summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/LinearMath/btQuaternion.h
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/bullet/LinearMath/btQuaternion.h')
-rw-r--r--thirdparty/bullet/LinearMath/btQuaternion.h895
1 files changed, 437 insertions, 458 deletions
diff --git a/thirdparty/bullet/LinearMath/btQuaternion.h b/thirdparty/bullet/LinearMath/btQuaternion.h
index a98fec7bc4..53e8169b80 100644
--- a/thirdparty/bullet/LinearMath/btQuaternion.h
+++ b/thirdparty/bullet/LinearMath/btQuaternion.h
@@ -12,25 +12,19 @@ subject to the following restrictions:
3. This notice may not be removed or altered from any source distribution.
*/
-
-
#ifndef BT_SIMD__QUATERNION_H_
#define BT_SIMD__QUATERNION_H_
-
#include "btVector3.h"
#include "btQuadWord.h"
-
#ifdef BT_USE_DOUBLE_PRECISION
#define btQuaternionData btQuaternionDoubleData
#define btQuaternionDataName "btQuaternionDoubleData"
#else
#define btQuaternionData btQuaternionFloatData
#define btQuaternionDataName "btQuaternionFloatData"
-#endif //BT_USE_DOUBLE_PRECISION
-
-
+#endif //BT_USE_DOUBLE_PRECISION
#ifdef BT_USE_SSE
@@ -39,7 +33,7 @@ subject to the following restrictions:
#endif
-#if defined(BT_USE_SSE)
+#if defined(BT_USE_SSE)
#define vQInv (_mm_set_ps(+0.0f, -0.0f, -0.0f, -0.0f))
#define vPPPM (_mm_set_ps(-0.0f, +0.0f, +0.0f, +0.0f))
@@ -52,13 +46,14 @@ const btSimdFloat4 ATTRIBUTE_ALIGNED16(vPPPM) = {+0.0f, +0.0f, +0.0f, -0.0f};
#endif
/**@brief The btQuaternion implements quaternion to perform linear algebra rotations in combination with btMatrix3x3, btVector3 and btTransform. */
-class btQuaternion : public btQuadWord {
+class btQuaternion : public btQuadWord
+{
public:
- /**@brief No initialization constructor */
+ /**@brief No initialization constructor */
btQuaternion() {}
-#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))|| defined(BT_USE_NEON)
- // Set Vector
+#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
+ // Set Vector
SIMD_FORCE_INLINE btQuaternion(const btSimdFloat4 vec)
{
mVec128 = vec;
@@ -71,42 +66,43 @@ public:
}
// Assignment Operator
- SIMD_FORCE_INLINE btQuaternion&
- operator=(const btQuaternion& v)
+ SIMD_FORCE_INLINE btQuaternion&
+ operator=(const btQuaternion& v)
{
mVec128 = v.mVec128;
-
+
return *this;
}
-
+
#endif
// template <typename btScalar>
// explicit Quaternion(const btScalar *v) : Tuple4<btScalar>(v) {}
- /**@brief Constructor from scalars */
- btQuaternion(const btScalar& _x, const btScalar& _y, const btScalar& _z, const btScalar& _w)
- : btQuadWord(_x, _y, _z, _w)
- {}
- /**@brief Axis angle Constructor
+ /**@brief Constructor from scalars */
+ btQuaternion(const btScalar& _x, const btScalar& _y, const btScalar& _z, const btScalar& _w)
+ : btQuadWord(_x, _y, _z, _w)
+ {
+ }
+ /**@brief Axis angle Constructor
* @param axis The axis which the rotation is around
* @param angle The magnitude of the rotation around the angle (Radians) */
- btQuaternion(const btVector3& _axis, const btScalar& _angle)
- {
- setRotation(_axis, _angle);
+ btQuaternion(const btVector3& _axis, const btScalar& _angle)
+ {
+ setRotation(_axis, _angle);
}
- /**@brief Constructor from Euler angles
+ /**@brief Constructor from Euler angles
* @param yaw Angle around Y unless BT_EULER_DEFAULT_ZYX defined then Z
* @param pitch Angle around X unless BT_EULER_DEFAULT_ZYX defined then Y
* @param roll Angle around Z unless BT_EULER_DEFAULT_ZYX defined then X */
btQuaternion(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
- {
+ {
#ifndef BT_EULER_DEFAULT_ZYX
- setEuler(yaw, pitch, roll);
+ setEuler(yaw, pitch, roll);
#else
- setEulerZYX(yaw, pitch, roll);
-#endif
+ setEulerZYX(yaw, pitch, roll);
+#endif
}
- /**@brief Set the rotation using axis angle notation
+ /**@brief Set the rotation using axis angle notation
* @param axis The axis around which to rotate
* @param angle The magnitude of the rotation in Radians */
void setRotation(const btVector3& axis, const btScalar& _angle)
@@ -114,18 +110,18 @@ public:
btScalar d = axis.length();
btAssert(d != btScalar(0.0));
btScalar s = btSin(_angle * btScalar(0.5)) / d;
- setValue(axis.x() * s, axis.y() * s, axis.z() * s,
- btCos(_angle * btScalar(0.5)));
+ setValue(axis.x() * s, axis.y() * s, axis.z() * s,
+ btCos(_angle * btScalar(0.5)));
}
- /**@brief Set the quaternion using Euler angles
+ /**@brief Set the quaternion using Euler angles
* @param yaw Angle around Y
* @param pitch Angle around X
* @param roll Angle around Z */
void setEuler(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
{
- btScalar halfYaw = btScalar(yaw) * btScalar(0.5);
- btScalar halfPitch = btScalar(pitch) * btScalar(0.5);
- btScalar halfRoll = btScalar(roll) * btScalar(0.5);
+ btScalar halfYaw = btScalar(yaw) * btScalar(0.5);
+ btScalar halfPitch = btScalar(pitch) * btScalar(0.5);
+ btScalar halfRoll = btScalar(roll) * btScalar(0.5);
btScalar cosYaw = btCos(halfYaw);
btScalar sinYaw = btSin(halfYaw);
btScalar cosPitch = btCos(halfPitch);
@@ -133,32 +129,32 @@ public:
btScalar cosRoll = btCos(halfRoll);
btScalar sinRoll = btSin(halfRoll);
setValue(cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw,
- cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw,
- sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw,
- cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw);
+ cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw,
+ sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw,
+ cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw);
}
- /**@brief Set the quaternion using euler angles
+ /**@brief Set the quaternion using euler angles
* @param yaw Angle around Z
* @param pitch Angle around Y
* @param roll Angle around X */
void setEulerZYX(const btScalar& yawZ, const btScalar& pitchY, const btScalar& rollX)
{
- btScalar halfYaw = btScalar(yawZ) * btScalar(0.5);
- btScalar halfPitch = btScalar(pitchY) * btScalar(0.5);
- btScalar halfRoll = btScalar(rollX) * btScalar(0.5);
+ btScalar halfYaw = btScalar(yawZ) * btScalar(0.5);
+ btScalar halfPitch = btScalar(pitchY) * btScalar(0.5);
+ btScalar halfRoll = btScalar(rollX) * btScalar(0.5);
btScalar cosYaw = btCos(halfYaw);
btScalar sinYaw = btSin(halfYaw);
btScalar cosPitch = btCos(halfPitch);
btScalar sinPitch = btSin(halfPitch);
btScalar cosRoll = btCos(halfRoll);
btScalar sinRoll = btSin(halfRoll);
- setValue(sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw, //x
- cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw, //y
- cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw, //z
- cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw); //formerly yzx
+ setValue(sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw, //x
+ cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw, //y
+ cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw, //z
+ cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw); //formerly yzx
}
- /**@brief Get the euler angles from this quaternion
+ /**@brief Get the euler angles from this quaternion
* @param yaw Angle around Z
* @param pitch Angle around Y
* @param roll Angle around X */
@@ -173,23 +169,25 @@ public:
sqy = m_floats[1] * m_floats[1];
sqz = m_floats[2] * m_floats[2];
squ = m_floats[3] * m_floats[3];
- sarg = btScalar(-2.) * (m_floats[0] * m_floats[2] - m_floats[3] * m_floats[1]);
-
+ sarg = btScalar(-2.) * (m_floats[0] * m_floats[2] - m_floats[3] * m_floats[1]);
+
// If the pitch angle is PI/2 or -PI/2, we can only compute
// the sum roll + yaw. However, any combination that gives
// the right sum will produce the correct orientation, so we
// set rollX = 0 and compute yawZ.
