summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/LinearMath/btVector3.h
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/bullet/LinearMath/btVector3.h')
-rw-r--r--thirdparty/bullet/LinearMath/btVector3.h1363
1 files changed, 1363 insertions, 0 deletions
diff --git a/thirdparty/bullet/LinearMath/btVector3.h b/thirdparty/bullet/LinearMath/btVector3.h
new file mode 100644
index 0000000000..c69effa96e
--- /dev/null
+++ b/thirdparty/bullet/LinearMath/btVector3.h
@@ -0,0 +1,1363 @@
+/*
+Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+
+
+#ifndef BT_VECTOR3_H
+#define BT_VECTOR3_H
+
+//#include <stdint.h>
+#include "btScalar.h"
+#include "btMinMax.h"
+#include "btAlignedAllocator.h"
+
+#ifdef BT_USE_DOUBLE_PRECISION
+#define btVector3Data btVector3DoubleData
+#define btVector3DataName "btVector3DoubleData"
+#else
+#define btVector3Data btVector3FloatData
+#define btVector3DataName "btVector3FloatData"
+#endif //BT_USE_DOUBLE_PRECISION
+
+#if defined BT_USE_SSE
+
+//typedef uint32_t __m128i __attribute__ ((vector_size(16)));
+
+#ifdef _MSC_VER
+#pragma warning(disable: 4556) // value of intrinsic immediate argument '4294967239' is out of range '0 - 255'
+#endif
+
+
+#define BT_SHUFFLE(x,y,z,w) ((w)<<6 | (z)<<4 | (y)<<2 | (x))
+//#define bt_pshufd_ps( _a, _mask ) (__m128) _mm_shuffle_epi32((__m128i)(_a), (_mask) )
+#define bt_pshufd_ps( _a, _mask ) _mm_shuffle_ps((_a), (_a), (_mask) )
+#define bt_splat3_ps( _a, _i ) bt_pshufd_ps((_a), BT_SHUFFLE(_i,_i,_i, 3) )
+#define bt_splat_ps( _a, _i ) bt_pshufd_ps((_a), BT_SHUFFLE(_i,_i,_i,_i) )
+
+#define btv3AbsiMask (_mm_set_epi32(0x00000000, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF))
+#define btvAbsMask (_mm_set_epi32( 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF))
+#define btvFFF0Mask (_mm_set_epi32(0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF))
+#define btv3AbsfMask btCastiTo128f(btv3AbsiMask)
+#define btvFFF0fMask btCastiTo128f(btvFFF0Mask)
+#define btvxyzMaskf btvFFF0fMask
+#define btvAbsfMask btCastiTo128f(btvAbsMask)
+
+//there is an issue with XCode 3.2 (LCx errors)
+#define btvMzeroMask (_mm_set_ps(-0.0f, -0.0f, -0.0f, -0.0f))
+#define v1110 (_mm_set_ps(0.0f, 1.0f, 1.0f, 1.0f))
+#define vHalf (_mm_set_ps(0.5f, 0.5f, 0.5f, 0.5f))
+#define v1_5 (_mm_set_ps(1.5f, 1.5f, 1.5f, 1.5f))
+
+//const __m128 ATTRIBUTE_ALIGNED16(btvMzeroMask) = {-0.0f, -0.0f, -0.0f, -0.0f};
+//const __m128 ATTRIBUTE_ALIGNED16(v1110) = {1.0f, 1.0f, 1.0f, 0.0f};
+//const __m128 ATTRIBUTE_ALIGNED16(vHalf) = {0.5f, 0.5f, 0.5f, 0.5f};
+//const __m128 ATTRIBUTE_ALIGNED16(v1_5) = {1.5f, 1.5f, 1.5f, 1.5f};
+
+#endif
+
+#ifdef BT_USE_NEON
+
+const float32x4_t ATTRIBUTE_ALIGNED16(btvMzeroMask) = (float32x4_t){-0.0f, -0.0f, -0.0f, -0.0f};
+const int32x4_t ATTRIBUTE_ALIGNED16(btvFFF0Mask) = (int32x4_t){static_cast<int32_t>(0xFFFFFFFF),
+ static_cast<int32_t>(0xFFFFFFFF), static_cast<int32_t>(0xFFFFFFFF), 0x0};
+const int32x4_t ATTRIBUTE_ALIGNED16(btvAbsMask) = (int32x4_t){0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF};
+const int32x4_t ATTRIBUTE_ALIGNED16(btv3AbsMask) = (int32x4_t){0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x0};
+
+#endif
+
+/**@brief btVector3 can be used to represent 3D points and vectors.
+ * It has an un-used w component to suit 16-byte alignment when btVector3 is stored in containers. This extra component can be used by derived classes (Quaternion?) or by user
+ * Ideally, this class should be replaced by a platform optimized SIMD version that keeps the data in registers
+ */
+ATTRIBUTE_ALIGNED16(class) btVector3
+{
+public:
+
+ BT_DECLARE_ALIGNED_ALLOCATOR();
+
+#if defined (__SPU__) && defined (__CELLOS_LV2__)
+ btScalar m_floats[4];
+public:
+ SIMD_FORCE_INLINE const vec_float4& get128() const
+ {
+ return *((const vec_float4*)&m_floats[0]);
+ }
+public:
+#else //__CELLOS_LV2__ __SPU__
+ #if defined (BT_USE_SSE) || defined(BT_USE_NEON) // _WIN32 || ARM
+ union {
+ btSimdFloat4 mVec128;
+ btScalar m_floats[4];
+ };
+ SIMD_FORCE_INLINE btSimdFloat4 get128() const
+ {
+ return mVec128;
+ }
+ SIMD_FORCE_INLINE void set128(btSimdFloat4 v128)
+ {
+ mVec128 = v128;
+ }
+ #else
+ btScalar m_floats[4];
+ #endif
+#endif //__CELLOS_LV2__ __SPU__
+
+ public:
+
+ /**@brief No initialization constructor */
+ SIMD_FORCE_INLINE btVector3()
+ {
+
+ }
+
+
+
+ /**@brief Constructor from scalars
+ * @param x X value
+ * @param y Y value
+ * @param z Z value
+ */
+ SIMD_FORCE_INLINE btVector3(const btScalar& _x, const btScalar& _y, const btScalar& _z)
+ {
+ m_floats[0] = _x;
+ m_floats[1] = _y;
+ m_floats[2] = _z;
+ m_floats[3] = btScalar(0.f);
+ }
+
