diff options
Diffstat (limited to 'thirdparty/bullet/LinearMath/btQuaternion.h')
-rw-r--r-- | thirdparty/bullet/LinearMath/btQuaternion.h | 1021 |
1 files changed, 0 insertions, 1021 deletions
diff --git a/thirdparty/bullet/LinearMath/btQuaternion.h b/thirdparty/bullet/LinearMath/btQuaternion.h deleted file mode 100644 index 53e8169b80..0000000000 --- a/thirdparty/bullet/LinearMath/btQuaternion.h +++ /dev/null @@ -1,1021 +0,0 @@ -/* -Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/ - -This software is provided 'as-is', without any express or implied warranty. -In no event will the authors be held liable for any damages arising from the use of this software. -Permission is granted to anyone to use this software for any purpose, -including commercial applications, and to alter it and redistribute it freely, -subject to the following restrictions: - -1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. -2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. -3. This notice may not be removed or altered from any source distribution. -*/ - -#ifndef BT_SIMD__QUATERNION_H_ -#define BT_SIMD__QUATERNION_H_ - -#include "btVector3.h" -#include "btQuadWord.h" - -#ifdef BT_USE_DOUBLE_PRECISION -#define btQuaternionData btQuaternionDoubleData -#define btQuaternionDataName "btQuaternionDoubleData" -#else -#define btQuaternionData btQuaternionFloatData -#define btQuaternionDataName "btQuaternionFloatData" -#endif //BT_USE_DOUBLE_PRECISION - -#ifdef BT_USE_SSE - -//const __m128 ATTRIBUTE_ALIGNED16(vOnes) = {1.0f, 1.0f, 1.0f, 1.0f}; -#define vOnes (_mm_set_ps(1.0f, 1.0f, 1.0f, 1.0f)) - -#endif - -#if defined(BT_USE_SSE) - -#define vQInv (_mm_set_ps(+0.0f, -0.0f, -0.0f, -0.0f)) -#define vPPPM (_mm_set_ps(-0.0f, +0.0f, +0.0f, +0.0f)) - -#elif defined(BT_USE_NEON) - -const btSimdFloat4 ATTRIBUTE_ALIGNED16(vQInv) = {-0.0f, -0.0f, -0.0f, +0.0f}; -const btSimdFloat4 ATTRIBUTE_ALIGNED16(vPPPM) = {+0.0f, +0.0f, +0.0f, -0.0f}; - -#endif - -/**@brief The btQuaternion implements quaternion to perform linear algebra rotations in combination with btMatrix3x3, btVector3 and btTransform. */ -class btQuaternion : public btQuadWord -{ -public: - /**@brief No initialization constructor */ - btQuaternion() {} - -#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON) - // Set Vector - SIMD_FORCE_INLINE btQuaternion(const btSimdFloat4 vec) - { - mVec128 = vec; - } - - // Copy constructor - SIMD_FORCE_INLINE btQuaternion(const btQuaternion& rhs) - { - mVec128 = rhs.mVec128; - } - - // Assignment Operator - SIMD_FORCE_INLINE btQuaternion& - operator=(const btQuaternion& v) - { - mVec128 = v.mVec128; - - return *this; - } - -#endif - - // template <typename btScalar> - // explicit Quaternion(const btScalar *v) : Tuple4<btScalar>(v) {} - /**@brief Constructor from scalars */ - btQuaternion(const btScalar& _x, const btScalar& _y, const btScalar& _z, const btScalar& _w) - : btQuadWord(_x, _y, _z, _w) - { - } - /**@brief Axis angle Constructor - * @param axis The axis which the rotation is around - * @param angle The magnitude of the rotation around the angle (Radians) */ - btQuaternion(const btVector3& _axis, const btScalar& _angle) - { - setRotation(_axis, _angle); - } - /**@brief Constructor from Euler angles - * @param yaw Angle around Y unless BT_EULER_DEFAULT_ZYX defined then Z - * @param pitch Angle around X unless BT_EULER_DEFAULT_ZYX defined then Y - * @param roll Angle around Z unless BT_EULER_DEFAULT_ZYX defined then X */ - btQuaternion(const btScalar& yaw, const btScalar& pitch, const btScalar& roll) - { -#ifndef BT_EULER_DEFAULT_ZYX - setEuler(yaw, pitch, roll); -#else - setEulerZYX(yaw, pitch, roll); -#endif - } - /**@brief Set the rotation using axis angle notation - * @param axis The axis around which to rotate - * @param angle The magnitude of the rotation in Radians */ - void setRotation(const btVector3& axis, const btScalar& _angle) - { - btScalar d = axis.length(); - btAssert(d != btScalar(0.0)); - btScalar s = btSin(_angle * btScalar(0.5)) / d; - setValue(axis.x() * s, axis.y() * s, axis.z() * s, - btCos(_angle * btScalar(0.5))); - } - /**@brief Set the quaternion using Euler angles - * @param yaw Angle around Y - * @param pitch Angle around X - * @param roll Angle around Z */ - void setEuler(const btScalar& yaw, const btScalar& pitch, const btScalar& roll) - { - btScalar halfYaw = btScalar(yaw) * btScalar(0.5); - btScalar halfPitch = btScalar(pitch) * btScalar(0.5); - btScalar halfRoll = btScalar(roll) * btScalar(0.5); - btScalar cosYaw = btCos(halfYaw); - btScalar sinYaw = btSin(halfYaw); - btScalar cosPitch = btCos(halfPitch); - btScalar sinPitch = btSin(halfPitch); - btScalar cosRoll = btCos(halfRoll); - btScalar sinRoll = btSin(halfRoll); - setValue(cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw, - cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw, - sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw, - cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw); - } - /**@brief Set the quaternion using euler angles - * @param yaw Angle around Z - * @param pitch Angle around Y - * @param roll Angle around X */ - void setEulerZYX(const btScalar& yawZ, const btScalar& pitchY, const btScalar& rollX) - { - btScalar halfYaw = btScalar(yawZ) * btScalar(0.5); - btScalar halfPitch = btScalar(pitchY) * btScalar(0.5); - btScalar halfRoll = btScalar(rollX) * btScalar(0.5); - btScalar cosYaw = btCos(halfYaw); - btScalar sinYaw = btSin(halfYaw); - btScalar cosPitch = btCos(halfPitch); - btScalar sinPitch = btSin(halfPitch); - btScalar cosRoll = btCos(halfRoll); - btScalar sinRoll = btSin(halfRoll); - setValue(sinRoll * cosPitch * cosYaw - cosRoll * sinPitch * sinYaw, //x - cosRoll * sinPitch * cosYaw + sinRoll * cosPitch * sinYaw, //y - cosRoll * cosPitch * sinYaw - sinRoll * sinPitch * cosYaw, //z - cosRoll * cosPitch * cosYaw + sinRoll * sinPitch * sinYaw); //formerly yzx - } - - /**@brief Get the euler angles from this quaternion - * @param yaw Angle around Z - * @param pitch Angle around Y - * @param roll Angle around X */ - void getEulerZYX(btScalar& yawZ, btScalar& pitchY, btScalar& rollX) const - { - btScalar squ; - btScalar sqx; - btScalar sqy; - btScalar sqz; - btScalar sarg; - sqx = m_floats[0] * m_floats[0]; - sqy = m_floats[1] * m_floats[1]; - sqz = m_floats[2] * m_floats[2]; - squ = m_floats[3] * m_floats[3]; - sarg = btScalar(-2.) * (m_floats[0] * m_floats[2] - m_floats[3] * m_floats[1]); - - // If the pitch angle is PI/2 or -PI/2, we can only compute - // the sum roll + yaw. However, any combination that gives - // the right sum will produce the correct orientation, so we - // set rollX = 0 and compute yawZ. - if (sarg <= -btScalar(0.99999)) - { - pitchY = btScalar(-0.5) * SIMD_PI; - rollX = 0; - yawZ = btScalar(2) * btAtan2(m_floats[0], -m_floats[1]); - } - else if (sarg >= btScalar(0.99999)) - { - pitchY = btScalar(0.5) * SIMD_PI; - rollX = 0; - yawZ = btScalar(2) * btAtan2(-m_floats[0], m_floats[1]); - } - else - { - pitchY = btAsin(sarg); - rollX = btAtan2(2 * (m_floats[1] * m_floats[2] + m_floats[3] * m_floats[0]), squ - sqx - sqy + sqz); - yawZ = btAtan2(2 * (m_floats[0] * m_floats[1] + m_floats[3] * m_floats[2]), squ + sqx - sqy - sqz); - } - } - - /**@brief Add two quaternions - * @param q The quaternion to add to this one */ - SIMD_FORCE_INLINE btQuaternion& operator+=(const btQuaternion& q) - { -#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) - mVec128 = _mm_add_ps(mVec128, q.mVec128); -#elif defined(BT_USE_NEON) - mVec128 = vaddq_f32(mVec128, q.mVec128); -#else - m_floats[0] += q.x(); - m_floats[1] += q.y(); - m_floats[2] += q.z(); - m_floats[3] += q.m_floats[3]; -#endif - return *this; - } - - /**@brief Subtract out a quaternion - * @param q The quaternion to subtract from this one */ - btQuaternion& operator-=(const btQuaternion& q) - { -#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) - mVec128 = _mm_sub_ps(mVec128, q.mVec128); -#elif defined(BT_USE_NEON) - mVec128 = vsubq_f32(mVec128, q.mVec128); -#else - m_floats[0] -= q.x(); - m_floats[1] -= q.y(); - m_floats[2] -= q.z(); - m_floats[3] -= q.m_floats[3]; -#endif - return *this; - } - - /**@brief Scale this quaternion - * @param s The scalar to scale by */ - btQuaternion& operator*=(const btScalar& s) - { -#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) - __m128 vs = _mm_load_ss(&s); // (S 0 0 0) - vs = bt_pshufd_ps(vs, 0); // (S S S S) - mVec128 = _mm_mul_ps(mVec128, vs); -#elif defined(BT_USE_NEON) - mVec128 = vmulq_n_f32(mVec128, s); -#else - m_floats[0] *= s; - m_floats[1] *= s; - m_floats[2] *= s; - m_floats[3] *= s; -#endif - return *this; - } - - /**@brief Multiply this quaternion by q on the right - * @param q The other quaternion - * Equivilant to this = this * q */ - btQuaternion& operator*=(const btQuaternion& q) - { -#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) - __m128 vQ2 = q.get128(); - - __m128 A1 = bt_pshufd_ps(mVec128, BT_SHUFFLE(0, 1, 2, 0)); - __m128 B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(3, 3, 3, 0)); - - A1 = A1 * B1; - - __m128 A2 = bt_pshufd_ps(mVec128, BT_SHUFFLE(1, 2, 0, 1)); - __m128 B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2, 0, 1, 1)); - - A2 = A2 * B2; - - B1 = bt_pshufd_ps(mVec128, BT_SHUFFLE(2, 0, 1, 2)); - B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1, 2, 0, 2)); - - B1 = B1 * B2; // A3 *= B3 - - mVec128 = bt_splat_ps(mVec128, 3); // A0 - mVec128 = mVec128 * vQ2; // A0 * B0 - - A1 = A1 + A2; // AB12 - mVec128 = mVec128 - B1; // AB03 = AB0 - AB3 - A1 = _mm_xor_ps(A1, vPPPM); // change sign of the last element - mVec128 = mVec128 + A1; // AB03 + AB12 - -#elif defined(BT_USE_NEON) - - float32x4_t vQ1 = mVec128; - float32x4_t vQ2 = q.get128(); - float32x4_t A0, A1, B1, A2, B2, A3, B3; - float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz; - - { - float32x2x2_t tmp; - tmp = vtrn_f32(vget_high_f32(vQ1), vget_low_f32(vQ1)); // {z x}, {w y} - vQ1zx = tmp.val[0]; - - tmp = vtrn_f32(vget_high_f32(vQ2), vget_low_f32(vQ2)); // {z x}, {w y} - vQ2zx = tmp.val[0]; - } - vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1); - - vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1); - - vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1); - vQ2xz = vext_f32(vQ2zx, vQ2zx, 1); - - A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx); // X Y z x - B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx); // W W W X - - A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1)); - B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1)); - - A3 = vcombine_f32(vQ1zx, vQ1yz); // Z X Y Z - B3 = vcombine_f32(vQ2yz, vQ2xz); // Y Z x z - - A1 = vmulq_f32(A1, B1); - A2 = vmulq_f32(A2, B2); - A3 = vmulq_f32(A3, B3); // A3 *= B3 - A0 = vmulq_lane_f32(vQ2, vget_high_f32(vQ1), 1); // A0 * B0 - - A1 = vaddq_f32(A1, A2); // AB12 = AB1 + AB2 - A0 = vsubq_f32(A0, A3); // AB03 = AB0 - AB3 - - // change the sign of the last element - A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM); - A0 = vaddq_f32(A0, A1); // AB03 + AB12 - - mVec128 = A0; -#else - setValue( - m_floats[3] * q.x() + m_floats[0] * q.m_floats[3] + m_floats[1] * q.z() - m_floats[2] * q.y(), - m_floats[3] * q.y() + m_floats[1] * q.m_floats[3] + m_floats[2] * q.x() - m_floats[0] * q.z(), - m_floats[3] * q.z() + m_floats[2] * q.m_floats[3] + m_floats[0] * q.y() - m_floats[1] * q.x(), - m_floats[3] * q.m_floats[3] - m_floats[0] * q.x() - m_floats[1] * q.y() - m_floats[2] * q.z()); -#endif - return *this; - } - /**@brief Return the dot product between this quaternion and another - * @param q The other quaternion */ - btScalar dot(const btQuaternion& q) const - { -#if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) - __m128 vd; - - vd = _mm_mul_ps(mVec128, q.mVec128); - - __m128 t = _mm_movehl_ps(vd, vd); - vd = _mm_add_ps(vd, t); - t = _mm_shuffle_ps(vd, vd, 0x55); - vd = _mm_add_ss(vd, t); - - return _mm_cvtss_f32(vd); -#elif defined(BT_USE_NEON) - float32x4_t vd = vmulq_f32(mVec128, q.mVec128); - float32x2_t