diff options
Diffstat (limited to 'thirdparty/bullet/LinearMath/btQuaternion.h')
| -rw-r--r-- | thirdparty/bullet/LinearMath/btQuaternion.h | 1021 | 
1 files changed, 0 insertions, 1021 deletions
diff --git a/thirdparty/bullet/LinearMath/btQuaternion.h b/thirdparty/bullet/LinearMath/btQuaternion.h deleted file mode 100644 index 53e8169b80..0000000000 --- a/thirdparty/bullet/LinearMath/btQuaternion.h +++ /dev/null @@ -1,1021 +0,0 @@ -/* -Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans  http://continuousphysics.com/Bullet/ - -This software is provided 'as-is', without any express or implied warranty. -In no event will the authors be held liable for any damages arising from the use of this software. -Permission is granted to anyone to use this software for any purpose,  -including commercial applications, and to alter it and redistribute it freely,  -subject to the following restrictions: - -1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. -2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. -3. This notice may not be removed or altered from any source distribution. -*/ - -#ifndef BT_SIMD__QUATERNION_H_ -#define BT_SIMD__QUATERNION_H_ - -#include "btVector3.h" -#include "btQuadWord.h" - -#ifdef BT_USE_DOUBLE_PRECISION -#define btQuaternionData btQuaternionDoubleData -#define btQuaternionDataName "btQuaternionDoubleData" -#else -#define btQuaternionData btQuaternionFloatData -#define btQuaternionDataName "btQuaternionFloatData" -#endif  //BT_USE_DOUBLE_PRECISION - -#ifdef BT_USE_SSE - -//const __m128 ATTRIBUTE_ALIGNED16(vOnes) = {1.0f, 1.0f, 1.0f, 1.0f}; -#define vOnes (_mm_set_ps(1.0f, 1.0f, 1.0f, 1.0f)) - -#endif - -#if defined(BT_USE_SSE) - -#define vQInv (_mm_set_ps(+0.0f, -0.0f, -0.0f, -0.0f)) -#define vPPPM (_mm_set_ps(-0.0f, +0.0f, +0.0f, +0.0f)) - -#elif defined(BT_USE_NEON) - -const btSimdFloat4 ATTRIBUTE_ALIGNED16(vQInv) = {-0.0f, -0.0f, -0.0f, +0.0f}; -const btSimdFloat4 ATTRIBUTE_ALIGNED16(vPPPM) = {+0.0f, +0.0f, +0.0f, -0.0f}; - -#endif - -/**@brief The btQuaternion implements quaternion to perform linear algebra rotations in combination with btMatrix3x3, btVector3 and btTransform. */ -class btQuaternion : public btQuadWord -{ -public: -	/**@brief No initialization constructor */ -	btQuaternion() {} - -#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON) -	// Set Vector -	SIMD_FORCE_INLINE btQuaternion(const btSimdFloat4 vec) -	{ -		mVec128 = vec; -	} - -	// Copy constructor -	SIMD_FORCE_INLINE btQuaternion(const btQuaternion& rhs) -	{ -		mVec128 = rhs.mVec128; -	} - -	// Assignment Operator -	SIMD_FORCE_INLINE btQuaternion& -	operator=(const btQuaternion& v) -	{ -		mVec128 = v.mVec128; - -		return *this; -	} - -#endif - -	//		template <typename btScalar> -	//		explicit Quaternion(const btScalar *v) : Tuple4<btScalar>(v) {} -	/**@brief Constructor from scalars */ -	btQuaternion(const btScalar& _x, const btScalar& _y, const btScalar& _z, const btScalar& _w) -		: btQuadWord(_x, _y, _z, _w) -	{ -	} -	/**@brief Axis angle Constructor -   * @param axis The axis which the rotation is around -   * @param angle The magnitude of the rotation around the angle (Radians) */ -	btQuaternion(const btVector3& _axis, const btScalar& _angle) -	{ -		setRotation(_axis, _angle); -	} -	/**@brief Constructor from Euler angles -   * @param yaw Angle around Y unless BT_EULER_DEFAULT_ZYX defined then Z -   * @param pitch Angle around X unless BT_EULER_DEFAULT_ZYX defined then Y -   * @param roll Angle around Z unless BT_EULER_DEFAULT_ZYX defined then X */ -	btQuaternion(const btScalar& yaw, const btScalar& pitch, const btScalar& roll) -	{ -#ifndef BT_EULER_DEFAULT_ZYX -		setEuler(yaw, pitch, roll); -#else -		setEulerZYX(yaw, pitch, roll); -#endif -	} -	/**@brief Set the rotation using axis angle notation  -   * @param axis The axis around which to rotate -   * @param angle The magnitude of the rotation in Radians */ -	void setRotation(const btVector3& axis, const btScalar& _angle) -	{ -		btScalar d = axis.length(); -		btAssert(d != btScalar(0.0)); -		btScalar s = btSin(_angle * btScalar(0.5)) / d; -		setValue(axis.x() * s, axis.y() * s, axis.z() * s, -				 