diff options
Diffstat (limited to 'thirdparty/bullet/LinearMath/btVector3.h')
-rw-r--r-- | thirdparty/bullet/LinearMath/btVector3.h | 1073 |
1 files changed, 523 insertions, 550 deletions
diff --git a/thirdparty/bullet/LinearMath/btVector3.h b/thirdparty/bullet/LinearMath/btVector3.h index c69effa96e..61fd8d1e46 100644 --- a/thirdparty/bullet/LinearMath/btVector3.h +++ b/thirdparty/bullet/LinearMath/btVector3.h @@ -12,8 +12,6 @@ subject to the following restrictions: 3. This notice may not be removed or altered from any source distribution. */ - - #ifndef BT_VECTOR3_H #define BT_VECTOR3_H @@ -28,25 +26,24 @@ subject to the following restrictions: #else #define btVector3Data btVector3FloatData #define btVector3DataName "btVector3FloatData" -#endif //BT_USE_DOUBLE_PRECISION +#endif //BT_USE_DOUBLE_PRECISION #if defined BT_USE_SSE //typedef uint32_t __m128i __attribute__ ((vector_size(16))); #ifdef _MSC_VER -#pragma warning(disable: 4556) // value of intrinsic immediate argument '4294967239' is out of range '0 - 255' +#pragma warning(disable : 4556) // value of intrinsic immediate argument '4294967239' is out of range '0 - 255' #endif - -#define BT_SHUFFLE(x,y,z,w) ((w)<<6 | (z)<<4 | (y)<<2 | (x)) +#define BT_SHUFFLE(x, y, z, w) ((w) << 6 | (z) << 4 | (y) << 2 | (x)) //#define bt_pshufd_ps( _a, _mask ) (__m128) _mm_shuffle_epi32((__m128i)(_a), (_mask) ) -#define bt_pshufd_ps( _a, _mask ) _mm_shuffle_ps((_a), (_a), (_mask) ) -#define bt_splat3_ps( _a, _i ) bt_pshufd_ps((_a), BT_SHUFFLE(_i,_i,_i, 3) ) -#define bt_splat_ps( _a, _i ) bt_pshufd_ps((_a), BT_SHUFFLE(_i,_i,_i,_i) ) +#define bt_pshufd_ps(_a, _mask) _mm_shuffle_ps((_a), (_a), (_mask)) +#define bt_splat3_ps(_a, _i) bt_pshufd_ps((_a), BT_SHUFFLE(_i, _i, _i, 3)) +#define bt_splat_ps(_a, _i) bt_pshufd_ps((_a), BT_SHUFFLE(_i, _i, _i, _i)) #define btv3AbsiMask (_mm_set_epi32(0x00000000, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF)) -#define btvAbsMask (_mm_set_epi32( 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF)) +#define btvAbsMask (_mm_set_epi32(0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF)) #define btvFFF0Mask (_mm_set_epi32(0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF)) #define btv3AbsfMask btCastiTo128f(btv3AbsiMask) #define btvFFF0fMask btCastiTo128f(btvFFF0Mask) @@ -55,9 +52,9 @@ subject to the following restrictions: //there is an issue with XCode 3.2 (LCx errors) #define btvMzeroMask (_mm_set_ps(-0.0f, -0.0f, -0.0f, -0.0f)) -#define v1110 (_mm_set_ps(0.0f, 1.0f, 1.0f, 1.0f)) -#define vHalf (_mm_set_ps(0.5f, 0.5f, 0.5f, 0.5f)) -#define v1_5 (_mm_set_ps(1.5f, 1.5f, 1.5f, 1.5f)) +#define v1110 (_mm_set_ps(0.0f, 1.0f, 1.0f, 1.0f)) +#define vHalf (_mm_set_ps(0.5f, 0.5f, 0.5f, 0.5f)) +#define v1_5 (_mm_set_ps(1.5f, 1.5f, 1.5f, 1.5f)) //const __m128 ATTRIBUTE_ALIGNED16(btvMzeroMask) = {-0.0f, -0.0f, -0.0f, -0.0f}; //const __m128 ATTRIBUTE_ALIGNED16(v1110) = {1.0f, 1.0f, 1.0f, 0.0f}; @@ -70,7 +67,7 @@ subject to the following restrictions: const float32x4_t ATTRIBUTE_ALIGNED16(btvMzeroMask) = (float32x4_t){-0.0f, -0.0f, -0.0f, -0.0f}; const int32x4_t ATTRIBUTE_ALIGNED16(btvFFF0Mask) = (int32x4_t){static_cast<int32_t>(0xFFFFFFFF), - static_cast<int32_t>(0xFFFFFFFF), static_cast<int32_t>(0xFFFFFFFF), 0x0}; + static_cast<int32_t>(0xFFFFFFFF), static_cast<int32_t>(0xFFFFFFFF), 0x0}; const int32x4_t ATTRIBUTE_ALIGNED16(btvAbsMask) = (int32x4_t){0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF}; const int32x4_t ATTRIBUTE_ALIGNED16(btv3AbsMask) = (int32x4_t){0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x0}; @@ -80,50 +77,48 @@ const int32x4_t ATTRIBUTE_ALIGNED16(btv3AbsMask) = (int32x4_t){0x7FFFFFFF, 0x7FF * It has an un-used w component to suit 16-byte alignment when btVector3 is stored in containers. This extra component can be used by derived classes (Quaternion?) or by user * Ideally, this class should be replaced by a platform optimized SIMD version that keeps the data in registers */ -ATTRIBUTE_ALIGNED16(class) btVector3 +ATTRIBUTE_ALIGNED16(class) +btVector3 { public: - BT_DECLARE_ALIGNED_ALLOCATOR(); -#if defined (__SPU__) && defined (__CELLOS_LV2__) - btScalar m_floats[4]; +#if defined(__SPU__) && defined(__CELLOS_LV2__) + btScalar m_floats[4]; + public: - SIMD_FORCE_INLINE const vec_float4& get128() const + SIMD_FORCE_INLINE const vec_float4& get128() const { return *((const vec_float4*)&m_floats[0]); } + public: -#else //__CELLOS_LV2__ __SPU__ - #if defined (BT_USE_SSE) || defined(BT_USE_NEON) // _WIN32 || ARM - union { - btSimdFloat4 mVec128; - btScalar m_floats[4]; - }; - SIMD_FORCE_INLINE btSimdFloat4 get128() const - { - return mVec128; - } - SIMD_FORCE_INLINE void set128(btSimdFloat4 v128) - { - mVec128 = v128; - } - #else - btScalar m_floats[4]; - #endif -#endif //__CELLOS_LV2__ __SPU__ - - public: - - /**@brief No initialization constructor */ - SIMD_FORCE_INLINE btVector3() +#else //__CELLOS_LV2__ __SPU__ +#if defined(BT_USE_SSE) || defined(BT_USE_NEON) // _WIN32 || ARM + union { + btSimdFloat4 mVec128; + btScalar m_floats[4]; + }; + SIMD_FORCE_INLINE btSimdFloat4 get128() const + { + return mVec128; + } + SIMD_FORCE_INLINE void set128(btSimdFloat4 v128) { + mVec128 = v128; + } +#else + btScalar m_floats[4]; +#endif +#endif //__CELLOS_LV2__ __SPU__ +public: + /**@brief No initialization constructor */ + SIMD_FORCE_INLINE btVector3() + { } - - - /**@brief Constructor from scalars + /**@brief Constructor from scalars * @param x X value * @param y Y value * @param z Z value @@ -136,9 +131,9 @@ public: m_floats[3] = btScalar(0.f); } -#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE) )|| defined (BT_USE_NEON) - // Set Vector - SIMD_FORCE_INLINE btVector3( btSimdFloat4 v) +#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON) + // Set Vector + SIMD_FORCE_INLINE btVector3(btSimdFloat4 v) { mVec128 = v; } @@ -150,73 +145,72 @@ public: } // Assignment Operator - SIMD_FORCE_INLINE btVector3& - operator=(const btVector3& v) + SIMD_FORCE_INLINE btVector3& + operator=(const btVector3& v) { mVec128 = v.mVec128; - + return *this; } -#endif // #if defined (BT_USE_SSE_IN_API) || defined (BT_USE_NEON) - -/**@brief Add a vector to this one +#endif // #if defined (BT_USE_SSE_IN_API) || defined (BT_USE_NEON) + + /**@brief Add a vector to this one * @param The vector to add to this one */ SIMD_FORCE_INLINE btVector3& operator+=(const btVector3& v) { -#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) +#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) mVec128 = _mm_add_ps(mVec128, v.mVec128); #elif defined(BT_USE_NEON) mVec128 = vaddq_f32(mVec128, v.mVec128); #else - m_floats[0] += v.m_floats[0]; + m_floats[0] += v.m_floats[0]; m_floats[1] += v.m_floats[1]; m_floats[2] += v.m_floats[2]; #endif return *this; } - - /**@brief Subtract a vector from this one + /**@brief Subtract a vector from this one * @param The vector to subtract */ - SIMD_FORCE_INLINE btVector3& operator-=(const btVector3& v) + SIMD_FORCE_INLINE btVector3& operator-=(const