0.0));
-#if 0 //defined(BT_USE_SSE_IN_API)
+#if 0 //defined(BT_USE_SSE_IN_API)
// this code is not faster !
__m128 vs = _mm_load_ss(&s);
vs = _mm_div_ss(v1110, vs);
@@ -870,67 +859,65 @@ operator/(const btVector3& v, const btScalar& s)
SIMD_FORCE_INLINE btVector3
operator/(const btVector3& v1, const btVector3& v2)
{
-#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API)&& defined (BT_USE_SSE))
+#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))
__m128 vec = _mm_div_ps(v1.mVec128, v2.mVec128);
vec = _mm_and_ps(vec, btvFFF0fMask);
- return btVector3(vec);
+ return btVector3(vec);
#elif defined(BT_USE_NEON)
float32x4_t x, y, v, m;
x = v1.mVec128;
y = v2.mVec128;
-
- v = vrecpeq_f32(y); // v ~ 1/y
- m = vrecpsq_f32(y, v); // m = (2-v*y)
- v = vmulq_f32(v, m); // vv = v*m ~~ 1/y
- m = vrecpsq_f32(y, v); // mm = (2-vv*y)
- v = vmulq_f32(v, x); // x*vv
- v = vmulq_f32(v, m); // (x*vv)*(2-vv*y) = x*(vv(2-vv*y)) ~~~ x/y
+
+ v = vrecpeq_f32(y); // v ~ 1/y
+ m = vrecpsq_f32(y, v); // m = (2-v*y)
+ v = vmulq_f32(v, m); // vv = v*m ~~ 1/y
+ m = vrecpsq_f32(y, v); // mm = (2-vv*y)
+ v = vmulq_f32(v, x); // x*vv
+ v = vmulq_f32(v, m); // (x*vv)*(2-vv*y) = x*(vv(2-vv*y)) ~~~ x/y
return btVector3(v);
#else
return btVector3(
- v1.m_floats[0] / v2.m_floats[0],
- v1.m_floats[1] / v2.m_floats[1],
- v1.m_floats[2] / v2.m_floats[2]);
+ v1.m_floats[0] / v2.m_floats[0],
+ v1.m_floats[1] / v2.m_floats[1],
+ v1.m_floats[2] / v2.m_floats[2]);
#endif
}
/**@brief Return the dot product between two vectors */
-SIMD_FORCE_INLINE btScalar
-btDot(const btVector3& v1, const btVector3& v2)
-{
- return v1.dot(v2);
+SIMD_FORCE_INLINE btScalar
+btDot(const btVector3& v1, const btVector3& v2)
+{
+ return v1.dot(v2);
}
-
/**@brief Return the distance squared between two vectors */
SIMD_FORCE_INLINE btScalar
-btDistance2(const btVector3& v1, const btVector3& v2)
-{
- return v1.distance2(v2);
+btDistance2(const btVector3& v1, const btVector3& v2)
+{
+ return v1.distance2(v2);
}
-
/**@brief Return the distance between two vectors */
SIMD_FORCE_INLINE btScalar
-btDistance(const btVector3& v1, const btVector3& v2)
-{
- return v1.distance(v2);
+btDistance(const btVector3& v1, const btVector3& v2)
+{
+ return v1.distance(v2);
}
/**@brief Return the angle between two vectors */
SIMD_FORCE_INLINE btScalar
-btAngle(const btVector3& v1, const btVector3& v2)
-{
- return v1.angle(v2);
+btAngle(const btVector3& v1, const btVector3& v2)
+{
+ return v1.angle(v2);
}
/**@brief Return the cross product of two vectors */
-SIMD_FORCE_INLINE btVector3
-btCross(const btVector3& v1, const btVector3& v2)
-{
- return v1.cross(v2);
+SIMD_FORCE_INLINE btVector3
+btCross(const btVector3& v1, const btVector3& v2)
+{
+ return v1.cross(v2);
}
SIMD_FORCE_INLINE btScalar
@@ -943,14 +930,12 @@ btTriple(const btVector3& v1, const btVector3& v2, const btVector3& v3)
* @param v1 One vector
* @param v2 The other vector