+#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE) )|| defined (BT_USE_NEON)
+ // Set Vector
+ SIMD_FORCE_INLINE btVector3( btSimdFloat4 v)
+ {
+ mVec128 = v;
+ }
+
+ // Copy constructor
+ SIMD_FORCE_INLINE btVector3(const btVector3& rhs)
+ {
+ mVec128 = rhs.mVec128;
+ }
+
+ // Assignment Operator
+ SIMD_FORCE_INLINE btVector3&
+ operator=(const btVector3& v)
+ {
+ mVec128 = v.mVec128;
+
+ return *this;
+ }
+#endif // #if defined (BT_USE_SSE_IN_API) || defined (BT_USE_NEON)
+
+/**@brief Add a vector to this one
+ * @param The vector to add to this one */
+ SIMD_FORCE_INLINE btVector3& operator+=(const btVector3& v)
+ {
+#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+ mVec128 = _mm_add_ps(mVec128, v.mVec128);
+#elif defined(BT_USE_NEON)
+ mVec128 = vaddq_f32(mVec128, v.mVec128);
+#else
+ m_floats[0] += v.m_floats[0];
+ m_floats[1] += v.m_floats[1];
+ m_floats[2] += v.m_floats[2];
+#endif
+ return *this;
+ }
+
+
+ /**@brief Subtract a vector from this one
+ * @param The vector to subtract */
+ SIMD_FORCE_INLINE btVector3& operator-=(const btVector3& v)
+ {
+#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+ mVec128 = _mm_sub_ps(mVec128, v.mVec128);
+#elif defined(BT_USE_NEON)
+ mVec128 = vsubq_f32(mVec128, v.mVec128);
+#else
+ m_floats[0] -= v.m_floats[0];
+ m_floats[1] -= v.m_floats[1];
+ m_floats[2] -= v.m_floats[2];
+#endif
+ return *this;
+ }
+
+ /**@brief Scale the vector
+ * @param s Scale factor */
+ SIMD_FORCE_INLINE btVector3& operator*=(const btScalar& s)
+ {
+#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+ __m128 vs = _mm_load_ss(&s); // (S 0 0 0)
+ vs = bt_pshufd_ps(vs, 0x80); // (S S S 0.0)
+ mVec128 = _mm_mul_ps(mVec128, vs);
+#elif defined(BT_USE_NEON)
+ mVec128 = vmulq_n_f32(mVec128, s);
+#else
+ m_floats[0] *= s;
+ m_floats[1] *= s;
+ m_floats[2] *= s;
+#endif
+ return *this;
+ }
+
+ /**@brief Inversely scale the vector
+ * @param s Scale factor to divide by */
+ SIMD_FORCE_INLINE btVector3& operator/=(const btScalar& s)
+ {
+ btFullAssert(s != btScalar(0.0));
+
+#if 0 //defined(BT_USE_SSE_IN_API)
+// this code is not faster !
+ __m128 vs = _mm_load_ss(&s);
+ vs = _mm_div_ss(v1110, vs);
+ vs = bt_pshufd_ps(vs, 0x00); // (S S S S)
+
+ mVec128 = _mm_mul_ps(mVec128, vs);
+
+ return *this;
+#else
+ return *this *= btScalar(1.0) / s;
+#endif
+ }
+
+ /**@brief Return the dot product
+ * @param v The other vector in the dot product */
+ SIMD_FORCE_INLINE btScalar dot(const btVector3& v) const
+ {
+#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+ __m128 vd = _mm_mul_ps(mVec128, v.mVec128);
+ __m128 z = _mm_movehl_ps(vd, vd);
+ __m128 y = _mm_shuffle_ps(vd, vd, 0x55);
+ vd = _mm_add_ss(vd, y);
+ vd = _mm_add_ss(vd, z);
+ return _mm_cvtss_f32(vd);
+#elif defined(BT_USE_NEON)
+ float32x4_t vd = vmulq_f32(mVec128, v.mVec128);
+ float32x2_t x = vpadd_f32(vget_low_f32(vd), vget_low_f32(vd));
+ x = vadd_f32(x, vget_high_f32(vd));
+ return vget_lane_f32(x, 0);
+#else
+ return m_floats[0] * v.m_floats[0] +
+ m_floats[1] * v.m_floats[1] +
+ m_floats[2] * v.m_floats[2];
+#endif
+ }
+
+ /**@brief Return the length of the vector squared */
+ SIMD_FORCE_INLINE btScalar length2() const
+ {
+ return dot(*this);
+ }
+
+ /**@brief Return the length of the vector */
+ SIMD_FORCE_INLINE btScalar length() const
+ {
+ return btSqrt(length2());
+ }
+
+ /**@brief Return the norm (length) of the vector */
+ SIMD_FORCE_INLINE btScalar norm() const
+ {
+ return length();
+ }
+
+ /**@brief Return the norm (length) of the vector */
+ SIMD_FORCE_INLINE btScalar safeNorm() const
+ {
+ btScalar d = length2();
+ //workaround for some clang/gcc issue of sqrtf(tiny number) = -INF
+ if (d>SIMD_EPSILON)
+ return btSqrt(d);
+ return btScalar(0);
+ }
+
+ /**@brief Return the distance squared between the ends of this and another vector
+ * This is symantically treating the vector like a point */
+ SIMD_FORCE_INLINE btScalar distance2(const btVector3& v) const;
+
+ /**@brief Return the distance between the ends of this and another vector
+ * This is symantically treating the vector like a point */
+ SIMD_FORCE_INLINE btScalar distance(const btVector3& v) const;
+
+ SIMD_FORCE_INLINE btVector3& safeNormalize()
+ {
+ btScalar l2 = length2();
+ //triNormal.normalize();
+ if (l2 >= SIMD_EPSILON*SIMD_EPSILON)
+ {
+ (*this) /= btSqrt(l2);
+ }
+ else
+ {
+ setValue(1, 0, 0);
+ }
+ return *this;
+ }
+
+ /**@brief Normalize this vector
+ * x^2 + y^2 + z^2 = 1 */
+ SIMD_FORCE_INLINE btVector3& normalize()
+ {
+
+ btAssert(!fuzzyZero());
+
+#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+ // dot product first
+ __m128 vd = _mm_mul_ps(mVec128, mVec128);
+ __m128 z = _mm_movehl_ps(vd, vd);