btVector3& v) { -#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) +#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) mVec128 = _mm_sub_ps(mVec128, v.mVec128); #elif defined(BT_USE_NEON) mVec128 = vsubq_f32(mVec128, v.mVec128); #else - m_floats[0] -= v.m_floats[0]; + m_floats[0] -= v.m_floats[0]; m_floats[1] -= v.m_floats[1]; m_floats[2] -= v.m_floats[2]; #endif return *this; } - - /**@brief Scale the vector + + /**@brief Scale the vector * @param s Scale factor */ SIMD_FORCE_INLINE btVector3& operator*=(const btScalar& s) { -#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) - __m128 vs = _mm_load_ss(&s); // (S 0 0 0) - vs = bt_pshufd_ps(vs, 0x80); // (S S S 0.0) +#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) + __m128 vs = _mm_load_ss(&s); // (S 0 0 0) + vs = bt_pshufd_ps(vs, 0x80); // (S S S 0.0) mVec128 = _mm_mul_ps(mVec128, vs); #elif defined(BT_USE_NEON) mVec128 = vmulq_n_f32(mVec128, s); #else - m_floats[0] *= s; + m_floats[0] *= s; m_floats[1] *= s; m_floats[2] *= s; #endif return *this; } - /**@brief Inversely scale the vector + /**@brief Inversely scale the vector * @param s Scale factor to divide by */ - SIMD_FORCE_INLINE btVector3& operator/=(const btScalar& s) + SIMD_FORCE_INLINE btVector3& operator/=(const btScalar& s) { btFullAssert(s != btScalar(0.0)); -#if 0 //defined(BT_USE_SSE_IN_API) +#if 0 //defined(BT_USE_SSE_IN_API) // this code is not faster ! __m128 vs = _mm_load_ss(&s); vs = _mm_div_ss(v1110, vs); @@ -230,11 +224,11 @@ public: #endif } - /**@brief Return the dot product + /**@brief Return the dot product * @param v The other vector in the dot product */ SIMD_FORCE_INLINE btScalar dot(const btVector3& v) const { -#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE) +#if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) __m128 vd = _mm_mul_ps(mVec128, v.mVec128); __m128 z = _mm_movehl_ps(vd, vd); __m128 y = _mm_shuffle_ps(vd, vd, 0x55); @@ -243,23 +237,23 @@ public: return _mm_cvtss_f32(vd); #elif defined(BT_USE_NEON) float32x4_t vd = vmulq_f32(mVec128, v.mVec128); - float32x2_t x = vpadd_f32(vget_low_f32(vd), vget_low_f32(vd)); + float32x2_t x = vpadd_f32(vget_low_f32(vd), vget_low_f32(vd)); x = vadd_f32(x, vget_high_f32(vd)); return vget_lane_f32(x, 0); -#else - return m_floats[0] * v.m_floats[0] + - m_floats[1] * v.m_floats[1] + - m_floats[2] * v.m_floats[2]; +#else + return m_floats[0] * v.m_floats[0] + + m_floats[1] * v.m_floats[1] + + m_floats[2] * v.m_floats[2]; #endif } - /**@brief Return the length of the vector squared */ + /**@brief Return the length of the vector squared */ SIMD_FORCE_INLINE btScalar length2() const { return dot(*this); } - /**@brief Return the length of the vector */ + /**@brief Return the length of the vector */ SIMD_FORCE_INLINE btScalar length() const { return btSqrt(length2()); @@ -267,7 +261,7 @@ public: /**@brief Return the norm (length) of the vector */ SIMD_FORCE_INLINE btScalar norm() const - { + { return length(); } @@ -276,24 +270,24 @@ public: { btScalar d = length2(); //workaround for some clang/gcc issue of sqrtf(tiny number) = -INF - if (d>SIMD_EPSILON) + if (d > SIMD_EPSILON) return btSqrt(d); return btScalar(0); } - /**@brief Return the distance squared between the ends of this and another vector + /**@brief Return the distance squared between the ends of this and another vector * This is symantically treating the vector like a point */ SIMD_FORCE_INLINE btScalar distance2(const btVector3& v) const; - /**@brief Return the distance between the ends of this and another vector + /**@brief Return the distance between the ends of this and another vector * This is symantically treating the vector like a point */ SIMD_FORCE_INLINE btScalar distance(const btVector3& v) const; - SIMD_FORCE_INLINE btVector3& safeNormalize() + SIMD_FORCE_INLINE btVector3& safeNormalize() { btScalar l2 = length2(); //triNormal.normalize(); - if (l2 >= SIMD_EPSILON*SIMD_EPSILON) + if (l2 >= SIMD_EPSILON * SIMD_EPSILON) { (*this) /= btSqrt(l2); } @@ -304,100 +298,97 @@ public: return *this; } - /**@brief Normalize this vector + /**@brief Normalize this vector * x^2 + y^2 + z^2 = 1 */ - SIMD_FORCE_INLINE btVector3& normalize() + SIMD_FORCE_INLINE btVector3& normalize() { - btAssert(!fuzzyZero()); -#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) - // dot product first +#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) + // dot product first __m128 vd = _mm_mul_ps(mVec128, mVec128); __m128 z = _mm_movehl_ps(vd, vd); __m128 y = _mm_shuffle_ps(vd, vd, 0x55); vd = _mm_add_ss(vd, y); vd = _mm_add_ss(vd, z); - - #if 0 + +#if 0 vd = _mm_sqrt_ss(vd); vd = _mm_div_ss(v1110, vd); vd = bt_splat_ps(vd, 0x80); mVec128 = _mm_mul_ps(mVec128, vd); - #else - - // NR step 1/sqrt(x) - vd is x, y is output - y = _mm_rsqrt_ss(vd); // estimate - - // one step NR - z = v1_5; - vd = _mm_mul_ss(vd, vHalf); // vd * 0.5 - //x2 = vd; - vd = _mm_mul_ss(vd, y); // vd * 0.5 * y0 - vd = _mm_mul_ss(vd, y); // vd * 0.5 * y0 * y0 - z = _mm_sub_ss(z, vd); // 1.5 - vd * 0.5 * y0 * y0 - - y = _mm_mul_ss(y, z); // y0 * (1.5 - vd * 0.5 * y0 * y0) +#else + + // NR step 1/sqrt(x) - vd is x, y is output + y = _mm_rsqrt_ss(vd); // estimate + + // one step NR + z = v1_5; + vd = _mm_mul_ss(vd, vHalf); // vd * 0.5 + //x2 = vd; + vd = _mm_mul_ss(vd, y); // vd * 0.5 * y0 + vd = _mm_mul_ss(vd, y); // vd * 0.5 * y0 * y0 + z = _mm_sub_ss(z, vd); // 1.5 - vd * 0.5 * y0 * y0 + + y = _mm_mul_ss(y, z); // y0 * (1.5 - vd * 0.5 * y0 * y0) y = bt_splat_ps(y, 0x80); mVec128 = _mm_mul_ps(mVec128, y); - #endif +#endif - return *this; -#else +#else return *this /= length(); #endif } - /**@brief Return a normalized version of this vector */ + /**@brief Return a normalized version of this vector */ SIMD_FORCE_INLINE btVector3 normalized() const; - /**@brief Return a rotated version of this vector + /**@brief Return a rotated version of this vector * @param wAxis The axis to rotate about * @param angle The angle to rotate by */ - SIMD_FORCE_INLINE btVector3 rotate( const btVector3& wAxis, const btScalar angle ) const; + SIMD_FORCE_INLINE btVector3 rotate(const btVector3& wAxis, const btScalar angle) const; - /**@brief Return the angle between this and another vector + /**@brief Return the angle between this and another vector * @param v The other vector */ - SIMD_FORCE_INLINE btScalar angle(const btVector3& v) const + SIMD_FORCE_INLINE btScalar angle(const btVector3& v) const { btScalar s = btSqrt(length2() * v.length2()); btFullAssert(s != btScalar(0.0)); return btAcos(dot(v) / s); } - - /**@brief Return a vector with the absolute values of each element */ - SIMD_FORCE_INLINE btVector3 absolute() const - { -#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE) + /**@brief Return a vector with the absolute values of each element */ + SIMD_FORCE_INLINE btVector3 absolute() const + { +#if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) return btVector3(_mm_and_ps(mVec128, btv3AbsfMask)); #elif defined(BT_USE_NEON) return btVector3(vabsq_f32(mVec128)); -#else +#else