summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/LinearMath/btMatrix3x3.h
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/bullet/LinearMath/btMatrix3x3.h')
-rw-r--r--thirdparty/bullet/LinearMath/btMatrix3x3.h1472
1 files changed, 730 insertions, 742 deletions
diff --git a/thirdparty/bullet/LinearMath/btMatrix3x3.h b/thirdparty/bullet/LinearMath/btMatrix3x3.h
index 6cc4993da5..0a08ae409a 100644
--- a/thirdparty/bullet/LinearMath/btMatrix3x3.h
+++ b/thirdparty/bullet/LinearMath/btMatrix3x3.h
@@ -12,8 +12,7 @@ subject to the following restrictions:
3. This notice may not be removed or altered from any source distribution.
*/
-
-#ifndef BT_MATRIX3x3_H
+#ifndef BT_MATRIX3x3_H
#define BT_MATRIX3x3_H
#include "btVector3.h"
@@ -23,13 +22,13 @@ subject to the following restrictions:
#ifdef BT_USE_SSE
//const __m128 ATTRIBUTE_ALIGNED16(v2220) = {2.0f, 2.0f, 2.0f, 0.0f};
//const __m128 ATTRIBUTE_ALIGNED16(vMPPP) = {-0.0f, +0.0f, +0.0f, +0.0f};
-#define vMPPP (_mm_set_ps (+0.0f, +0.0f, +0.0f, -0.0f))
+#define vMPPP (_mm_set_ps(+0.0f, +0.0f, +0.0f, -0.0f))
#endif
#if defined(BT_USE_SSE)
-#define v1000 (_mm_set_ps(0.0f,0.0f,0.0f,1.0f))
-#define v0100 (_mm_set_ps(0.0f,0.0f,1.0f,0.0f))
-#define v0010 (_mm_set_ps(0.0f,1.0f,0.0f,0.0f))
+#define v1000 (_mm_set_ps(0.0f, 0.0f, 0.0f, 1.0f))
+#define v0100 (_mm_set_ps(0.0f, 0.0f, 1.0f, 0.0f))
+#define v0010 (_mm_set_ps(0.0f, 1.0f, 0.0f, 0.0f))
#elif defined(BT_USE_NEON)
const btSimdFloat4 ATTRIBUTE_ALIGNED16(v1000) = {1.0f, 0.0f, 0.0f, 0.0f};
const btSimdFloat4 ATTRIBUTE_ALIGNED16(v0100) = {0.0f, 1.0f, 0.0f, 0.0f};
@@ -37,22 +36,22 @@ const btSimdFloat4 ATTRIBUTE_ALIGNED16(v0010) = {0.0f, 0.0f, 1.0f, 0.0f};
#endif
#ifdef BT_USE_DOUBLE_PRECISION
-#define btMatrix3x3Data btMatrix3x3DoubleData
+#define btMatrix3x3Data btMatrix3x3DoubleData
#else
-#define btMatrix3x3Data btMatrix3x3FloatData
-#endif //BT_USE_DOUBLE_PRECISION
-
+#define btMatrix3x3Data btMatrix3x3FloatData
+#endif //BT_USE_DOUBLE_PRECISION
/**@brief The btMatrix3x3 class implements a 3x3 rotation matrix, to perform linear algebra in combination with btQuaternion, btTransform and btVector3.
* Make sure to only include a pure orthogonal matrix without scaling. */
-ATTRIBUTE_ALIGNED16(class) btMatrix3x3 {
-
+ATTRIBUTE_ALIGNED16(class)
+btMatrix3x3
+{
///Data storage for the matrix, each vector is a row of the matrix
btVector3 m_el[3];
public:
/** @brief No initializaion constructor */
- btMatrix3x3 () {}
+ btMatrix3x3() {}
// explicit btMatrix3x3(const btScalar *m) { setFromOpenGLSubMatrix(m); }
@@ -67,27 +66,27 @@ public:
*/
/** @brief Constructor with row major formatting */
btMatrix3x3(const btScalar& xx, const btScalar& xy, const btScalar& xz,
- const btScalar& yx, const btScalar& yy, const btScalar& yz,
- const btScalar& zx, const btScalar& zy, const btScalar& zz)
- {
- setValue(xx, xy, xz,
- yx, yy, yz,
- zx, zy, zz);
+ const btScalar& yx, const btScalar& yy, const btScalar& yz,
+ const btScalar& zx, const btScalar& zy, const btScalar& zz)
+ {
+ setValue(xx, xy, xz,
+ yx, yy, yz,
+ zx, zy, zz);
}
-#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
- SIMD_FORCE_INLINE btMatrix3x3 (const btSimdFloat4 v0, const btSimdFloat4 v1, const btSimdFloat4 v2 )
+#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
+ SIMD_FORCE_INLINE btMatrix3x3(const btSimdFloat4 v0, const btSimdFloat4 v1, const btSimdFloat4 v2)
{
- m_el[0].mVec128 = v0;
- m_el[1].mVec128 = v1;
- m_el[2].mVec128 = v2;
+ m_el[0].mVec128 = v0;
+ m_el[1].mVec128 = v1;
+ m_el[2].mVec128 = v2;
}
- SIMD_FORCE_INLINE btMatrix3x3 (const btVector3& v0, const btVector3& v1, const btVector3& v2 )
+ SIMD_FORCE_INLINE btMatrix3x3(const btVector3& v0, const btVector3& v1, const btVector3& v2)
{
- m_el[0] = v0;
- m_el[1] = v1;
- m_el[2] = v2;
+ m_el[0] = v0;
+ m_el[1] = v1;
+ m_el[2] = v2;
}
// Copy constructor
@@ -99,25 +98,25 @@ public:
}
// Assignment Operator
- SIMD_FORCE_INLINE btMatrix3x3& operator=(const btMatrix3x3& m)
+ SIMD_FORCE_INLINE btMatrix3x3& operator=(const btMatrix3x3& m)
{
m_el[0].mVec128 = m.m_el[0].mVec128;
m_el[1].mVec128 = m.m_el[1].mVec128;
m_el[2].mVec128 = m.m_el[2].mVec128;
-
+
return *this;
}
#else
/** @brief Copy constructor */
- SIMD_FORCE_INLINE btMatrix3x3 (const btMatrix3x3& other)
+ SIMD_FORCE_INLINE btMatrix3x3(const btMatrix3x3& other)
{
m_el[0] = other.m_el[0];
m_el[1] = other.m_el[1];
m_el[2] = other.m_el[2];
}
-
+
/** @brief Assignment Operator */
SIMD_FORCE_INLINE btMatrix3x3& operator=(const btMatrix3x3& other)
{
@@ -133,10 +132,9 @@ public:
* @param i Column number 0 indexed */
SIMD_FORCE_INLINE btVector3 getColumn(int i) const
{
- return btVector3(m_el[0][i],m_el[1][i],m_el[2][i]);
+ return btVector3(m_el[0][i], m_el[1][i], m_el[2][i]);
}
-
/** @brief Get a row of the matrix as a vector
* @param i Row number 0 indexed */
SIMD_FORCE_INLINE const btVector3& getRow(int i) const
@@ -147,10 +145,10 @@ public:
/** @brief Get a mutable reference to a row of the matrix as a vector
* @param i Row number 0 indexed */
- SIMD_FORCE_INLINE btVector3& operator[](int i)
- {
+ SIMD_FORCE_INLINE btVector3& operator[](int i)
+ {
btFullAssert(0 <= i && i < 3);
- return m_el[i];
+ return m_el[i];
}
/** @brief Get a const reference to a row of the matrix as a vector
@@ -158,32 +156,31 @@ public:
SIMD_FORCE_INLINE const btVector3& operator[](int i) const
{
btFullAssert(0 <= i && i < 3);
- return m_el[i];
+ return m_el[i];
}
/** @brief Multiply by the target matrix on the right
* @param m Rotation matrix to be applied
* Equivilant to this = this * m */
- btMatrix3x3& operator*=(const btMatrix3x3& m);