* @param t The ration of this to v (t = 0 => return v1, t=1 => return v2) */
-SIMD_FORCE_INLINE btVector3
+SIMD_FORCE_INLINE btVector3
lerp(const btVector3& v1, const btVector3& v2, const btScalar& t)
{
return v1.lerp(v2, t);
}
-
-
SIMD_FORCE_INLINE btScalar btVector3::distance2(const btVector3& v) const
{
return (v - *this).length2();
@@ -966,140 +951,137 @@ SIMD_FORCE_INLINE btVector3 btVector3::normalized() const
btVector3 nrm = *this;
return nrm.normalize();
-}
+}
-SIMD_FORCE_INLINE btVector3 btVector3::rotate( const btVector3& wAxis, const btScalar _angle ) const
+SIMD_FORCE_INLINE btVector3 btVector3::rotate(const btVector3& wAxis, const btScalar _angle) const
{
// wAxis must be a unit lenght vector
-#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+#if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
- __m128 O = _mm_mul_ps(wAxis.mVec128, mVec128);
- btScalar ssin = btSin( _angle );
- __m128 C = wAxis.cross( mVec128 ).mVec128;
+ __m128 O = _mm_mul_ps(wAxis.mVec128, mVec128);
+ btScalar ssin = btSin(_angle);
+ __m128 C = wAxis.cross(mVec128).mVec128;
O = _mm_and_ps(O, btvFFF0fMask);
- btScalar scos = btCos( _angle );
-
- __m128 vsin = _mm_load_ss(&ssin); // (S 0 0 0)
- __m128 vcos = _mm_load_ss(&scos); // (S 0 0 0)
-
- __m128 Y = bt_pshufd_ps(O, 0xC9); // (Y Z X 0)
- __m128 Z = bt_pshufd_ps(O, 0xD2); // (Z X Y 0)
+ btScalar scos = btCos(_angle);
+
+ __m128 vsin = _mm_load_ss(&ssin); // (S 0 0 0)
+ __m128 vcos = _mm_load_ss(&scos); // (S 0 0 0)
+
+ __m128 Y = bt_pshufd_ps(O, 0xC9); // (Y Z X 0)
+ __m128 Z = bt_pshufd_ps(O, 0xD2); // (Z X Y 0)
O = _mm_add_ps(O, Y);
- vsin = bt_pshufd_ps(vsin, 0x80); // (S S S 0)
+ vsin = bt_pshufd_ps(vsin, 0x80); // (S S S 0)
O = _mm_add_ps(O, Z);
- vcos = bt_pshufd_ps(vcos, 0x80); // (S S S 0)
-
- vsin = vsin * C;
- O = O * wAxis.mVec128;
- __m128 X = mVec128 - O;
-
- O = O + vsin;
+ vcos = bt_pshufd_ps(vcos, 0x80); // (S S S 0)
+
+ vsin = vsin * C;
+ O = O * wAxis.mVec128;
+ __m128 X = mVec128 - O;
+
+ O = O + vsin;
vcos = vcos * X;
- O = O + vcos;
-
+ O = O + vcos;
+
return btVector3(O);
#else
- btVector3 o = wAxis * wAxis.dot( *this );
+ btVector3 o = wAxis * wAxis.dot(*this);
btVector3 _x = *this - o;
btVector3 _y;
- _y = wAxis.cross( *this );
+ _y = wAxis.cross(*this);
- return ( o + _x * btCos( _angle ) + _y * btSin( _angle ) );
+ return (o + _x * btCos(_angle) + _y * btSin(_angle));
#endif
}
-SIMD_FORCE_INLINE long btVector3::maxDot( const btVector3 *array, long array_count, btScalar &dotOut ) const
+SIMD_FORCE_INLINE long btVector3::maxDot(const btVector3* array, long array_count, btScalar& dotOut) const
{
-#if (defined BT_USE_SSE && defined BT_USE_SIMD_VECTOR3 && defined BT_USE_SSE_IN_API) || defined (BT_USE_NEON)
- #if defined _WIN32 || defined (BT_USE_SSE)
- const long scalar_cutoff = 10;
- long _maxdot_large( const float *array, const float *vec, unsigned long array_count, float *dotOut );