return btVector3( - btFabs(m_floats[0]), - btFabs(m_floats[1]), + btFabs(m_floats[0]), + btFabs(m_floats[1]), btFabs(m_floats[2])); #endif } - - /**@brief Return the cross product between this and another vector + + /**@brief Return the cross product between this and another vector * @param v The other vector */ SIMD_FORCE_INLINE btVector3 cross(const btVector3& v) const { -#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) - __m128 T, V; - - T = bt_pshufd_ps(mVec128, BT_SHUFFLE(1, 2, 0, 3)); // (Y Z X 0) - V = bt_pshufd_ps(v.mVec128, BT_SHUFFLE(1, 2, 0, 3)); // (Y Z X 0) - +#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) + __m128 T, V; + + T = bt_pshufd_ps(mVec128, BT_SHUFFLE(1, 2, 0, 3)); // (Y Z X 0) + V = bt_pshufd_ps(v.mVec128, BT_SHUFFLE(1, 2, 0, 3)); // (Y Z X 0) + V = _mm_mul_ps(V, mVec128); T = _mm_mul_ps(T, v.mVec128); V = _mm_sub_ps(V, T); - + V = bt_pshufd_ps(V, BT_SHUFFLE(1, 2, 0, 3)); return btVector3(V); #elif defined(BT_USE_NEON) @@ -407,7 +398,7 @@ public: float32x2_t Vlow = vget_low_f32(v.mVec128); T = vcombine_f32(vext_f32(Tlow, vget_high_f32(mVec128), 1), Tlow); V = vcombine_f32(vext_f32(Vlow, vget_high_f32(v.mVec128), 1), Vlow); - + V = vmulq_f32(V, mVec128); T = vmulq_f32(T, v.mVec128); V = vsubq_f32(V, T); @@ -415,7 +406,7 @@ public: // form (Y, Z, X, _); V = vcombine_f32(vext_f32(Vlow, vget_high_f32(V), 1), Vlow); V = (float32x4_t)vandq_s32((int32x4_t)V, btvFFF0Mask); - + return btVector3(V); #else return btVector3( @@ -427,18 +418,18 @@ public: SIMD_FORCE_INLINE btScalar triple(const btVector3& v1, const btVector3& v2) const { -#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE) +#if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) // cross: - __m128 T = _mm_shuffle_ps(v1.mVec128, v1.mVec128, BT_SHUFFLE(1, 2, 0, 3)); // (Y Z X 0) - __m128 V = _mm_shuffle_ps(v2.mVec128, v2.mVec128, BT_SHUFFLE(1, 2, 0, 3)); // (Y Z X 0) - + __m128 T = _mm_shuffle_ps(v1.mVec128, v1.mVec128, BT_SHUFFLE(1, 2, 0, 3)); // (Y Z X 0) + __m128 V = _mm_shuffle_ps(v2.mVec128, v2.mVec128, BT_SHUFFLE(1, 2, 0, 3)); // (Y Z X 0) + V = _mm_mul_ps(V, v1.mVec128); T = _mm_mul_ps(T, v2.mVec128); V = _mm_sub_ps(V, T); - + V = _mm_shuffle_ps(V, V, BT_SHUFFLE(1, 2, 0, 3)); - // dot: + // dot: V = _mm_mul_ps(V, mVec128); __m128 z = _mm_movehl_ps(V, V); __m128 y = _mm_shuffle_ps(V, V, 0x55); @@ -454,7 +445,7 @@ public: float32x2_t Vlow = vget_low_f32(v2.mVec128); T = vcombine_f32(vext_f32(Tlow, vget_high_f32(v1.mVec128), 1), Tlow); V = vcombine_f32(vext_f32(Vlow, vget_high_f32(v2.mVec128), 1), Vlow); - + V = vmulq_f32(V, v1.mVec128); T = vmulq_f32(T, v2.mVec128); V = vsubq_f32(V, T); @@ -462,31 +453,30 @@ public: // form (Y, Z, X, _); V = vcombine_f32(vext_f32(Vlow, vget_high_f32(V), 1), Vlow); - // dot: + // dot: V = vmulq_f32(mVec128, V); - float32x2_t x = vpadd_f32(vget_low_f32(V), vget_low_f32(V)); + float32x2_t x = vpadd_f32(vget_low_f32(V), vget_low_f32(V)); x = vadd_f32(x, vget_high_f32(V)); return vget_lane_f32(x, 0); #else - return - m_floats[0] * (v1.m_floats[1] * v2.m_floats[2] - v1.m_floats[2] * v2.m_floats[1]) + - m_floats[1] * (v1.m_floats[2] * v2.m_floats[0] - v1.m_floats[0] * v2.m_floats[2]) + - m_floats[2] * (v1.m_floats[0] * v2.m_floats[1] - v1.m_floats[1] * v2.m_floats[0]); + return m_floats[0] * (v1.m_floats[1] * v2.m_floats[2] - v1.m_floats[2] * v2.m_floats[1]) + + m_floats[1] * (v1.m_floats[2] * v2.m_floats[0] - v1.m_floats[0] * v2.m_floats[2]) + + m_floats[2] * (v1.m_floats[0] * v2.m_floats[1] - v1.m_floats[1] * v2.m_floats[0]); #endif } - /**@brief Return the axis with the smallest value + /**@brief Return the axis with the smallest value * Note return values are 0,1,2 for x, y, or z */ SIMD_FORCE_INLINE int minAxis() const { - return m_floats[0] < m_floats[1] ? (m_floats[0] <m_floats[2] ? 0 : 2) : (m_floats[1] <m_floats[2] ? 1 : 2); + return m_floats[0] < m_floats[1] ? (m_floats[0] < m_floats[2] ? 0 : 2) : (m_floats[1] < m_floats[2] ? 1 : 2); } - /**@brief Return the axis with the largest value + /**@brief Return the axis with the largest value * Note return values are 0,1,2 for x, y, or z */ - SIMD_FORCE_INLINE int maxAxis() const + SIMD_FORCE_INLINE int maxAxis() const { - return m_floats[0] < m_floats[1] ? (m_floats[1] <m_floats[2] ? 2 : 1) : (m_floats[0] <m_floats[2] ? 2 : 0); + return m_floats[0] < m_floats[1] ? (m_floats[1] < m_floats[2] ? 2 : 1) : (m_floats[0] < m_floats[2] ? 2 : 0); } SIMD_FORCE_INLINE int furthestAxis() const @@ -494,23 +484,22 @@ public: return absolute().minAxis(); } - SIMD_FORCE_INLINE int closestAxis() const + SIMD_FORCE_INLINE int closestAxis() const { return absolute().maxAxis(); } - SIMD_FORCE_INLINE void setInterpolate3(const btVector3& v0, const btVector3& v1, btScalar rt) { -#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) - __m128 vrt = _mm_load_ss(&rt); // (rt 0 0 0) +#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) + __m128 vrt = _mm_load_ss(&rt); // (rt 0 0 0) btScalar s = btScalar(1.0) - rt; - __m128 vs = _mm_load_ss(&s); // (S 0 0 0) - vs = bt_pshufd_ps(vs, 0x80); // (S S S 0.0) + __m128 vs = _mm_load_ss(&s); // (S 0 0 0) + vs = bt_pshufd_ps(vs, 0x80); // (S S S 0.0) __m128 r0 = _mm_mul_ps(v0.mVec128, vs); - vrt = bt_pshufd_ps(vrt, 0x80); // (rt rt rt 0.0) + vrt = bt_pshufd_ps(vrt, 0x80); // (rt rt rt 0.0) __m128 r1 = _mm_mul_ps(v1.mVec128, vrt); - __m128 tmp3 = _mm_add_ps(r0,r1); + __m128 tmp3 = _mm_add_ps(r0, r1); mVec128 = tmp3; #elif defined(BT_USE_NEON) float32x4_t vl = vsubq_f32(v1.mVec128, v0.mVec128); @@ -526,101 +515,100 @@ public: #endif } - /**@brief Return the linear interpolation between this and another vector + /**@brief Return the linear interpolation between this and another vector * @param v The other vector * @param t The ration of this to v (t = 0 => return this, t=1 => return other) */ - SIMD_FORCE_INLINE btVector3 lerp(const btVector3& v, const btScalar& t) const + SIMD_FORCE_INLINE btVector3 lerp(const btVector3& v, const btScalar& t) const { -#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) - __m128 vt = _mm_load_ss(&t); // (t 0 0 0) - vt = bt_pshufd_ps(vt, 0x80); // (rt rt rt 0.0) +#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) + __m128 vt = _mm_load_ss(&t); // (t 0 0 0) + vt = bt_pshufd_ps(vt, 0x80); // (rt rt rt 0.0) __m128 vl = _mm_sub_ps(v.mVec128, mVec128); vl = _mm_mul_ps(vl, vt); vl = _mm_add_ps(vl, mVec128); - + return btVector3(vl); #elif defined(BT_USE_NEON) float32x4_t vl = vsubq_f32(v.mVec128, mVec128); vl = vmulq_n_f32(vl, t); vl = vaddq_f32(vl, mVec128); - + return btVector3(vl); -#else - return - btVector3( m_floats[0] + (v.m_floats[0] - m_floats[0]) * t, - m_floats[1] + (v.m_floats[1] - m_floats[1]) * t, - m_floats[2] + (v.m_floats[2] - m_floats[2]) * t); +#else + return btVector3(m_floats[0] + (v.m_floats[0] - m_floats[0]) * t, + m_floats[1] + (v.m_floats[1] - m_floats[1]) * t, + m_floats[2] + (v.m_floats[2] - m_floats[2]) * t); #endif } - /**@brief Elementwise multiply this vector by the other + /**@brief Elementwise multiply this