btCos(_angle * btScalar(0.5))); -	} -	/**@brief Set the quaternion using Euler angles -   * @param yaw Angle around Y -   * @param pitch Angle around X -   * @param roll Angle around Z */ -	void setEuler(const btScalar& yaw, const btScalar& pitch, const btScalar& roll) -	{ -		btScalar halfYaw = btScalar(yaw) * btScalar(0.5); -		btScalar halfPitch = btScalar(pitch) * btScalar(0.5); -		btScalar halfRoll = btScalar(roll) * btScalar(0.5); -		btScalar cosYaw = btCos(halfYaw); -		btScalar sinYaw = btSin(halfYaw); -		btScalar cosPitch = btCos(halfPitch); -		btScalar sinPitch = btSin(halfPitch); -		btScalar cosRoll = btCos(halfRoll); -		btScalar sinRoll = btSin(halfRoll); -		setValue(cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw, -				 cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw, -				 sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw, -				 cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw); -	} -	/**@brief Set the quaternion using euler angles  -   * @param yaw Angle around Z -   * @param pitch Angle around Y -   * @param roll Angle around X */ -	void setEulerZYX(const btScalar& yawZ, const btScalar& pitchY, const btScalar& rollX) -	{ -		btScalar halfYaw = btScalar(yawZ) * btScalar(0.5); -		btScalar halfPitch = btScalar(pitchY) * btScalar(0.5); -		btScalar halfRoll = btScalar(rollX) * btScalar(0.5); -		btScalar cosYaw = btCos(halfYaw); -		btScalar sinYaw = btSin(halfYaw); -		btScalar cosPitch = btCos(halfPitch); -		btScalar sinPitch = btSin(halfPitch); -		btScalar cosRoll = btCos(halfRoll); -		btScalar sinRoll = btSin(halfRoll); -		setValue(sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw,   //x -				 cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw,   //y -				 cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw,   //z -				 cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw);  //formerly yzx -	} - -	/**@brief Get the euler angles from this quaternion -	   * @param yaw Angle around Z -	   * @param pitch Angle around Y -	   * @param roll Angle around X */ -	void getEulerZYX(btScalar& yawZ, btScalar& pitchY, btScalar& rollX) const -	{ -		btScalar squ; -		btScalar sqx; -		btScalar sqy; -		btScalar sqz; -		btScalar sarg; -		sqx = m_floats[0] * m_floats[0]; -		sqy = m_floats[1] * m_floats[1]; -		sqz = m_floats[2] * m_floats[2]; -		squ = m_floats[3] * m_floats[3]; -		sarg = btScalar(-2.) * (m_floats[0] * m_floats[2] - m_floats[3] * m_floats[1]); - -		// If the pitch angle is PI/2 or -PI/2, we can only compute -		// the sum roll + yaw.  However, any combination that gives -		// the right sum will produce the correct orientation, so we -		// set rollX = 0 and compute yawZ. -		if (sarg <= -btScalar(0.99999)) -		{ -			pitchY = btScalar(-0.5) * SIMD_PI; -			rollX = 0; -			yawZ = btScalar(2) * btAtan2(m_floats[0], -m_floats[1]); -		} -		else if (sarg >= btScalar(0.99999)) -		{ -			pitchY = btScalar(0.5) * SIMD_PI; -			rollX = 0; -			yawZ = btScalar(2) * btAtan2(-m_floats[0], m_floats[1]); -		} -		else -		{ -			pitchY = btAsin(sarg); -			rollX = btAtan2(2 * (m_floats[1] * m_floats[2] + m_floats[3] * m_floats[0]), squ - sqx - sqy + sqz); -			yawZ = btAtan2(2 * (m_floats[0] * m_floats[1] + m_floats[3] * m_floats[2]), squ + sqx - sqy - sqz); -		} -	} - -	/**@brief Add two quaternions -   * @param q The quaternion to add to this one */ -	SIMD_FORCE_INLINE btQuaternion& operator+=(const btQuaternion& q) -	{ -#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) -		mVec128 = _mm_add_ps(mVec128, q.mVec128); -#elif defined(BT_USE_NEON) -		mVec128 = vaddq_f32(mVec128, q.mVec128); -#else -		m_floats[0] += q.x(); -		m_floats[1] += q.y(); -		m_floats[2] += q.z(); -		m_floats[3] += q.m_floats[3]; -#endif -		return *this; -	} - -	/**@brief Subtract out a quaternion -   * @param q The quaternion to subtract from this one */ -	btQuaternion& operator-=(const btQuaternion& q) -	{ -#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) -		mVec128 = _mm_sub_ps(mVec128, q.mVec128); -#elif defined(BT_USE_NEON) -		mVec128 = vsubq_f32(mVec128, q.mVec128); -#else -		m_floats[0] -= q.x(); -		