- #elif defined BT_USE_NEON
- const long scalar_cutoff = 4;
- extern long (*_maxdot_large)( const float *array, const float *vec, unsigned long array_count, float *dotOut );
- #endif
- if( array_count < scalar_cutoff )
+#if (defined BT_USE_SSE && defined BT_USE_SIMD_VECTOR3 && defined BT_USE_SSE_IN_API) || defined(BT_USE_NEON)
+#if defined _WIN32 || defined(BT_USE_SSE)
+ const long scalar_cutoff = 10;
+ long _maxdot_large(const float* array, const float* vec, unsigned long array_count, float* dotOut);
+#elif defined BT_USE_NEON
+ const long scalar_cutoff = 4;
+ extern long (*_maxdot_large)(const float* array, const float* vec, unsigned long array_count, float* dotOut);
+#endif
+ if (array_count < scalar_cutoff)
#endif
- {
- btScalar maxDot1 = -SIMD_INFINITY;
- int i = 0;
- int ptIndex = -1;
- for( i = 0; i < array_count; i++ )
- {
- btScalar dot = array[i].dot(*this);
-
- if( dot > maxDot1 )
- {
- maxDot1 = dot;
- ptIndex = i;
- }
- }
-
- dotOut = maxDot1;
- return ptIndex;
- }
-#if (defined BT_USE_SSE && defined BT_USE_SIMD_VECTOR3 && defined BT_USE_SSE_IN_API) || defined (BT_USE_NEON)
- return _maxdot_large( (float*) array, (float*) &m_floats[0], array_count, &dotOut );
+ {
+ btScalar maxDot1 = -SIMD_INFINITY;
+ int i = 0;
+ int ptIndex = -1;
+ for (i = 0; i < array_count; i++)
+ {
+ btScalar dot = array[i].dot(*this);
+
+ if (dot > maxDot1)
+ {
+ maxDot1 = dot;
+ ptIndex = i;
+ }
+ }
+
+ dotOut = maxDot1;
+ return ptIndex;
+ }
+#if (defined BT_USE_SSE && defined BT_USE_SIMD_VECTOR3 && defined BT_USE_SSE_IN_API) || defined(BT_USE_NEON)
+ return _maxdot_large((float*)array, (float*)&m_floats[0], array_count, &dotOut);
#endif
}
-SIMD_FORCE_INLINE long btVector3::minDot( const btVector3 *array, long array_count, btScalar &dotOut ) const
+SIMD_FORCE_INLINE long btVector3::minDot(const btVector3* array, long array_count, btScalar& dotOut) const
{
-#if (defined BT_USE_SSE && defined BT_USE_SIMD_VECTOR3 && defined BT_USE_SSE_IN_API) || defined (BT_USE_NEON)
- #if defined BT_USE_SSE
- const long scalar_cutoff = 10;
- long _mindot_large( const float *array, const float *vec, unsigned long array_count, float *dotOut );
- #elif defined BT_USE_NEON
- const long scalar_cutoff = 4;
- extern long (*_mindot_large)( const float *array, const float *vec, unsigned long array_count, float *dotOut );
- #else
- #error unhandled arch!
- #endif
-
- if( array_count < scalar_cutoff )
+#if (defined BT_USE_SSE && defined BT_USE_SIMD_VECTOR3 && defined BT_USE_SSE_IN_API) || defined(BT_USE_NEON)
+#if defined BT_USE_SSE
+ const long scalar_cutoff = 10;
+ long _mindot_large(const float* array, const float* vec, unsigned long array_count, float* dotOut);
+#elif defined BT_USE_NEON
+ const long scalar_cutoff = 4;
+ extern long (*_mindot_large)(const float* array, const float* vec, unsigned long array_count, float* dotOut);
+#else
+#error unhandled arch!