+ __m128 y = _mm_shuffle_ps(vd, vd, 0x55);
+ vd = _mm_add_ss(vd, y);
+ vd = _mm_add_ss(vd, z);
+
+ #if 0
+ vd = _mm_sqrt_ss(vd);
+ vd = _mm_div_ss(v1110, vd);
+ vd = bt_splat_ps(vd, 0x80);
+ mVec128 = _mm_mul_ps(mVec128, vd);
+ #else
+
+ // NR step 1/sqrt(x) - vd is x, y is output
+ y = _mm_rsqrt_ss(vd); // estimate
+
+ // one step NR
+ z = v1_5;
+ vd = _mm_mul_ss(vd, vHalf); // vd * 0.5
+ //x2 = vd;
+ vd = _mm_mul_ss(vd, y); // vd * 0.5 * y0
+ vd = _mm_mul_ss(vd, y); // vd * 0.5 * y0 * y0
+ z = _mm_sub_ss(z, vd); // 1.5 - vd * 0.5 * y0 * y0
+
+ y = _mm_mul_ss(y, z); // y0 * (1.5 - vd * 0.5 * y0 * y0)
+
+ y = bt_splat_ps(y, 0x80);
+ mVec128 = _mm_mul_ps(mVec128, y);
+
+ #endif
+
+
+ return *this;
+#else
+ return *this /= length();
+#endif
+ }
+
+ /**@brief Return a normalized version of this vector */
+ SIMD_FORCE_INLINE btVector3 normalized() const;
+
+ /**@brief Return a rotated version of this vector
+ * @param wAxis The axis to rotate about
+ * @param angle The angle to rotate by */
+ SIMD_FORCE_INLINE btVector3 rotate( const btVector3& wAxis, const btScalar angle ) const;
+
+ /**@brief Return the angle between this and another vector
+ * @param v The other vector */
+ SIMD_FORCE_INLINE btScalar angle(const btVector3& v) const
+ {
+ btScalar s = btSqrt(length2() * v.length2());
+ btFullAssert(s != btScalar(0.0));
+ return btAcos(dot(v) / s);
+ }
+
+ /**@brief Return a vector with the absolute values of each element */
+ SIMD_FORCE_INLINE btVector3 absolute() const
+ {
+
+#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+ return btVector3(_mm_and_ps(mVec128, btv3AbsfMask));
+#elif defined(BT_USE_NEON)
+ return btVector3(vabsq_f32(mVec128));
+#else
+ return btVector3(
+ btFabs(m_floats[0]),
+ btFabs(m_floats[1]),
+ btFabs(m_floats[2]));
+#endif
+ }
+
+ /**@brief Return the cross product between this and another vector
+ * @param v The other vector */
+ SIMD_FORCE_INLINE btVector3 cross(const btVector3& v) const
+ {
+#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+ __m128 T, V;
+
+ T = bt_pshufd_ps(mVec128, BT_SHUFFLE(1, 2, 0, 3)); // (Y Z X 0)
+ V = bt_pshufd_ps(v.mVec128, BT_SHUFFLE(1, 2, 0, 3)); // (Y Z X 0)
+
+ V = _mm_mul_ps(V, mVec128);
+ T = _mm_mul_ps(T, v.mVec128);
+ V = _mm_sub_ps(V, T);
+
+ V = bt_pshufd_ps(V, BT_SHUFFLE(1, 2, 0, 3));
+ return btVector3(V);
+#elif defined(BT_USE_NEON)
+ float32x4_t T, V;
+ // form (Y, Z, X, _) of mVec128 and v.mVec128
+ float32x2_t Tlow = vget_low_f32(mVec128);
+ float32x2_t Vlow = vget_low_f32(v.mVec128);
+ T = vcombine_f32(vext_f32(Tlow, vget_high_f32(mVec128), 1), Tlow);
+ V = vcombine_f32(vext_f32(Vlow, vget_high_f32(v.mVec128), 1), Vlow);
+
+ V = vmulq_f32(V, mVec128);
+ T = vmulq_f32(T, v.mVec128);
+ V = vsubq_f32(V, T);
+ Vlow = vget_low_f32(V);
+ // form (Y, Z, X, _);
+ V = vcombine_f32(vext_f32(Vlow, vget_high_f32(V), 1), Vlow);
+ V = (float32x4_t)vandq_s32((int32x4_t)V, btvFFF0Mask);
+
+ return btVector3(V);
+#else
+ return btVector3(
+ m_floats[1] * v.m_floats[2] - m_floats[2] * v.m_floats[1],
+ m_floats[2] * v.m_floats[0] - m_floats[0] * v.m_floats[2],
+ m_floats[0] * v.m_floats[1] - m_floats[1] * v.m_floats[0]);
+#endif
+ }
+
+ SIMD_FORCE_INLINE btScalar triple(const btVector3& v1, const btVector3& v2) const
+ {
+#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+ // cross:
+ __m128 T = _mm_shuffle_ps(v1.mVec128, v1.mVec128, BT_SHUFFLE(1, 2, 0, 3)); // (Y Z X 0)
+ __m128 V = _mm_shuffle_ps(v2.mVec128, v2.mVec128, BT_SHUFFLE(1, 2, 0, 3)); // (Y Z X 0)
+
+ V = _mm_mul_ps(V, v1.mVec128);
+ T = _mm_mul_ps(T, v2.mVec128);
+ V = _mm_sub_ps(V, T);
+
+ V = _mm_shuffle_ps(V, V, BT_SHUFFLE(1, 2, 0, 3));
+
+ // dot:
+ V = _mm_mul_ps(V, mVec128);
+ __m128 z = _mm_movehl_ps(V, V);
+ __m128 y = _mm_shuffle_ps(V, V, 0x55);
+ V = _mm_add_ss(V, y);
+ V = _mm_add_ss(V, z);
+ return _mm_cvtss_f32(V);
+
+#elif defined(BT_USE_NEON)
+ // cross:
+ float32x4_t T, V;
+ // form (Y, Z, X, _) of mVec128 and v.mVec128
+ float32x2_t Tlow = vget_low_f32(v1.mVec128);
+ float32x2_t Vlow = vget_low_f32(v2.mVec128);
+ T = vcombine_f32(vext_f32(Tlow, vget_high_f32(v1.mVec128), 1), Tlow);
+ V = vcombine_f32(vext_f32(Vlow, vget_high_f32(v2.mVec128), 1), Vlow);
+
+ V = vmulq_f32(V, v1.mVec128);
+ T = vmulq_f32(T, v2.mVec128);
+ V = vsubq_f32(V, T);
+ Vlow = vget_low_f32(V);
+ // form (Y, Z, X, _);
+ V = vcombine_f32(vext_f32(Vlow, vget_high_f32(V), 1), Vlow);
+
+ // dot:
+ V = vmulq_f32(mVec128, V);
+ float32x2_t x = vpadd_f32(vget_low_f32(V), vget_low_f32(V));
+ x = vadd_f32(x, vget_high_f32(V));
+ return vget_lane_f32(x, 0);
+#else
+ return
+ m_floats[0] * (v1.m_floats[1] * v2.m_floats[2] - v1.m_floats[2] * v2.m_floats[1]) +