if (sarg <= -btScalar(0.99999))
{
- pitchY = btScalar(-0.5)*SIMD_PI;
- rollX = 0;
- yawZ = btScalar(2) * btAtan2(m_floats[0],-m_floats[1]);
- } else if (sarg >= btScalar(0.99999))
+ pitchY = btScalar(-0.5) * SIMD_PI;
+ rollX = 0;
+ yawZ = btScalar(2) * btAtan2(m_floats[0], -m_floats[1]);
+ }
+ else if (sarg >= btScalar(0.99999))
{
- pitchY = btScalar(0.5)*SIMD_PI;
- rollX = 0;
- yawZ = btScalar(2) * btAtan2(-m_floats[0], m_floats[1]);
- } else
+ pitchY = btScalar(0.5) * SIMD_PI;
+ rollX = 0;
+ yawZ = btScalar(2) * btAtan2(-m_floats[0], m_floats[1]);
+ }
+ else
{
pitchY = btAsin(sarg);
rollX = btAtan2(2 * (m_floats[1] * m_floats[2] + m_floats[3] * m_floats[0]), squ - sqx - sqy + sqz);
@@ -197,178 +195,178 @@ public:
}
}
- /**@brief Add two quaternions
+ /**@brief Add two quaternions
* @param q The quaternion to add to this one */
- SIMD_FORCE_INLINE btQuaternion& operator+=(const btQuaternion& q)
+ SIMD_FORCE_INLINE btQuaternion& operator+=(const btQuaternion& q)
{
-#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
mVec128 = _mm_add_ps(mVec128, q.mVec128);
#elif defined(BT_USE_NEON)
mVec128 = vaddq_f32(mVec128, q.mVec128);
-#else
- m_floats[0] += q.x();
- m_floats[1] += q.y();
- m_floats[2] += q.z();
- m_floats[3] += q.m_floats[3];
+#else
+ m_floats[0] += q.x();
+ m_floats[1] += q.y();
+ m_floats[2] += q.z();
+ m_floats[3] += q.m_floats[3];
#endif
return *this;
}
- /**@brief Subtract out a quaternion
+ /**@brief Subtract out a quaternion
* @param q The quaternion to subtract from this one */
- btQuaternion& operator-=(const btQuaternion& q)
+ btQuaternion& operator-=(const btQuaternion& q)
{
-#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
mVec128 = _mm_sub_ps(mVec128, q.mVec128);
#elif defined(BT_USE_NEON)
mVec128 = vsubq_f32(mVec128, q.mVec128);
-#else
- m_floats[0] -= q.x();
- m_floats[1] -= q.y();
- m_floats[2] -= q.z();
- m_floats[3] -= q.m_floats[3];
+#else
+ m_floats[0] -= q.x();
+ m_floats[1] -= q.y();
+ m_floats[2] -= q.z();
+ m_floats[3] -= q.m_floats[3];
#endif
- return *this;
+ return *this;
}
- /**@brief Scale this quaternion
+ /**@brief Scale this quaternion
* @param s The scalar to scale by */
btQuaternion& operator*=(const btScalar& s)
{
-#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
- __m128 vs = _mm_load_ss(&s); // (S 0 0 0)
- vs = bt_pshufd_ps(vs, 0); // (S S S S)
+#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
+ __m128 vs = _mm_load_ss(&s); // (S 0 0 0)
+ vs = bt_pshufd_ps(vs, 0); // (S S S S)
mVec128 = _mm_mul_ps(mVec128, vs);
#elif defined(BT_USE_NEON)
mVec128 = vmulq_n_f32(mVec128, s);
#else
- m_floats[0] *= s;
- m_floats[1] *= s;
- m_floats[2] *= s;
- m_floats[3] *= s;
+ m_floats[0] *= s;
+ m_floats[1] *= s;
+ m_floats[2] *= s;
+ m_floats[3] *= s;
#endif
return *this;
}
- /**@brief Multiply this quaternion by q on the right
+ /**@brief Multiply this quaternion by q on the right
* @param q The other quaternion
* Equivilant to this = this * q */
btQuaternion& operator*=(const btQuaternion& q)
{
-#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
__m128 vQ2 = q.get128();
-
- __m128 A1 = bt_pshufd_ps(mVec128, BT_SHUFFLE(0,1,2,0));
- __m128 B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(3,3,3,0));
-
+
+ __m128 A1 = bt_pshufd_ps(mVec128, BT_SHUFFLE(0, 1, 2, 0));
+ __m128 B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(3, 3, 3, 0));
+
A1 = A1 * B1;
-
- __m128 A2 = bt_pshufd_ps(mVec128, BT_SHUFFLE(1,2,0,1));
- __m128 B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2,0,1,1));
-
+
+ __m128 A2 = bt_pshufd_ps(mVec128, BT_SHUFFLE(1, 2, 0, 1));
+ __m128 B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2, 0, 1, 1));
+
A2 = A2 * B2;
-
- B1 = bt_pshufd_ps(mVec128, BT_SHUFFLE(2,0,1,2));
- B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1,2,0,2));
-
- B1 = B1 * B2; // A3 *= B3
-
- mVec128 = bt_splat_ps(mVec128, 3); // A0
- mVec128 = mVec128 * vQ2; // A0 * B0
-
- A1 = A1 + A2; // AB12
- mVec128 = mVec128 - B1; // AB03 = AB0 - AB3
- A1 = _mm_xor_ps(A1, vPPPM); // change sign of the last element
- mVec128 = mVec128+ A1; // AB03 + AB12
-
-#elif defined(BT_USE_NEON)
-
- float32x4_t vQ1 = mVec128;
- float32x4_t vQ2 = q.get128();
- float32x4_t A0, A1, B1, A2, B2, A3, B3;
- float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz;
-
- {
- float32x2x2_t tmp;
- tmp = vtrn_f32( vget_high_f32(vQ1), vget_low_f32(vQ1) ); // {z x}, {w y}
- vQ1zx = tmp.val[0];
-
- tmp = vtrn_f32( vget_high_f32(vQ2), vget_low_f32(vQ2) ); // {z x}, {w y}
- vQ2zx = tmp.val[0];
- }
- vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1);
-
- vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);
-
- vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
- vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);
-
- A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx); // X Y z x
- B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx); // W W W X
-
- A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1));
- B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));
-
- A3 = vcombine_f32(vQ1zx, vQ1yz); // Z X Y Z
- B3 = vcombine_f32(vQ2yz, vQ2xz); // Y Z x z
-
- A1 = vmulq_f32(A1, B1);
- A2 = vmulq_f32(A2, B2);
- A3 = vmulq_f32(A3, B3); // A3 *= B3
- A0 = vmulq_lane_f32(vQ2, vget_high_f32(vQ1), 1); // A0 * B0
-
- A1 = vaddq_f32(A1, A2); // AB12 = AB1 + AB2
- A0 = vsubq_f32(A0, A3); // AB03 = AB0 - AB3
-
- // change the sign of the last element
- A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM);
- A0 = vaddq_f32(A0, A1); // AB03 + AB12
-
- mVec128 = A0;
+
+ B1 = bt_pshufd_ps(mVec128, BT_SHUFFLE(2, 0, 1, 2));
+ B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1, 2, 0, 2));
+
+ B1 = B1 * B2; // A3 *= B3
+
+ mVec128 = bt_splat_ps(mVec128, 3); // A0
+ mVec128 = mVec128 * vQ2; // A0 * B0
+
+ A1 = A1 + A2; // AB12