x = vpadd_f32(vget_low_f32(vd), vget_high_f32(vd)); - x = vpadd_f32(x, x); - return vget_lane_f32(x, 0); -#else - return m_floats[0] * q.x() + - m_floats[1] * q.y() + - m_floats[2] * q.z() + - m_floats[3] * q.m_floats[3]; -#endif - } - - /**@brief Return the length squared of the quaternion */ - btScalar length2() const - { - return dot(*this); - } - - /**@brief Return the length of the quaternion */ - btScalar length() const - { - return btSqrt(length2()); - } - btQuaternion& safeNormalize() - { - btScalar l2 = length2(); - if (l2 > SIMD_EPSILON) - { - normalize(); - } - return *this; - } - /**@brief Normalize the quaternion - * Such that x^2 + y^2 + z^2 +w^2 = 1 */ - btQuaternion& normalize() - { -#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) - __m128 vd; - - vd = _mm_mul_ps(mVec128, mVec128); - - __m128 t = _mm_movehl_ps(vd, vd); - vd = _mm_add_ps(vd, t); - t = _mm_shuffle_ps(vd, vd, 0x55); - vd = _mm_add_ss(vd, t); - - vd = _mm_sqrt_ss(vd); - vd = _mm_div_ss(vOnes, vd); - vd = bt_pshufd_ps(vd, 0); // splat - mVec128 = _mm_mul_ps(mVec128, vd); - - return *this; -#else - return *this /= length(); -#endif - } - - /**@brief Return a scaled version of this quaternion - * @param s The scale factor */ - SIMD_FORCE_INLINE btQuaternion - operator*(const btScalar& s) const - { -#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) - __m128 vs = _mm_load_ss(&s); // (S 0 0 0) - vs = bt_pshufd_ps(vs, 0x00); // (S S S S) - - return btQuaternion(_mm_mul_ps(mVec128, vs)); -#elif defined(BT_USE_NEON) - return btQuaternion(vmulq_n_f32(mVec128, s)); -#else - return btQuaternion(x() * s, y() * s, z() * s, m_floats[3] * s); -#endif - } - - /**@brief Return an inversely scaled versionof this quaternion - * @param s The inverse scale factor */ - btQuaternion operator/(const btScalar& s) const - { - btAssert(s != btScalar(0.0)); - return *this * (btScalar(1.0) / s); - } - - /**@brief Inversely scale this quaternion - * @param s The scale factor */ - btQuaternion& operator/=(const btScalar& s) - { - btAssert(s != btScalar(0.0)); - return *this *= btScalar(1.0) / s; - } - - /**@brief Return a normalized version of this quaternion */ - btQuaternion normalized() const - { - return *this / length(); - } - /**@brief Return the ***half*** angle between this quaternion and the other - * @param q The other quaternion */ - btScalar angle(const btQuaternion& q) const - { - btScalar s = btSqrt(length2() * q.length2()); - btAssert(s != btScalar(0.0)); - return btAcos(dot(q) / s); - } - - /**@brief Return the angle between this quaternion and the other along the shortest path - * @param q The other quaternion */ - btScalar angleShortestPath(const btQuaternion& q) const - { - btScalar s = btSqrt(length2() * q.length2()); - btAssert(s != btScalar(0.0)); - if (dot(q) < 0) // Take care of long angle case see http://en.wikipedia.org/wiki/Slerp - return btAcos(dot(-q) / s) * btScalar(2.0); - else - return btAcos(dot(q) / s) * btScalar(2.0); - } - - /**@brief Return the angle [0, 2Pi] of rotation represented by this quaternion */ - btScalar getAngle() const - { - btScalar s = btScalar(2.) * btAcos(m_floats[3]); - return s; - } - - /**@brief Return the angle [0, Pi] of rotation represented by this quaternion along the shortest path */ - btScalar getAngleShortestPath() const - { - btScalar s; - if (m_floats[3] >= 0) - s = btScalar(2.) * btAcos(m_floats[3]); - else - s = btScalar(2.) * btAcos(-m_floats[3]); - return s; - } - - /**@brief Return the axis of the rotation represented by this quaternion */ - btVector3 getAxis() const - { - btScalar s_squared = 1.f - m_floats[3] * m_floats[3]; - - if (s_squared < btScalar(10.) * SIMD_EPSILON) //Check for divide by zero - return btVector3(1.0, 0.0, 0.0); // Arbitrary - btScalar s = 1.f / btSqrt(s_squared); - return btVector3(m_floats[0] * s, m_floats[1] * s, m_floats[2] * s); - } - - /**@brief Return the inverse of this quaternion */ - btQuaternion inverse() const - { -#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) - return btQuaternion(_mm_xor_ps(mVec128, vQInv)); -#elif defined(BT_USE_NEON) - return btQuaternion((btSimdFloat4)veorq_s32((int32x4_t)mVec128, (int32x4_t)vQInv)); -#else - return btQuaternion(-m_floats[0], -m_floats[1], -m_floats[2], m_floats[3]); -#endif - } - - /**@brief Return the sum of this quaternion and the other - * @param q2 The other quaternion */ - SIMD_FORCE_INLINE btQuaternion - operator+(const btQuaternion& q2) const - { -#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) - return btQuaternion(_mm_add_ps(mVec128, q2.mVec128)); -#elif defined(BT_USE_NEON) - return btQuaternion(vaddq_f32(mVec128, q2.mVec128)); -#else - const btQuaternion& q1 = *this; - return btQuaternion(q1.x() + q2.x(), q1.y() + q2.y(), q1.z() + q2.z(), q1.m_floats[3] + q2.m_floats[3]); -#endif - } - - /**@brief Return the difference between this quaternion and the other - * @param q2 The other quaternion */ - SIMD_FORCE_INLINE btQuaternion - operator-(const btQuaternion& q2) const - { -#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) - return btQuaternion(_mm_sub_ps(mVec128, q2.mVec128)); -#elif defined(BT_USE_NEON) - return btQuaternion(vsubq_f32(mVec128, q2.mVec128)); -#else - const btQuaternion& q1 = *this; - return btQuaternion(q1.x() - q2.x(), q1.y() - q2.y(), q1.z() - q2.z(), q1.m_floats[3] - q2.m_floats[3]); -#endif - } - - /**@brief Return the negative of this quaternion - * This simply negates each element */ - SIMD_FORCE_INLINE btQuaternion operator-() const - { -#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) - return btQuaternion(_mm_xor_ps(mVec128, btvMzeroMask)); -#elif defined(BT_USE_NEON) - return btQuaternion((btSimdFloat4)veorq_s32((int32x4_t)mVec128, (int32x4_t)btvMzeroMask)); -#else - const btQuaternion& q2 = *this; - return btQuaternion(-q2.x(), -q2.y(), -q2.z(), -q2.m_floats[3]); -#endif - } - /**@todo document this and it's use */ - SIMD_FORCE_INLINE btQuaternion farthest(const btQuaternion& qd) const - { - btQuaternion diff, sum; - diff = *this - qd; - sum = *this + qd; - if (diff.dot(diff) > sum.dot(sum)) - return qd; - return (-qd); - } - - /**@todo document this and it's use */ - SIMD_FORCE_INLINE btQuaternion nearest(const btQuaternion& qd) const - { - btQuaternion diff, sum; - diff = *this - qd; - sum = *this + qd; - if (diff.dot(diff) < sum.dot(sum)) - return qd; - return (-qd); - } - - /**@brief Return the quaternion which is the result of Spherical Linear Interpolation between this and the other quaternion - * @param q The other quaternion to interpolate with - * @param t The ratio between this and q to interpolate. If t = 0 the result is this, if t=1 the result is q. - * Slerp interpolates assuming constant velocity. */ - btQuaternion slerp(const btQuaternion& q, const btScalar& t) const - { - const btScalar magnitude = btSqrt(length2() * q.length2()); - btAssert(magnitude > btScalar(0)); - - const btScalar product = dot(q) / magnitude; - const btScalar absproduct = btFabs(product); - - if (absproduct < btScalar(1.0 - SIMD_EPSILON)) - { - // Take care of long angle case see http://en.wikipedia.org/wiki/Slerp - const btScalar theta = btAcos(absproduct); - const btScalar d = btSin(theta); - btAssert(d > btScalar(0)); - - const btScalar sign = (product < 0) ? btScalar(-1) : btScalar(1); - const btScalar s0 = btSin((btScalar(1.0) - t) * theta) / d; - const btScalar s1 = btSin(sign * t * theta) / d; - - return btQuaternion( - (m_floats[0] * s0 + q.x() * s1), - (m_floats[1] * s0 + q.y() * s1), - (m_floats[2] * s0 + q.z() * s1), - (m_floats[3] * s0 + q.w() * s1)); - } - else - { - return *this; - } - } - - static const btQuaternion& getIdentity() - { - static const btQuaternion identityQuat(btScalar(0.), btScalar(0.), btScalar(0.), btScalar(1.)); - return identityQuat; - } - - SIMD_FORCE_INLINE const btScalar& getW() const { return m_floats[3]; } - - SIMD_FORCE_INLINE void serialize(struct btQuaternionData& dataOut) const; - - SIMD_FORCE_INLINE void deSerialize(const