+ m_floats[1] * (v1.m_floats[2] * v2.m_floats[0] - v1.m_floats[0] * v2.m_floats[2]) +
+ m_floats[2] * (v1.m_floats[0] * v2.m_floats[1] - v1.m_floats[1] * v2.m_floats[0]);
+#endif
+ }
+
+ /**@brief Return the axis with the smallest value
+ * Note return values are 0,1,2 for x, y, or z */
+ SIMD_FORCE_INLINE int minAxis() const
+ {
+ return m_floats[0] < m_floats[1] ? (m_floats[0] <m_floats[2] ? 0 : 2) : (m_floats[1] <m_floats[2] ? 1 : 2);
+ }
+
+ /**@brief Return the axis with the largest value
+ * Note return values are 0,1,2 for x, y, or z */
+ SIMD_FORCE_INLINE int maxAxis() const
+ {
+ return m_floats[0] < m_floats[1] ? (m_floats[1] <m_floats[2] ? 2 : 1) : (m_floats[0] <m_floats[2] ? 2 : 0);
+ }
+
+ SIMD_FORCE_INLINE int furthestAxis() const
+ {
+ return absolute().minAxis();
+ }
+
+ SIMD_FORCE_INLINE int closestAxis() const
+ {
+ return absolute().maxAxis();
+ }
+
+
+ SIMD_FORCE_INLINE void setInterpolate3(const btVector3& v0, const btVector3& v1, btScalar rt)
+ {
+#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+ __m128 vrt = _mm_load_ss(&rt); // (rt 0 0 0)
+ btScalar s = btScalar(1.0) - rt;
+ __m128 vs = _mm_load_ss(&s); // (S 0 0 0)
+ vs = bt_pshufd_ps(vs, 0x80); // (S S S 0.0)
+ __m128 r0 = _mm_mul_ps(v0.mVec128, vs);
+ vrt = bt_pshufd_ps(vrt, 0x80); // (rt rt rt 0.0)
+ __m128 r1 = _mm_mul_ps(v1.mVec128, vrt);
+ __m128 tmp3 = _mm_add_ps(r0,r1);
+ mVec128 = tmp3;
+#elif defined(BT_USE_NEON)
+ float32x4_t vl = vsubq_f32(v1.mVec128, v0.mVec128);
+ vl = vmulq_n_f32(vl, rt);
+ mVec128 = vaddq_f32(vl, v0.mVec128);
+#else
+ btScalar s = btScalar(1.0) - rt;
+ m_floats[0] = s * v0.m_floats[0] + rt * v1.m_floats[0];
+ m_floats[1] = s * v0.m_floats[1] + rt * v1.m_floats[1];
+ m_floats[2] = s * v0.m_floats[2] + rt * v1.m_floats[2];
+ //don't do the unused w component
+ // m_co[3] = s * v0[3] + rt * v1[3];
+#endif
+ }
+
+ /**@brief Return the linear interpolation between this and another vector
+ * @param v The other vector
+ * @param t The ration of this to v (t = 0 => return this, t=1 => return other) */
+ SIMD_FORCE_INLINE btVector3 lerp(const btVector3& v, const btScalar& t) const
+ {
+#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+ __m128 vt = _mm_load_ss(&t); // (t 0 0 0)
+ vt = bt_pshufd_ps(vt, 0x80); // (rt rt rt 0.0)
+ __m128 vl = _mm_sub_ps(v.mVec128, mVec128);
+ vl = _mm_mul_ps(vl, vt);
+ vl = _mm_add_ps(vl, mVec128);
+
+ return btVector3(vl);
+#elif defined(BT_USE_NEON)
+ float32x4_t vl = vsubq_f32(v.mVec128, mVec128);
+ vl = vmulq_n_f32(vl, t);
+ vl = vaddq_f32(vl, mVec128);
+
+ return btVector3(vl);
+#else
+ return
+ btVector3( m_floats[0] + (v.m_floats[0] - m_floats[0]) * t,
+ m_floats[1] + (v.m_floats[1] - m_floats[1]) * t,
+ m_floats[2] + (v.m_floats[2] - m_floats[2]) * t);
+#endif
+ }
+
+ /**@brief Elementwise multiply this vector by the other
+ * @param v The other vector */
+ SIMD_FORCE_INLINE btVector3& operator*=(const btVector3& v)
+ {
+#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+ mVec128 = _mm_mul_ps(mVec128, v.mVec128);
+#elif defined(BT_USE_NEON)
+ mVec128 = vmulq_f32(mVec128, v.mVec128);
+#else
+ m_floats[0] *= v.m_floats[0];
+ m_floats[1] *= v.m_floats[1];
+ m_floats[2] *= v.m_floats[2];
+#endif
+ return *this;
+ }
+
+ /**@brief Return the x value */
+ SIMD_FORCE_INLINE const btScalar& getX() const { return m_floats[0]; }
+ /**@brief Return the y value */
+ SIMD_FORCE_INLINE const btScalar& getY() const { return m_floats[1]; }
+ /**@brief Return the z value */
+ SIMD_FORCE_INLINE const btScalar& getZ() const { return m_floats[2]; }
+ /**@brief Set the x value */
+ SIMD_FORCE_INLINE void setX(btScalar _x) { m_floats[0] = _x;};
+ /**@brief Set the y value */
+ SIMD_FORCE_INLINE void setY(btScalar _y) { m_floats[1] = _y;};
+ /**@brief Set the z value */
+ SIMD_FORCE_INLINE void setZ(btScalar _z) { m_floats[2] = _z;};
+ /**@brief Set the w value */
+ SIMD_FORCE_INLINE void setW(btScalar _w) { m_floats[3] = _w;};
+ /**@brief Return the x value */
+ SIMD_FORCE_INLINE const btScalar& x() const { return m_floats[0]; }
+ /**@brief Return the y value */
+ SIMD_FORCE_INLINE const btScalar& y() const { return m_floats[1]; }
+ /**@brief Return the z value */
+ SIMD_FORCE_INLINE const btScalar& z() const { return m_floats[2]; }
+ /**@brief Return the w value */
+ SIMD_FORCE_INLINE const btScalar& w() const { return m_floats[3]; }
+
+ //SIMD_FORCE_INLINE btScalar& operator[](int i) { return (&m_floats[0])[i]; }
+ //SIMD_FORCE_INLINE const btScalar& operator[](int i) const { return (&m_floats[0])[i]; }
+ ///operator btScalar*() replaces operator[], using implicit conversion. We added operator != and operator == to avoid pointer comparisons.