+ mVec128 = mVec128 - B1; // AB03 = AB0 - AB3
+ A1 = _mm_xor_ps(A1, vPPPM); // change sign of the last element
+ mVec128 = mVec128 + A1; // AB03 + AB12
+
+#elif defined(BT_USE_NEON)
+
+ float32x4_t vQ1 = mVec128;
+ float32x4_t vQ2 = q.get128();
+ float32x4_t A0, A1, B1, A2, B2, A3, B3;
+ float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz;
+
+ {
+ float32x2x2_t tmp;
+ tmp = vtrn_f32(vget_high_f32(vQ1), vget_low_f32(vQ1)); // {z x}, {w y}
+ vQ1zx = tmp.val[0];
+
+ tmp = vtrn_f32(vget_high_f32(vQ2), vget_low_f32(vQ2)); // {z x}, {w y}
+ vQ2zx = tmp.val[0];
+ }
+ vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1);
+
+ vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);
+
+ vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
+ vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);
+
+ A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx); // X Y z x
+ B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx); // W W W X
+
+ A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1));
+ B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));
+
+ A3 = vcombine_f32(vQ1zx, vQ1yz); // Z X Y Z
+ B3 = vcombine_f32(vQ2yz, vQ2xz); // Y Z x z
+
+ A1 = vmulq_f32(A1, B1);
+ A2 = vmulq_f32(A2, B2);
+ A3 = vmulq_f32(A3, B3); // A3 *= B3
+ A0 = vmulq_lane_f32(vQ2, vget_high_f32(vQ1), 1); // A0 * B0
+
+ A1 = vaddq_f32(A1, A2); // AB12 = AB1 + AB2
+ A0 = vsubq_f32(A0, A3); // AB03 = AB0 - AB3
+
+ // change the sign of the last element
+ A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM);
+ A0 = vaddq_f32(A0, A1); // AB03 + AB12
+
+ mVec128 = A0;
#else
setValue(
- m_floats[3] * q.x() + m_floats[0] * q.m_floats[3] + m_floats[1] * q.z() - m_floats[2] * q.y(),
+ m_floats[3] * q.x() + m_floats[0] * q.m_floats[3] + m_floats[1] * q.z() - m_floats[2] * q.y(),
m_floats[3] * q.y() + m_floats[1] * q.m_floats[3] + m_floats[2] * q.x() - m_floats[0] * q.z(),
m_floats[3] * q.z() + m_floats[2] * q.m_floats[3] + m_floats[0] * q.y() - m_floats[1] * q.x(),
m_floats[3] * q.m_floats[3] - m_floats[0] * q.x() - m_floats[1] * q.y() - m_floats[2] * q.z());
#endif
return *this;
}
- /**@brief Return the dot product between this quaternion and another
+ /**@brief Return the dot product between this quaternion and another
* @param q The other quaternion */
btScalar dot(const btQuaternion& q) const
{
-#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
- __m128 vd;
-
+#if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
+ __m128 vd;
+
vd = _mm_mul_ps(mVec128, q.mVec128);
-
- __m128 t = _mm_movehl_ps(vd, vd);
+
+ __m128 t = _mm_movehl_ps(vd, vd);
vd = _mm_add_ps(vd, t);
t = _mm_shuffle_ps(vd, vd, 0x55);
vd = _mm_add_ss(vd, t);
-
- return _mm_cvtss_f32(vd);
+
+ return _mm_cvtss_f32(vd);
#elif defined(BT_USE_NEON)
float32x4_t vd = vmulq_f32(mVec128, q.mVec128);
- float32x2_t x = vpadd_f32(vget_low_f32(vd), vget_high_f32(vd));
+ float32x2_t x = vpadd_f32(vget_low_f32(vd), vget_high_f32(vd));
x = vpadd_f32(x, x);
return vget_lane_f32(x, 0);
-#else
- return m_floats[0] * q.x() +
- m_floats[1] * q.y() +
- m_floats[2] * q.z() +
- m_floats[3] * q.m_floats[3];
+#else
+ return m_floats[0] * q.x() +
+ m_floats[1] * q.y() +
+ m_floats[2] * q.z() +
+ m_floats[3] * q.m_floats[3];
#endif
}
- /**@brief Return the length squared of the quaternion */
+ /**@brief Return the length squared of the quaternion */
btScalar length2() const
{
return dot(*this);
}
- /**@brief Return the length of the quaternion */
+ /**@brief Return the length of the quaternion */
btScalar length() const
{
return btSqrt(length2());
@@ -376,46 +374,46 @@ public:
btQuaternion& safeNormalize()
{
btScalar l2 = length2();
- if (l2>SIMD_EPSILON)
+ if (l2 > SIMD_EPSILON)
{
normalize();
}
return *this;
}
- /**@brief Normalize the quaternion
+ /**@brief Normalize the quaternion
* Such that x^2 + y^2 + z^2 +w^2 = 1 */
- btQuaternion& normalize()
+ btQuaternion& normalize()
{
-#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
- __m128 vd;
-
+#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
+ __m128 vd;
+
vd = _mm_mul_ps(mVec128, mVec128);
-
- __m128 t = _mm_movehl_ps(vd, vd);
+
+ __m128 t = _mm_movehl_ps(vd, vd);
vd = _mm_add_ps(vd, t);
t = _mm_shuffle_ps(vd, vd, 0x55);
vd = _mm_add_ss(vd, t);
vd = _mm_sqrt_ss(vd);
vd = _mm_div_ss(vOnes, vd);
- vd = bt_pshufd_ps(vd, 0); // splat
+ vd = bt_pshufd_ps(vd, 0); // splat
mVec128 = _mm_mul_ps(mVec128, vd);
-
+
return *this;
-#else
+#else
return *this /= length();
#endif
}
- /**@brief Return a scaled version of this quaternion
+ /**@brief Return a scaled version of this quaternion
* @param s The scale factor */
SIMD_FORCE_INLINE btQuaternion
operator*(const btScalar& s) const
{
-#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
- __m128 vs = _mm_load_ss(&s); // (S 0 0 0)
- vs = bt_pshufd_ps(vs, 0x00); // (S S S S)
-
+#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
+ __m128 vs = _mm_load_ss(&s); // (S 0 0 0)
+ vs = bt_pshufd_ps(vs, 0x00); // (S S S S)
+
return btQuaternion(_mm_mul_ps(mVec128, vs));
#elif defined(BT_USE_NEON)
return btQuaternion(vmulq_n_f32(mVec128, s));
@@ -424,7 +422,7 @@ public:
#endif
}
- /**@brief Return an inversely scaled versionof this quaternion
+ /**@brief Return an inversely scaled versionof this quaternion
* @param s The inverse scale factor */
btQuaternion operator/(const btScalar& s) const
{
@@ -432,49 +430,49 @@ public:
return *this * (btScalar(1.0) / s);
}
- /**@brief Inversely scale this quaternion
+ /**@brief Inversely scale this quaternion
* @param s The scale factor */
- btQuaternion& operator/=(const btScalar& s)
+ btQuaternion& operator/=(const btScalar& s)
{
btAssert(s != btScalar(0.0));
return *this *= btScalar(1.0) / s;
}
- /**@brief Return a normalized version of this quaternion */
- btQuaternion normalized() const
+ /**@brief Return a normalized version of this quaternion */