+ btMatrix3x3& operator*=(const btMatrix3x3& m);
/** @brief Adds by the target matrix on the right
* @param m matrix to be applied
* Equivilant to this = this + m */
- btMatrix3x3& operator+=(const btMatrix3x3& m);
+ btMatrix3x3& operator+=(const btMatrix3x3& m);
/** @brief Substractss by the target matrix on the right
* @param m matrix to be applied
* Equivilant to this = this - m */
- btMatrix3x3& operator-=(const btMatrix3x3& m);
+ btMatrix3x3& operator-=(const btMatrix3x3& m);
/** @brief Set from the rotational part of a 4x4 OpenGL matrix
* @param m A pointer to the beginning of the array of scalars*/
- void setFromOpenGLSubMatrix(const btScalar *m)
+ void setFromOpenGLSubMatrix(const btScalar* m)
{
- m_el[0].setValue(m[0],m[4],m[8]);
- m_el[1].setValue(m[1],m[5],m[9]);
- m_el[2].setValue(m[2],m[6],m[10]);
-
+ m_el[0].setValue(m[0], m[4], m[8]);
+ m_el[1].setValue(m[1], m[5], m[9]);
+ m_el[2].setValue(m[2], m[6], m[10]);
}
/** @brief Set the values of the matrix explicitly (row major)
* @param xx Top left
@@ -195,93 +192,92 @@ public:
* @param zx Bottom Left
* @param zy Bottom Middle
* @param zz Bottom Right*/
- void setValue(const btScalar& xx, const btScalar& xy, const btScalar& xz,
- const btScalar& yx, const btScalar& yy, const btScalar& yz,
- const btScalar& zx, const btScalar& zy, const btScalar& zz)
+ void setValue(const btScalar& xx, const btScalar& xy, const btScalar& xz,
+ const btScalar& yx, const btScalar& yy, const btScalar& yz,
+ const btScalar& zx, const btScalar& zy, const btScalar& zz)
{
- m_el[0].setValue(xx,xy,xz);
- m_el[1].setValue(yx,yy,yz);
- m_el[2].setValue(zx,zy,zz);
+ m_el[0].setValue(xx, xy, xz);
+ m_el[1].setValue(yx, yy, yz);
+ m_el[2].setValue(zx, zy, zz);
}
/** @brief Set the matrix from a quaternion
- * @param q The Quaternion to match */
- void setRotation(const btQuaternion& q)
+ * @param q The Quaternion to match */
+ void setRotation(const btQuaternion& q)
{
btScalar d = q.length2();
btFullAssert(d != btScalar(0.0));
btScalar s = btScalar(2.0) / d;
-
- #if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
- __m128 vs, Q = q.get128();
+
+#if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
+ __m128 vs, Q = q.get128();
__m128i Qi = btCastfTo128i(Q);
- __m128 Y, Z;
- __m128 V1, V2, V3;
- __m128 V11, V21, V31;
- __m128 NQ = _mm_xor_ps(Q, btvMzeroMask);
+ __m128 Y, Z;
+ __m128 V1, V2, V3;
+ __m128 V11, V21, V31;
+ __m128 NQ = _mm_xor_ps(Q, btvMzeroMask);
__m128i NQi = btCastfTo128i(NQ);
-
- V1 = btCastiTo128f(_mm_shuffle_epi32 (Qi, BT_SHUFFLE(1,0,2,3))); // Y X Z W
- V2 = _mm_shuffle_ps(NQ, Q, BT_SHUFFLE(0,0,1,3)); // -X -X Y W
- V3 = btCastiTo128f(_mm_shuffle_epi32 (Qi, BT_SHUFFLE(2,1,0,3))); // Z Y X W
- V1 = _mm_xor_ps(V1, vMPPP); // change the sign of the first element
-
- V11 = btCastiTo128f(_mm_shuffle_epi32 (Qi, BT_SHUFFLE(1,1,0,3))); // Y Y X W
- V21 = _mm_unpackhi_ps(Q, Q); // Z Z W W
- V31 = _mm_shuffle_ps(Q, NQ, BT_SHUFFLE(0,2,0,3)); // X Z -X -W
-
- V2 = V2 * V1; //
- V1 = V1 * V11; //
- V3 = V3 * V31; //
-
- V11 = _mm_shuffle_ps(NQ, Q, BT_SHUFFLE(2,3,1,3)); // -Z -W Y W
- V11 = V11 * V21; //
- V21 = _mm_xor_ps(V21, vMPPP); // change the sign of the first element
- V31 = _mm_shuffle_ps(Q, NQ, BT_SHUFFLE(3,3,1,3)); // W W -Y -W
- V31 = _mm_xor_ps(V31, vMPPP); // change the sign of the first element
- Y = btCastiTo128f(_mm_shuffle_epi32 (NQi, BT_SHUFFLE(3,2,0,3))); // -W -Z -X -W
- Z = btCastiTo128f(_mm_shuffle_epi32 (Qi, BT_SHUFFLE(1,0,1,3))); // Y X Y W
+
+ V1 = btCastiTo128f(_mm_shuffle_epi32(Qi, BT_SHUFFLE(1, 0, 2, 3))); // Y X Z W
+ V2 = _mm_shuffle_ps(NQ, Q, BT_SHUFFLE(0, 0, 1, 3)); // -X -X Y W
+ V3 = btCastiTo128f(_mm_shuffle_epi32(Qi, BT_SHUFFLE(2, 1, 0, 3))); // Z Y X W
+ V1 = _mm_xor_ps(V1, vMPPP); // change the sign of the first element
+
+ V11 = btCastiTo128f(_mm_shuffle_epi32(Qi, BT_SHUFFLE(1, 1, 0, 3))); // Y Y X W
+ V21 = _mm_unpackhi_ps(Q, Q); // Z Z W W
+ V31 = _mm_shuffle_ps(Q, NQ, BT_SHUFFLE(0, 2, 0, 3)); // X Z -X -W
+
+ V2 = V2 * V1; //
+ V1 = V1 * V11; //
+ V3 = V3 * V31; //
+
+ V11 = _mm_shuffle_ps(NQ, Q, BT_SHUFFLE(2, 3, 1, 3)); // -Z -W Y W
+ V11 = V11 * V21; //
+ V21 = _mm_xor_ps(V21, vMPPP); // change the sign of the first element
+ V31 = _mm_shuffle_ps(Q, NQ, BT_SHUFFLE(3, 3, 1, 3)); // W W -Y -W
+ V31 = _mm_xor_ps(V31, vMPPP); // change the sign of the first element
+ Y = btCastiTo128f(_mm_shuffle_epi32(NQi, BT_SHUFFLE(3, 2, 0, 3))); // -W -Z -X -W
+ Z = btCastiTo128f(_mm_shuffle_epi32(Qi, BT_SHUFFLE(1, 0, 1, 3))); // Y X Y W
vs = _mm_load_ss(&s);
V21 = V21 * Y;
V31 = V31 * Z;
V1 = V1 + V11;
- V2 = V2 + V21;
- V3 = V3 + V31;
-
- vs = bt_splat3_ps(vs, 0);
- // s ready
- V1 = V1 * vs;
- V2 = V2 * vs;
- V3 = V3 * vs;
-
- V1 = V1 + v1000;
- V2 = V2 + v0100;
- V3 = V3 + v0010;
-
- m_el[0] = V1;
- m_el[1] = V2;
- m_el[2] = V3;
- #else
- btScalar xs = q.x() * s, ys = q.y() * s, zs = q.z() * s;
- btScalar wx = q.w() * xs, wy = q.w() * ys, wz = q.w() * zs;
- btScalar xx = q.x() * xs, xy = q.x() * ys, xz = q.x() * zs;
- btScalar yy = q.y() * ys, yz = q.y() * zs, zz = q.z() * zs;
+ V2 = V2 + V21;
+ V3 = V3 + V31;
+
+ vs = bt_splat3_ps(vs, 0);
+ // s ready
+ V1 = V1 * vs;
+ V2 = V2 * vs;
+ V3 = V3 * vs;
+
+ V1 = V1 + v1000;
+ V2 = V2 + v0100;
+ V3 = V3 + v0010;
+
+ m_el[0] = V1;
+ m_el[1] = V2;
+ m_el[2] = V3;
+#else
+ btScalar xs = q.x() * s, ys = q.y() * s, zs = q.z() * s;
+ btScalar wx = q.w() * xs, wy = q.w() * ys, wz = q.w() * zs;
+ btScalar xx = q.x() * xs, xy = q.x() * ys, xz = q.x() * zs;
+ btScalar yy = q.y() * ys, yz = q.y() * zs, zz = q.z() * zs;
setValue(