struct btQuaternionFloatData& dataIn); - - SIMD_FORCE_INLINE void deSerialize(const struct btQuaternionDoubleData& dataIn); - - SIMD_FORCE_INLINE void serializeFloat(struct btQuaternionFloatData& dataOut) const; - - SIMD_FORCE_INLINE void deSerializeFloat(const struct btQuaternionFloatData& dataIn); - - SIMD_FORCE_INLINE void serializeDouble(struct btQuaternionDoubleData& dataOut) const; - - SIMD_FORCE_INLINE void deSerializeDouble(const struct btQuaternionDoubleData& dataIn); -}; - -/**@brief Return the product of two quaternions */ -SIMD_FORCE_INLINE btQuaternion -operator*(const btQuaternion& q1, const btQuaternion& q2) -{ -#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) - __m128 vQ1 = q1.get128(); - __m128 vQ2 = q2.get128(); - __m128 A0, A1, B1, A2, B2; - - A1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(0, 1, 2, 0)); // X Y z x // vtrn - B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(3, 3, 3, 0)); // W W W X // vdup vext - - A1 = A1 * B1; - - A2 = bt_pshufd_ps(vQ1, BT_SHUFFLE(1, 2, 0, 1)); // Y Z X Y // vext - B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2, 0, 1, 1)); // z x Y Y // vtrn vdup - - A2 = A2 * B2; - - B1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(2, 0, 1, 2)); // z x Y Z // vtrn vext - B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1, 2, 0, 2)); // Y Z x z // vext vtrn - - B1 = B1 * B2; // A3 *= B3 - - A0 = bt_splat_ps(vQ1, 3); // A0 - A0 = A0 * vQ2; // A0 * B0 - - A1 = A1 + A2; // AB12 - A0 = A0 - B1; // AB03 = AB0 - AB3 - - A1 = _mm_xor_ps(A1, vPPPM); // change sign of the last element - A0 = A0 + A1; // AB03 + AB12 - - return btQuaternion(A0); - -#elif defined(BT_USE_NEON) - - float32x4_t vQ1 = q1.get128(); - float32x4_t vQ2 = q2.get128(); - float32x4_t A0, A1, B1, A2, B2, A3, B3; - float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz; - - { - float32x2x2_t tmp; - tmp = vtrn_f32(vget_high_f32(vQ1), vget_low_f32(vQ1)); // {z x}, {w y} - vQ1zx = tmp.val[0]; - - tmp = vtrn_f32(vget_high_f32(vQ2), vget_low_f32(vQ2)); // {z x}, {w y} - vQ2zx = tmp.val[0]; - } - vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1); - - vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1); - - vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1); - vQ2xz = vext_f32(vQ2zx, vQ2zx, 1); - - A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx); // X Y z x - B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx); // W W W X - - A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1)); - B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1)); - - A3 = vcombine_f32(vQ1zx, vQ1yz); // Z X Y Z - B3 = vcombine_f32(vQ2yz, vQ2xz); // Y Z x z - - A1 = vmulq_f32(A1, B1); - A2 = vmulq_f32(A2, B2); - A3 = vmulq_f32(A3, B3); // A3 *= B3 - A0 = vmulq_lane_f32(vQ2, vget_high_f32(vQ1), 1); // A0 * B0 - - A1 = vaddq_f32(A1, A2); // AB12 = AB1 + AB2 - A0 = vsubq_f32(A0, A3); // AB03 = AB0 - AB3 - - // change the sign of the last element - A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM); - A0 = vaddq_f32(A0, A1); // AB03 + AB12 - - return btQuaternion(A0); - -#else - return btQuaternion( - q1.w() * q2.x() + q1.x() * q2.w() + q1.y() * q2.z() - q1.z() * q2.y(), - q1.w() * q2.y() + q1.y() * q2.w() + q1.z() * q2.x() - q1.x() * q2.z(), - q1.w() * q2.z() + q1.z() * q2.w() + q1.x() * q2.y() - q1.y() * q2.x(), - q1.w() * q2.w() - q1.x() * q2.x() - q1.y() * q2.y() - q1.z() * q2.z()); -#endif -} - -SIMD_FORCE_INLINE btQuaternion -operator*(const btQuaternion& q, const btVector3& w) -{ -#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) - __m128 vQ1 = q.get128(); - __m128 vQ2 = w.get128(); - __m128 A1, B1, A2, B2, A3, B3; - - A1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(3, 3, 3, 0)); - B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(0, 1, 2, 0)); - - A1 = A1 * B1; - - A2 = bt_pshufd_ps(vQ1, BT_SHUFFLE(1, 2, 0, 1)); - B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2, 0, 1, 1)); - - A2 = A2 * B2; - - A3 = bt_pshufd_ps(vQ1, BT_SHUFFLE(2, 0, 