vector by the other * @param v The other vector */ SIMD_FORCE_INLINE btVector3& operator*=(const btVector3& v) { -#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) +#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) mVec128 = _mm_mul_ps(mVec128, v.mVec128); #elif defined(BT_USE_NEON) mVec128 = vmulq_f32(mVec128, v.mVec128); -#else - m_floats[0] *= v.m_floats[0]; +#else + m_floats[0] *= v.m_floats[0]; m_floats[1] *= v.m_floats[1]; m_floats[2] *= v.m_floats[2]; #endif return *this; } - /**@brief Return the x value */ - SIMD_FORCE_INLINE const btScalar& getX() const { return m_floats[0]; } - /**@brief Return the y value */ - SIMD_FORCE_INLINE const btScalar& getY() const { return m_floats[1]; } - /**@brief Return the z value */ - SIMD_FORCE_INLINE const btScalar& getZ() const { return m_floats[2]; } - /**@brief Set the x value */ - SIMD_FORCE_INLINE void setX(btScalar _x) { m_floats[0] = _x;}; - /**@brief Set the y value */ - SIMD_FORCE_INLINE void setY(btScalar _y) { m_floats[1] = _y;}; - /**@brief Set the z value */ - SIMD_FORCE_INLINE void setZ(btScalar _z) { m_floats[2] = _z;}; - /**@brief Set the w value */ - SIMD_FORCE_INLINE void setW(btScalar _w) { m_floats[3] = _w;}; - /**@brief Return the x value */ - SIMD_FORCE_INLINE const btScalar& x() const { return m_floats[0]; } - /**@brief Return the y value */ - SIMD_FORCE_INLINE const btScalar& y() const { return m_floats[1]; } - /**@brief Return the z value */ - SIMD_FORCE_INLINE const btScalar& z() const { return m_floats[2]; } - /**@brief Return the w value */ - SIMD_FORCE_INLINE const btScalar& w() const { return m_floats[3]; } - - //SIMD_FORCE_INLINE btScalar& operator[](int i) { return (&m_floats[0])[i]; } + /**@brief Return the x value */ + SIMD_FORCE_INLINE const btScalar& getX() const { return m_floats[0]; } + /**@brief Return the y value */ + SIMD_FORCE_INLINE const btScalar& getY() const { return m_floats[1]; } + /**@brief Return the z value */ + SIMD_FORCE_INLINE const btScalar& getZ() const { return m_floats[2]; } + /**@brief Set the x value */ + SIMD_FORCE_INLINE void setX(btScalar _x) { m_floats[0] = _x; }; + /**@brief Set the y value */ + SIMD_FORCE_INLINE void setY(btScalar _y) { m_floats[1] = _y; }; + /**@brief Set the z value */ + SIMD_FORCE_INLINE void setZ(btScalar _z) { m_floats[2] = _z; }; + /**@brief Set the w value */ + SIMD_FORCE_INLINE void setW(btScalar _w) { m_floats[3] = _w; }; + /**@brief Return the x value */ + SIMD_FORCE_INLINE const btScalar& x() const { return m_floats[0]; } + /**@brief Return the y value */ + SIMD_FORCE_INLINE const btScalar& y() const { return m_floats[1]; } + /**@brief Return the z value */ + SIMD_FORCE_INLINE const btScalar& z() const { return m_floats[2]; } + /**@brief Return the w value */ + SIMD_FORCE_INLINE const btScalar& w() const { return m_floats[3]; } + + //SIMD_FORCE_INLINE btScalar& operator[](int i) { return (&m_floats[0])[i]; } //SIMD_FORCE_INLINE const btScalar& operator[](int i) const { return (&m_floats[0])[i]; } ///operator btScalar*() replaces operator[], using implicit conversion. We added operator != and operator == to avoid pointer comparisons. - SIMD_FORCE_INLINE operator btScalar *() { return &m_floats[0]; } - SIMD_FORCE_INLINE operator const btScalar *() const { return &m_floats[0]; } + SIMD_FORCE_INLINE operator btScalar*() { return &m_floats[0]; } + SIMD_FORCE_INLINE operator const btScalar*() const { return &m_floats[0]; } - SIMD_FORCE_INLINE bool operator==(const btVector3& other) const + SIMD_FORCE_INLINE bool operator==(const btVector3& other) const { -#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) - return (0xf == _mm_movemask_ps((__m128)_mm_cmpeq_ps(mVec128, other.mVec128))); -#else - return ((m_floats[3]==other.m_floats[3]) && - (m_floats[2]==other.m_floats[2]) && - (m_floats[1]==other.m_floats[1]) && - (m_floats[0]==other.m_floats[0])); +#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) + return (0xf == _mm_movemask_ps((__m128)_mm_cmpeq_ps(mVec128, other.mVec128))); +#else + return ((m_floats[3] == other.m_floats[3]) && + (m_floats[2] == other.m_floats[2]) && + (m_floats[1] == other.m_floats[1]) && + (m_floats[0] == other.m_floats[0])); #endif } - SIMD_FORCE_INLINE bool operator!=(const btVector3& other) const + SIMD_FORCE_INLINE bool operator!=(const btVector3& other) const { return !(*this == other); } - /**@brief Set each element to the max of the current values and the values of another btVector3 + /**@brief Set each element to the max of the current values and the values of another btVector3 * @param other The other btVector3 to compare with */ - SIMD_FORCE_INLINE void setMax(const btVector3& other) + SIMD_FORCE_INLINE void setMax(const btVector3& other) { -#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) +#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) mVec128 = _mm_max_ps(mVec128, other.mVec128); #elif defined(BT_USE_NEON) mVec128 = vmaxq_f32(mVec128, other.mVec128); @@ -632,12 +620,12 @@ public: #endif } - /**@brief Set each element to the min of the current values and the values of another btVector3 + /**@brief Set each element to the min of the current values and the values of another btVector3 * @param other The other btVector3 to compare with */ - SIMD_FORCE_INLINE void setMin(const btVector3& other) + SIMD_FORCE_INLINE void setMin(const btVector3& other) { -#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) +#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) mVec128 = _mm_min_ps(mVec128, other.mVec128); #elif defined(BT_USE_NEON) mVec128 = vminq_f32(mVec128, other.mVec128); @@ -649,154 +637,155 @@ public: #endif } - SIMD_FORCE_INLINE void setValue(const btScalar& _x, const btScalar& _y, const btScalar& _z) + SIMD_FORCE_INLINE void setValue(const btScalar& _x, const btScalar& _y, const btScalar& _z) { - m_floats[0]=_x; - m_floats[1]=_y; - m_floats[2]=_z; + m_floats[0] = _x; + m_floats[1] = _y; + m_floats[2] = _z; m_floats[3] = btScalar(0.f); } - void getSkewSymmetricMatrix(btVector3* v0,btVector3* v1,btVector3* v2) const + void getSkewSymmetricMatrix(btVector3 * v0, btVector3 * v1, btVector3 * v2) const { -#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE) - - __m128 V = _mm_and_ps(mVec128, btvFFF0fMask); +#if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) + + __m128 V = _mm_and_ps(mVec128, btvFFF0fMask); __m128 V0 = _mm_xor_ps(btvMzeroMask, V); __m128 V2 = _mm_movelh_ps(V0, V); - + __m128 V1 = _mm_shuffle_ps(V, V0, 0xCE); - - V0 = _mm_shuffle_ps(V0, V, 0xDB); + + V0 = _mm_shuffle_ps(V0, V, 0xDB); V2 = _mm_shuffle_ps(V2, V, 0xF9); - + v0->mVec128 = V0; v1->mVec128 = V1; v2->mVec128 = V2; #else - v0->setValue(0. ,-z() ,y()); - v1->setValue(z() ,0. ,-x()); - v2->setValue(-y() ,x() ,0.); + v0->setValue(0., -z(), y()); + v1->setValue(z(), 0., -x()); + v2->setValue(-y(), x(), 0.); #endif } void setZero() { -#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) +#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) mVec128 = (__m128)_mm_xor_ps(mVec128, mVec128); #elif