+ SIMD_FORCE_INLINE operator btScalar *() { return &m_floats[0]; }
+ SIMD_FORCE_INLINE operator const btScalar *() const { return &m_floats[0]; }
+
+ SIMD_FORCE_INLINE bool operator==(const btVector3& other) const
+ {
+#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+ return (0xf == _mm_movemask_ps((__m128)_mm_cmpeq_ps(mVec128, other.mVec128)));
+#else
+ return ((m_floats[3]==other.m_floats[3]) &&
+ (m_floats[2]==other.m_floats[2]) &&
+ (m_floats[1]==other.m_floats[1]) &&
+ (m_floats[0]==other.m_floats[0]));
+#endif
+ }
+
+ SIMD_FORCE_INLINE bool operator!=(const btVector3& other) const
+ {
+ return !(*this == other);
+ }
+
+ /**@brief Set each element to the max of the current values and the values of another btVector3
+ * @param other The other btVector3 to compare with
+ */
+ SIMD_FORCE_INLINE void setMax(const btVector3& other)
+ {
+#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+ mVec128 = _mm_max_ps(mVec128, other.mVec128);
+#elif defined(BT_USE_NEON)
+ mVec128 = vmaxq_f32(mVec128, other.mVec128);
+#else
+ btSetMax(m_floats[0], other.m_floats[0]);
+ btSetMax(m_floats[1], other.m_floats[1]);
+ btSetMax(m_floats[2], other.m_floats[2]);
+ btSetMax(m_floats[3], other.w());
+#endif
+ }
+
+ /**@brief Set each element to the min of the current values and the values of another btVector3
+ * @param other The other btVector3 to compare with
+ */
+ SIMD_FORCE_INLINE void setMin(const btVector3& other)
+ {
+#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+ mVec128 = _mm_min_ps(mVec128, other.mVec128);
+#elif defined(BT_USE_NEON)
+ mVec128 = vminq_f32(mVec128, other.mVec128);
+#else
+ btSetMin(m_floats[0], other.m_floats[0]);
+ btSetMin(m_floats[1], other.m_floats[1]);
+ btSetMin(m_floats[2], other.m_floats[2]);
+ btSetMin(m_floats[3], other.w());
+#endif
+ }
+
+ SIMD_FORCE_INLINE void setValue(const btScalar& _x, const btScalar& _y, const btScalar& _z)
+ {
+ m_floats[0]=_x;
+ m_floats[1]=_y;
+ m_floats[2]=_z;
+ m_floats[3] = btScalar(0.f);
+ }
+
+ void getSkewSymmetricMatrix(btVector3* v0,btVector3* v1,btVector3* v2) const
+ {
+#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+
+ __m128 V = _mm_and_ps(mVec128, btvFFF0fMask);
+ __m128 V0 = _mm_xor_ps(btvMzeroMask, V);
+ __m128 V2 = _mm_movelh_ps(V0, V);
+
+ __m128 V1 = _mm_shuffle_ps(V, V0, 0xCE);
+
+ V0 = _mm_shuffle_ps(V0, V, 0xDB);
+ V2 = _mm_shuffle_ps(V2, V, 0xF9);
+
+ v0->mVec128 = V0;
+ v1->mVec128 = V1;
+ v2->mVec128 = V2;
+#else
+ v0->setValue(0. ,-z() ,y());
+ v1->setValue(z() ,0. ,-x());
+ v2->setValue(-y() ,x() ,0.);
+#endif
+ }
+
+ void setZero()
+ {
+#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+ mVec128 = (__m128)_mm_xor_ps(mVec128, mVec128);
+#elif defined(BT_USE_NEON)
+ int32x4_t vi = vdupq_n_s32(0);
+ mVec128 = vreinterpretq_f32_s32(vi);
+#else
+ setValue(btScalar(0.),btScalar(0.),btScalar(0.));
+#endif
+ }
+
+ SIMD_FORCE_INLINE bool isZero() const
+ {
+ return m_floats[0] == btScalar(0) && m_floats[1] == btScalar(0) && m_floats[2] == btScalar(0);
+ }
+
+
+ SIMD_FORCE_INLINE bool fuzzyZero() const
+ {
+ return length2() < SIMD_EPSILON*SIMD_EPSILON;
+ }
+
+ SIMD_FORCE_INLINE void serialize(struct btVector3Data& dataOut) const;
+
+ SIMD_FORCE_INLINE void deSerialize(const struct btVector3Data& dataIn);
+
+ SIMD_FORCE_INLINE void serializeFloat(struct btVector3FloatData& dataOut) const;
+
+ SIMD_FORCE_INLINE void deSerializeFloat(const struct btVector3FloatData& dataIn);
+
+ SIMD_FORCE_INLINE void serializeDouble(struct btVector3DoubleData& dataOut) const;
+
+ SIMD_FORCE_INLINE void deSerializeDouble(const struct btVector3DoubleData& dataIn);
+
+ /**@brief returns index of maximum dot product between this and vectors in array[]
+ * @param array The other vectors
+ * @param array_count The number of other vectors
+ * @param dotOut The maximum dot product */
+ SIMD_FORCE_INLINE long maxDot( const btVector3 *array, long array_count, btScalar &dotOut ) const;
+
+ /**@brief returns index of minimum dot product between this and vectors in array[]
+ * @param array The other vectors
+ * @param array_count The number of other vectors
+ * @param dotOut The minimum dot product */
+ SIMD_FORCE_INLINE long minDot( const btVector3 *array, long array_count, btScalar &dotOut ) const;
+
+ /* create a vector as btVector3( this->dot( btVector3 v0 ), this->dot( btVector3 v1), this->dot( btVector3 v2 )) */
+ SIMD_FORCE_INLINE btVector3 dot3( const btVector3 &v0, const btVector3 &v1, const btVector3 &v2 ) const
+ {
+#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+
+ __m128 a0 = _mm_mul_ps( v0.mVec128, this->mVec128 );
+ __m128 a1 = _mm_mul_ps( v1.mVec128, this->mVec128 );
+ __m128 a2 = _mm_mul_ps( v2.mVec128, this->mVec128 );
+ __m128 b0 = _mm_unpacklo_ps( a0, a1 );
+ __m128 b1 = _mm_unpackhi_ps( a0, a1 );
+ __m128 b2 = _mm_unpacklo_ps( a2, _mm_setzero_ps() );
+ __m128 r = _mm_movelh_ps( b0, b2 );
+ r = _mm_add_ps( r, _mm_movehl_ps( b2, b0 ));
+ a2 = _mm_and_ps( a2, btvxyzMaskf);
+ r = _mm_add_ps( r, btCastdTo128f (_mm_move_sd( btCastfTo128d(a2), btCastfTo128d(b1) )));
+ return btVector3(r);
+
+#elif defined(BT_USE_NEON)
+ static const uint32x4_t xyzMask = (const uint32x4_t){ static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), 0 };