m_floats[1] -= q.y(); -		m_floats[2] -= q.z(); -		m_floats[3] -= q.m_floats[3]; -#endif -		return *this; -	} - -	/**@brief Scale this quaternion -   * @param s The scalar to scale by */ -	btQuaternion& operator*=(const btScalar& s) -	{ -#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) -		__m128 vs = _mm_load_ss(&s);  //	(S 0 0 0) -		vs = bt_pshufd_ps(vs, 0);     //	(S S S S) -		mVec128 = _mm_mul_ps(mVec128, vs); -#elif defined(BT_USE_NEON) -		mVec128 = vmulq_n_f32(mVec128, s); -#else -		m_floats[0] *= s; -		m_floats[1] *= s; -		m_floats[2] *= s; -		m_floats[3] *= s; -#endif -		return *this; -	} - -	/**@brief Multiply this quaternion by q on the right -   * @param q The other quaternion  -   * Equivilant to this = this * q */ -	btQuaternion& operator*=(const btQuaternion& q) -	{ -#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) -		__m128 vQ2 = q.get128(); - -		__m128 A1 = bt_pshufd_ps(mVec128, BT_SHUFFLE(0, 1, 2, 0)); -		__m128 B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(3, 3, 3, 0)); - -		A1 = A1 * B1; - -		__m128 A2 = bt_pshufd_ps(mVec128, BT_SHUFFLE(1, 2, 0, 1)); -		__m128 B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2, 0, 1, 1)); - -		A2 = A2 * B2; - -		B1 = bt_pshufd_ps(mVec128, BT_SHUFFLE(2, 0, 1, 2)); -		B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1, 2, 0, 2)); - -		B1 = B1 * B2;  //	A3 *= B3 - -		mVec128 = bt_splat_ps(mVec128, 3);  //	A0 -		mVec128 = mVec128 * vQ2;            //	A0 * B0 - -		A1 = A1 + A2;                //	AB12 -		mVec128 = mVec128 - B1;      //	AB03 = AB0 - AB3 -		A1 = _mm_xor_ps(A1, vPPPM);  //	change sign of the last element -		mVec128 = mVec128 + A1;      //	AB03 + AB12 - -#elif defined(BT_USE_NEON) - -		float32x4_t vQ1 = mVec128; -		float32x4_t vQ2 = q.get128(); -		float32x4_t A0, A1, B1, A2, B2, A3, B3; -		float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz; - -		{ -			float32x2x2_t tmp; -			tmp = vtrn_f32(vget_high_f32(vQ1), vget_low_f32(vQ1));  // {z x}, {w y} -			vQ1zx = tmp.val[0]; - -			tmp = vtrn_f32(vget_high_f32(vQ2), vget_low_f32(vQ2));  // {z x}, {w y} -			vQ2zx = tmp.val[0]; -		} -		vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1); - -		vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1); - -		vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1); -		vQ2xz = vext_f32(vQ2zx, vQ2zx, 1); - -		A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx);                     // X Y  z x -		B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx);  // W W  W X - -		A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1)); -		B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1)); - -		A3 = vcombine_f32(vQ1zx, vQ1yz);  // Z X Y Z -		B3 = vcombine_f32(vQ2yz, vQ2xz);  // Y Z x z - -		A1 = vmulq_f32(A1, B1); -		A2 = vmulq_f32(A2, B2); -		A3 = vmulq_f32(A3, B3);                           //	A3 *= B3 -		A0 = vmulq_lane_f32(vQ2, vget_high_f32(vQ1), 1);  //	A0 * B0 - -		A1 = vaddq_f32(A1, A2);  //	AB12 = AB1 + AB2 -		A0 = vsubq_f32(A0, A3);  //	AB03 = AB0 - AB3 - -		//	change the sign of the last element -		A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM); -		A0 = vaddq_f32(A0, A1);  //	AB03 + AB12 - -		mVec128 = A0; -#else -		setValue( -			m_floats[3] * q.x() + m_floats[0] * q.m_floats[3] + m_floats[1] * q.z() - m_floats[2] * q.y(), -			m_floats[3] * q.y() + m_floats[1] * q.m_floats[3] + m_floats[2] * q.x() - m_floats[0] * q.z(), -			m_floats[3] * q.z() + m_floats[2] * q.m_floats[3] + m_floats[0] * q.y() - m_floats[1] * q.x(), -			m_floats[3] * q.m_floats[3] - m_floats[0] * q.x() - m_floats[1] * q.y() - m_floats[2] * q.z()); -#endif -		return *this; -	} -	/**@brief Return the dot product between this quaternion and another -   * @param q The other quaternion */ -	btScalar dot(const btQuaternion& q) const -	{ -#if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) -		__m128 vd; - -		vd = _mm_mul_ps(mVec128, q.mVec128); - -		__m128 t = _mm_movehl_ps(vd, vd); -		vd = _mm_add_ps(vd, t); -		t = _mm_shuffle_ps(vd, vd, 0x55); -		vd = _mm_add_ss(vd, t); - -		return _mm_cvtss_f32(vd); -#elif defined(BT_USE_NEON) -		float32x4_t vd = vmulq_f32(mVec128, q.mVec128); -		float32x2_t x = vpadd_f32(vget_low_f32(vd), vget_high_f32(vd)); -		x = vpadd_f32(x, x); -		return vget_lane_f32(x, 0); -#else -		return m_floats[0] * q.x() + -			   m_floats[1] * q.y() + -			   m_floats[2] * q.z() + -			   m_floats[3] * q.m_floats[3]; -#endif -	} - -	/**@brief Return the length squared of the quaternion */ -	btScalar length2() const -	{ -		return dot(*this); -	} - -	/**@brief Return the length of the quaternion */ -	btScalar length() const -	{ -		return btSqrt(length2()); -	} -	btQuaternion& safeNormalize() -	{ -		btScalar l2 = length2(); -		if (l2 > SIMD_EPSILON) -		{ -			normalize(); -		} -		return *this; -	} -	/**@brief Normalize the quaternion  -   * Such that x^2 + y^2 + z^2 +w^2 = 1 */ -	btQuaternion& normalize() -	{ -#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) -		__m128 vd; - -		vd = _mm_mul_ps(mVec128, mVec128); - -		__m128 t = _mm_movehl_ps(vd, vd); -		vd = _mm_add_ps(vd, t); -		t = _mm_shuffle_ps(vd, vd, 0x55); -		vd = _mm_add_ss(vd, t); - -		vd = _mm_sqrt_ss(vd); -		vd = _mm_div_ss(vOnes, vd); -		vd = bt_pshufd_ps(vd, 0);  // splat -		mVec128 = _mm_mul_ps(mVec128, vd); - -		return *this; -#else -		return *this /= length(); -#endif -	} - -	/**@brief Return a scaled version of this quaternion -   * @param s The scale factor */ -	SIMD_FORCE_INLINE btQuaternion -	operator*(const btScalar& s) const -	{ -#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) -		__m128 vs = _mm_load_ss(&s);  //	(S 0 0 0) -		vs = bt_pshufd_ps(vs, 0x00);  //	(S S S S) - -		return btQuaternion(_mm_mul_ps(mVec128, vs)); -#elif defined(BT_USE_NEON) -		return btQuaternion(vmulq_n_f32(mVec128, s)); -#else -		return btQuaternion(x() * s, y() * s, z() * s, m_floats[3] * s); -#endif -	} - -	/**@brief Return an inversely scaled versionof this quaternion -   * @param s The inverse scale factor */ -	btQuaternion operator/(const btScalar& s) const -	{ -		btAssert(s != btScalar(0.0)); -		return *this * (btScalar(1.0) / s); -	} - -	/**@brief Inversely scale this quaternion -   * @param s The scale factor */ -	btQuaternion& operator/=(const btScalar& s) -	{ -		btAssert(s != btScalar(0.0)); -		return *this *= btScalar(1.0) / s; -	} - -	/**@brief Return a normalized version of this quaternion */ -	btQuaternion normalized() const -	{ -		return *this / length(); -	} -	/**@brief Return the ***half*** angle between this quaternion and the other -   * @param q The other quaternion */ -	btScalar angle(const btQuaternion& q) const -	{ -		btScalar s = btSqrt(length2() * q.length2()); -		btAssert(s != btScalar(0.0)); -		return btAcos(dot(q) / s); -	} - -	/**@brief Return the angle between this quaternion and the other along the shortest path -	* @param q The other quaternion */ -	btScalar angleShortestPath(const btQuaternion& q) const -	{ -		btScalar s = btSqrt(length2() * q.length2()); -		btAssert(s != btScalar(0.0)); -		if (dot(q) < 0)  // Take care of long angle case see http://en.wikipedia.org/wiki/Slerp -			return btAcos(dot(-q) / s) * btScalar(2.0); -		else -			return btAcos(dot(q) / s) * btScalar(2.0); -	} - -	/**@brief Return the angle [0, 2Pi] of rotation represented by this quaternion */ -	btScalar getAngle() const -	{ -		btScalar s = btScalar(2.) * btAcos(m_floats[3]); -		return s; -	} - -	/**@brief Return the angle [0, Pi] of rotation represented by this quaternion along the shortest path */ -	btScalar getAngleShortestPath() const -	{ -		btScalar s; -		if (m_floats[3] >= 0) -			s = btScalar(2.) * btAcos(m_floats[3]); -		else -			s = btScalar(2.) * btAcos(-m_floats[3]); -		return s; -	} - -	/**@brief Return the axis of the rotation represented by this quaternion */ -	btVector3 getAxis() const -	{ -		btScalar s_squared = 1.f - m_floats[3] * m_floats[3]; - -		if (s_squared < btScalar(10.) * SIMD_EPSILON)  //Check for divide by zero -			return btVector3(1.0, 0.0, 0.0);           // Arbitrary -		btScalar s = 1.f / btSqrt(s_squared); -		return btVector3(m_floats[0] * s, m_floats[1] * s, m_floats[2] * s); -	} - -	/**@brief Return the inverse of this quaternion */ -	btQuaternion inverse() const -	{ -#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) -		return btQuaternion(_mm_xor_ps(mVec128, vQInv)); -#elif defined(BT_USE_NEON) -		return btQuaternion((btSimdFloat4)veorq_s32((int32x4_t)mVec128, (int32x4_t)vQInv)); -#else -		return btQuaternion(-m_floats[0], -m_floats[1], -m_floats[2], m_floats[3]); -#endif -	} - -	/**@brief Return the sum of this quaternion and the other  -   * @param q2 The other quaternion */ -	SIMD_FORCE_INLINE btQuaternion -	operator+(const btQuaternion& q2) const -	{ -#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) -		return btQuaternion(_mm_add_ps(mVec128, q2.mVec128)); -#elif defined(BT_USE_NEON) -		return btQuaternion(vaddq_f32(mVec128, q2.mVec128)); -#else -		const btQuaternion& q1 = *this; -		return btQuaternion(q1.x() + q2.x(), q1.y() + q2.y(), q1.z() + q2.z(), q1.m_floats[3] + q2.m_floats[3]); -#endif -	} - -	/**@brief Return the difference between this quaternion and the other  -   * @param q2 The other quaternion */ -	SIMD_FORCE_INLINE btQuaternion -	operator-(const btQuaternion& q2) const -	{ -#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) -		return btQuaternion(_mm_sub_ps(mVec128, q2.mVec128)); -#elif defined(BT_USE_NEON) -		return btQuaternion(vsubq_f32(mVec128, q2.mVec128)); -#else -		const btQuaternion& q1 = *this; -		return btQuaternion(q1.x() - q2.x(), q1.y() - q2.y(), q1.z() - q2.z(), q1.m_floats[3] - q2.m_floats[3]); -#endif -	} - -	/**@brief Return the negative of this quaternion  -   * This simply negates each element */ -	SIMD_FORCE_INLINE btQuaternion operator-() const -	{ -#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) -		return btQuaternion(_mm_xor_ps(mVec128, btvMzeroMask)); -#elif defined(BT_USE_NEON) -		return btQuaternion((btSimdFloat4)veorq_s32((int32x4_t)mVec128, (int32x4_t)btvMzeroMask)); -#else -		const btQuaternion& q2 = *this; -		return btQuaternion(-q2.x(), -q2.y(), -q2.z(), -q2.m_floats[3]); -#endif -	} -	/**@todo document this and it's use */ -	SIMD_FORCE_INLINE btQuaternion farthest(const btQuaternion& qd) const -	{ -		btQuaternion diff, sum; -		diff = *this - qd; -		sum = *this + qd; -		if (diff.dot(diff) > sum.dot(sum)) -			return qd; -		return (-qd); -	} - -	/**@todo document this and it's use */ -	SIMD_FORCE_INLINE btQuaternion nearest(const btQuaternion& qd) const -	{ -		btQuaternion diff, sum; -		diff = *this - qd; -		sum = *this + qd; -		if (diff.dot(diff) < sum.dot(sum)) -			return qd; -		return (-qd); -	} - -	/**@brief Return the quaternion which is the result of Spherical Linear Interpolation between this and the other quaternion -   * @param q The other quaternion to interpolate with  -   * @param t The ratio between this and q to interpolate.  If t = 0 the result is this, if t=1 the result is q. -   * Slerp interpolates assuming constant velocity.  */ -	btQuaternion slerp(const btQuaternion& q, const btScalar& t) const -	{ -		const btScalar magnitude = btSqrt(length2() * q.length2()); -		btAssert(magnitude > btScalar(0)); - -		const btScalar product = dot(q) / magnitude; -		const btScalar absproduct = btFabs(product); - -		if (absproduct < btScalar(1.0 - SIMD_EPSILON)) -		{ -			// Take care of long angle case see http://en.wikipedia.org/wiki/Slerp -			const btScalar theta = btAcos(absproduct); -			const btScalar d = btSin(theta); -			btAssert(d > btScalar(0)); - -			const btScalar sign = (product < 0) ? btScalar(-1) : btScalar(1); -			const btScalar s0 = btSin((btScalar(1.0) - t) * theta) / d; -			const btScalar s1 = btSin(sign * t * theta) / d; - -			return btQuaternion( -				(m_floats[0] * s0 + q.x() * s1), -				(m_floats[1] * s0 + q.y() * s1), -				(m_floats[2] * s0 + q.z() * s1), -				(m_floats[3] * s0 + q.w() * s1)); -		} -		else -		{ -			return *this; -		} -	} - -	static const btQuaternion& getIdentity() -	{ -		static const btQuaternion identityQuat(btScalar(0.), btScalar(0.), btScalar(0.), btScalar(1.)); -		return identityQuat; -	} - -	SIMD_FORCE_INLINE const btScalar& getW() const { return m_floats[3]; } - -	SIMD_FORCE_INLINE void serialize(struct btQuaternionData& dataOut) const; - -	SIMD_FORCE_INLINE void deSerialize(const struct