1, 2)); - B3 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1, 2, 0, 2)); - - A3 = A3 * B3; // A3 *= B3 - - A1 = A1 + A2; // AB12 - A1 = _mm_xor_ps(A1, vPPPM); // change sign of the last element - A1 = A1 - A3; // AB123 = AB12 - AB3 - - return btQuaternion(A1); - -#elif defined(BT_USE_NEON) - - float32x4_t vQ1 = q.get128(); - float32x4_t vQ2 = w.get128(); - float32x4_t A1, B1, A2, B2, A3, B3; - float32x2_t vQ1wx, vQ2zx, vQ1yz, vQ2yz, vQ1zx, vQ2xz; - - vQ1wx = vext_f32(vget_high_f32(vQ1), vget_low_f32(vQ1), 1); - { - float32x2x2_t tmp; - - tmp = vtrn_f32(vget_high_f32(vQ2), vget_low_f32(vQ2)); // {z x}, {w y} - vQ2zx = tmp.val[0]; - - tmp = vtrn_f32(vget_high_f32(vQ1), vget_low_f32(vQ1)); // {z x}, {w y} - vQ1zx = tmp.val[0]; - } - - vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1); - - vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1); - vQ2xz = vext_f32(vQ2zx, vQ2zx, 1); - - A1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ1), 1), vQ1wx); // W W W X - B1 = vcombine_f32(vget_low_f32(vQ2), vQ2zx); // X Y z x - - A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1)); - B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1)); - - A3 = vcombine_f32(vQ1zx, vQ1yz); // Z X Y Z - B3 = vcombine_f32(vQ2yz, vQ2xz); // Y Z x z - - A1 = vmulq_f32(A1, B1); - A2 = vmulq_f32(A2, B2); - A3 = vmulq_f32(A3, B3); // A3 *= B3 - - A1 = vaddq_f32(A1, A2); // AB12 = AB1 + AB2 - - // change the sign of the last element - A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM); - - A1 = vsubq_f32(A1, A3); // AB123 = AB12 - AB3 - - return btQuaternion(A1); - -#else - return btQuaternion( - q.w() * w.x() + q.y() * w.z() - q.z() * w.y(), - q.w() * w.y() + q.z() * w.x() - q.x() * w.z(), - q.w() * w.z() + q.x() * w.y() - q.y() * w.x(), - -q.x() * w.x() - q.y() * w.y() - q.z() * w.z()); -#endif -} - -SIMD_FORCE_INLINE btQuaternion -operator*(const btVector3& w, const btQuaternion& q) -{ -#if defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) - __m128 vQ1 = w.get128(); - __m128 vQ2 = q.get128(); - __m128 A1, B1, A2, B2, A3, B3; - - A1 = bt_pshufd_ps(vQ1, BT_SHUFFLE(0, 1, 2, 0)); // X Y z x - B1 = bt_pshufd_ps(vQ2, BT_SHUFFLE(3, 3, 3, 0)); // W W W X - - A1 = A1 * B1; - - A2 = bt_pshufd_ps(vQ1, BT_SHUFFLE(1, 2, 0, 1)); - B2 = bt_pshufd_ps(vQ2, BT_SHUFFLE(2, 0, 1, 1)); - - A2 = A2 * B2; - - A3 = bt_pshufd_ps(vQ1, BT_SHUFFLE(2, 0, 1, 2)); - B3 = bt_pshufd_ps(vQ2, BT_SHUFFLE(1, 2, 0, 2)); - - A3 = A3 * B3; // A3 *= B3 - - A1 = A1 + A2; // AB12 - A1 = _mm_xor_ps(A1, vPPPM); // change sign of the last element - A1 = A1 - A3; // AB123 = AB12 - AB3 - - return btQuaternion(A1); - -#elif defined(BT_USE_NEON) - - float32x4_t vQ1 = w.get128(); - float32x4_t vQ2 = q.get128(); - float32x4_t A1, B1, A2, B2, A3, B3; - float32x2_t vQ1zx, vQ2wx, vQ1yz, vQ2zx, vQ2yz, vQ2xz; - - { - float32x2x2_t tmp; - - tmp = vtrn_f32(vget_high_f32(vQ1), vget_low_f32(vQ1)); // {z x}, {w y} - vQ1zx = tmp.val[0]; - - tmp = vtrn_f32(vget_high_f32(vQ2), vget_low_f32(vQ2)); // {z x}, {w y} - vQ2zx = tmp.val[0]; - } - vQ2wx = vext_f32(vget_high_f32(vQ2), vget_low_f32(vQ2), 1); - - vQ1yz = vext_f32(vget_low_f32(vQ1), vget_high_f32(vQ1), 1); - - vQ2yz = vext_f32(vget_low_f32(vQ2), vget_high_f32(vQ2), 1); - vQ2xz = vext_f32(vQ2zx, vQ2zx, 1); - - A1 = vcombine_f32(vget_low_f32(vQ1), vQ1zx); // X Y z x - B1 = vcombine_f32(vdup_lane_f32(vget_high_f32(vQ2), 1), vQ2wx); // W W W X - - A2 = vcombine_f32(vQ1yz, vget_low_f32(vQ1)); - B2 = vcombine_f32(vQ2zx, vdup_lane_f32(vget_low_f32(vQ2), 1)); - - A3 = vcombine_f32(vQ1zx, vQ1yz); // Z X Y Z - B3 = vcombine_f32(vQ2yz, vQ2xz); // Y Z x z - - A1 = vmulq_f32(A1, B1); - A2 = vmulq_f32(A2, B2); - A3 = vmulq_f32(A3, B3); // A3 *= B3 - - A1 = vaddq_f32(A1, A2); // AB12 = AB1 + AB2 - - // change the sign of the last element - A1 = (btSimdFloat4)veorq_s32((int32x4_t)A1, (int32x4_t)vPPPM); - - A1 = vsubq_f32(A1, A3); // AB123 = AB12 - AB3 - - return btQuaternion(A1); - -#else - return