- btScalar(1.0) - (yy + zz), xy - wz, xz + wy,
+ btScalar(1.0) - (yy + zz), xy - wz, xz + wy,
xy + wz, btScalar(1.0) - (xx + zz), yz - wx,
xz - wy, yz + wx, btScalar(1.0) - (xx + yy));
- #endif
- }
-
+#endif
+ }
/** @brief Set the matrix from euler angles using YPR around YXZ respectively
* @param yaw Yaw about Y axis
* @param pitch Pitch about X axis
* @param roll Roll about Z axis
*/
- void setEulerYPR(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
+ void setEulerYPR(const btScalar& yaw, const btScalar& pitch, const btScalar& roll)
{
setEulerZYX(roll, pitch, yaw);
}
@@ -295,182 +291,197 @@ public:
* angles are applied in ZYX order. I.e a vector is first rotated
* about X then Y and then Z
**/
- void setEulerZYX(btScalar eulerX,btScalar eulerY,btScalar eulerZ) {
+ void setEulerZYX(btScalar eulerX, btScalar eulerY, btScalar eulerZ)
+ {
///@todo proposed to reverse this since it's labeled zyx but takes arguments xyz and it will match all other parts of the code
- btScalar ci ( btCos(eulerX));
- btScalar cj ( btCos(eulerY));
- btScalar ch ( btCos(eulerZ));
- btScalar si ( btSin(eulerX));
- btScalar sj ( btSin(eulerY));
- btScalar sh ( btSin(eulerZ));
- btScalar cc = ci * ch;
- btScalar cs = ci * sh;
- btScalar sc = si * ch;
+ btScalar ci(btCos(eulerX));
+ btScalar cj(btCos(eulerY));
+ btScalar ch(btCos(eulerZ));
+ btScalar si(btSin(eulerX));
+ btScalar sj(btSin(eulerY));
+ btScalar sh(btSin(eulerZ));
+ btScalar cc = ci * ch;
+ btScalar cs = ci * sh;
+ btScalar sc = si * ch;
btScalar ss = si * sh;
setValue(cj * ch, sj * sc - cs, sj * cc + ss,
- cj * sh, sj * ss + cc, sj * cs - sc,
- -sj, cj * si, cj * ci);
+ cj * sh, sj * ss + cc, sj * cs - sc,
+ -sj, cj * si, cj * ci);
}
/**@brief Set the matrix to the identity */
void setIdentity()
- {
-#if (defined(BT_USE_SSE_IN_API)&& defined (BT_USE_SSE)) || defined(BT_USE_NEON)
- m_el[0] = v1000;
- m_el[1] = v0100;
- m_el[2] = v0010;
+ {
+#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
+ m_el[0] = v1000;
+ m_el[1] = v0100;
+ m_el[2] = v0010;
#else
- setValue(btScalar(1.0), btScalar(0.0), btScalar(0.0),
- btScalar(0.0), btScalar(1.0), btScalar(0.0),
- btScalar(0.0), btScalar(0.0), btScalar(1.0));
+ setValue(btScalar(1.0), btScalar(0.0), btScalar(0.0),
+ btScalar(0.0), btScalar(1.0), btScalar(0.0),
+ btScalar(0.0), btScalar(0.0), btScalar(1.0));
#endif
}
- static const btMatrix3x3& getIdentity()
+ static const btMatrix3x3& getIdentity()
{
-#if (defined(BT_USE_SSE_IN_API)&& defined (BT_USE_SSE)) || defined(BT_USE_NEON)
- static const btMatrix3x3
- identityMatrix(v1000, v0100, v0010);
+#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
+ static const btMatrix3x3
+ identityMatrix(v1000, v0100, v0010);
#else
- static const btMatrix3x3
- identityMatrix(
- btScalar(1.0), btScalar(0.0), btScalar(0.0),
- btScalar(0.0), btScalar(1.0), btScalar(0.0),
- btScalar(0.0), btScalar(0.0), btScalar(1.0));
+ static const btMatrix3x3
+ identityMatrix(
+ btScalar(1.0), btScalar(0.0), btScalar(0.0),
+ btScalar(0.0), btScalar(1.0), btScalar(0.0),
+ btScalar(0.0), btScalar(0.0), btScalar(1.0));
#endif
return identityMatrix;
}
/**@brief Fill the rotational part of an OpenGL matrix and clear the shear/perspective
* @param m The array to be filled */
- void getOpenGLSubMatrix(btScalar *m) const
+ void getOpenGLSubMatrix(btScalar * m) const
{
-#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
- __m128 v0 = m_el[0].mVec128;
- __m128 v1 = m_el[1].mVec128;
- __m128 v2 = m_el[2].mVec128; // x2 y2 z2 w2
- __m128 *vm = (__m128 *)m;
- __m128 vT;
-
- v2 = _mm_and_ps(v2, btvFFF0fMask); // x2 y2 z2 0
-
- vT = _mm_unpackhi_ps(v0, v1); // z0 z1 * *
- v0 = _mm_unpacklo_ps(v0, v1); // x0 x1 y0 y1
-
- v1 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(2, 3, 1, 3) ); // y0 y1 y2 0
- v0 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(0, 1, 0, 3) ); // x0 x1 x2 0
- v2 = btCastdTo128f(_mm_move_sd(btCastfTo128d(v2), btCastfTo128d(vT))); // z0 z1 z2 0
-
- vm[0] = v0;
- vm[1] = v1;
- vm[2] = v2;
+#if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
+ __m128 v0 = m_el[0].mVec128;
+ __m128 v1 = m_el[1].mVec128;
+ __m128 v2 = m_el[2].mVec128; // x2 y2 z2 w2
+ __m128* vm = (__m128*)m;
+ __m128 vT;
+
+ v2 = _mm_and_ps(v2, btvFFF0fMask); // x2 y2 z2 0
+
+ vT = _mm_unpackhi_ps(v0, v1); // z0 z1 * *
+ v0 = _mm_unpacklo_ps(v0, v1); // x0 x1 y0 y1
+
+ v1 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(2, 3, 1, 3)); // y0 y1 y2 0
+ v0 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(0, 1, 0, 3)); // x0 x1 x2 0
+ v2 = btCastdTo128f(_mm_move_sd(btCastfTo128d(v2), btCastfTo128d(vT))); // z0 z1 z2 0
+
+ vm[0] = v0;
+ vm[1] = v1;
+ vm[2] = v2;
#elif defined(BT_USE_NEON)
- // note: zeros the w channel. We can preserve it at the cost of two more vtrn instructions.
- static const uint32x2_t zMask = (const uint32x2_t) {static_cast<uint32_t>(-1), 0 };
- float32x4_t *vm = (float32x4_t *)m;
- float32x4x2_t top = vtrnq_f32( m_el[0].mVec128, m_el[1].mVec128 ); // {x0 x1 z0 z1}, {y0 y1 w0 w1}
- float32x2x2_t bl = vtrn_f32( vget_low_f32(m_el[2].mVec128), vdup_n_f32(0.0f) ); // {x2 0 }, {y2 0}
- float32x4_t v0 = vcombine_f32( vget_low_f32(top.val[0]), bl.val[0] );
- float32x4_t v1 = vcombine_f32( vget_low_f32(top.val[1]), bl.val[1] );
- float32x2_t q = (float32x2_t) vand_u32( (uint32x2_t) vget_high_f32( m_el[2].mVec128), zMask );
- float32x4_t v2 = vcombine_f32( vget_high_f32(top.val[0]), q ); // z0 z1 z2 0
-
- vm[0] = v0;
- vm[1] = v1;
- vm[2] = v2;
+ // note: zeros the w channel. We can preserve it at the cost of two more vtrn instructions.