#endif
- {
- btScalar minDot = SIMD_INFINITY;
- int i = 0;
- int ptIndex = -1;
-
- for( i = 0; i < array_count; i++ )
- {
- btScalar dot = array[i].dot(*this);
-
- if( dot < minDot )
- {
- minDot = dot;
- ptIndex = i;
- }
- }
-
- dotOut = minDot;
-
- return ptIndex;
- }
-#if (defined BT_USE_SSE && defined BT_USE_SIMD_VECTOR3 && defined BT_USE_SSE_IN_API) || defined (BT_USE_NEON)
- return _mindot_large( (float*) array, (float*) &m_floats[0], array_count, &dotOut );
-#endif//BT_USE_SIMD_VECTOR3
-}
+ if (array_count < scalar_cutoff)
+#endif
+ {
+ btScalar minDot = SIMD_INFINITY;
+ int i = 0;
+ int ptIndex = -1;
+
+ for (i = 0; i < array_count; i++)
+ {
+ btScalar dot = array[i].dot(*this);
+
+ if (dot < minDot)
+ {
+ minDot = dot;
+ ptIndex = i;
+ }
+ }
+
+ dotOut = minDot;
+
+ return ptIndex;
+ }
+#if (defined BT_USE_SSE && defined BT_USE_SIMD_VECTOR3 && defined BT_USE_SSE_IN_API) || defined(BT_USE_NEON)
+ return _mindot_large((float*)array, (float*)&m_floats[0], array_count, &dotOut);
+#endif //BT_USE_SIMD_VECTOR3
+}
class btVector4 : public btVector3
{
public:
-
SIMD_FORCE_INLINE btVector4() {}
-
- SIMD_FORCE_INLINE btVector4(const btScalar& _x, const btScalar& _y, const btScalar& _z,const btScalar& _w)
- : btVector3(_x,_y,_z)
+ SIMD_FORCE_INLINE btVector4(const btScalar& _x, const btScalar& _y, const btScalar& _z, const btScalar& _w)
+ : btVector3(_x, _y, _z)
{
m_floats[3] = _w;
}
-#if (defined (BT_USE_SSE_IN_API)&& defined (BT_USE_SSE)) || defined (BT_USE_NEON)
+#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
SIMD_FORCE_INLINE btVector4(const btSimdFloat4 vec)
{
mVec128 = vec;
@@ -1110,34 +1092,32 @@ public:
mVec128 = rhs.mVec128;
}
- SIMD_FORCE_INLINE btVector4&
- operator=(const btVector4& v)
+ SIMD_FORCE_INLINE btVector4&
+ operator=(const btVector4& v)
{
mVec128 = v.mVec128;
return *this;
}
-#endif // #if defined (BT_USE_SSE_IN_API) || defined (BT_USE_NEON)
+#endif // #if defined (BT_USE_SSE_IN_API) || defined (BT_USE_NEON)
- SIMD_FORCE_INLINE btVector4 absolute4() const
+ SIMD_FORCE_INLINE btVector4 absolute4() const
{
-#if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+#if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
return btVector4(_mm_and_ps(mVec128, btvAbsfMask));
#elif defined(BT_USE_NEON)
return btVector4(vabsq_f32(mVec128));
-#else
+#else
return btVector4(
- btFabs(m_floats[0]),
- btFabs(m_floats[1]),
+ btFabs(m_floats[0]),
+ btFabs(m_floats[1]),
btFabs(m_floats[2]),
btFabs(m_floats[3]));
#endif
}
+ btScalar getW() const { return m_floats[3]; }
- btScalar getW() const { return m_floats[3];}
-
-
- SIMD_FORCE_INLINE int maxAxis4() const
+ SIMD_FORCE_INLINE int maxAxis4() const
{
int maxIndex = -1;
btScalar maxVal = btScalar(-BT_LARGE_FLOAT);
@@ -1154,7 +1134,7 @@ public:
if (m_floats[2] > maxVal)
{
maxIndex = 2;
- maxVal =m_floats[2];
+ maxVal = m_floats[2];
}
if (m_floats[3] > maxVal)
{
@@ -1164,7 +1144,6 @@ public:
return maxIndex;
}
-
SIMD_FORCE_INLINE int minAxis4() const
{
int minIndex = -1;
@@ -1182,182 +1161,176 @@ public:
if (m_floats[2] < minVal)
{
minIndex = 2;
- minVal =m_floats[2];
+ minVal = m_floats[2];
}
if (m_floats[3] < minVal)
{
minIndex = 3;
}
-
+
return minIndex;
}
-
- SIMD_FORCE_INLINE int closestAxis4() const