+ btQuaternion normalized() const
{
return *this / length();
- }
+ }
/**@brief Return the ***half*** angle between this quaternion and the other
* @param q The other quaternion */
- btScalar angle(const btQuaternion& q) const
+ btScalar angle(const btQuaternion& q) const
{
btScalar s = btSqrt(length2() * q.length2());
btAssert(s != btScalar(0.0));
return btAcos(dot(q) / s);
}
-
+
/**@brief Return the angle between this quaternion and the other along the shortest path
* @param q The other quaternion */
- btScalar angleShortestPath(const btQuaternion& q) const
+ btScalar angleShortestPath(const btQuaternion& q) const
{
btScalar s = btSqrt(length2() * q.length2());
btAssert(s != btScalar(0.0));
- if (dot(q) < 0) // Take care of long angle case see http://en.wikipedia.org/wiki/Slerp
+ if (dot(q) < 0) // Take care of long angle case see http://en.wikipedia.org/wiki/Slerp
return btAcos(dot(-q) / s) * btScalar(2.0);
- else
+ else
return btAcos(dot(q) / s) * btScalar(2.0);
}
/**@brief Return the angle [0, 2Pi] of rotation represented by this quaternion */
- btScalar getAngle() const
+ btScalar getAngle() const
{
btScalar s = btScalar(2.) * btAcos(m_floats[3]);
return s;
}
/**@brief Return the angle [0, Pi] of rotation represented by this quaternion along the shortest path */
- btScalar getAngleShortestPath() const
+ btScalar getAngleShortestPath() const
{
btScalar s;
if (m_floats[3] >= 0)
@@ -484,120 +482,117 @@ public:
return s;
}
-
/**@brief Return the axis of the rotation represented by this quaternion */
btVector3 getAxis() const
{
- btScalar s_squared = 1.f-m_floats[3]*m_floats[3];
-
- if (s_squared < btScalar(10.) * SIMD_EPSILON) //Check for divide by zero
- return btVector3(1.0, 0.0, 0.0); // Arbitrary
- btScalar s = 1.f/btSqrt(s_squared);
+ btScalar s_squared = 1.f - m_floats[3] * m_floats[3];
+
+ if (s_squared < btScalar(10.) * SIMD_EPSILON) //Check for divide by zero
+ return btVector3(1.0, 0.0, 0.0); // Arbitrary
+ btScalar s = 1.f / btSqrt(s_squared);
return btVector3(m_floats[0] * s, m_floats[1] * s, m_floats[2] * s);
}
/**@brief Return the inverse of this quaternion */
btQuaternion inverse() const
{
-#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
return btQuaternion(_mm_xor_ps(mVec128, vQInv));
#elif defined(BT_USE_NEON)
- return btQuaternion((btSimdFloat4)veorq_s32((int32x4_t)mVec128, (int32x4_t)vQInv));
-#else
+ return btQuaternion((btSimdFloat4)veorq_s32((int32x4_t)mVec128, (int32x4_t)vQInv));
+#else
return btQuaternion(-m_floats[0], -m_floats[1], -m_floats[2], m_floats[3]);
#endif
}
- /**@brief Return the sum of this quaternion and the other
+ /**@brief Return the sum of this quaternion and the other
* @param q2 The other quaternion */
SIMD_FORCE_INLINE btQuaternion
operator+(const btQuaternion& q2) const
{
-#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
return btQuaternion(_mm_add_ps(mVec128, q2.mVec128));
#elif defined(BT_USE_NEON)
- return btQuaternion(vaddq_f32(mVec128, q2.mVec128));
-#else
+ return btQuaternion(vaddq_f32(mVec128, q2.mVec128));
+#else
const btQuaternion& q1 = *this;
return btQuaternion(q1.x() + q2.x(), q1.y() + q2.y(), q1.z() + q2.z(), q1.m_floats[3] + q2.m_floats[3]);
#endif
}
- /**@brief Return the difference between this quaternion and the other
+ /**@brief Return the difference between this quaternion and the other
* @param q2 The other quaternion */
SIMD_FORCE_INLINE btQuaternion
operator-(const btQuaternion& q2) const
{
-#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
return btQuaternion(_mm_sub_ps(mVec128, q2.mVec128));
#elif defined(BT_USE_NEON)
- return btQuaternion(vsubq_f32(mVec128, q2.mVec128));
-#else
+ return btQuaternion(vsubq_f32(mVec128, q2.mVec128));
+#else
const btQuaternion& q1 = *this;
return btQuaternion(q1.x() - q2.x(), q1.y() - q2.y(), q1.z() - q2.z(), q1.m_floats[3] - q2.m_floats[3]);
#endif
}
- /**@brief Return the negative of this quaternion
+ /**@brief Return the negative of this quaternion
* This simply negates each element */
SIMD_FORCE_INLINE btQuaternion operator-() const
{
-#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
return btQuaternion(_mm_xor_ps(mVec128, btvMzeroMask));
#elif defined(BT_USE_NEON)
- return btQuaternion((btSimdFloat4)veorq_s32((int32x4_t)mVec128, (int32x4_t)btvMzeroMask) );
-#else
+ return btQuaternion((btSimdFloat4)veorq_s32((int32x4_t)mVec128, (int32x4_t)btvMzeroMask));
+#else
const btQuaternion& q2 = *this;
- return btQuaternion( - q2.x(), - q2.y(), - q2.z(), - q2.m_floats[3]);
+ return btQuaternion(-q2.x(), -q2.y(), -q2.z(), -q2.m_floats[3]);
#endif
}
- /**@todo document this and it's use */
- SIMD_FORCE_INLINE btQuaternion farthest( const btQuaternion& qd) const
+ /**@todo document this and it's use */
+ SIMD_FORCE_INLINE btQuaternion farthest(const btQuaternion& qd) const
{
- btQuaternion diff,sum;
+ btQuaternion diff, sum;
diff = *this - qd;
sum = *this + qd;
- if( diff.dot(diff) > sum.dot(sum) )
+ if (diff.dot(diff) > sum.dot(sum))
return qd;
return (-qd);
}
/**@todo document this and it's use */
- SIMD_FORCE_INLINE btQuaternion nearest( const btQuaternion& qd) const
+ SIMD_FORCE_INLINE btQuaternion nearest(const btQuaternion& qd) const
{
- btQuaternion diff,sum;
+ btQuaternion diff, sum;
diff = *this - qd;
sum = *this + qd;
- if( diff.dot(diff) < sum.dot(sum) )
+ if (diff.dot(diff) < sum.dot(sum))
return qd;
return (-qd);
}
-
- /**@brief Return the quaternion which is the result of Spherical Linear Interpolation between this and the other quaternion
+ /**@brief Return the quaternion which is the result of Spherical Linear Interpolation between this and the other quaternion
* @param q The other quaternion to interpolate with
* @param t The ratio between this and q to interpolate. If t = 0 the result is this, if t=1 the result is q.