+ float32x4_t a0 = vmulq_f32( v0.mVec128, this->mVec128);
+ float32x4_t a1 = vmulq_f32( v1.mVec128, this->mVec128);
+ float32x4_t a2 = vmulq_f32( v2.mVec128, this->mVec128);
+ float32x2x2_t zLo = vtrn_f32( vget_high_f32(a0), vget_high_f32(a1));
+ a2 = (float32x4_t) vandq_u32((uint32x4_t) a2, xyzMask );
+ float32x2_t b0 = vadd_f32( vpadd_f32( vget_low_f32(a0), vget_low_f32(a1)), zLo.val[0] );
+ float32x2_t b1 = vpadd_f32( vpadd_f32( vget_low_f32(a2), vget_high_f32(a2)), vdup_n_f32(0.0f));
+ return btVector3( vcombine_f32(b0, b1) );
+#else
+ return btVector3( dot(v0), dot(v1), dot(v2));
+#endif
+ }
+};
+
+/**@brief Return the sum of two vectors (Point symantics)*/
+SIMD_FORCE_INLINE btVector3
+operator+(const btVector3& v1, const btVector3& v2)
+{
+#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+ return btVector3(_mm_add_ps(v1.mVec128, v2.mVec128));
+#elif defined(BT_USE_NEON)
+ return btVector3(vaddq_f32(v1.mVec128, v2.mVec128));
+#else
+ return btVector3(
+ v1.m_floats[0] + v2.m_floats[0],
+ v1.m_floats[1] + v2.m_floats[1],
+ v1.m_floats[2] + v2.m_floats[2]);
+#endif
+}
+
+/**@brief Return the elementwise product of two vectors */
+SIMD_FORCE_INLINE btVector3
+operator*(const btVector3& v1, const btVector3& v2)
+{
+#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+ return btVector3(_mm_mul_ps(v1.mVec128, v2.mVec128));
+#elif defined(BT_USE_NEON)
+ return btVector3(vmulq_f32(v1.mVec128, v2.mVec128));
+#else
+ return btVector3(
+ v1.m_floats[0] * v2.m_floats[0],
+ v1.m_floats[1] * v2.m_floats[1],
+ v1.m_floats[2] * v2.m_floats[2]);
+#endif
+}
+
+/**@brief Return the difference between two vectors */
+SIMD_FORCE_INLINE btVector3
+operator-(const btVector3& v1, const btVector3& v2)
+{
+#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))
+
+ // without _mm_and_ps this code causes slowdown in Concave moving
+ __m128 r = _mm_sub_ps(v1.mVec128, v2.mVec128);
+ return btVector3(_mm_and_ps(r, btvFFF0fMask));
+#elif defined(BT_USE_NEON)
+ float32x4_t r = vsubq_f32(v1.mVec128, v2.mVec128);
+ return btVector3((float32x4_t)vandq_s32((int32x4_t)r, btvFFF0Mask));
+#else
+ return btVector3(
+ v1.m_floats[0] - v2.m_floats[0],
+ v1.m_floats[1] - v2.m_floats[1],
+ v1.m_floats[2] - v2.m_floats[2]);
+#endif
+}
+
+/**@brief Return the negative of the vector */
+SIMD_FORCE_INLINE btVector3
+operator-(const btVector3& v)
+{
+#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
+ __m128 r = _mm_xor_ps(v.mVec128, btvMzeroMask);
+ return btVector3(_mm_and_ps(r, btvFFF0fMask));
+#elif defined(BT_USE_NEON)
+ return btVector3((btSimdFloat4)veorq_s32((int32x4_t)v.mVec128, (int32x4_t)btvMzeroMask));
+#else
+ return btVector3(-v.m_floats[0], -v.m_floats[1], -v.m_floats[2]);
+#endif
+}
+
+/**@brief Return the vector scaled by s */
+SIMD_FORCE_INLINE btVector3
+operator*(const btVector3& v, const btScalar& s)
+{
+#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+ __m128 vs = _mm_load_ss(&s); // (S 0 0 0)
+ vs = bt_pshufd_ps(vs, 0x80); // (S S S 0.0)
+ return btVector3(_mm_mul_ps(v.mVec128, vs));
+#elif defined(BT_USE_NEON)
+ float32x4_t r = vmulq_n_f32(v.mVec128, s);
+ return btVector3((float32x4_t)vandq_s32((int32x4_t)r, btvFFF0Mask));
+#else
+ return btVector3(v.m_floats[0] * s, v.m_floats[1] * s, v.m_floats[2] * s);
+#endif
+}
+
+/**@brief Return the vector scaled by s */
+SIMD_FORCE_INLINE btVector3
+operator*(const btScalar& s, const btVector3& v)
+{
+ return v * s;
+}
+
+/**@brief Return the vector inversely scaled by s */
+SIMD_FORCE_INLINE btVector3
+operator/(const btVector3& v, const btScalar& s)
+{
+ btFullAssert(s != btScalar(0.0));
+#if 0 //defined(BT_USE_SSE_IN_API)
+// this code is not faster !
+ __m128 vs = _mm_load_ss(&s);
+ vs = _mm_div_ss(v1110, vs);
+ vs = bt_pshufd_ps(vs, 0x00); // (S S S S)
+
+ return btVector3(_mm_mul_ps(v.mVec128, vs));
+#else
+ return v * (btScalar(1.0) / s);
+#endif
+}
+
+/**@brief Return the vector inversely scaled by s */
+SIMD_FORCE_INLINE btVector3
+operator/(const btVector3& v1, const btVector3& v2)
+{
+#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API)&& defined (BT_USE_SSE))
+ __m128 vec = _mm_div_ps(v1.mVec128, v2.mVec128);
+ vec = _mm_and_ps(vec, btvFFF0fMask);
+ return btVector3(vec);
+#elif defined(BT_USE_NEON)
+ float32x4_t x, y, v, m;
+
+ x = v1.mVec128;
+ y = v2.mVec128;
+
+ v = vrecpeq_f32(y); // v ~ 1/y
+ m = vrecpsq_f32(y, v); // m = (2-v*y)
+ v = vmulq_f32(v, m); // vv = v*m ~~ 1/y
+ m = vrecpsq_f32(y, v); // mm = (2-vv*y)
+ v = vmulq_f32(v, x); // x*vv
+ v = vmulq_f32(v, m); // (x*vv)*(2-vv*y) = x*(vv(2-vv*y)) ~~~ x/y
+
+ return btVector3(v);
+#else
+ return btVector3(
+ v1.m_floats[0] / v2.m_floats[0],
+ v1.m_floats[1] / v2.m_floats[1],
+ v1.m_floats[2] / v2.m_floats[2]);
+#endif
+}
+
+/**@brief Return the dot product between two vectors */
+SIMD_FORCE_INLINE btScalar
+btDot(const btVector3& v1, const btVector3& v2)
+{
+ return v1.dot(v2);
+}
+
+
+/**@brief Return the distance squared between two vectors */
+SIMD_FORCE_INLINE btScalar
+btDistance2(const btVector3& v1, const btVector3& v2)
+{
+ return v1.distance2(v2);
+}
+
+