btQuaternionFloatData& dataIn); - -	SIMD_FORCE_INLINE void deSerialize(const struct btQuaternionDoubleData& dataIn); - -	SIMD_FORCE_INLINE void serializeFloat(struct btQuaternionFloatData& dataOut) const; - -	SIMD_FORCE_INLINE void deSerializeFloat(const struct btQuaternionFloatData& dataIn); - -	SIMD_FORCE_INLINE void serializeDouble(struct btQuaternionDoubleData& dataOut) const; - -	SIMD_FORCE_INLINE void deSerializeDouble(const struct btQuaternionDoubleData& dataIn); -}; - -/**@brief Return the product of two quaternions */ -SIMD_FORCE_INLINE btQuaternion -operator*(const btQuaternion& q1, const btQuaternion& q2) -{ -#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) -	__m128 vQ1 = q1.get128(); -	__m128 vQ2 = q2.get128(); -	__m128 A0, A1, B1, A2, B2; - -	A1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(0, 1, 2, 0));  // X Y  z x     //      vtrn -	B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(3, 3, 3, 0));  // W W  W X     // vdup vext - -	A1 = A1 * B1; - -	A2 = bt_pshufd_ps(vQ1, BT_SHUFFLE(1, 2, 0, 1));  // Y Z  X Y     // vext -	B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2, 0, 1, 1));  // z x  Y Y     // vtrn vdup - -	A2 = A2 * B2; - -	B1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(2, 0, 1, 2));  // z x Y Z      // vtrn vext -	B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1, 2, 0, 2));  // Y Z x z      // vext vtrn - -	B1 = B1 * B2;  //	A3 *= B3 - -	A0 = bt_splat_ps(vQ1, 3);  //	A0 -	A0 = A0 * vQ2;             //	A0 * B0 - -	A1 = A1 + A2;  //	AB12 -	A0 = A0 - B1;  //	AB03 = AB0 - AB3 - -	A1 = _mm_xor_ps(A1, vPPPM);  //	change sign of the last element -	A0 = A0 + A1;                //	AB03 + AB12 - -	return btQuaternion(A0); - -#elif defined(BT_USE_NEON) - -	float32x4_t vQ1 = q1.get128(); -	float32x4_t vQ2 = q2.get128(); -	float32x4_t A0, A1, B1, A2, B2, A3, B3; -	float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz; - -	{ -		float32x2x2_t tmp; -		tmp = vtrn_f32(vget_high_f32(vQ1), vget_low_f32(vQ1));  // {z x}, {w y} -		vQ1zx = tmp.val[0]; - -		tmp = vtrn_f32(vget_high_f32(vQ2), vget_low_f32(vQ2));  // {z x}, {w y} -		vQ2zx = tmp.val[0]; -	} -	vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1); - -	vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1); - -	vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1); -	vQ2xz = vext_f32(vQ2zx, vQ2zx, 1); - -	A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx);                     // X Y  z x -	B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx);  // W W  W X - -	A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1)); -	B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1)); - -	A3 = vcombine_f32(vQ1zx, vQ1yz);  // Z X Y Z -	B3 = vcombine_f32(vQ2yz, vQ2xz);  // Y Z x z - -	A1 = vmulq_f32(A1, B1); -	A2 = vmulq_f32(A2, B2); -	A3 = vmulq_f32(A3, B3);                           //	A3 *= B3 -	A0 = vmulq_lane_f32(vQ2, vget_high_f32(vQ1), 1);  //	A0 * B0 - -	A1 = vaddq_f32(A1, A2);  //	AB12 = AB1 + AB2 -	A0 = vsubq_f32(A0, A3);  //	AB03 = AB0 - AB3 - -	//	change the sign of the last element -	A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM); -	A0 = vaddq_f32(A0, A1);  //	AB03 + AB12 - -	return btQuaternion(A0); - -#else -	return btQuaternion( -		q1.w() * q2.x() + q1.x() * q2.w() + q1.y() * q2.z() - q1.z() * q2.y(), -		q1.w() * q2.y() + q1.y() * q2.w() + q1.z() * q2.x() - q1.x() * q2.z(), -		q1.w() * q2.z() + q1.z() * q2.w() + q1.x() * q2.y() - q1.y() * q2.x(), -		q1.w() * q2.w() - q1.x() * q2.x() - q1.y() * q2.y() - q1.z() * q2.z()); -#endif -} - -SIMD_FORCE_INLINE btQuaternion -operator*(const btQuaternion& q, const btVector3& w) -{ -#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) -	__m128 vQ1 = q.get128(); -	__m128 vQ2 = w.get128(); -	__m128 A1, B1, A2, B2, A3, B3; - -	A1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(3, 3, 3, 0)); -	B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(0, 1, 2, 0)); - -	A1 = A1 * B1; - -	A2 = bt_pshufd_ps(vQ1, BT_SHUFFLE(1, 2, 0, 1)); -	B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2, 0, 1, 1)); - -	A2 = A2 * B2; - -	A3 = bt_pshufd_ps(vQ1, BT_SHUFFLE(2, 0, 1, 2)); -	