+ static const uint32x2_t zMask = (const uint32x2_t){static_cast<uint32_t>(-1), 0};
+ float32x4_t* vm = (float32x4_t*)m;
+ float32x4x2_t top = vtrnq_f32(m_el[0].mVec128, m_el[1].mVec128); // {x0 x1 z0 z1}, {y0 y1 w0 w1}
+ float32x2x2_t bl = vtrn_f32(vget_low_f32(m_el[2].mVec128), vdup_n_f32(0.0f)); // {x2 0 }, {y2 0}
+ float32x4_t v0 = vcombine_f32(vget_low_f32(top.val[0]), bl.val[0]);
+ float32x4_t v1 = vcombine_f32(vget_low_f32(top.val[1]), bl.val[1]);
+ float32x2_t q = (float32x2_t)vand_u32((uint32x2_t)vget_high_f32(m_el[2].mVec128), zMask);
+ float32x4_t v2 = vcombine_f32(vget_high_f32(top.val[0]), q); // z0 z1 z2 0
+
+ vm[0] = v0;
+ vm[1] = v1;
+ vm[2] = v2;
#else
- m[0] = btScalar(m_el[0].x());
- m[1] = btScalar(m_el[1].x());
- m[2] = btScalar(m_el[2].x());
- m[3] = btScalar(0.0);
- m[4] = btScalar(m_el[0].y());
- m[5] = btScalar(m_el[1].y());
- m[6] = btScalar(m_el[2].y());
- m[7] = btScalar(0.0);
- m[8] = btScalar(m_el[0].z());
- m[9] = btScalar(m_el[1].z());
+ m[0] = btScalar(m_el[0].x());
+ m[1] = btScalar(m_el[1].x());
+ m[2] = btScalar(m_el[2].x());
+ m[3] = btScalar(0.0);
+ m[4] = btScalar(m_el[0].y());
+ m[5] = btScalar(m_el[1].y());
+ m[6] = btScalar(m_el[2].y());
+ m[7] = btScalar(0.0);
+ m[8] = btScalar(m_el[0].z());
+ m[9] = btScalar(m_el[1].z());
m[10] = btScalar(m_el[2].z());
- m[11] = btScalar(0.0);
+ m[11] = btScalar(0.0);
#endif
}
/**@brief Get the matrix represented as a quaternion
* @param q The quaternion which will be set */
- void getRotation(btQuaternion& q) const
+ void getRotation(btQuaternion & q) const
{
-#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
- btScalar trace = m_el[0].x() + m_el[1].y() + m_el[2].z();
- btScalar s, x;
-
- union {
- btSimdFloat4 vec;
- btScalar f[4];
- } temp;
-
- if (trace > btScalar(0.0))
- {
- x = trace + btScalar(1.0);
-
- temp.f[0]=m_el[2].y() - m_el[1].z();
- temp.f[1]=m_el[0].z() - m_el[2].x();
- temp.f[2]=m_el[1].x() - m_el[0].y();
- temp.f[3]=x;
- //temp.f[3]= s * btScalar(0.5);
- }
- else
- {
- int i, j, k;
- if(m_el[0].x() < m_el[1].y())
- {
- if( m_el[1].y() < m_el[2].z() )
- { i = 2; j = 0; k = 1; }
- else
- { i = 1; j = 2; k = 0; }
- }
- else
- {
- if( m_el[0].x() < m_el[2].z())
- { i = 2; j = 0; k = 1; }
- else
- { i = 0; j = 1; k = 2; }
- }
-
- x = m_el[i][i] - m_el[j][j] - m_el[k][k] + btScalar(1.0);
-
- temp.f[3] = (m_el[k][j] - m_el[j][k]);
- temp.f[j] = (m_el[j][i] + m_el[i][j]);
- temp.f[k] = (m_el[k][i] + m_el[i][k]);
- temp.f[i] = x;
- //temp.f[i] = s * btScalar(0.5);
- }
-
- s = btSqrt(x);
- q.set128(temp.vec);
- s = btScalar(0.5) / s;
-
- q *= s;
-#else
+#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
+ btScalar trace = m_el[0].x() + m_el[1].y() + m_el[2].z();
+ btScalar s, x;
+
+ union {
+ btSimdFloat4 vec;
+ btScalar f[4];
+ } temp;
+
+ if (trace > btScalar(0.0))
+ {
+ x = trace + btScalar(1.0);
+
+ temp.f[0] = m_el[2].y() - m_el[1].z();
+ temp.f[1] = m_el[0].z() - m_el[2].x();
+ temp.f[2] = m_el[1].x() - m_el[0].y();
+ temp.f[3] = x;
+ //temp.f[3]= s * btScalar(0.5);
+ }
+ else
+ {
+ int i, j, k;
+ if (m_el[0].x() < m_el[1].y())
+ {
+ if (m_el[1].y() < m_el[2].z())
+ {
+ i = 2;
+ j = 0;
+ k = 1;
+ }
+ else
+ {
+ i = 1;
+ j = 2;
+ k = 0;
+ }
+ }
+ else
+ {
+ if (m_el[0].x() < m_el[2].z())
+ {
+ i = 2;
+ j = 0;
+ k = 1;
+ }
+ else
+ {
+ i = 0;
+ j = 1;
+ k = 2;
+ }
+ }
+
+ x = m_el[i][i] - m_el[j][j] - m_el[k][k] + btScalar(1.0);
+
+ temp.f[3] = (m_el[k][j] - m_el[j][k]);
+ temp.f[j] = (m_el[j][i] + m_el[i][j]);
+ temp.f[k] = (m_el[k][i] + m_el[i][k]);
+ temp.f[i] = x;
+ //temp.f[i] = s * btScalar(0.5);
+ }
+
+ s = btSqrt(x);
+ q.set128(temp.vec);
+ s = btScalar(0.5) / s;
+
+ q *= s;
+#else
btScalar trace = m_el[0].x() + m_el[1].y() + m_el[2].z();
btScalar temp[4];
- if (trace > btScalar(0.0))
+ if (trace > btScalar(0.0))
{
btScalar s = btSqrt(trace + btScalar(1.0));
- temp[3]=(s * btScalar(0.5));
+ temp[3] = (s * btScalar(0.5));
s = btScalar(0.5) / s;
- temp[0]=((m_el[2].y() - m_el[1].z()) * s);
- temp[1]=((m_el[0].z() - m_el[2].x()) * s);
- temp[2]=((m_el[1].x() - m_el[0].y()) * s);
- }
- else
+ temp[0] = ((m_el[2].y() - m_el[1].z()) * s);
+ temp[1] = ((m_el[0].z() - m_el[2].x()) * s);
+ temp[2] = ((m_el[1].x() - m_el[0].y()) * s);
+ }
+ else
{
- int i = m_el[0].x() < m_el[1].y() ?
- (m_el[1].y() < m_el[2].z() ? 2 : 1) :
- (m_el[0].x() < m_el[2].z() ? 2 : 0);
- int j = (i + 1) % 3;
+ int i = m_el[0].x() < m_el[1].y() ? (m_el[1].y() < m_el[2].z() ? 2 : 1) : (m_el[0].x() < m_el[2].z() ? 2 : 0);
+ int j = (i + 1) % 3;
int k = (i + 2) % 3;
btScalar s = btSqrt(m_el[i][i] - m_el[j][j] - m_el[k][k] + btScalar(1.0));
@@ -481,44 +492,42 @@ public:
temp[j] = (m_el[j][i] + m_el[i][j]) * s;
temp[k] = (m_el[k][i] + m_el[i][k]) * s;
}
- q.setValue(temp[0],temp[1],temp[2],temp[3]);
+ q.setValue(temp[0], temp[1], temp[2], temp[3]);
#endif
}
/**@brief Get the matrix represented as euler angles around YXZ, roundtrip with setEulerYPR
* @param yaw Yaw around Y axis
* @param pitch Pitch around X axis
- * @param roll around Z axis */
- void getEulerYPR(btScalar& yaw, btScalar& pitch, btScalar& roll) const
+ * @param roll around Z axis */
+ void getEulerYPR(btScalar & yaw, btScalar & pitch, btScalar & roll) const
{
-
// first use the normal calculus
yaw = btScalar(btAtan2(m_el[1].x(), m_el[0].x()));
pitch = btScalar(btAsin(-m_el[2].x()));
roll = btScalar(btAtan2(m_el[2].y(), m_el[2].z()));
// on pitch = +/-HalfPI
- if (btFabs(pitch)==SIMD_HALF_PI)
+ if (btFabs(pitch) == SIMD_HALF_PI)
{
- if (yaw>0)
- yaw-=SIMD_PI;
+ if (yaw > 0)
+ yaw -= SIMD_PI;
else
- yaw+=SIMD_PI;
+ yaw += SIMD_PI;
- if (roll>0)
- roll-=SIMD_PI;
+ if (roll > 0)
+ roll -= SIMD_PI;
else
- roll+=SIMD_PI;
+ roll += SIMD_PI;
}
};
-
/**@brief Get the matrix represented as euler angles around ZYX
* @param yaw Yaw around Z axis
* @param pitch Pitch around Y axis
* @param roll around X axis
- * @param solution_number Which solution of two possible solutions ( 1 or 2) are possible values*/
- void getEulerZYX(btScalar& yaw, btScalar& pitch, btScalar& roll, unsigned int solution_number = 1) const