+/**@brief Return the distance between two vectors */
+SIMD_FORCE_INLINE btScalar
+btDistance(const btVector3& v1, const btVector3& v2)
+{
+ return v1.distance(v2);
+}
+
+/**@brief Return the angle between two vectors */
+SIMD_FORCE_INLINE btScalar
+btAngle(const btVector3& v1, const btVector3& v2)
+{
+ return v1.angle(v2);
+}
+
+/**@brief Return the cross product of two vectors */
+SIMD_FORCE_INLINE btVector3
+btCross(const btVector3& v1, const btVector3& v2)
+{
+ return v1.cross(v2);
+}
+
+SIMD_FORCE_INLINE btScalar
+btTriple(const btVector3& v1, const btVector3& v2, const btVector3& v3)
+{
+ return v1.triple(v2, v3);
+}
+
+/**@brief Return the linear interpolation between two vectors
+ * @param v1 One vector
+ * @param v2 The other vector
+ * @param t The ration of this to v (t = 0 => return v1, t=1 => return v2) */
+SIMD_FORCE_INLINE btVector3
+lerp(const btVector3& v1, const btVector3& v2, const btScalar& t)
+{
+ return v1.lerp(v2, t);
+}
+
+
+
+SIMD_FORCE_INLINE btScalar btVector3::distance2(const btVector3& v) const
+{
+ return (v - *this).length2();
+}
+
+SIMD_FORCE_INLINE btScalar btVector3::distance(const btVector3& v) const
+{
+ return (v - *this).length();
+}
+
+SIMD_FORCE_INLINE btVector3 btVector3::normalized() const
+{
+ btVector3 nrm = *this;
+
+ return nrm.normalize();
+}
+
+SIMD_FORCE_INLINE btVector3 btVector3::rotate( const btVector3& wAxis, const btScalar _angle ) const
+{
+ // wAxis must be a unit lenght vector
+
+#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+
+ __m128 O = _mm_mul_ps(wAxis.mVec128, mVec128);
+ btScalar ssin = btSin( _angle );
+ __m128 C = wAxis.cross( mVec128 ).mVec128;
+ O = _mm_and_ps(O, btvFFF0fMask);
+ btScalar scos = btCos( _angle );
+
+ __m128 vsin = _mm_load_ss(&ssin); // (S 0 0 0)
+ __m128 vcos = _mm_load_ss(&scos); // (S 0 0 0)
+
+ __m128 Y = bt_pshufd_ps(O, 0xC9); // (Y Z X 0)
+ __m128 Z = bt_pshufd_ps(O, 0xD2); // (Z X Y 0)
+ O = _mm_add_ps(O, Y);
+ vsin = bt_pshufd_ps(vsin, 0x80); // (S S S 0)
+ O = _mm_add_ps(O, Z);
+ vcos = bt_pshufd_ps(vcos, 0x80); // (S S S 0)
+
+ vsin = vsin * C;
+ O = O * wAxis.mVec128;
+ __m128 X = mVec128 - O;
+
+ O = O + vsin;
+ vcos = vcos * X;
+ O = O + vcos;
+
+ return btVector3(O);
+#else
+ btVector3 o = wAxis * wAxis.dot( *this );
+ btVector3 _x = *this - o;
+ btVector3 _y;
+
+ _y = wAxis.cross( *this );
+
+ return ( o + _x * btCos( _angle ) + _y * btSin( _angle ) );
+#endif
+}
+
+SIMD_FORCE_INLINE long btVector3::maxDot( const btVector3 *array, long array_count, btScalar &dotOut ) const
+{
+#if (defined BT_USE_SSE && defined BT_USE_SIMD_VECTOR3 && defined BT_USE_SSE_IN_API) || defined (BT_USE_NEON)
+ #if defined _WIN32 || defined (BT_USE_SSE)
+ const long scalar_cutoff = 10;
+ long _maxdot_large( const float *array, const float *vec, unsigned long array_count, float *dotOut );
+ #elif defined BT_USE_NEON
+ const long scalar_cutoff = 4;
+ extern long (*_maxdot_large)( const float *array, const float *vec, unsigned long array_count, float *dotOut );
+ #endif
+ if( array_count < scalar_cutoff )
+#endif
+ {
+ btScalar maxDot1 = -SIMD_INFINITY;
+ int i = 0;
+ int ptIndex = -1;
+ for( i = 0; i < array_count; i++ )
+ {
+ btScalar dot = array[i].dot(*this);
+
+ if( dot > maxDot1 )
+ {
+ maxDot1 = dot;
+ ptIndex = i;
+ }
+ }
+
+ dotOut = maxDot1;
+ return ptIndex;
+ }
+#if (defined BT_USE_SSE && defined BT_USE_SIMD_VECTOR3 && defined BT_USE_SSE_IN_API) || defined (BT_USE_NEON)
+ return _maxdot_large( (float*) array, (float*) &m_floats[0], array_count, &dotOut );
+#endif
+}
+
+SIMD_FORCE_INLINE long btVector3::minDot( const btVector3 *array, long array_count, btScalar &dotOut ) const
+{
+#if (defined BT_USE_SSE && defined BT_USE_SIMD_VECTOR3 && defined BT_USE_SSE_IN_API) || defined (BT_USE_NEON)
+ #if defined BT_USE_SSE
+ const long scalar_cutoff = 10;
+ long _mindot_large( const float *array, const float *vec, unsigned long array_count, float *dotOut );
+ #elif defined BT_USE_NEON
+ const long scalar_cutoff = 4;
+ extern long (*_mindot_large)( const float *array, const float *vec, unsigned long array_count, float *dotOut );
+ #else
+ #error unhandled arch!
+ #endif
+
+ if( array_count < scalar_cutoff )
+#endif
+ {
+ btScalar minDot = SIMD_INFINITY;
+ int i = 0;
+ int ptIndex = -1;
+
+ for( i = 0; i < array_count; i++ )
+ {
+ btScalar dot = array[i].dot(*this);
+
+ if( dot < minDot )
+ {
+ minDot = dot;
+ ptIndex = i;
+ }
+ }
+
+ dotOut = minDot;
+
+ return ptIndex;
+ }
+#if (defined BT_USE_SSE && defined BT_USE_SIMD_VECTOR3 && defined BT_USE_SSE_IN_API) || defined (BT_USE_NEON)
+ return _mindot_large( (float*) array, (float*) &m_floats[0], array_count, &dotOut );
+#endif//BT_USE_SIMD_VECTOR3
+}
+
+
+class btVector4 : public btVector3
+{
+public:
+
+ SIMD_FORCE_INLINE btVector4() {}
+
+
+ SIMD_FORCE_INLINE btVector4(const btScalar& _x, const btScalar& _y, const btScalar& _z,const btScalar& _w)
+ : btVector3(_x,_y,_z)
+ {
+ m_floats[3] = _w;
+ }
+
+#if (defined (BT_USE_SSE_IN_API)&& defined (BT_USE_SSE)) || defined (BT_USE_NEON)
+ SIMD_FORCE_INLINE btVector4(const btSimdFloat4 vec)
+ {
+ mVec128 = vec;
+ }
+
+ SIMD_FORCE_INLINE btVector4(const btVector3& rhs)
+ {
+ mVec128 = rhs.mVec128;
+ }
+