B3 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1, 2, 0, 2)); - -	A3 = A3 * B3;  //	A3 *= B3 - -	A1 = A1 + A2;                //	AB12 -	A1 = _mm_xor_ps(A1, vPPPM);  //	change sign of the last element -	A1 = A1 - A3;                //	AB123 = AB12 - AB3 - -	return btQuaternion(A1); - -#elif defined(BT_USE_NEON) - -	float32x4_t vQ1 = q.get128(); -	float32x4_t vQ2 = w.get128(); -	float32x4_t A1, B1, A2, B2, A3, B3; -	float32x2_t vQ1wx, vQ2zx, vQ1yz, vQ2yz, vQ1zx, vQ2xz; - -	vQ1wx = vext_f32(vget_high_f32(vQ1), vget_low_f32(vQ1), 1); -	{ -		float32x2x2_t tmp; - -		tmp = vtrn_f32(vget_high_f32(vQ2), vget_low_f32(vQ2));  // {z x}, {w y} -		vQ2zx = tmp.val[0]; - -		tmp = vtrn_f32(vget_high_f32(vQ1), vget_low_f32(vQ1));  // {z x}, {w y} -		vQ1zx = tmp.val[0]; -	} - -	vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1); - -	vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1); -	vQ2xz = vext_f32(vQ2zx, vQ2zx, 1); - -	A1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ1), 1), vQ1wx);  // W W  W X -	B1 = vcombine_f32(vget_low_f32(vQ2), vQ2zx);                     // X Y  z x - -	A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1)); -	B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1)); - -	A3 = vcombine_f32(vQ1zx, vQ1yz);  // Z X Y Z -	B3 = vcombine_f32(vQ2yz, vQ2xz);  // Y Z x z - -	A1 = vmulq_f32(A1, B1); -	A2 = vmulq_f32(A2, B2); -	A3 = vmulq_f32(A3, B3);  //	A3 *= B3 - -	A1 = vaddq_f32(A1, A2);  //	AB12 = AB1 + AB2 - -	//	change the sign of the last element -	A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM); - -	A1 = vsubq_f32(A1, A3);  //	AB123 = AB12 - AB3 - -	return btQuaternion(A1); - -#else -	return btQuaternion( -		q.w() * w.x() + q.y() * w.z() - q.z() * w.y(), -		q.w() * w.y() + q.z() * w.x() - q.x() * w.z(), -		q.w() * w.z() + q.x() * w.y() - q.y() * w.x(), -		-q.x() * w.x() - q.y() * w.y() - q.z() * w.z()); -#endif -} - -SIMD_FORCE_INLINE btQuaternion -operator*(const btVector3& w, const btQuaternion& q) -{ -#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) -	__m128 vQ1 = w.get128(); -	__m128 vQ2 = q.get128(); -	__m128 A1, B1, A2, B2, A3, B3; - -	A1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(0, 1, 2, 0));  // X Y  z x -	B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(3, 3, 3, 0));  // W W  W X - -	A1 = A1 * B1; - -	A2 = bt_pshufd_ps(vQ1, BT_SHUFFLE(1, 2, 0, 1)); -	B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2, 0, 1, 1)); - -	A2 = A2 * B2; - -	A3 = bt_pshufd_ps(vQ1, BT_SHUFFLE(2, 0, 1, 2)); -	B3 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1, 2, 0, 2)); - -	A3 = A3 * B3;  //	A3 *= B3 - -	A1 = A1 + A2;                //	AB12 -	A1 = _mm_xor_ps(A1, vPPPM);  //	change sign of the last element -	A1 = A1 - A3;                //	AB123 = AB12 - AB3 - -	return btQuaternion(A1); - -#elif defined(BT_USE_NEON) - -	float32x4_t vQ1 = w.get128(); -	float32x4_t vQ2 = q.get128(); -	float32x4_t A1, B1, A2, B2, A3, B3; -	float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz; - -	{ -		float32x2x2_t tmp; - -		tmp = vtrn_f32(vget_high_f32(vQ1), vget_low_f32(vQ1));  // {z x}, {w y} -		vQ1zx = tmp.val[0]; - -		tmp = vtrn_f32(vget_high_f32(vQ2), vget_low_f32(vQ2));  // {z x}, {w y} -		vQ2zx = tmp.val[0]; -	} -	vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1); - -	vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1); - -	vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1); -	vQ2xz = vext_f32(vQ2zx, vQ2zx, 1); - -	A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx);                     // X Y  z x -	B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx);  // W W  W X - -	A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1)); -	B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1)); - -	A3 = vcombine_f32(vQ1zx, vQ1yz);  // Z X Y Z -	B3 = vcombine_f32(vQ2yz, vQ2xz);  // Y Z x z - -	A1 = vmulq_f32(A1, B1); -	A2 = vmulq_f32(A2, B2); -	A3 = vmulq_f32(A3, B3);  //	A3 *= B3 - -	A1 = vaddq_f32(A1, A2);  //	AB12 = AB1 + AB2 - -	//	change the sign of the last element -	A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM); - -	A1 = vsubq_f32(A1, A3);  //	