defined(BT_USE_NEON) - int32x4_t vi = vdupq_n_s32(0); + int32x4_t vi = vdupq_n_s32(0); mVec128 = vreinterpretq_f32_s32(vi); -#else - setValue(btScalar(0.),btScalar(0.),btScalar(0.)); +#else + setValue(btScalar(0.), btScalar(0.), btScalar(0.)); #endif } - SIMD_FORCE_INLINE bool isZero() const + SIMD_FORCE_INLINE bool isZero() const { return m_floats[0] == btScalar(0) && m_floats[1] == btScalar(0) && m_floats[2] == btScalar(0); } - - SIMD_FORCE_INLINE bool fuzzyZero() const + SIMD_FORCE_INLINE bool fuzzyZero() const { - return length2() < SIMD_EPSILON*SIMD_EPSILON; + return length2() < SIMD_EPSILON * SIMD_EPSILON; } - SIMD_FORCE_INLINE void serialize(struct btVector3Data& dataOut) const; + SIMD_FORCE_INLINE void serialize(struct btVector3Data & dataOut) const; + + SIMD_FORCE_INLINE void deSerialize(const struct btVector3DoubleData& dataIn); - SIMD_FORCE_INLINE void deSerialize(const struct btVector3Data& dataIn); + SIMD_FORCE_INLINE void deSerialize(const struct btVector3FloatData& dataIn); - SIMD_FORCE_INLINE void serializeFloat(struct btVector3FloatData& dataOut) const; + SIMD_FORCE_INLINE void serializeFloat(struct btVector3FloatData & dataOut) const; - SIMD_FORCE_INLINE void deSerializeFloat(const struct btVector3FloatData& dataIn); + SIMD_FORCE_INLINE void deSerializeFloat(const struct btVector3FloatData& dataIn); - SIMD_FORCE_INLINE void serializeDouble(struct btVector3DoubleData& dataOut) const; + SIMD_FORCE_INLINE void serializeDouble(struct btVector3DoubleData & dataOut) const; - SIMD_FORCE_INLINE void deSerializeDouble(const struct btVector3DoubleData& dataIn); - - /**@brief returns index of maximum dot product between this and vectors in array[] + SIMD_FORCE_INLINE void deSerializeDouble(const struct btVector3DoubleData& dataIn); + + /**@brief returns index of maximum dot product between this and vectors in array[] * @param array The other vectors * @param array_count The number of other vectors * @param dotOut The maximum dot product */ - SIMD_FORCE_INLINE long maxDot( const btVector3 *array, long array_count, btScalar &dotOut ) const; + SIMD_FORCE_INLINE long maxDot(const btVector3* array, long array_count, btScalar& dotOut) const; - /**@brief returns index of minimum dot product between this and vectors in array[] + /**@brief returns index of minimum dot product between this and vectors in array[] * @param array The other vectors * @param array_count The number of other vectors - * @param dotOut The minimum dot product */ - SIMD_FORCE_INLINE long minDot( const btVector3 *array, long array_count, btScalar &dotOut ) const; - - /* create a vector as btVector3( this->dot( btVector3 v0 ), this->dot( btVector3 v1), this->dot( btVector3 v2 )) */ - SIMD_FORCE_INLINE btVector3 dot3( const btVector3 &v0, const btVector3 &v1, const btVector3 &v2 ) const - { -#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE) - - __m128 a0 = _mm_mul_ps( v0.mVec128, this->mVec128 ); - __m128 a1 = _mm_mul_ps( v1.mVec128, this->mVec128 ); - __m128 a2 = _mm_mul_ps( v2.mVec128, this->mVec128 ); - __m128 b0 = _mm_unpacklo_ps( a0, a1 ); - __m128 b1 = _mm_unpackhi_ps( a0, a1 ); - __m128 b2 = _mm_unpacklo_ps( a2, _mm_setzero_ps() ); - __m128 r = _mm_movelh_ps( b0, b2 ); - r = _mm_add_ps( r, _mm_movehl_ps( b2, b0 )); - a2 = _mm_and_ps( a2, btvxyzMaskf); - r = _mm_add_ps( r, btCastdTo128f (_mm_move_sd( btCastfTo128d(a2), btCastfTo128d(b1) ))); - return btVector3(r); - + * @param dotOut The minimum dot product */ + SIMD_FORCE_INLINE long minDot(const btVector3* array, long array_count, btScalar& dotOut) const; + + /* create a vector as btVector3( this->dot( btVector3 v0 ), this->dot( btVector3 v1), this->dot( btVector3 v2 )) */ + SIMD_FORCE_INLINE btVector3 dot3(const btVector3& v0, const btVector3& v1, const btVector3& v2) const + { +#if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) + + __m128 a0 = _mm_mul_ps(v0.mVec128, this->mVec128); + __m128 a1 = _mm_mul_ps(v1.mVec128, this->mVec128); + __m128 a2 = _mm_mul_ps(v2.mVec128, this->mVec128); + __m128 b0 = _mm_unpacklo_ps(a0, a1); + __m128 b1 = _mm_unpackhi_ps(a0, a1); + __m128 b2 = _mm_unpacklo_ps(a2, _mm_setzero_ps()); + __m128 r = _mm_movelh_ps(b0, b2); + r = _mm_add_ps(r, _mm_movehl_ps(b2, b0)); + a2 = _mm_and_ps(a2, btvxyzMaskf); + r = _mm_add_ps(r, btCastdTo128f(_mm_move_sd(btCastfTo128d(a2), btCastfTo128d(b1)))); + return btVector3(r); + #elif defined(BT_USE_NEON) - static const uint32x4_t xyzMask = (const uint32x4_t){ static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), 0 }; - float32x4_t a0 = vmulq_f32( v0.mVec128, this->mVec128); - float32x4_t a1 = vmulq_f32( v1.mVec128, this->mVec128); - float32x4_t a2 = vmulq_f32( v2.mVec128, this->mVec128); - float32x2x2_t zLo = vtrn_f32( vget_high_f32(a0), vget_high_f32(a1)); - a2 = (float32x4_t) vandq_u32((uint32x4_t) a2, xyzMask ); - float32x2_t b0 = vadd_f32( vpadd_f32( vget_low_f32(a0), vget_low_f32(a1)), zLo.val[0] ); - float32x2_t b1 = vpadd_f32( vpadd_f32( vget_low_f32(a2), vget_high_f32(a2)), vdup_n_f32(0.0f)); - return btVector3( vcombine_f32(b0, b1) ); -#else - return btVector3( dot(v0), dot(v1), dot(v2)); + static const uint32x4_t xyzMask = (const uint32x4_t){static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), 0}; + float32x4_t a0 = vmulq_f32(v0.mVec128, this->mVec128); + float32x4_t a1 = vmulq_f32(v1.mVec128, this->mVec128); + float32x4_t a2 = vmulq_f32(v2.mVec128, this->mVec128); + float32x2x2_t zLo = vtrn_f32(vget_high_f32(a0), vget_high_f32(a1)); + a2 = (float32x4_t)vandq_u32((uint32x4_t)a2, xyzMask); + float32x2_t b0 = vadd_f32(vpadd_f32(vget_low_f32(a0), vget_low_f32(a1)), zLo.val[0]); + float32x2_t b1 = vpadd_f32(vpadd_f32(vget_low_f32(a2), vget_high_f32(a2)), vdup_n_f32(0.0f)); + return btVector3(vcombine_f32(b0, b1)); +#else + return btVector3(dot(v0), dot(v1), dot(v2)); #endif - } + } }; /**@brief Return the sum of two vectors (Point symantics)*/ -SIMD_FORCE_INLINE btVector3 -operator+(const btVector3& v1, const btVector3& v2) +SIMD_FORCE_INLINE btVector3 +operator+(const btVector3& v1, const btVector3& v2) { -#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) +#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) return btVector3(_mm_add_ps(v1.mVec128, v2.mVec128)); #elif defined(BT_USE_NEON) return btVector3(vaddq_f32(v1.mVec128, v2.mVec128)); #else return btVector3( - v1.m_floats[0] + v2.m_floats[0], - v1.m_floats[1] + v2.m_floats[1], - v1.m_floats[2] + v2.m_floats[2]); + v1.m_floats[0] + v2.m_floats[0], + v1.m_floats[1] + v2.m_floats[1], + v1.m_floats[2] + v2.m_floats[2]); #endif } /**@brief Return the elementwise product of two vectors */ -SIMD_FORCE_INLINE btVector3 -operator*(const btVector3& v1, const btVector3& v2) +SIMD_FORCE_INLINE btVector3 +operator*(const btVector3& v1, const btVector3& v2) { -#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) +#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) return btVector3(_mm_mul_ps(v1.mVec128, v2.mVec128)); #elif defined(BT_USE_NEON) return btVector3(vmulq_f32(v1.mVec128, v2.mVec128)); #else