+ SIMD_FORCE_INLINE int closestAxis4() const
{
return absolute4().maxAxis4();
}
-
-
-
- /**@brief Set x,y,z and zero w
+ /**@brief Set x,y,z and zero w
* @param x Value of x
* @param y Value of y
* @param z Value of z
*/
-
-/* void getValue(btScalar *m) const
+ /* void getValue(btScalar *m) const
{
m[0] = m_floats[0];
m[1] = m_floats[1];
m[2] =m_floats[2];
}
*/
-/**@brief Set the values
+ /**@brief Set the values
* @param x Value of x
* @param y Value of y
* @param z Value of z
* @param w Value of w
*/
- SIMD_FORCE_INLINE void setValue(const btScalar& _x, const btScalar& _y, const btScalar& _z,const btScalar& _w)
- {
- m_floats[0]=_x;
- m_floats[1]=_y;
- m_floats[2]=_z;
- m_floats[3]=_w;
- }
-
-
+ SIMD_FORCE_INLINE void setValue(const btScalar& _x, const btScalar& _y, const btScalar& _z, const btScalar& _w)
+ {
+ m_floats[0] = _x;
+ m_floats[1] = _y;
+ m_floats[2] = _z;
+ m_floats[3] = _w;
+ }
};
-
///btSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization
-SIMD_FORCE_INLINE void btSwapScalarEndian(const btScalar& sourceVal, btScalar& destVal)
+SIMD_FORCE_INLINE void btSwapScalarEndian(const btScalar& sourceVal, btScalar& destVal)
{
- #ifdef BT_USE_DOUBLE_PRECISION
- unsigned char* dest = (unsigned char*) &destVal;
- unsigned char* src = (unsigned char*) &sourceVal;
+#ifdef BT_USE_DOUBLE_PRECISION
+ unsigned char* dest = (unsigned char*)&destVal;
+ const unsigned char* src = (const unsigned char*)&sourceVal;
dest[0] = src[7];
- dest[1] = src[6];
- dest[2] = src[5];
- dest[3] = src[4];
- dest[4] = src[3];
- dest[5] = src[2];
- dest[6] = src[1];
- dest[7] = src[0];
+ dest[1] = src[6];
+ dest[2] = src[5];
+ dest[3] = src[4];
+ dest[4] = src[3];
+ dest[5] = src[2];
+ dest[6] = src[1];
+ dest[7] = src[0];
#else
- unsigned char* dest = (unsigned char*) &destVal;
- unsigned char* src = (unsigned char*) &sourceVal;
+ unsigned char* dest = (unsigned char*)&destVal;
+ const unsigned char* src = (const unsigned char*)&sourceVal;
dest[0] = src[3];
- dest[1] = src[2];
- dest[2] = src[1];
- dest[3] = src[0];
-#endif //BT_USE_DOUBLE_PRECISION
+ dest[1] = src[2];
+ dest[2] = src[1];
+ dest[3] = src[0];
+#endif //BT_USE_DOUBLE_PRECISION
}
///btSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization
-SIMD_FORCE_INLINE void btSwapVector3Endian(const btVector3& sourceVec, btVector3& destVec)
+SIMD_FORCE_INLINE void btSwapVector3Endian(const btVector3& sourceVec, btVector3& destVec)
{
- for (int i=0;i<4;i++)
+ for (int i = 0; i < 4; i++)
{
- btSwapScalarEndian(sourceVec[i],destVec[i]);
+ btSwapScalarEndian(sourceVec[i], destVec[i]);
}
-
}
///btUnSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization
-SIMD_FORCE_INLINE void btUnSwapVector3Endian(btVector3& vector)
+SIMD_FORCE_INLINE void btUnSwapVector3Endian(btVector3& vector)
{
-
- btVector3 swappedVec;
- for (int i=0;i<4;i++)
+ btVector3 swappedVec;
+ for (int i = 0; i < 4; i++)
{
- btSwapScalarEndian(vector[i],swappedVec[i]);
+ btSwapScalarEndian(vector[i], swappedVec[i]);
}
vector = swappedVec;
}
template <class T>
-SIMD_FORCE_INLINE void btPlaneSpace1 (const T& n, T& p, T& q)
+SIMD_FORCE_INLINE void btPlaneSpace1(const T& n, T& p, T& q)
{
- if (btFabs(n[2]) > SIMDSQRT12) {
- // choose p in y-z plane
- btScalar a = n[1]*n[1] + n[2]*n[2];