AB123 = AB12 - AB3 - -	return btQuaternion(A1); - -#else -	return btQuaternion( -		+w.x() * q.w() + w.y() * q.z() - w.z() * q.y(), -		+w.y() * q.w() + w.z() * q.x() - w.x() * q.z(), -		+w.z() * q.w() + w.x() * q.y() - w.y() * q.x(), -		-w.x() * q.x() - w.y() * q.y() - w.z() * q.z()); -#endif -} - -/**@brief Calculate the dot product between two quaternions */ -SIMD_FORCE_INLINE btScalar -dot(const btQuaternion& q1, const btQuaternion& q2) -{ -	return q1.dot(q2); -} - -/**@brief Return the length of a quaternion */ -SIMD_FORCE_INLINE btScalar -length(const btQuaternion& q) -{ -	return q.length(); -} - -/**@brief Return the angle between two quaternions*/ -SIMD_FORCE_INLINE btScalar -btAngle(const btQuaternion& q1, const btQuaternion& q2) -{ -	return q1.angle(q2); -} - -/**@brief Return the inverse of a quaternion*/ -SIMD_FORCE_INLINE btQuaternion -inverse(const btQuaternion& q) -{ -	return q.inverse(); -} - -/**@brief Return the result of spherical linear interpolation betwen two quaternions  - * @param q1 The first quaternion - * @param q2 The second quaternion  - * @param t The ration between q1 and q2.  t = 0 return q1, t=1 returns q2  - * Slerp assumes constant velocity between positions. */ -SIMD_FORCE_INLINE btQuaternion -slerp(const btQuaternion& q1, const btQuaternion& q2, const btScalar& t) -{ -	return q1.slerp(q2, t); -} - -SIMD_FORCE_INLINE btVector3 -quatRotate(const btQuaternion& rotation, const btVector3& v) -{ -	btQuaternion q = rotation * v; -	q *= rotation.inverse(); -#if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) -	return btVector3(_mm_and_ps(q.get128(), btvFFF0fMask)); -#elif defined(BT_USE_NEON) -	return btVector3((float32x4_t)vandq_s32((int32x4_t)q.get128(), btvFFF0Mask)); -#else -	return btVector3(q.getX(), q.getY(), q.getZ()); -#endif -} - -SIMD_FORCE_INLINE btQuaternion -shortestArcQuat(const btVector3& v0, const btVector3& v1)  // Game Programming Gems 2.10. make sure v0,v1 are normalized -{ -	btVector3 c = v0.cross(v1); -	btScalar d = v0.dot(v1); - -	if (d < -1.0 + SIMD_EPSILON) -	{ -		btVector3 n, unused; -		btPlaneSpace1(v0, n, unused); -		return btQuaternion(n.x(), n.y(), n.z(), 0.0f);  // just pick any vector that is orthogonal to v0 -	} - -	btScalar s = btSqrt((1.0f + d) * 2.0f); -	btScalar rs = 1.0f / s; - -	return btQuaternion(c.getX() * rs, c.getY() * rs, c.getZ() * rs, s * 0.5f); -} - -SIMD_FORCE_INLINE btQuaternion -shortestArcQuatNormalize2(btVector3& v0, btVector3& v1) -{ -	v0.normalize(); -	v1.normalize(); -	return shortestArcQuat(v0, v1); -} - -struct btQuaternionFloatData -{ -	float m_floats[4]; -}; - -struct btQuaternionDoubleData -{ -	double m_floats[4]; -}; - -SIMD_FORCE_INLINE void btQuaternion::serializeFloat(struct btQuaternionFloatData& dataOut) const -{ -	///could also do a memcpy, check if it is worth it -	for (int i = 0; i < 4; i++) -		dataOut.m_floats[i] = float(m_floats[i]); -} - -SIMD_FORCE_INLINE void btQuaternion::deSerializeFloat(const struct btQuaternionFloatData& dataIn) -{ -	for (int i = 0; i < 4; i++) -		m_floats[i] = btScalar(dataIn.m_floats[i]); -} - -SIMD_FORCE_INLINE void btQuaternion::serializeDouble(struct btQuaternionDoubleData& dataOut) const -{ -	///could also do a memcpy, check if it is worth it -	for (int i = 0; i < 4; i++) -		dataOut.m_floats[i] = double(m_floats[i]); -} - -SIMD_FORCE_INLINE void btQuaternion::deSerializeDouble(const struct btQuaternionDoubleData& dataIn) -{ -	for (int i = 0; i < 4; i++) -		m_floats[i] = btScalar(dataIn.m_floats[i]); -} - -SIMD_FORCE_INLINE void btQuaternion::serialize(struct btQuaternionData& dataOut) const -{ -	///could also do a memcpy, check if it is worth it -	for (int i = 0; i < 4; i++) -		dataOut.m_floats[i] = m_floats[i]; -} - -SIMD_FORCE_INLINE void btQuaternion::deSerialize(const struct btQuaternionFloatData& dataIn) -{ -	for (int i = 0; i < 4; i++) -		m_floats[i] = (btScalar)dataIn.m_floats[i]; -} - -SIMD_FORCE_INLINE void btQuaternion::deSerialize(const struct btQuaternionDoubleData& dataIn) -{ -	for (int i = 0; i < 4; i++) -		m_floats[i] = (btScalar)dataIn.m_floats[i]; -} - -#endif  //BT_SIMD__QUATERNION_H_  |