+ * @param solution_number Which solution of two possible solutions ( 1 or 2) are possible values*/
+ void getEulerZYX(btScalar & yaw, btScalar & pitch, btScalar & roll, unsigned int solution_number = 1) const
{
struct Euler
{
@@ -528,7 +537,7 @@ public:
};
Euler euler_out;
- Euler euler_out2; //second solution
+ Euler euler_out2; //second solution
//get the pointer to the raw data
// Check that pitch is not at a singularity
@@ -538,7 +547,7 @@ public:
euler_out2.yaw = 0;
// From difference of angles formula
- btScalar delta = btAtan2(m_el[0].x(),m_el[0].z());
+ btScalar delta = btAtan2(m_el[0].x(), m_el[0].z());
if (m_el[2].x() > 0) //gimbal locked up
{
euler_out.pitch = SIMD_PI / btScalar(2.0);
@@ -546,7 +555,7 @@ public:
euler_out.roll = euler_out.pitch + delta;
euler_out2.roll = euler_out.pitch + delta;
}
- else // gimbal locked down
+ else // gimbal locked down
{
euler_out.pitch = -SIMD_PI / btScalar(2.0);
euler_out2.pitch = -SIMD_PI / btScalar(2.0);
@@ -556,29 +565,29 @@ public:
}
else
{
- euler_out.pitch = - btAsin(m_el[2].x());
+ euler_out.pitch = -btAsin(m_el[2].x());
euler_out2.pitch = SIMD_PI - euler_out.pitch;
- euler_out.roll = btAtan2(m_el[2].y()/btCos(euler_out.pitch),
- m_el[2].z()/btCos(euler_out.pitch));
- euler_out2.roll = btAtan2(m_el[2].y()/btCos(euler_out2.pitch),
- m_el[2].z()/btCos(euler_out2.pitch));
+ euler_out.roll = btAtan2(m_el[2].y() / btCos(euler_out.pitch),
+ m_el[2].z() / btCos(euler_out.pitch));
+ euler_out2.roll = btAtan2(m_el[2].y() / btCos(euler_out2.pitch),
+ m_el[2].z() / btCos(euler_out2.pitch));
- euler_out.yaw = btAtan2(m_el[1].x()/btCos(euler_out.pitch),
- m_el[0].x()/btCos(euler_out.pitch));
- euler_out2.yaw = btAtan2(m_el[1].x()/btCos(euler_out2.pitch),
- m_el[0].x()/btCos(euler_out2.pitch));
+ euler_out.yaw = btAtan2(m_el[1].x() / btCos(euler_out.pitch),
+ m_el[0].x() / btCos(euler_out.pitch));
+ euler_out2.yaw = btAtan2(m_el[1].x() / btCos(euler_out2.pitch),
+ m_el[0].x() / btCos(euler_out2.pitch));
}
if (solution_number == 1)
- {
- yaw = euler_out.yaw;
+ {
+ yaw = euler_out.yaw;
pitch = euler_out.pitch;
roll = euler_out.roll;
}
else
- {
- yaw = euler_out2.yaw;
+ {
+ yaw = euler_out2.yaw;
pitch = euler_out2.pitch;
roll = euler_out2.roll;
}
@@ -589,18 +598,18 @@ public:
btMatrix3x3 scaled(const btVector3& s) const
{
-#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
+#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
return btMatrix3x3(m_el[0] * s, m_el[1] * s, m_el[2] * s);
-#else
+#else
return btMatrix3x3(
- m_el[0].x() * s.x(), m_el[0].y() * s.y(), m_el[0].z() * s.z(),
+ m_el[0].x() * s.x(), m_el[0].y() * s.y(), m_el[0].z() * s.z(),
m_el[1].x() * s.x(), m_el[1].y() * s.y(), m_el[1].z() * s.z(),
m_el[2].x() * s.x(), m_el[2].y() * s.y(), m_el[2].z() * s.z());
#endif
}
/**@brief Return the determinant of the matrix */
- btScalar determinant() const;
+ btScalar determinant() const;
/**@brief Return the adjoint of the matrix */
btMatrix3x3 adjoint() const;
/**@brief Return the matrix with all values non negative */
@@ -608,7 +617,7 @@ public:
/**@brief Return the transpose of the matrix */
btMatrix3x3 transpose() const;
/**@brief Return the inverse of the matrix */
- btMatrix3x3 inverse() const;
+ btMatrix3x3 inverse() const;
/// Solve A * x = b, where b is a column vector. This is more efficient
/// than computing the inverse in one-shot cases.
@@ -618,9 +627,9 @@ public:
btVector3 col1 = getColumn(0);
btVector3 col2 = getColumn(1);
btVector3 col3 = getColumn(2);
-
+
btScalar det = btDot(col1, btCross(col2, col3));
- if (btFabs(det)>SIMD_EPSILON)
+ if (btFabs(det) > SIMD_EPSILON)
{
det = 1.0f / det;
}
@@ -634,15 +643,15 @@ public:
btMatrix3x3 transposeTimes(const btMatrix3x3& m) const;
btMatrix3x3 timesTranspose(const btMatrix3x3& m) const;
- SIMD_FORCE_INLINE btScalar tdotx(const btVector3& v) const
+ SIMD_FORCE_INLINE btScalar tdotx(const btVector3& v) const
{
return m_el[0].x() * v.x() + m_el[1].x() * v.y() + m_el[2].x() * v.z();
}
- SIMD_FORCE_INLINE btScalar tdoty(const btVector3& v) const
+ SIMD_FORCE_INLINE btScalar tdoty(const btVector3& v) const
{
return m_el[0].y() * v.x() + m_el[1].y() * v.y() + m_el[2].y() * v.z();
}
- SIMD_FORCE_INLINE btScalar tdotz(const btVector3& v) const
+ SIMD_FORCE_INLINE btScalar tdotz(const btVector3& v) const
{
return m_el[0].z() * v.x() + m_el[1].z() * v.y() + m_el[2].z() * v.z();
}
@@ -653,31 +662,25 @@ public:
///symmetric matrix S:
///A = R*S.
///note that R can include both rotation and scaling.
- SIMD_FORCE_INLINE void extractRotation(btQuaternion &q,btScalar tolerance = 1.0e-9, int maxIter=100)
+ SIMD_FORCE_INLINE void extractRotation(btQuaternion & q, btScalar tolerance = 1.0e-9, int maxIter = 100)
{
- int iter =0;
+ int iter = 0;
btScalar w;
- const btMatrix3x3& A=*this;
- for(iter = 0; iter < maxIter; iter++)
+ const btMatrix3x3& A = *this;
+ for (iter = 0; iter < maxIter; iter++)
{
btMatrix3x3 R(q);
- btVector3 omega = (R.getColumn(0).cross(A.getColumn(0)) + R.getColumn(1).cross(A.getColumn(1))
- + R.getColumn(2).cross(A.getColumn(2))
- ) * (btScalar(1.0) / btFabs(R.getColumn(0).dot(A.getColumn(0)) + R.getColumn
- (1).dot(A.getColumn(1)) + R.getColumn(2).dot(A.getColumn(2))) +
- tolerance);
+ btVector3 omega = (R.getColumn(0).cross(A.getColumn(0)) + R.getColumn(1).cross(A.getColumn(1)) + R.getColumn(2).cross(A.getColumn(2))) * (btScalar(1.0) / btFabs(R.getColumn(0).dot(A.getColumn(0)) + R.getColumn(1).dot(A.getColumn(1)) + R.getColumn(2).dot(A.getColumn(2))) +
+ tolerance);
w = omega.norm();
- if(w < tolerance)
+ if (w < tolerance)
break;
- q = btQuaternion(btVector3((btScalar(1.0) / w) * omega),w) *
+ q = btQuaternion(btVector3((btScalar(1.0) / w) * omega), w) *
q;
q.normalize();
}
}
-
-
-
/**@brief diagonalizes this matrix by the Jacobi method.
* @param rot stores the rotation from the coordinate system in which the matrix is diagonal to the original
* coordinate system, i.e., old_this = rot * new_this * rot^T.
@@ -687,7 +690,7 @@ public:
*
* Note that this matrix is assumed to be symmetric.