return btVector3( - v1.m_floats[0] * v2.m_floats[0], - v1.m_floats[1] * v2.m_floats[1], - v1.m_floats[2] * v2.m_floats[2]); + v1.m_floats[0] * v2.m_floats[0], + v1.m_floats[1] * v2.m_floats[1], + v1.m_floats[2] * v2.m_floats[2]); #endif } /**@brief Return the difference between two vectors */ -SIMD_FORCE_INLINE btVector3 +SIMD_FORCE_INLINE btVector3 operator-(const btVector3& v1, const btVector3& v2) { -#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) +#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) // without _mm_and_ps this code causes slowdown in Concave moving __m128 r = _mm_sub_ps(v1.mVec128, v2.mVec128); @@ -806,33 +795,33 @@ operator-(const btVector3& v1, const btVector3& v2) return btVector3((float32x4_t)vandq_s32((int32x4_t)r, btvFFF0Mask)); #else return btVector3( - v1.m_floats[0] - v2.m_floats[0], - v1.m_floats[1] - v2.m_floats[1], - v1.m_floats[2] - v2.m_floats[2]); + v1.m_floats[0] - v2.m_floats[0], + v1.m_floats[1] - v2.m_floats[1], + v1.m_floats[2] - v2.m_floats[2]); #endif } /**@brief Return the negative of the vector */ -SIMD_FORCE_INLINE btVector3 +SIMD_FORCE_INLINE btVector3 operator-(const btVector3& v) { -#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)) +#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) __m128 r = _mm_xor_ps(v.mVec128, btvMzeroMask); - return btVector3(_mm_and_ps(r, btvFFF0fMask)); + return btVector3(_mm_and_ps(r, btvFFF0fMask)); #elif defined(BT_USE_NEON) return btVector3((btSimdFloat4)veorq_s32((int32x4_t)v.mVec128, (int32x4_t)btvMzeroMask)); -#else +#else return btVector3(-v.m_floats[0], -v.m_floats[1], -v.m_floats[2]); #endif } /**@brief Return the vector scaled by s */ -SIMD_FORCE_INLINE btVector3 +SIMD_FORCE_INLINE btVector3 operator*(const btVector3& v, const btScalar& s) { -#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) - __m128 vs = _mm_load_ss(&s); // (S 0 0 0) - vs = bt_pshufd_ps(vs, 0x80); // (S S S 0.0) +#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) + __m128 vs = _mm_load_ss(&s); // (S 0 0 0) + vs = bt_pshufd_ps(vs, 0x80); // (S S S 0.0) return btVector3(_mm_mul_ps(v.mVec128, vs)); #elif defined(BT_USE_NEON) float32x4_t r = vmulq_n_f32(v.mVec128, s); @@ -843,10 +832,10 @@ operator*(const btVector3& v, const btScalar& s) } /**@brief Return the vector scaled by s */ -SIMD_FORCE_INLINE btVector3 +SIMD_FORCE_INLINE btVector3 operator*(const btScalar& s, const btVector3& v) -{ - return v * s; +{ + return v * s; } /**@brief Return the vector inversely scaled by s */ @@ -854,7 +843,7 @@ SIMD_FORCE_INLINE btVector3 operator/(const btVector3& v, const btScalar& s) { btFullAssert(s != btScalar(0.0)); -#if 0 //defined(BT_USE_SSE_IN_API) +#if 0 //defined(BT_USE_SSE_IN_API) // this code is not faster ! __m128 vs = _mm_load_ss(&s); vs = _mm_div_ss(v1110, vs); @@ -870,67 +859,65 @@ operator/(const btVector3& v, const btScalar& s) SIMD_FORCE_INLINE btVector3 operator/(const btVector3& v1, const btVector3& v2) { -#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API)&& defined (BT_USE_SSE)) +#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) __m128 vec = _mm_div_ps(v1.mVec128, v2.mVec128); vec = _mm_and_ps(vec, btvFFF0fMask); - return btVector3(vec); + return btVector3(vec); #elif defined(BT_USE_NEON) float32x4_t x, y, v, m; x = v1.mVec128; y = v2.mVec128; - - v = vrecpeq_f32(y); // v ~ 1/y - m = vrecpsq_f32(y, v); // m = (2-v*y) - v = vmulq_f32(v, m); // vv = v*m ~~ 1/y - m = vrecpsq_f32(y, v); // mm = (2-vv*y) - v = vmulq_f32(v, x); // x*vv - v = vmulq_f32(v, m); // (x*vv)*(2-vv*y) = x*(vv(2-vv*y)) ~~~ x/y + + v = vrecpeq_f32(y); // v ~ 1/y + m = vrecpsq_f32(y, v); // m = (2-v*y) + v = vmulq_f32(v, m); // vv = v*m ~~ 1/y + m = vrecpsq_f32(y, v); // mm = (2-vv*y) + v = vmulq_f32(v, x); // x*vv + v = vmulq_f32(v, m); // (x*vv)*(2-vv*y) = x*(vv(2-vv*y)) ~~~ x/y return btVector3(v); #else return btVector3( - v1.m_floats[0] / v2.m_floats[0], - v1.m_floats[1] / v2.m_floats[1], - v1.m_floats[2] / v2.m_floats[2]); + v1.m_floats[0] / v2.m_floats[0], + v1.m_floats[1] / v2.m_floats[1], + v1.m_floats[2] / v2.m_floats[2]); #endif } /**@brief Return the dot product between two vectors */ -SIMD_FORCE_INLINE btScalar -btDot(const btVector3& v1, const btVector3& v2) -{ - return v1.dot(v2); +SIMD_FORCE_INLINE btScalar +btDot(const btVector3& v1, const btVector3& v2) +{ + return v1.dot(v2); } - /**@brief Return the distance squared between two vectors */ SIMD_FORCE_INLINE btScalar -btDistance2(const btVector3& v1, const btVector3& v2) -{ - return v1.distance2(v2); +btDistance2(const btVector3& v1, const btVector3& v2) +{ + return v1.distance2(v2); } - /**@brief Return the distance between two vectors */ SIMD_FORCE_INLINE btScalar -btDistance(const btVector3& v1, const btVector3& v2) -{ - return v1.distance(v2); +btDistance(const btVector3& v1, const btVector3& v2) +{ + return v1.distance(v2); } /**@brief Return the angle between two vectors */ SIMD_FORCE_INLINE btScalar -btAngle(const btVector3& v1, const btVector3& v2) -{ - return v1.angle(v2); +btAngle(const btVector3& v1, const btVector3& v2) +{ + return v1.angle(v2); } /**@brief Return the cross product of two vectors */ -SIMD_FORCE_INLINE btVector3 -btCross(const btVector3& v1, const btVector3& v2) -{ - return v1.cross(v2); +SIMD_FORCE_INLINE btVector3 +btCross(const btVector3& v1, const btVector3& v2) +{ + return v1.cross(v2); } SIMD_FORCE_INLINE btScalar @@ -943,14 +930,12 @@ btTriple(const btVector3& v1, const btVector3& v2, const btVector3& v3) * @param v1 One vector * @param v2 The other vector * @param t The ration of this to v (t = 0 => return v1, t=1 => return v2) */ -SIMD_FORCE_INLINE btVector3 +SIMD_FORCE_INLINE btVector3 lerp(const btVector3& v1, const btVector3& v2, const btScalar& t) { return v1.lerp(v2, t); } - - SIMD_FORCE_INLINE btScalar btVector3::distance2(const btVector3& v) const { return (v - *this).length2(); @@ -966,140 +951,137 @@ SIMD_FORCE_INLINE btVector3 btVector3::normalized() const btVector3 nrm = *this; return nrm.normalize(); -} +} -SIMD_FORCE_INLINE btVector3 btVector3::rotate( const btVector3& wAxis, const btScalar _angle ) const +SIMD_FORCE_INLINE btVector3 btVector3::rotate(const btVector3& wAxis, const btScalar _angle) const { // wAxis must be a unit lenght vector -#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE) +#if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) - __m128 O = _mm_mul_ps(wAxis.mVec128, mVec128); - btScalar ssin = btSin( _angle ); - __m128 C = wAxis.cross( mVec128 ).mVec128; + __m128 O = _mm_mul_ps(wAxis.mVec128, mVec128); + btScalar ssin = btSin(_angle); + __m128 C = wAxis.cross(mVec128).mVec128; O = _mm_and_ps(O, btvFFF0fMask); - btScalar scos = btCos( _angle ); - - __m128 vsin = _mm_load_ss(&ssin); // (S 0 0 0) - __m128 vcos = _mm_load_ss(&scos); // (S 0 0 0) - - __m128 Y = bt_pshufd_ps(O, 0xC9); // (Y Z X 0) - __m128 Z = bt_pshufd_ps(O, 0xD2); // (Z X Y 0) + btScalar scos = btCos(_angle); + + __m128 vsin = _mm_load_ss(&ssin); // (S 0 0 0) + __m128 vcos = _mm_load_ss(&scos); // (S 0 0 0) + + __m128 Y = bt_pshufd_ps(O, 0xC9); // (Y Z X 0) + __m128 Z = bt_pshufd_ps(O, 0xD2); // (Z X Y 0) O = _mm_add_ps(O, Y); - vsin = bt_pshufd_ps(vsin, 0x80); // (S S S 0) + vsin = bt_pshufd_ps(vsin, 0x80); // (S S S 0) O = _mm_add_ps(O, Z); - vcos = bt_pshufd_ps(vcos, 0x80); // (S S S 0) - - vsin = vsin * C; - O = O * wAxis.mVec128; - __m128 X = mVec128 - O; - - O = O + vsin; + vcos = bt_pshufd_ps(vcos, 0x80); // (S S S 0) + + vsin = vsin * C; + O = O * wAxis.mVec128; + __m128 X = mVec128 - O; + + O = O + vsin; vcos = vcos * X; - O = O + vcos; - + O = O + vcos; + return btVector3(O); #else - btVector3 o = wAxis * wAxis.dot( *this ); + btVector3 o = wAxis * wAxis.dot(*this); btVector3 _x = *this - o; btVector3 _y; - _y = wAxis.cross( *this ); + _y = wAxis.cross(*this); - return ( o + _x * btCos( _angle ) + _y * btSin( _angle ) ); + return (o + _x * btCos(_angle) + _y * btSin(_angle)); #endif } -SIMD_FORCE_INLINE long btVector3::maxDot( const btVector3 *array, long array_count, btScalar &dotOut ) const +SIMD_FORCE_INLINE long btVector3::maxDot(const btVector3* array, long array_count, btScalar& dotOut) const { -#if (defined BT_USE_SSE && defined BT_USE_SIMD_VECTOR3 && defined BT_USE_SSE_IN_API) || defined (BT_USE_NEON) - #if defined _WIN32 || defined (BT_USE_SSE) - const long scalar_cutoff = 10; - long _maxdot_large( const float *array, const float *vec, unsigned long array_count, float *dotOut ); - #elif defined BT_USE_NEON - const long scalar_cutoff = 4; - extern long (*_maxdot_large)( const float *array, const float *vec, unsigned long array_count, float *dotOut ); - #endif - if( array_count < scalar_cutoff ) +#if (defined BT_USE_SSE && defined BT_USE_SIMD_VECTOR3 && defined BT_USE_SSE_IN_API) || defined(BT_USE_NEON) +#if defined _WIN32 || defined(BT_USE_SSE) + const long scalar_cutoff = 10; + long _maxdot_large(const float* array, const float* vec, unsigned long array_count, float* dotOut); +#elif defined BT_USE_NEON + const long scalar_cutoff = 4; + extern long (*_maxdot_large)(const float* array, const float* vec, unsigned long array_count, float* dotOut); +#endif + if (array_count < scalar_cutoff) #endif - { - btScalar maxDot1 = -SIMD_INFINITY; - int i = 0; - int ptIndex = -1; - for( i = 0; i < array_count; i++ ) - { - btScalar dot = array[i].dot(*this); - - if( dot > maxDot1 ) - { - maxDot1 = dot; - ptIndex = i; - } - } - - dotOut = maxDot1; - return ptIndex; - } -#if (defined BT_USE_SSE && defined BT_USE_SIMD_VECTOR3 && defined BT_USE_SSE_IN_API) || defined (BT_USE_NEON) - return _maxdot_large( (float*) array, (float*) &m_floats[0], array_count, &dotOut ); + { + btScalar maxDot1 = -SIMD_INFINITY; + int i = 0; + int ptIndex = -1; + for (i = 0; i < array_count; i++) + { + btScalar dot = array[i].dot(*this); + + if (dot > maxDot1) + { + maxDot1 = dot; + ptIndex = i; + } + } + + dotOut = maxDot1; + return ptIndex; + } +#if (defined BT_USE_SSE && defined BT_USE_SIMD_VECTOR3 && defined BT_USE_SSE_IN_API) || defined(BT_USE_NEON) + return _maxdot_large((float*)array, (float*)&m_floats[0], array_count, &dotOut); #endif } -SIMD_FORCE_INLINE long btVector3::minDot( const btVector3 *array, long array_count, btScalar &dotOut ) const +SIMD_FORCE_INLINE long btVector3::minDot(const btVector3* array, long array_count, btScalar& dotOut) const { -#if (defined BT_USE_SSE && defined BT_USE_SIMD_VECTOR3 && defined BT_USE_SSE_IN_API) || defined (BT_USE_NEON) - #if defined BT_USE_SSE - const long scalar_cutoff = 10; - long _mindot_large( const float *array, const float *vec, unsigned long array_count, float *dotOut ); - #elif defined BT_USE_NEON - const long scalar_cutoff = 4; - extern long (*_mindot_large)( const float *array, const float *vec, unsigned long array_count, float *dotOut ); - #else - #error unhandled arch! - #endif - - if( array_count < scalar_cutoff ) +#if (defined BT_USE_SSE && defined BT_USE_SIMD_VECTOR3 && defined BT_USE_SSE_IN_API) || defined(BT_USE_NEON) +#if defined BT_USE_SSE + const long scalar_cutoff = 10; + long _mindot_large(const float* array, const float* vec, unsigned long array_count, float* dotOut); +#elif defined BT_USE_NEON + const long scalar_cutoff = 4; + extern long (*_mindot_large)(const float* array, const float* vec, unsigned long array_count, float* dotOut); +#else +#error unhandled arch! #endif - { - btScalar minDot = SIMD_INFINITY; - int i = 0; - int ptIndex = -1; - - for( i = 0; i < array_count; i++ ) - { - btScalar dot = array[i].dot(*this); - - if( dot < minDot ) - { - minDot = dot; - ptIndex = i; - } - } - - dotOut = minDot; - - return ptIndex; - } -#if (defined BT_USE_SSE && defined BT_USE_SIMD_VECTOR3 && defined BT_USE_SSE_IN_API) || defined (BT_USE_NEON) - return _mindot_large( (float*) array, (float*) &m_floats[0], array_count, &dotOut ); -#endif//BT_USE_SIMD_VECTOR3 -} + if (array_count < scalar_cutoff) +#endif + { + btScalar minDot = SIMD_INFINITY; + int i = 0; + int ptIndex = -1; + + for (i = 0; i < array_count; i++) + { + btScalar dot = array[i].dot(*this); + + if (dot < minDot) + { + minDot = dot; + ptIndex = i; + } + } + + dotOut = minDot; + + return ptIndex; + } +#if (defined BT_USE_SSE && defined BT_USE_SIMD_VECTOR3 && defined BT_USE_SSE_IN_API) || defined(BT_USE_NEON) + return _mindot_large((float*)array, (float*)&m_floats[0], array_count, &dotOut); +#endif //BT_USE_SIMD_VECTOR3 +} class btVector4 : public btVector3 { public: - SIMD_FORCE_INLINE btVector4() {} - - SIMD_FORCE_INLINE btVector4(const btScalar& _x, const btScalar& _y, const btScalar& _z,const btScalar& _w) - : btVector3(_x,_y,_z) + SIMD_FORCE_INLINE btVector4(const btScalar& _x, const btScalar& _y, const btScalar& _z, const btScalar& _w) + : btVector3(_x, _y, _z) { m_floats[3] = _w; } -#if (defined (BT_USE_SSE_IN_API)&& defined (BT_USE_SSE)) || defined (BT_USE_NEON) +#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON) SIMD_FORCE_INLINE btVector4(const btSimdFloat4 vec) { mVec128 = vec; @@ -1110,34 +1092,32 @@ public: mVec128 = rhs.mVec128; } - SIMD_FORCE_INLINE btVector4& - operator=(const btVector4& v) + SIMD_FORCE_INLINE btVector4& + operator=(const btVector4& v) { mVec128 = v.mVec128; return *this; } -#endif // #if defined (BT_USE_SSE_IN_API) || defined (BT_USE_NEON) +#endif // #if defined (BT_USE_SSE_IN_API) || defined (BT_USE_NEON) - SIMD_FORCE_INLINE btVector4 absolute4() const + SIMD_FORCE_INLINE btVector4 absolute4() const { -#if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE) +#if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) return btVector4(_mm_and_ps(mVec128, btvAbsfMask)); #elif defined(BT_USE_NEON) return btVector4(vabsq_f32(mVec128)); -#else +#else return btVector4( - btFabs(m_floats[0]), - btFabs(m_floats[1]), + btFabs(m_floats[0]), + btFabs(m_floats[1]), btFabs(m_floats[2]), btFabs(m_floats[3])); #endif } + btScalar getW() const { return m_floats[3]; } - btScalar getW() const { return m_floats[3];} - - - SIMD_FORCE_INLINE int maxAxis4() const + SIMD_FORCE_INLINE int maxAxis4() const { int maxIndex = -1; btScalar