- btScalar k = btRecipSqrt (a);
- p[0] = 0;
- p[1] = -n[2]*k;
- p[2] = n[1]*k;
- // set q = n x p
- q[0] = a*k;
- q[1] = -n[0]*p[2];
- q[2] = n[0]*p[1];
- }
- else {
- // choose p in x-y plane
- btScalar a = n[0]*n[0] + n[1]*n[1];
- btScalar k = btRecipSqrt (a);
- p[0] = -n[1]*k;
- p[1] = n[0]*k;
- p[2] = 0;
- // set q = n x p
- q[0] = -n[2]*p[1];
- q[1] = n[2]*p[0];
- q[2] = a*k;
- }
+ if (btFabs(n[2]) > SIMDSQRT12)
+ {
+ // choose p in y-z plane
+ btScalar a = n[1] * n[1] + n[2] * n[2];
+ btScalar k = btRecipSqrt(a);
+ p[0] = 0;
+ p[1] = -n[2] * k;
+ p[2] = n[1] * k;
+ // set q = n x p
+ q[0] = a * k;
+ q[1] = -n[0] * p[2];
+ q[2] = n[0] * p[1];
+ }
+ else
+ {
+ // choose p in x-y plane
+ btScalar a = n[0] * n[0] + n[1] * n[1];
+ btScalar k = btRecipSqrt(a);
+ p[0] = -n[1] * k;
+ p[1] = n[0] * k;
+ p[2] = 0;
+ // set q = n x p
+ q[0] = -n[2] * p[1];
+ q[1] = n[2] * p[0];
+ q[2] = a * k;
+ }
}
-
-struct btVector3FloatData
+struct btVector3FloatData
{
- float m_floats[4];
+ float m_floats[4];
};
-struct btVector3DoubleData
+struct btVector3DoubleData
{
- double m_floats[4];
-
+ double m_floats[4];
};
-SIMD_FORCE_INLINE void btVector3::serializeFloat(struct btVector3FloatData& dataOut) const
+SIMD_FORCE_INLINE void btVector3::serializeFloat(struct btVector3FloatData& dataOut) const
{
///could also do a memcpy, check if it is worth it
- for (int i=0;i<4;i++)
+ for (int i = 0; i < 4; i++)
dataOut.m_floats[i] = float(m_floats[i]);
}
-SIMD_FORCE_INLINE void btVector3::deSerializeFloat(const struct btVector3FloatData& dataIn)
+SIMD_FORCE_INLINE void btVector3::deSerializeFloat(const struct btVector3FloatData& dataIn)
{
- for (int i=0;i<4;i++)
+ for (int i = 0; i < 4; i++)
m_floats[i] = btScalar(dataIn.m_floats[i]);
}
-
-SIMD_FORCE_INLINE void btVector3::serializeDouble(struct btVector3DoubleData& dataOut) const
+SIMD_FORCE_INLINE void btVector3::serializeDouble(struct btVector3DoubleData& dataOut) const
{
///could also do a memcpy, check if it is worth it
- for (int i=0;i<4;i++)
+ for (int i = 0; i < 4; i++)
dataOut.m_floats[i] = double(m_floats[i]);
}
-SIMD_FORCE_INLINE void btVector3::deSerializeDouble(const struct btVector3DoubleData& dataIn)
+SIMD_FORCE_INLINE void btVector3::deSerializeDouble(const struct btVector3DoubleData& dataIn)
{
- for (int i=0;i<4;i++)
+ for (int i = 0; i < 4; i++)
m_floats[i] = btScalar(dataIn.m_floats[i]);
}
-
-SIMD_FORCE_INLINE void btVector3::serialize(struct btVector3Data& dataOut) const
+SIMD_FORCE_INLINE void btVector3::serialize(struct btVector3Data& dataOut) const
{
///could also do a memcpy, check if it is worth it
- for (int i=0;i<4;i++)
+ for (int i = 0; i < 4; i++)
dataOut.m_floats[i] = m_floats[i];
}
-SIMD_FORCE_INLINE void btVector3::deSerialize(const struct btVector3Data& dataIn)
+SIMD_FORCE_INLINE void btVector3::deSerialize(const struct btVector3FloatData& dataIn)
+{
+ for (int i = 0; i < 4; i++)
+ m_floats[i] = (btScalar)dataIn.m_floats[i];
+}
+
+SIMD_FORCE_INLINE void btVector3::deSerialize(const struct btVector3DoubleData& dataIn)
{
- for (int i=0;i<4;i++)
- m_floats[i] = dataIn.m_floats[i];
+ for (int i = 0; i < 4; i++)
+ m_floats[i] = (btScalar)dataIn.m_floats[i];
}
-#endif //BT_VECTOR3_H
+#endif //BT_VECTOR3_H