*/
- void diagonalize(btMatrix3x3& rot, btScalar threshold, int maxSteps)
+ void diagonalize(btMatrix3x3 & rot, btScalar threshold, int maxSteps)
{
rot.setIdentity();
for (int step = maxSteps; step > 0; step--)
@@ -723,7 +726,7 @@ public:
step = 1;
}
- // compute Jacobi rotation J which leads to a zero for element [p][q]
+ // compute Jacobi rotation J which leads to a zero for element [p][q]
btScalar mpq = m_el[p][q];
btScalar theta = (m_el[q][q] - m_el[p][p]) / (2 * mpq);
btScalar theta2 = theta * theta;
@@ -732,7 +735,7 @@ public:
if (theta2 * theta2 < btScalar(10 / SIMD_EPSILON))
{
t = (theta >= 0) ? 1 / (theta + btSqrt(1 + theta2))
- : 1 / (theta - btSqrt(1 + theta2));
+ : 1 / (theta - btSqrt(1 + theta2));
cos = 1 / btSqrt(1 + t * t);
sin = cos * t;
}
@@ -765,8 +768,6 @@ public:
}
}
-
-
/**@brief Calculate the matrix cofactor
* @param r1 The first row to use for calculating the cofactor
* @param c1 The first column to use for calculating the cofactor
@@ -774,304 +775,298 @@ public:
* @param c1 The second column to use for calculating the cofactor
* See http://en.wikipedia.org/wiki/Cofactor_(linear_algebra) for more details
*/
- btScalar cofac(int r1, int c1, int r2, int c2) const
+ btScalar cofac(int r1, int c1, int r2, int c2) const
{
return m_el[r1][c1] * m_el[r2][c2] - m_el[r1][c2] * m_el[r2][c1];
}
- void serialize(struct btMatrix3x3Data& dataOut) const;
+ void serialize(struct btMatrix3x3Data & dataOut) const;
- void serializeFloat(struct btMatrix3x3FloatData& dataOut) const;
+ void serializeFloat(struct btMatrix3x3FloatData & dataOut) const;
- void deSerialize(const struct btMatrix3x3Data& dataIn);
+ void deSerialize(const struct btMatrix3x3Data& dataIn);
- void deSerializeFloat(const struct btMatrix3x3FloatData& dataIn);
-
- void deSerializeDouble(const struct btMatrix3x3DoubleData& dataIn);
+ void deSerializeFloat(const struct btMatrix3x3FloatData& dataIn);
+ void deSerializeDouble(const struct btMatrix3x3DoubleData& dataIn);
};
-
-SIMD_FORCE_INLINE btMatrix3x3&
+SIMD_FORCE_INLINE btMatrix3x3&
btMatrix3x3::operator*=(const btMatrix3x3& m)
{
-#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
- __m128 rv00, rv01, rv02;
- __m128 rv10, rv11, rv12;
- __m128 rv20, rv21, rv22;
- __m128 mv0, mv1, mv2;
-
- rv02 = m_el[0].mVec128;
- rv12 = m_el[1].mVec128;
- rv22 = m_el[2].mVec128;
-
- mv0 = _mm_and_ps(m[0].mVec128, btvFFF0fMask);
- mv1 = _mm_and_ps(m[1].mVec128, btvFFF0fMask);
- mv2 = _mm_and_ps(m[2].mVec128, btvFFF0fMask);
-
- // rv0
- rv00 = bt_splat_ps(rv02, 0);
- rv01 = bt_splat_ps(rv02, 1);
- rv02 = bt_splat_ps(rv02, 2);
-
- rv00 = _mm_mul_ps(rv00, mv0);
- rv01 = _mm_mul_ps(rv01, mv1);
- rv02 = _mm_mul_ps(rv02, mv2);
-
- // rv1
- rv10 = bt_splat_ps(rv12, 0);
- rv11 = bt_splat_ps(rv12, 1);
- rv12 = bt_splat_ps(rv12, 2);
-
- rv10 = _mm_mul_ps(rv10, mv0);
- rv11 = _mm_mul_ps(rv11, mv1);
- rv12 = _mm_mul_ps(rv12, mv2);
-
- // rv2
- rv20 = bt_splat_ps(rv22, 0);
- rv21 = bt_splat_ps(rv22, 1);
- rv22 = bt_splat_ps(rv22, 2);
-
- rv20 = _mm_mul_ps(rv20, mv0);
- rv21 = _mm_mul_ps(rv21, mv1);
- rv22 = _mm_mul_ps(rv22, mv2);
-
- rv00 = _mm_add_ps(rv00, rv01);
- rv10 = _mm_add_ps(rv10, rv11);
- rv20 = _mm_add_ps(rv20, rv21);
-
- m_el[0].mVec128 = _mm_add_ps(rv00, rv02);
- m_el[1].mVec128 = _mm_add_ps(rv10, rv12);
- m_el[2].mVec128 = _mm_add_ps(rv20, rv22);
+#if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)
+ __m128 rv00, rv01, rv02;
+ __m128 rv10, rv11, rv12;
+ __m128 rv20, rv21, rv22;
+ __m128 mv0, mv1, mv2;
+
+ rv02 = m_el[0].mVec128;
+ rv12 = m_el[1].mVec128;
+ rv22 = m_el[2].mVec128;
+
+ mv0 = _mm_and_ps(m[0].mVec128, btvFFF0fMask);
+ mv1 = _mm_and_ps(m[1].mVec128, btvFFF0fMask);
+ mv2 = _mm_and_ps(m[2].mVec128, btvFFF0fMask);
+
+ // rv0
+ rv00 = bt_splat_ps(rv02, 0);
+ rv01 = bt_splat_ps(rv02, 1);
+ rv02 = bt_splat_ps(rv02, 2);
+
+ rv00 = _mm_mul_ps(rv00, mv0);
+ rv01 = _mm_mul_ps(rv01, mv1);
+ rv02 = _mm_mul_ps(rv02, mv2);
+
+ // rv1
+ rv10 = bt_splat_ps(rv12, 0);
+ rv11 = bt_splat_ps(rv12, 1);
+ rv12 = bt_splat_ps(rv12, 2);
+
+ rv10 = _mm_mul_ps(rv10, mv0);
+ rv11 = _mm_mul_ps(rv11, mv1);
+ rv12 = _mm_mul_ps(rv12, mv2);
+
+ // rv2
+ rv20 = bt_splat_ps(rv22, 0);
+ rv21 = bt_splat_ps(rv22, 1);
+ rv22 = bt_splat_ps(rv22, 2);
+
+ rv20 = _mm_mul_ps(rv20, mv0);
+ rv21 = _mm_mul_ps(rv21, mv1);
+ rv22 = _mm_mul_ps(rv22, mv2);
+
+ rv00 = _mm_add_ps(rv00, rv01);
+ rv10 = _mm_add_ps(rv10, rv11);
+ rv20 = _mm_add_ps(rv20, rv21);
+
+ m_el[0].mVec128 = _mm_add_ps(rv00, rv02);
+ m_el[1].mVec128 = _mm_add_ps(rv10, rv12);
+ m_el[2].mVec128 = _mm_add_ps(rv20, rv22);
#elif defined(BT_USE_NEON)
- float32x4_t rv0, rv1, rv2;
- float32x4_t v0, v1, v2;
- float32x4_t mv0, mv1, mv2;
-
- v0 = m_el[0].mVec128;
- v1 = m_el[1].mVec128;
- v2 = m_el[2].mVec128;
-
- mv0 = (float32x4_t) vandq_s32((int32x4_t)m[0].mVec128, btvFFF0Mask);
- mv1 = (float32x4_t) vandq_s32((int32x4_t)m[1].mVec128, btvFFF0Mask);
- mv2 = (float32x4_t) vandq_s32((int32x4_t)m[2].mVec128, btvFFF0Mask);
-
- rv0 = vmulq_lane_f32(mv0, vget_low_f32(v0), 0);
- rv1 = vmulq_lane_f32(mv0, vget_low_f32(v1), 0);
- rv2 = vmulq_lane_f32(mv0, vget_low_f32(v2), 0);
-
- rv0 = vmlaq_lane_f32(rv0, mv1, vget_low_f32(v0), 1);
- rv1 = vmlaq_lane_f32(rv1, mv1, vget_low_f32(v1), 1);
- rv2 = vmlaq_lane_f32(rv2, mv1, vget_low_f32(v2), 1);
-
- rv0 = vmlaq_lane_f32(rv0, mv2, vget_high_f32(v0), 0);
- rv1 = vmlaq_lane_f32(rv1, mv2, vget_high_f32(v1), 0);
- rv2 = vmlaq_lane_f32(rv2, mv2, vget_high_f32(v2), 0);
-
- m_el[0].mVec128 = rv0;
- m_el[1].mVec128 = rv1;
- m_el[2].mVec128 = rv2;