+ SIMD_FORCE_INLINE btVector4&
+ operator=(const btVector4& v)
+ {
+ mVec128 = v.mVec128;
+ return *this;
+ }
+#endif // #if defined (BT_USE_SSE_IN_API) || defined (BT_USE_NEON)
+
+ SIMD_FORCE_INLINE btVector4 absolute4() const
+ {
+#if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+ return btVector4(_mm_and_ps(mVec128, btvAbsfMask));
+#elif defined(BT_USE_NEON)
+ return btVector4(vabsq_f32(mVec128));
+#else
+ return btVector4(
+ btFabs(m_floats[0]),
+ btFabs(m_floats[1]),
+ btFabs(m_floats[2]),
+ btFabs(m_floats[3]));
+#endif
+ }
+
+
+ btScalar getW() const { return m_floats[3];}
+
+
+ SIMD_FORCE_INLINE int maxAxis4() const
+ {
+ int maxIndex = -1;
+ btScalar maxVal = btScalar(-BT_LARGE_FLOAT);
+ if (m_floats[0] > maxVal)
+ {
+ maxIndex = 0;
+ maxVal = m_floats[0];
+ }
+ if (m_floats[1] > maxVal)
+ {
+ maxIndex = 1;
+ maxVal = m_floats[1];
+ }
+ if (m_floats[2] > maxVal)
+ {
+ maxIndex = 2;
+ maxVal =m_floats[2];
+ }
+ if (m_floats[3] > maxVal)
+ {
+ maxIndex = 3;
+ }
+
+ return maxIndex;
+ }
+
+
+ SIMD_FORCE_INLINE int minAxis4() const
+ {
+ int minIndex = -1;
+ btScalar minVal = btScalar(BT_LARGE_FLOAT);
+ if (m_floats[0] < minVal)
+ {
+ minIndex = 0;
+ minVal = m_floats[0];
+ }
+ if (m_floats[1] < minVal)
+ {
+ minIndex = 1;
+ minVal = m_floats[1];
+ }
+ if (m_floats[2] < minVal)
+ {
+ minIndex = 2;
+ minVal =m_floats[2];
+ }
+ if (m_floats[3] < minVal)
+ {
+ minIndex = 3;
+ }
+
+ return minIndex;
+ }
+
+
+ SIMD_FORCE_INLINE int closestAxis4() const
+ {
+ return absolute4().maxAxis4();
+ }
+
+
+
+
+ /**@brief Set x,y,z and zero w
+ * @param x Value of x
+ * @param y Value of y
+ * @param z Value of z
+ */
+
+
+/* void getValue(btScalar *m) const
+ {
+ m[0] = m_floats[0];
+ m[1] = m_floats[1];
+ m[2] =m_floats[2];
+ }
+*/
+/**@brief Set the values
+ * @param x Value of x
+ * @param y Value of y
+ * @param z Value of z
+ * @param w Value of w
+ */
+ SIMD_FORCE_INLINE void setValue(const btScalar& _x, const btScalar& _y, const btScalar& _z,const btScalar& _w)
+ {
+ m_floats[0]=_x;
+ m_floats[1]=_y;
+ m_floats[2]=_z;
+ m_floats[3]=_w;
+ }
+
+
+};
+
+
+///btSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization
+SIMD_FORCE_INLINE void btSwapScalarEndian(const btScalar& sourceVal, btScalar& destVal)
+{
+ #ifdef BT_USE_DOUBLE_PRECISION
+ unsigned char* dest = (unsigned char*) &destVal;
+ unsigned char* src = (unsigned char*) &sourceVal;
+ dest[0] = src[7];
+ dest[1] = src[6];
+ dest[2] = src[5];
+ dest[3] = src[4];
+ dest[4] = src[3];
+ dest[5] = src[2];
+ dest[6] = src[1];
+ dest[7] = src[0];
+#else
+ unsigned char* dest = (unsigned char*) &destVal;
+ unsigned char* src = (unsigned char*) &sourceVal;
+ dest[0] = src[3];
+ dest[1] = src[2];
+ dest[2] = src[1];
+ dest[3] = src[0];
+#endif //BT_USE_DOUBLE_PRECISION
+}
+///btSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization
+SIMD_FORCE_INLINE void btSwapVector3Endian(const btVector3& sourceVec, btVector3& destVec)
+{
+ for (int i=0;i<4;i++)
+ {
+ btSwapScalarEndian(sourceVec[i],destVec[i]);
+ }
+
+}
+
+///btUnSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization
+SIMD_FORCE_INLINE void btUnSwapVector3Endian(btVector3& vector)
+{
+
+ btVector3 swappedVec;
+ for (int i=0;i<4;i++)
+ {
+ btSwapScalarEndian(vector[i],swappedVec[i]);
+ }
+ vector = swappedVec;
+}
+
+template <class T>
+SIMD_FORCE_INLINE void btPlaneSpace1 (const T& n, T& p, T& q)
+{
+ if (btFabs(n[2]) > SIMDSQRT12) {
+ // choose p in y-z plane
+ btScalar a = n[1]*n[1] + n[2]*n[2];
+ btScalar k = btRecipSqrt (a);
+ p[0] = 0;
+ p[1] = -n[2]*k;
+ p[2] = n[1]*k;
+ // set q = n x p
+ q[0] = a*k;
+ q[1] = -n[0]*p[2];
+ q[2] = n[0]*p[1];
+ }
+ else {
+ // choose p in x-y plane
+ btScalar a = n[0]*n[0] + n[1]*n[1];
+ btScalar k = btRecipSqrt (a);
+ p[0] = -n[1]*k;
+ p[1] = n[0]*k;
+ p[2] = 0;
+ // set q = n x p
+ q[0] = -n[2]*p[1];
+ q[1] = n[2]*p[0];
+ q[2] = a*k;
+ }
+}
+
+
+struct btVector3FloatData
+{
+ float m_floats[4];
+};
+
+struct btVector3DoubleData
+{
+ double m_floats[4];
+
+};
+
+SIMD_FORCE_INLINE void btVector3::serializeFloat(struct btVector3FloatData& dataOut) const
+{
+ ///could also do a memcpy, check if it is worth it
+ for (int i=0;i<4;i++)
+ dataOut.m_floats[i] = float(m_floats[i]);
+}
+
+SIMD_FORCE_INLINE void btVector3::deSerializeFloat(const struct btVector3FloatData& dataIn)
+{
+ for (int i=0;i<4;i++)
+ m_floats[i] = btScalar(dataIn.m_floats[i]);
+}
+
+
+SIMD_FORCE_INLINE void btVector3::serializeDouble(struct btVector3DoubleData& dataOut) const
+{
+ ///could also do a memcpy, check if it is worth it
+ for (int i=0;i<4;i++)
+ dataOut.m_floats[i] = double(m_floats[i]);
+}
+
+SIMD_FORCE_INLINE void btVector3::deSerializeDouble(const struct btVector3DoubleData& dataIn)
+{
+ for (int i=0;i<4;i++)
+ m_floats[i] = btScalar(dataIn.m_floats[i]);
+}
+
+
+SIMD_FORCE_INLINE void btVector3::serialize(struct btVector3Data& dataOut) const
+{
+ ///could also do a memcpy, check if it is worth it
+ for (int i=0;i<4;i++)
+ dataOut.m_floats[i] = m_floats[i];
+}
+
+SIMD_FORCE_INLINE void btVector3::deSerialize(const struct btVector3Data& dataIn)
+{
+ for (int i=0;i<4;i++)
+ m_floats[i] = dataIn.m_floats[i];
+}
+
+#endif //BT_VECTOR3_H