* Slerp interpolates assuming constant velocity. */
btQuaternion slerp(const btQuaternion& q, const btScalar& t) const
{
-
const btScalar magnitude = btSqrt(length2() * q.length2());
btAssert(magnitude > btScalar(0));
-
+
const btScalar product = dot(q) / magnitude;
const btScalar absproduct = btFabs(product);
-
- if(absproduct < btScalar(1.0 - SIMD_EPSILON))
+
+ if (absproduct < btScalar(1.0 - SIMD_EPSILON))
{
// Take care of long angle case see http://en.wikipedia.org/wiki/Slerp
const btScalar theta = btAcos(absproduct);
const btScalar d = btSin(theta);
btAssert(d > btScalar(0));
-
+
const btScalar sign = (product < 0) ? btScalar(-1) : btScalar(1);
const btScalar s0 = btSin((btScalar(1.0) - t) * theta) / d;
const btScalar s1 = btSin(sign * t * theta) / d;
-
+
return btQuaternion(
(m_floats[0] * s0 + q.x() * s1),
(m_floats[1] * s0 + q.y() * s1),
@@ -610,314 +605,308 @@ public:
}
}
- static const btQuaternion& getIdentity()
+ static const btQuaternion& getIdentity()
{
- static const btQuaternion identityQuat(btScalar(0.),btScalar(0.),btScalar(0.),btScalar(1.));
+ static const btQuaternion identityQuat(btScalar(0.), btScalar(0.), btScalar(0.), btScalar(1.));
return identityQuat;
}
SIMD_FORCE_INLINE const btScalar& getW() const { return m_floats[3]; }
- SIMD_FORCE_INLINE void serialize(struct btQuaternionData& dataOut) const;
-
- SIMD_FORCE_INLINE void deSerialize(const struct btQuaternionFloatData& dataIn);
+ SIMD_FORCE_INLINE void serialize(struct btQuaternionData& dataOut) const;
- SIMD_FORCE_INLINE void deSerialize(const struct btQuaternionDoubleData& dataIn);
+ SIMD_FORCE_INLINE void deSerialize(const struct btQuaternionFloatData& dataIn);
- SIMD_FORCE_INLINE void serializeFloat(struct btQuaternionFloatData& dataOut) const;
+ SIMD_FORCE_INLINE void deSerialize(const struct btQuaternionDoubleData& dataIn);
- SIMD_FORCE_INLINE void deSerializeFloat(const struct btQuaternionFloatData& dataIn);
+ SIMD_FORCE_INLINE void serializeFloat(struct btQuaternionFloatData& dataOut) const;
- SIMD_FORCE_INLINE void serializeDouble(struct btQuaternionDoubleData& dataOut) const;
+ SIMD_FORCE_INLINE void deSerializeFloat(const struct btQuaternionFloatData& dataIn);
- SIMD_FORCE_INLINE void deSerializeDouble(const struct btQuaternionDoubleData& dataIn);
+ SIMD_FORCE_INLINE void serializeDouble(struct btQuaternionDoubleData& dataOut) const;
+ SIMD_FORCE_INLINE void deSerializeDouble(const struct btQuaternionDoubleData& dataIn);
};
-
-
-
-
/**@brief Return the product of two quaternions */
SIMD_FORCE_INLINE btQuaternion
-operator*(const btQuaternion& q1, const btQuaternion& q2)
+operator*(const btQuaternion& q1, const btQuaternion& q2)
{
-#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
__m128 vQ1 = q1.get128();
__m128 vQ2 = q2.get128();
__m128 A0, A1, B1, A2, B2;
-
- A1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(0,1,2,0)); // X Y z x // vtrn
- B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(3,3,3,0)); // W W W X // vdup vext
+
+ A1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(0, 1, 2, 0)); // X Y z x // vtrn
+ B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(3, 3, 3, 0)); // W W W X // vdup vext
A1 = A1 * B1;
-
- A2 = bt_pshufd_ps(vQ1, BT_SHUFFLE(1,2,0,1)); // Y Z X Y // vext
- B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2,0,1,1)); // z x Y Y // vtrn vdup
+
+ A2 = bt_pshufd_ps(vQ1, BT_SHUFFLE(1, 2, 0, 1)); // Y Z X Y // vext
+ B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2, 0, 1, 1)); // z x Y Y // vtrn vdup
A2 = A2 * B2;
- B1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(2,0,1,2)); // z x Y Z // vtrn vext
- B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1,2,0,2)); // Y Z x z // vext vtrn
-
- B1 = B1 * B2; // A3 *= B3
+ B1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(2, 0, 1, 2)); // z x Y Z // vtrn vext
+ B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1, 2, 0, 2)); // Y Z x z // vext vtrn
+
+ B1 = B1 * B2; // A3 *= B3
- A0 = bt_splat_ps(vQ1, 3); // A0
- A0 = A0 * vQ2; // A0 * B0
+ A0 = bt_splat_ps(vQ1, 3); // A0
+ A0 = A0 * vQ2; // A0 * B0
+
+ A1 = A1 + A2; // AB12
+ A0 = A0 - B1; // AB03 = AB0 - AB3
+
+ A1 = _mm_xor_ps(A1, vPPPM); // change sign of the last element
+ A0 = A0 + A1; // AB03 + AB12
- A1 = A1 + A2; // AB12
- A0 = A0 - B1; // AB03 = AB0 - AB3
-
- A1 = _mm_xor_ps(A1, vPPPM); // change sign of the last element
- A0 = A0 + A1; // AB03 + AB12
-
return btQuaternion(A0);
-#elif defined(BT_USE_NEON)
+#elif defined(BT_USE_NEON)
float32x4_t vQ1 = q1.get128();
float32x4_t vQ2 = q2.get128();
float32x4_t A0, A1, B1, A2, B2, A3, B3;
- float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz;
-
- {
- float32x2x2_t tmp;
- tmp = vtrn_f32( vget_high_f32(vQ1), vget_low_f32(vQ1) ); // {z x}, {w y}
- vQ1zx = tmp.val[0];
+ float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz;
+
+ {
+ float32x2x2_t tmp;
+ tmp = vtrn_f32(vget_high_f32(vQ1), vget_low_f32(vQ1)); // {z x}, {w y}
+ vQ1zx = tmp.val[0];
- tmp = vtrn_f32( vget_high_f32(vQ2), vget_low_f32(vQ2) ); // {z x}, {w y}
- vQ2zx = tmp.val[0];
- }
- vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1);
+ tmp = vtrn_f32(vget_high_f32(vQ2), vget_low_f32(vQ2)); // {z x}, {w y}
+ vQ2zx = tmp.val[0];
+ }
+ vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1);
- vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);
+ vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);
- vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
- vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);
+ vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
+ vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);
- A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx); // X Y z x
- B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx); // W W W X
+ A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx); // X Y z x
+ B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx); // W W W X
A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1));
- B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));
+ B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));
- A3 = vcombine_f32(vQ1zx, vQ1yz); // Z X Y Z
- B3 = vcombine_f32(vQ2yz, vQ2xz); // Y Z x z
+ A3 = vcombine_f32(vQ1zx, vQ1yz); // Z X Y Z
+ B3 = vcombine_f32(vQ2yz, vQ2xz); // Y Z x z
A1 = vmulq_f32(A1, B1);
A2 = vmulq_f32(A2, B2);
- A3 = vmulq_f32(A3, B3); // A3 *= B3
- A0 = vmulq_lane_f32(vQ2, vget_high_f32(vQ1), 1); // A0 * B0
-
- A1 = vaddq_f32(A1, A2); // AB12 = AB1 + AB2
- A0 = vsubq_f32(A0, A3); // AB03 = AB0 - AB3
-
- // change the sign of the last element
- A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM);
- A0 = vaddq_f32(A0, A1); // AB03 + AB12
-
+ A3 = vmulq_f32(A3, B3); // A3 *= B3
+ A0 = vmulq_lane_f32(vQ2, vget_high_f32(vQ1), 1); // A0 * B0
+
+ A1 = vaddq_f32(A1, A2); // AB12 = AB1 + AB2
+ A0 = vsubq_f32(A0, A3); // AB03 = AB0 - AB3
+
+ // change the sign of the last element
+ A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM);
+ A0 = vaddq_f32(A0, A1); // AB03 + AB12
+
return btQuaternion(A0);
#else
return btQuaternion(
- q1.w() * q2.x() + q1.x() * q2.w() + q1.y() * q2.z() - q1.z() * q2.y(),
+ q1.w() * q2.x() + q1.x() * q2.w() + q1.y() * q2.z() - q1.z() * q2.y(),
q1.w() * q2.y() + q1.y() * q2.w() + q1.z() * q2.x() - q1.x() * q2.z(),
q1.w() * q2.z() + q1.z() * q2.w() + q1.x() * q2.y() - q1.y() * q2.x(),
- q1.w() * q2.w() - q1.x() * q2.x() - q1.y() * q2.y() - q1.z() * q2.z());
+ q1.w() * q2.w() - q1.x() * q2.x() - q1.y() * q2.y() - q1.z() * q2.z());
#endif
}
SIMD_FORCE_INLINE btQuaternion
operator*(const btQuaternion& q, const btVector3& w)
{
-#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
__m128 vQ1 = q.get128();
__m128 vQ2 = w.get128();
__m128 A1, B1, A2, B2, A3, B3;
-
- A1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(3,3,3,0));
- B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(0,1,2,0));
+
+ A1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(3, 3, 3, 0));
+ B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(0, 1, 2, 0));
A1 = A1 * B1;
-
- A2 = bt_pshufd_ps(vQ1, BT_SHUFFLE(1,2,0,1));
- B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2,0,1,1));
+
+ A2 = bt_pshufd_ps(vQ1, BT_SHUFFLE(1, 2, 0, 1));
+ B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2, 0, 1, 1));
A2 = A2 * B2;
- A3 = bt_pshufd_ps(vQ1, BT_SHUFFLE(2,0,1,2));
- B3 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1,2,0,2));
-
- A3 = A3 * B3; // A3 *= B3
+ A3 = bt_pshufd_ps(vQ1, BT_SHUFFLE(2, 0, 1, 2));
+ B3 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1, 2, 0, 2));
+
+ A3 = A3 * B3; // A3 *= B3
+
+ A1 = A1 + A2; // AB12
+ A1 = _mm_xor_ps(A1, vPPPM); // change sign of the last element
+ A1 = A1 - A3; // AB123 = AB12 - AB3
- A1 = A1 + A2; // AB12
- A1 = _mm_xor_ps(A1, vPPPM); // change sign of the last element
- A1 = A1 - A3; // AB123 = AB12 - AB3
-
return btQuaternion(A1);
-
-#elif defined(BT_USE_NEON)
+
+#elif defined(BT_USE_NEON)
float32x4_t vQ1 = q.get128();
float32x4_t vQ2 = w.get128();
float32x4_t A1, B1, A2, B2, A3, B3;
- float32x2_t vQ1wx, vQ2zx, vQ1yz, vQ2yz, vQ1zx, vQ2xz;
-
- vQ1wx = vext_f32(vget_high_f32(vQ1), vget_low_f32(vQ1), 1);
- {
- float32x2x2_t tmp;
+ float32x2_t vQ1wx, vQ2zx, vQ1yz, vQ2yz, vQ1zx, vQ2xz;
- tmp = vtrn_f32( vget_high_f32(vQ2), vget_low_f32(vQ2) ); // {z x}, {w y}
- vQ2zx = tmp.val[0];
+ vQ1wx = vext_f32(vget_high_f32(vQ1), vget_low_f32(vQ1), 1);
+ {
+ float32x2x2_t tmp;
- tmp = vtrn_f32( vget_high_f32(vQ1), vget_low_f32(vQ1) ); // {z x}, {w y}
- vQ1zx = tmp.val[0];
- }
+ tmp = vtrn_f32(vget_high_f32(vQ2), vget_low_f32(vQ2)); // {z x}, {w y}
+ vQ2zx = tmp.val[0];
- vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);
+ tmp = vtrn_f32(vget_high_f32(vQ1), vget_low_f32(vQ1)); // {z x}, {w y}
+ vQ1zx = tmp.val[0];
+ }
- vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
- vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);
+ vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);
- A1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ1), 1), vQ1wx); // W W W X
- B1 = vcombine_f32(vget_low_f32(vQ2), vQ2zx); // X Y z x
+ vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
+ vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);
+
+ A1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ1), 1), vQ1wx); // W W W X
+ B1 = vcombine_f32(vget_low_f32(vQ2), vQ2zx); // X Y z x
A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1));
- B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));
+ B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));
- A3 = vcombine_f32(vQ1zx, vQ1yz); // Z X Y Z
- B3 = vcombine_f32(vQ2yz, vQ2xz); // Y Z x z
+ A3 = vcombine_f32(vQ1zx, vQ1yz); // Z X Y Z
+ B3 = vcombine_f32(vQ2yz, vQ2xz); // Y Z x z
A1 = vmulq_f32(A1, B1);
A2 = vmulq_f32(A2, B2);
- A3 = vmulq_f32(A3, B3); // A3 *= B3
-
- A1 = vaddq_f32(A1, A2); // AB12 = AB1 + AB2
-