btQuaternion( - +w.x() * q.w() + w.y() * q.z() - w.z() * q.y(), - +w.y() * q.w() + w.z() * q.x() - w.x() * q.z(), - +w.z() * q.w() + w.x() * q.y() - w.y() * q.x(), - -w.x() * q.x() - w.y() * q.y() - w.z() * q.z()); -#endif -} - -/**@brief Calculate the dot product between two quaternions */ -SIMD_FORCE_INLINE btScalar -dot(const btQuaternion& q1, const btQuaternion& q2) -{ - return q1.dot(q2); -} - -/**@brief Return the length of a quaternion */ -SIMD_FORCE_INLINE btScalar -length(const btQuaternion& q) -{ - return q.length(); -} - -/**@brief Return the angle between two quaternions*/ -SIMD_FORCE_INLINE btScalar -btAngle(const btQuaternion& q1, const btQuaternion& q2) -{ - return q1.angle(q2); -} - -/**@brief Return the inverse of a quaternion*/ -SIMD_FORCE_INLINE btQuaternion -inverse(const btQuaternion& q) -{ - return q.inverse(); -} - -/**@brief Return the result of spherical linear interpolation betwen two quaternions - * @param q1 The first quaternion - * @param q2 The second quaternion - * @param t The ration between q1 and q2. t = 0 return q1, t=1 returns q2 - * Slerp assumes constant velocity between positions. */ -SIMD_FORCE_INLINE btQuaternion -slerp(const btQuaternion& q1, const btQuaternion& q2, const btScalar& t) -{ - return q1.slerp(q2, t); -} - -SIMD_FORCE_INLINE btVector3 -quatRotate(const btQuaternion& rotation, const btVector3& v) -{ - btQuaternion q = rotation * v; - q *= rotation.inverse(); -#if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) - return btVector3(_mm_and_ps(q.get128(), btvFFF0fMask)); -#elif defined(BT_USE_NEON) - return btVector3((float32x4_t)vandq_s32((int32x4_t)q.get128(), btvFFF0Mask)); -#else - return btVector3(q.getX(), q.getY(), q.getZ()); -#endif -} - -SIMD_FORCE_INLINE btQuaternion -shortestArcQuat(const btVector3& v0, const btVector3& v1) // Game Programming Gems 2.10. make sure v0,v1 are normalized -{ - btVector3 c = v0.cross(v1); - btScalar d = v0.dot(v1); - - if (d < -1.0 + SIMD_EPSILON) - { - btVector3 n, unused; - btPlaneSpace1(v0, n, unused); - return btQuaternion(n.x(), n.y(), n.z(), 0.0f); // just pick any vector that is orthogonal to v0 - } - - btScalar s = btSqrt((1.0f + d) * 2.0f); - btScalar rs = 1.0f / s; - - return btQuaternion(c.getX() * rs, c.getY() * rs, c.getZ() * rs, s * 0.5f); -} - -SIMD_FORCE_INLINE btQuaternion -shortestArcQuatNormalize2(btVector3& v0, btVector3& v1) -{ - v0.normalize(); - v1.normalize(); - return shortestArcQuat(v0, v1); -} - -struct btQuaternionFloatData -{ - float m_floats[4]; -}; - -struct btQuaternionDoubleData -{ - double m_floats[4]; -}; - -SIMD_FORCE_INLINE void btQuaternion::serializeFloat(struct btQuaternionFloatData& dataOut) const -{ - ///could also do a memcpy, check if it is worth it - for (int i = 0; i < 4; i++) - dataOut.m_floats[i] = float(m_floats[i]); -} - -SIMD_FORCE_INLINE void btQuaternion::deSerializeFloat(const struct btQuaternionFloatData& dataIn) -{ - for (int i = 0; i < 4; i++) - m_floats[i] = btScalar(dataIn.m_floats[i]); -} - -SIMD_FORCE_INLINE void btQuaternion::serializeDouble(struct btQuaternionDoubleData& dataOut) const -{ - ///could also do a memcpy, check if it is worth it - for (int i = 0; i < 4; i++) - dataOut.m_floats[i] = double(m_floats[i]); -} - -SIMD_FORCE_INLINE void btQuaternion::deSerializeDouble(const struct btQuaternionDoubleData& dataIn) -{ - for (int i = 0; i < 4; i++) - m_floats[i] = btScalar(dataIn.m_floats[i]); -} - -SIMD_FORCE_INLINE void btQuaternion::serialize(struct btQuaternionData& dataOut) const -{ - ///could also do a memcpy, check if it is worth it - for (int i = 0; i < 4; i++) - dataOut.m_floats[i] = m_floats[i]; -} - -SIMD_FORCE_INLINE void btQuaternion::deSerialize(const struct btQuaternionFloatData& dataIn) -{ - for (int i = 0; i < 4; i++) - m_floats[i] = (btScalar)dataIn.m_floats[i]; -} - -SIMD_FORCE_INLINE void btQuaternion::deSerialize(const struct btQuaternionDoubleData& dataIn) -{ - for (int i = 0; i < 4; i++) - m_floats[i] = (btScalar)dataIn.m_floats[i]; -} - -#endif //BT_SIMD__QUATERNION_H_ |