maxVal = btScalar(-BT_LARGE_FLOAT); @@ -1154,7 +1134,7 @@ public: if (m_floats[2] > maxVal) { maxIndex = 2; - maxVal =m_floats[2]; + maxVal = m_floats[2]; } if (m_floats[3] > maxVal) { @@ -1164,7 +1144,6 @@ public: return maxIndex; } - SIMD_FORCE_INLINE int minAxis4() const { int minIndex = -1; @@ -1182,182 +1161,176 @@ public: if (m_floats[2] < minVal) { minIndex = 2; - minVal =m_floats[2]; + minVal = m_floats[2]; } if (m_floats[3] < minVal) { minIndex = 3; } - + return minIndex; } - - SIMD_FORCE_INLINE int closestAxis4() const + SIMD_FORCE_INLINE int closestAxis4() const { return absolute4().maxAxis4(); } - - - - /**@brief Set x,y,z and zero w + /**@brief Set x,y,z and zero w * @param x Value of x * @param y Value of y * @param z Value of z */ - -/* void getValue(btScalar *m) const + /* void getValue(btScalar *m) const { m[0] = m_floats[0]; m[1] = m_floats[1]; m[2] =m_floats[2]; } */ -/**@brief Set the values + /**@brief Set the values * @param x Value of x * @param y Value of y * @param z Value of z * @param w Value of w */ - SIMD_FORCE_INLINE void setValue(const btScalar& _x, const btScalar& _y, const btScalar& _z,const btScalar& _w) - { - m_floats[0]=_x; - m_floats[1]=_y; - m_floats[2]=_z; - m_floats[3]=_w; - } - - + SIMD_FORCE_INLINE void setValue(const btScalar& _x, const btScalar& _y, const btScalar& _z, const btScalar& _w) + { + m_floats[0] = _x; + m_floats[1] = _y; + m_floats[2] = _z; + m_floats[3] = _w; + } }; - ///btSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization -SIMD_FORCE_INLINE void btSwapScalarEndian(const btScalar& sourceVal, btScalar& destVal) +SIMD_FORCE_INLINE void btSwapScalarEndian(const btScalar& sourceVal, btScalar& destVal) { - #ifdef BT_USE_DOUBLE_PRECISION - unsigned char* dest = (unsigned char*) &destVal; - unsigned char* src = (unsigned char*) &sourceVal; +#ifdef BT_USE_DOUBLE_PRECISION + unsigned char* dest = (unsigned char*)&destVal; + const unsigned char* src = (const unsigned char*)&sourceVal; dest[0] = src[7]; - dest[1] = src[6]; - dest[2] = src[5]; - dest[3] = src[4]; - dest[4] = src[3]; - dest[5] = src[2]; - dest[6] = src[1]; - dest[7] = src[0]; + dest[1] = src[6]; + dest[2] = src[5]; + dest[3] = src[4]; + dest[4] = src[3]; + dest[5] = src[2]; + dest[6] = src[1]; + dest[7] = src[0]; #else - unsigned char* dest = (unsigned char*) &destVal; - unsigned char* src = (unsigned char*) &sourceVal; + unsigned char* dest = (unsigned char*)&destVal; + const unsigned char* src = (const unsigned char*)&sourceVal; dest[0] = src[3]; - dest[1] = src[2]; - dest[2] = src[1]; - dest[3] = src[0]; -#endif //BT_USE_DOUBLE_PRECISION + dest[1] = src[2]; + dest[2] = src[1]; + dest[3] = src[0]; +#endif //BT_USE_DOUBLE_PRECISION } ///btSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization -SIMD_FORCE_INLINE void btSwapVector3Endian(const btVector3& sourceVec, btVector3& destVec) +SIMD_FORCE_INLINE void btSwapVector3Endian(const btVector3& sourceVec, btVector3& destVec) { - for (int i=0;i<4;i++) + for (int i = 0; i < 4; i++) { - btSwapScalarEndian(sourceVec[i],destVec[i]); + btSwapScalarEndian(sourceVec[i], destVec[i]); } - } ///btUnSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization -SIMD_FORCE_INLINE void btUnSwapVector3Endian(btVector3& vector) +SIMD_FORCE_INLINE void btUnSwapVector3Endian(btVector3& vector) { - - btVector3 swappedVec; - for (int i=0;i<4;i++) + btVector3 swappedVec; + for (int i = 0; i < 4; i++) { - btSwapScalarEndian(vector[i],swappedVec[i]); + btSwapScalarEndian(vector[i], swappedVec[i]); } vector = swappedVec; } template <class T> -SIMD_FORCE_INLINE void btPlaneSpace1 (const T& n, T& p, T& q) +SIMD_FORCE_INLINE void btPlaneSpace1(const T& n, T& p, T& q) { - if (btFabs(n[2]) > SIMDSQRT12) { - // choose p in y-z plane - btScalar a = n[1]*n[1] + n[2]*n[2]; - btScalar k = btRecipSqrt (a); - p[0] = 0; - p[1] = -n[2]*k; - p[2] = n[1]*k; - // set q = n x p - q[0] = a*k; - q[1] = -n[0]*p[2]; - q[2] = n[0]*p[1]; - } - else { - // choose p in x-y plane - btScalar a = n[0]*n[0] + n[1]*n[1]; - btScalar k = btRecipSqrt (a); - p[0] = -n[1]*k; - p[1] = n[0]*k; - p[2] = 0; - // set q = n x p - q[0] = -n[2]*p[1]; - q[1] = n[2]*p[0]; - q[2] = a*k; - } + if (btFabs(n[2]) > SIMDSQRT12) + { + // choose p in y-z plane + btScalar a = n[1] * n[1] + n[2] * n[2]; + btScalar k = btRecipSqrt(a); + p[0] = 0; + p[1] = -n[2] * k; + p[2] = n[1] * k; + // set q = n x p + q[0] = a * k; + q[1] = -n[0] * p[2]; + q[2] = n[0] * p[1]; + } + else + { + // choose p in x-y plane + btScalar a = n[0] * n[0] + n[1] * n[1]; + btScalar k = btRecipSqrt(a); + p[0] = -n[1] * k; + p[1] = n[0] * k; + p[2] = 0; + // set q = n x p + q[0] = -n[2] * p[1]; + q[1] = n[2] * p[0]; + q[2] = a * k; + } } - -struct btVector3FloatData +struct btVector3FloatData { - float m_floats[4]; + float m_floats[4]; }; -struct btVector3DoubleData +struct btVector3DoubleData { - double m_floats[4]; - + double m_floats[4]; }; -SIMD_FORCE_INLINE void btVector3::serializeFloat(struct btVector3FloatData& dataOut) const +SIMD_FORCE_INLINE void btVector3::serializeFloat(struct btVector3FloatData& dataOut) const { ///could also do a memcpy, check if it is worth it - for (int i=0;i<4;i++) + for (int i = 0; i < 4; i++) dataOut.m_floats[i] = float(m_floats[i]); } -SIMD_FORCE_INLINE void btVector3::deSerializeFloat(const struct btVector3FloatData& dataIn) +SIMD_FORCE_INLINE void btVector3::deSerializeFloat(const struct btVector3FloatData& dataIn) { - for (int i=0;i<4;i++) + for (int i = 0; i < 4; i++) m_floats[i] = btScalar(dataIn.m_floats[i]); } - -SIMD_FORCE_INLINE void btVector3::serializeDouble(struct btVector3DoubleData& dataOut) const +SIMD_FORCE_INLINE void btVector3::serializeDouble(struct btVector3DoubleData& dataOut) const { ///could also do a memcpy, check if it is worth it - for (int i=0;i<4;i++) + for (int i = 0; i < 4; i++) dataOut.m_floats[i] = double(m_floats[i]); } -SIMD_FORCE_INLINE void btVector3::deSerializeDouble(const struct btVector3DoubleData& dataIn) +SIMD_FORCE_INLINE void btVector3::deSerializeDouble(const struct btVector3DoubleData& dataIn) { - for (int i=0;i<4;i++) + for (int i = 0; i < 4; i++) m_floats[i] = btScalar(dataIn.m_floats[i]); } - -SIMD_FORCE_INLINE void btVector3::serialize(struct btVector3Data& dataOut) const +SIMD_FORCE_INLINE void btVector3::serialize(struct btVector3Data& dataOut) const { ///could also do a memcpy, check if it is worth it - for (int i=0;i<4;i++) + for (int i = 0; i < 4; i++) dataOut.m_floats[i] = m_floats[i]; } -SIMD_FORCE_INLINE void btVector3::deSerialize(const struct btVector3Data& dataIn) +SIMD_FORCE_INLINE void btVector3::deSerialize(const struct btVector3FloatData& dataIn) +{ + for (int i = 0; i < 4; i++) + m_floats[i] = (btScalar)dataIn.m_floats[i]; +} + +SIMD_FORCE_INLINE void btVector3::deSerialize(const struct btVector3DoubleData& dataIn) { - for (int i=0;i<4;i++) - m_floats[i] = dataIn.m_floats[i]; + for (int i = 0; i < 4; i++) + m_floats[i] = (btScalar)dataIn.m_floats[i]; } -#endif //BT_VECTOR3_H +#endif //BT_VECTOR3_H |