-#else
+ float32x4_t rv0, rv1, rv2;
+ float32x4_t v0, v1, v2;
+ float32x4_t mv0, mv1, mv2;
+
+ v0 = m_el[0].mVec128;
+ v1 = m_el[1].mVec128;
+ v2 = m_el[2].mVec128;
+
+ mv0 = (float32x4_t)vandq_s32((int32x4_t)m[0].mVec128, btvFFF0Mask);
+ mv1 = (float32x4_t)vandq_s32((int32x4_t)m[1].mVec128, btvFFF0Mask);
+ mv2 = (float32x4_t)vandq_s32((int32x4_t)m[2].mVec128, btvFFF0Mask);
+
+ rv0 = vmulq_lane_f32(mv0, vget_low_f32(v0), 0);
+ rv1 = vmulq_lane_f32(mv0, vget_low_f32(v1), 0);
+ rv2 = vmulq_lane_f32(mv0, vget_low_f32(v2), 0);
+
+ rv0 = vmlaq_lane_f32(rv0, mv1, vget_low_f32(v0), 1);
+ rv1 = vmlaq_lane_f32(rv1, mv1, vget_low_f32(v1), 1);
+ rv2 = vmlaq_lane_f32(rv2, mv1, vget_low_f32(v2), 1);
+
+ rv0 = vmlaq_lane_f32(rv0, mv2, vget_high_f32(v0), 0);
+ rv1 = vmlaq_lane_f32(rv1, mv2, vget_high_f32(v1), 0);
+ rv2 = vmlaq_lane_f32(rv2, mv2, vget_high_f32(v2), 0);
+
+ m_el[0].mVec128 = rv0;
+ m_el[1].mVec128 = rv1;
+ m_el[2].mVec128 = rv2;
+#else
setValue(
- m.tdotx(m_el[0]), m.tdoty(m_el[0]), m.tdotz(m_el[0]),
+ m.tdotx(m_el[0]), m.tdoty(m_el[0]), m.tdotz(m_el[0]),
m.tdotx(m_el[1]), m.tdoty(m_el[1]), m.tdotz(m_el[1]),
m.tdotx(m_el[2]), m.tdoty(m_el[2]), m.tdotz(m_el[2]));
#endif
return *this;
}
-SIMD_FORCE_INLINE btMatrix3x3&
+SIMD_FORCE_INLINE btMatrix3x3&
btMatrix3x3::operator+=(const btMatrix3x3& m)
{
-#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
- m_el[0].mVec128 = m_el[0].mVec128 + m.m_el[0].mVec128;
- m_el[1].mVec128 = m_el[1].mVec128 + m.m_el[1].mVec128;
- m_el[2].mVec128 = m_el[2].mVec128 + m.m_el[2].mVec128;
+#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
+ m_el[0].mVec128 = m_el[0].mVec128 + m.m_el[0].mVec128;
+ m_el[1].mVec128 = m_el[1].mVec128 + m.m_el[1].mVec128;
+ m_el[2].mVec128 = m_el[2].mVec128 + m.m_el[2].mVec128;
#else
setValue(
- m_el[0][0]+m.m_el[0][0],
- m_el[0][1]+m.m_el[0][1],
- m_el[0][2]+m.m_el[0][2],
- m_el[1][0]+m.m_el[1][0],
- m_el[1][1]+m.m_el[1][1],
- m_el[1][2]+m.m_el[1][2],
- m_el[2][0]+m.m_el[2][0],
- m_el[2][1]+m.m_el[2][1],
- m_el[2][2]+m.m_el[2][2]);
+ m_el[0][0] + m.m_el[0][0],
+ m_el[0][1] + m.m_el[0][1],
+ m_el[0][2] + m.m_el[0][2],
+ m_el[1][0] + m.m_el[1][0],
+ m_el[1][1] + m.m_el[1][1],
+ m_el[1][2] + m.m_el[1][2],
+ m_el[2][0] + m.m_el[2][0],
+ m_el[2][1] + m.m_el[2][1],
+ m_el[2][2] + m.m_el[2][2]);
#endif
return *this;
}
SIMD_FORCE_INLINE btMatrix3x3
-operator*(const btMatrix3x3& m, const btScalar & k)
+operator*(const btMatrix3x3& m, const btScalar& k)
{
-#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
- __m128 vk = bt_splat_ps(_mm_load_ss((float *)&k), 0x80);
- return btMatrix3x3(
- _mm_mul_ps(m[0].mVec128, vk),
- _mm_mul_ps(m[1].mVec128, vk),
- _mm_mul_ps(m[2].mVec128, vk));
+#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))
+ __m128 vk = bt_splat_ps(_mm_load_ss((float*)&k), 0x80);
+ return btMatrix3x3(
+ _mm_mul_ps(m[0].mVec128, vk),
+ _mm_mul_ps(m[1].mVec128, vk),
+ _mm_mul_ps(m[2].mVec128, vk));
#elif defined(BT_USE_NEON)
- return btMatrix3x3(
- vmulq_n_f32(m[0].mVec128, k),
- vmulq_n_f32(m[1].mVec128, k),
- vmulq_n_f32(m[2].mVec128, k));
+ return btMatrix3x3(
+ vmulq_n_f32(m[0].mVec128, k),
+ vmulq_n_f32(m[1].mVec128, k),
+ vmulq_n_f32(m[2].mVec128, k));
#else
return btMatrix3x3(
- m[0].x()*k,m[0].y()*k,m[0].z()*k,
- m[1].x()*k,m[1].y()*k,m[1].z()*k,
- m[2].x()*k,m[2].y()*k,m[2].z()*k);
+ m[0].x() * k, m[0].y() * k, m[0].z() * k,
+ m[1].x() * k, m[1].y() * k, m[1].z() * k,
+ m[2].x() * k, m[2].y() * k, m[2].z() * k);
#endif
}
-SIMD_FORCE_INLINE btMatrix3x3
+SIMD_FORCE_INLINE btMatrix3x3
operator+(const btMatrix3x3& m1, const btMatrix3x3& m2)
{
-#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
+#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
return btMatrix3x3(
- m1[0].mVec128 + m2[0].mVec128,
- m1[1].mVec128 + m2[1].mVec128,
- m1[2].mVec128 + m2[2].mVec128);
+ m1[0].mVec128 + m2[0].mVec128,
+ m1[1].mVec128 + m2[1].mVec128,
+ m1[2].mVec128 + m2[2].mVec128);
#else
return btMatrix3x3(
- m1[0][0]+m2[0][0],
- m1[0][1]+m2[0][1],
- m1[0][2]+m2[0][2],
-
- m1[1][0]+m2[1][0],
- m1[1][1]+m2[1][1],
- m1[1][2]+m2[1][2],
-
- m1[2][0]+m2[2][0],
- m1[2][1]+m2[2][1],
- m1[2][2]+m2[2][2]);
-#endif
+ m1[0][0] + m2[0][0],
+ m1[0][1] + m2[0][1],
+ m1[0][2] + m2[0][2],
+
+ m1[1][0] + m2[1][0],
+ m1[1][1] + m2[1][1],
+ m1[1][2] + m2[1][2],
+
+ m1[2][0] + m2[2][0],
+ m1[2][1] + m2[2][1],
+ m1[2][2] + m2[2][2]);
+#endif
}
-SIMD_FORCE_INLINE btMatrix3x3
+SIMD_FORCE_INLINE btMatrix3x3
operator-(const btMatrix3x3& m1, const btMatrix3x3& m2)
{
-#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
+#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
return btMatrix3x3(
- m1[0].mVec128 - m2[0].mVec128,
- m1[1].mVec128 - m2[1].mVec128,
- m1[2].mVec128 - m2[2].mVec128);
+ m1[0].mVec128 - m2[0].mVec128,
+ m1[1].mVec128 - m2[1].mVec128,
+ m1[2].mVec128 - m2[2].mVec128);
#else
return btMatrix3x3(
- m1[0][0]-m2[0][0],
- m1[0][1]-m2[0][1],
- m1[0][2]-m2[0][2],
-
- m1[1][0]-m2[1][0],
- m1[1][1]-m2[1][1],
- m1[1][2]-m2[1][2],
-
- m1[2][0]-m2[2][0],
- m1[2][1]-m2[2][1],
- m1[2][2]-m2[2][2]);
+ m1[0][0] - m2[0][0],
+ m1[0][1] - m2[0][1],
+ m1[0][2] - m2[0][2],
+
+ m1[1][0] - m2[1][0],
+ m1[1][1] - m2[1][1],
+ m1[1][2] - m2[1][2],
+
+ m1[2][0] - m2[2][0],
+ m1[2][1] - m2[2][1],
+ m1[2][2] - m2[2][2]);
#endif
}
-
-SIMD_FORCE_INLINE btMatrix3x3&
+SIMD_FORCE_INLINE btMatrix3x3&
btMatrix3x3::operator-=(const btMatrix3x3& m)
{
-#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
- m_el[0].mVec128 = m_el[0].mVec128 - m.m_el[0].mVec128;