- // change the sign of the last element
- A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM);
-
- A1 = vsubq_f32(A1, A3); // AB123 = AB12 - AB3
-
+ A3 = vmulq_f32(A3, B3); // A3 *= B3
+
+ A1 = vaddq_f32(A1, A2); // AB12 = AB1 + AB2
+
+ // change the sign of the last element
+ A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM);
+
+ A1 = vsubq_f32(A1, A3); // AB123 = AB12 - AB3
+
return btQuaternion(A1);
-
+
#else
- return btQuaternion(
- q.w() * w.x() + q.y() * w.z() - q.z() * w.y(),
- q.w() * w.y() + q.z() * w.x() - q.x() * w.z(),
- q.w() * w.z() + q.x() * w.y() - q.y() * w.x(),
- -q.x() * w.x() - q.y() * w.y() - q.z() * w.z());
+ return btQuaternion(
+ q.w() * w.x() + q.y() * w.z() - q.z() * w.y(),
+ q.w() * w.y() + q.z() * w.x() - q.x() * w.z(),
+ q.w() * w.z() + q.x() * w.y() - q.y() * w.x(),
+ -q.x() * w.x() - q.y() * w.y() - q.z() * w.z());
#endif
}
SIMD_FORCE_INLINE btQuaternion
operator*(const btVector3& w, const btQuaternion& q)
{
-#if defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
__m128 vQ1 = w.get128();
__m128 vQ2 = q.get128();
__m128 A1, B1, A2, B2, A3, B3;
-
- A1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(0,1,2,0)); // X Y z x
- B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(3,3,3,0)); // W W W X
+
+ A1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(0, 1, 2, 0)); // X Y z x
+ B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(3, 3, 3, 0)); // W W W X
A1 = A1 * B1;
-
- A2 = bt_pshufd_ps(vQ1, BT_SHUFFLE(1,2,0,1));
- B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2,0,1,1));
- A2 = A2 *B2;
+ A2 = bt_pshufd_ps(vQ1, BT_SHUFFLE(1, 2, 0, 1));
+ B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2, 0, 1, 1));
- A3 = bt_pshufd_ps(vQ1, BT_SHUFFLE(2,0,1,2));
- B3 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1,2,0,2));
-
- A3 = A3 * B3; // A3 *= B3
+ A2 = A2 * B2;
+
+ A3 = bt_pshufd_ps(vQ1, BT_SHUFFLE(2, 0, 1, 2));
+ B3 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1, 2, 0, 2));
+
+ A3 = A3 * B3; // A3 *= B3
+
+ A1 = A1 + A2; // AB12
+ A1 = _mm_xor_ps(A1, vPPPM); // change sign of the last element
+ A1 = A1 - A3; // AB123 = AB12 - AB3
- A1 = A1 + A2; // AB12
- A1 = _mm_xor_ps(A1, vPPPM); // change sign of the last element
- A1 = A1 - A3; // AB123 = AB12 - AB3
-
return btQuaternion(A1);
-#elif defined(BT_USE_NEON)
+#elif defined(BT_USE_NEON)
float32x4_t vQ1 = w.get128();
float32x4_t vQ2 = q.get128();
- float32x4_t A1, B1, A2, B2, A3, B3;
- float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz;
-
- {
- float32x2x2_t tmp;
-
- tmp = vtrn_f32( vget_high_f32(vQ1), vget_low_f32(vQ1) ); // {z x}, {w y}
- vQ1zx = tmp.val[0];
+ float32x4_t A1, B1, A2, B2, A3, B3;
+ float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz;
+
+ {
+ float32x2x2_t tmp;
- tmp = vtrn_f32( vget_high_f32(vQ2), vget_low_f32(vQ2) ); // {z x}, {w y}
- vQ2zx = tmp.val[0];
- }
- vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1);
+ tmp = vtrn_f32(vget_high_f32(vQ1), vget_low_f32(vQ1)); // {z x}, {w y}
+ vQ1zx = tmp.val[0];
- vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);
+ tmp = vtrn_f32(vget_high_f32(vQ2), vget_low_f32(vQ2)); // {z x}, {w y}
+ vQ2zx = tmp.val[0];
+ }
+ vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1);
- vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
- vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);
+ vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1);
- A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx); // X Y z x
- B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx); // W W W X
+ vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1);
+ vQ2xz = vext_f32(vQ2zx, vQ2zx, 1);
+
+ A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx); // X Y z x
+ B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx); // W W W X
A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1));
- B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));
+ B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1));
- A3 = vcombine_f32(vQ1zx, vQ1yz); // Z X Y Z
- B3 = vcombine_f32(vQ2yz, vQ2xz); // Y Z x z
+ A3 = vcombine_f32(vQ1zx, vQ1yz); // Z X Y Z
+ B3 = vcombine_f32(vQ2yz, vQ2xz); // Y Z x z
A1 = vmulq_f32(A1, B1);
A2 = vmulq_f32(A2, B2);
- A3 = vmulq_f32(A3, B3); // A3 *= B3
-
- A1 = vaddq_f32(A1, A2); // AB12 = AB1 + AB2
-
- // change the sign of the last element
- A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM);
-
- A1 = vsubq_f32(A1, A3); // AB123 = AB12 - AB3
-
+ A3 = vmulq_f32(A3, B3); // A3 *= B3
+
+ A1 = vaddq_f32(A1, A2); // AB12 = AB1 + AB2
+
+ // change the sign of the last element
+ A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM);
+
+ A1 = vsubq_f32(A1, A3); // AB123 = AB12 - AB3
+
return btQuaternion(A1);
-
+
#else
- return btQuaternion(
- +w.x() * q.w() + w.y() * q.z() - w.z() * q.y(),
+ return btQuaternion(
+ +w.x() * q.w() + w.y() * q.z() - w.z() * q.y(),
+w.y() * q.w() + w.z() * q.x() - w.x() * q.z(),
+w.z() * q.w() + w.x() * q.y() - w.y() * q.x(),
- -w.x() * q.x() - w.y() * q.y() - w.z() * q.z());
+ -w.x() * q.x() - w.y() * q.y() - w.z() * q.z());
#endif
}
/**@brief Calculate the dot product between two quaternions */
-SIMD_FORCE_INLINE btScalar
-dot(const btQuaternion& q1, const btQuaternion& q2)
-{
- return q1.dot(q2);
+SIMD_FORCE_INLINE btScalar
+dot(const btQuaternion& q1, const btQuaternion& q2)
+{
+ return q1.dot(q2);
}
-
/**@brief Return the length of a quaternion */
SIMD_FORCE_INLINE btScalar
-length(const btQuaternion& q)
-{
- return q.length();
+length(const btQuaternion& q)
+{
+ return q.length();
}
/**@brief Return the angle between two quaternions*/
SIMD_FORCE_INLINE btScalar
-btAngle(const btQuaternion& q1, const btQuaternion& q2)
-{
- return q1.angle(q2);
+btAngle(const btQuaternion& q1, const btQuaternion& q2)
+{
+ return q1.angle(q2);
}
/**@brief Return the inverse of a quaternion*/
SIMD_FORCE_INLINE btQuaternion
-inverse(const btQuaternion& q)
+inverse(const btQuaternion& q)
{
return q.inverse();
}
@@ -928,115 +917,105 @@ inverse(const btQuaternion& q)
* @param t The ration between q1 and q2. t = 0 return q1, t=1 returns q2
* Slerp assumes constant velocity between positions. */
SIMD_FORCE_INLINE btQuaternion
-slerp(const btQuaternion& q1, const btQuaternion& q2, const btScalar& t)
+slerp(const btQuaternion& q1, const btQuaternion& q2, const btScalar& t)
{
return q1.slerp(q2, t);
}
-SIMD_FORCE_INLINE btVector3
-quatRotate(const btQuaternion& rotation, const btVector3& v)
+SIMD_FORCE_INLINE btVector3
+quatRotate(const btQuaternion& rotation, const btVector3& v)
{
btQuaternion q = rotation * v;
q *= rotation.inverse();
-#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
+#if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
return btVector3(_mm_and_ps(q.get128(), btvFFF0fMask));
#elif defined(BT_USE_NEON)
- return btVector3((float32x4_t)vandq_s32((int32x4_t)q.get128(), btvFFF0Mask));
-#else
- return btVector3(q.getX(),q.getY(),q.getZ());
+ return btVector3((float32x4_t)vandq_s32((int32x4_t)q.get128(), btvFFF0Mask));
+#else
+ return btVector3(q.getX(), q.getY(), q.getZ());
#endif
}
-SIMD_FORCE_INLINE btQuaternion
-shortestArcQuat(const btVector3& v0, const btVector3& v1) // Game Programming Gems 2.10. make sure v0,v1 are normalized
+SIMD_FORCE_INLINE btQuaternion
+shortestArcQuat(const btVector3& v0, const btVector3& v1) // Game Programming Gems 2.10. make sure v0,v1 are normalized
{
btVector3 c = v0.cross(v1);
- btScalar d = v0.dot(v1);
+ btScalar d = v0.dot(v1);
if (d < -1.0 + SIMD_EPSILON)
{
- btVector3 n,unused;
- btPlaneSpace1(v0,n,unused);
- return btQuaternion(n.x(),n.y(),n.z(),0.0f); // just pick any vector that is orthogonal to v0
+ btVector3 n, unused;
+ btPlaneSpace1(v0, n, unused);
+ return btQuaternion(n.x(), n.y(), n.z(), 0.0f); // just pick any vector that is orthogonal to v0
}
- btScalar s = btSqrt((1.0f + d) * 2.0f);
+ btScalar s = btSqrt((1.0f + d) * 2.0f);
btScalar rs = 1.0f / s;
- return btQuaternion(c.getX()*rs,c.getY()*rs,c.getZ()*rs,s * 0.5f);
+ return btQuaternion(c.getX() * rs, c.getY() * rs, c.getZ() * rs, s * 0.5f);
}
-SIMD_FORCE_INLINE btQuaternion
-shortestArcQuatNormalize2(btVector3& v0,btVector3& v1)
+SIMD_FORCE_INLINE btQuaternion
+shortestArcQuatNormalize2(btVector3& v0, btVector3& v1)
{
v0.normalize();
v1.normalize();
- return shortestArcQuat(v0,v1);
+ return shortestArcQuat(v0, v1);
}
-
-
-
-struct btQuaternionFloatData
+struct btQuaternionFloatData
{
- float m_floats[4];
+ float m_floats[4];
};
-struct btQuaternionDoubleData
+struct btQuaternionDoubleData
{
- double m_floats[4];
-
+ double m_floats[4];
};
-SIMD_FORCE_INLINE void btQuaternion::serializeFloat(struct btQuaternionFloatData& dataOut) const
+SIMD_FORCE_INLINE void btQuaternion::serializeFloat(struct btQuaternionFloatData& dataOut) const
{
///could also do a memcpy, check if it is worth it
- for (int i=0;i<4;i++)
+ for (int i = 0; i < 4; i++)
dataOut.m_floats[i] = float(m_floats[i]);
}
-SIMD_FORCE_INLINE void btQuaternion::deSerializeFloat(const struct btQuaternionFloatData& dataIn)
+SIMD_FORCE_INLINE void btQuaternion::deSerializeFloat(const struct btQuaternionFloatData& dataIn)
{
- for (int i=0;i<4;i++)
+ for (int i = 0; i < 4; i++)
m_floats[i] = btScalar(dataIn.m_floats[i]);
}
-
-SIMD_FORCE_INLINE void btQuaternion::serializeDouble(struct btQuaternionDoubleData& dataOut) const
+SIMD_FORCE_INLINE void btQuaternion::serializeDouble(struct btQuaternionDoubleData& dataOut) const
{
///could also do a memcpy, check if it is worth it
- for (int i=0;i<4;i++)
+ for (int i = 0; i < 4; i++)
dataOut.m_floats[i] = double(m_floats[i]);
}
-SIMD_FORCE_INLINE void btQuaternion::deSerializeDouble(const struct btQuaternionDoubleData& dataIn)
+SIMD_FORCE_INLINE void btQuaternion::deSerializeDouble(const struct btQuaternionDoubleData& dataIn)
{
- for (int i=0;i<4;i++)
+ for (int i = 0; i < 4; i++)
m_floats[i] = btScalar(dataIn.m_floats[i]);
}
-
-SIMD_FORCE_INLINE void btQuaternion::serialize(struct btQuaternionData& dataOut) const
+SIMD_FORCE_INLINE void btQuaternion::serialize(struct btQuaternionData& dataOut) const
{
///could also do a memcpy, check if it is worth it
- for (int i=0;i<4;i++)
+ for (int i = 0; i < 4; i++)
dataOut.m_floats[i] = m_floats[i];
}
-SIMD_FORCE_INLINE void btQuaternion::deSerialize(const struct btQuaternionFloatData& dataIn)
+SIMD_FORCE_INLINE void btQuaternion::deSerialize(const struct btQuaternionFloatData& dataIn)
{
- for (int i = 0; i<4; i++)
+ for (int i = 0; i < 4; i++)
m_floats[i] = (btScalar)dataIn.m_floats[i];
}
-SIMD_FORCE_INLINE void btQuaternion::deSerialize(const struct btQuaternionDoubleData& dataIn)
+SIMD_FORCE_INLINE void btQuaternion::deSerialize(const struct btQuaternionDoubleData& dataIn)
{
- for (int i=0;i<4;i++)
+ for (int i = 0; i < 4; i++)
m_floats[i] = (btScalar)dataIn.m_floats[i];
}
-
-#endif //BT_SIMD__QUATERNION_H_
-
-
-
+#endif //BT_SIMD__QUATERNION_H_