- m_el[1].mVec128 = m_el[1].mVec128 - m.m_el[1].mVec128;
- m_el[2].mVec128 = m_el[2].mVec128 - m.m_el[2].mVec128;
+#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
+ m_el[0].mVec128 = m_el[0].mVec128 - m.m_el[0].mVec128;
+ m_el[1].mVec128 = m_el[1].mVec128 - m.m_el[1].mVec128;
+ m_el[2].mVec128 = m_el[2].mVec128 - m.m_el[2].mVec128;
#else
setValue(
- m_el[0][0]-m.m_el[0][0],
- m_el[0][1]-m.m_el[0][1],
- m_el[0][2]-m.m_el[0][2],
- m_el[1][0]-m.m_el[1][0],
- m_el[1][1]-m.m_el[1][1],
- m_el[1][2]-m.m_el[1][2],
- m_el[2][0]-m.m_el[2][0],
- m_el[2][1]-m.m_el[2][1],
- m_el[2][2]-m.m_el[2][2]);
+ m_el[0][0] - m.m_el[0][0],
+ m_el[0][1] - m.m_el[0][1],
+ m_el[0][2] - m.m_el[0][2],
+ m_el[1][0] - m.m_el[1][0],
+ m_el[1][1] - m.m_el[1][1],
+ m_el[1][2] - m.m_el[1][2],
+ m_el[2][0] - m.m_el[2][0],
+ m_el[2][1] - m.m_el[2][1],
+ m_el[2][2] - m.m_el[2][2]);
#endif
return *this;
}
-
-SIMD_FORCE_INLINE btScalar
+SIMD_FORCE_INLINE btScalar
btMatrix3x3::determinant() const
-{
+{
return btTriple((*this)[0], (*this)[1], (*this)[2]);
}
-
-SIMD_FORCE_INLINE btMatrix3x3
+SIMD_FORCE_INLINE btMatrix3x3
btMatrix3x3::absolute() const
{
-#if defined BT_USE_SIMD_VECTOR3 && (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
- return btMatrix3x3(
- _mm_and_ps(m_el[0].mVec128, btvAbsfMask),
- _mm_and_ps(m_el[1].mVec128, btvAbsfMask),
- _mm_and_ps(m_el[2].mVec128, btvAbsfMask));
+#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))
+ return btMatrix3x3(
+ _mm_and_ps(m_el[0].mVec128, btvAbsfMask),
+ _mm_and_ps(m_el[1].mVec128, btvAbsfMask),
+ _mm_and_ps(m_el[2].mVec128, btvAbsfMask));
#elif defined(BT_USE_NEON)
- return btMatrix3x3(
- (float32x4_t)vandq_s32((int32x4_t)m_el[0].mVec128, btv3AbsMask),
- (float32x4_t)vandq_s32((int32x4_t)m_el[1].mVec128, btv3AbsMask),
- (float32x4_t)vandq_s32((int32x4_t)m_el[2].mVec128, btv3AbsMask));
-#else
return btMatrix3x3(
- btFabs(m_el[0].x()), btFabs(m_el[0].y()), btFabs(m_el[0].z()),
- btFabs(m_el[1].x()), btFabs(m_el[1].y()), btFabs(m_el[1].z()),
- btFabs(m_el[2].x()), btFabs(m_el[2].y()), btFabs(m_el[2].z()));
+ (float32x4_t)vandq_s32((int32x4_t)m_el[0].mVec128, btv3AbsMask),
+ (float32x4_t)vandq_s32((int32x4_t)m_el[1].mVec128, btv3AbsMask),
+ (float32x4_t)vandq_s32((int32x4_t)m_el[2].mVec128, btv3AbsMask));
+#else
+ return btMatrix3x3(
+ btFabs(m_el[0].x()), btFabs(m_el[0].y()), btFabs(m_el[0].z()),
+ btFabs(m_el[1].x()), btFabs(m_el[1].y()), btFabs(m_el[1].z()),
+ btFabs(m_el[2].x()), btFabs(m_el[2].y()), btFabs(m_el[2].z()));
#endif
}
-SIMD_FORCE_INLINE btMatrix3x3
-btMatrix3x3::transpose() const
+SIMD_FORCE_INLINE btMatrix3x3
+btMatrix3x3::transpose() const
{
-#if defined BT_USE_SIMD_VECTOR3 && (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
- __m128 v0 = m_el[0].mVec128;
- __m128 v1 = m_el[1].mVec128;
- __m128 v2 = m_el[2].mVec128; // x2 y2 z2 w2
- __m128 vT;
-
- v2 = _mm_and_ps(v2, btvFFF0fMask); // x2 y2 z2 0
-
- vT = _mm_unpackhi_ps(v0, v1); // z0 z1 * *
- v0 = _mm_unpacklo_ps(v0, v1); // x0 x1 y0 y1
-
- v1 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(2, 3, 1, 3) ); // y0 y1 y2 0
- v0 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(0, 1, 0, 3) ); // x0 x1 x2 0
- v2 = btCastdTo128f(_mm_move_sd(btCastfTo128d(v2), btCastfTo128d(vT))); // z0 z1 z2 0
-
-
- return btMatrix3x3( v0, v1, v2 );
+#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))
+ __m128 v0 = m_el[0].mVec128;
+ __m128 v1 = m_el[1].mVec128;
+ __m128 v2 = m_el[2].mVec128; // x2 y2 z2 w2
+ __m128 vT;
+
+ v2 = _mm_and_ps(v2, btvFFF0fMask); // x2 y2 z2 0
+
+ vT = _mm_unpackhi_ps(v0, v1); // z0 z1 * *
+ v0 = _mm_unpacklo_ps(v0, v1); // x0 x1 y0 y1
+
+ v1 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(2, 3, 1, 3)); // y0 y1 y2 0
+ v0 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(0, 1, 0, 3)); // x0 x1 x2 0
+ v2 = btCastdTo128f(_mm_move_sd(btCastfTo128d(v2), btCastfTo128d(vT))); // z0 z1 z2 0
+
+ return btMatrix3x3(v0, v1, v2);
#elif defined(BT_USE_NEON)
- // note: zeros the w channel. We can preserve it at the cost of two more vtrn instructions.
- static const uint32x2_t zMask = (const uint32x2_t) {static_cast<uint32_t>(-1), 0 };
- float32x4x2_t top = vtrnq_f32( m_el[0].mVec128, m_el[1].mVec128 ); // {x0 x1 z0 z1}, {y0 y1 w0 w1}
- float32x2x2_t bl = vtrn_f32( vget_low_f32(m_el[2].mVec128), vdup_n_f32(0.0f) ); // {x2 0 }, {y2 0}
- float32x4_t v0 = vcombine_f32( vget_low_f32(top.val[0]), bl.val[0] );
- float32x4_t v1 = vcombine_f32( vget_low_f32(top.val[1]), bl.val[1] );
- float32x2_t q = (float32x2_t) vand_u32( (uint32x2_t) vget_high_f32( m_el[2].mVec128), zMask );
- float32x4_t v2 = vcombine_f32( vget_high_f32(top.val[0]), q ); // z0 z1 z2 0
- return btMatrix3x3( v0, v1, v2 );
+ // note: zeros the w channel. We can preserve it at the cost of two more vtrn instructions.
+ static const uint32x2_t zMask = (const uint32x2_t){static_cast<uint32_t>(-1), 0};
+ float32x4x2_t top = vtrnq_f32(m_el[0].mVec128, m_el[1].mVec128); // {x0 x1 z0 z1}, {y0 y1 w0 w1}
+ float32x2x2_t bl = vtrn_f32(vget_low_f32(m_el[2].mVec128), vdup_n_f32(0.0f)); // {x2 0 }, {y2 0}
+ float32x4_t v0 = vcombine_f32(vget_low_f32(top.val[0]), bl.val[0]);
+ float32x4_t v1 = vcombine_f32(vget_low_f32(top.val[1]), bl.val[1]);
+ float32x2_t q = (float32x2_t)vand_u32((uint32x2_t)vget_high_f32(m_el[2].mVec128), zMask);
+ float32x4_t v2 = vcombine_f32(vget_high_f32(top.val[0]), q); // z0 z1 z2 0
+ return btMatrix3x3(v0, v1, v2);
#else
- return btMatrix3x3( m_el[0].x(), m_el[1].x(), m_el[2].x(),
- m_el[0].y(), m_el[1].y(), m_el[2].y(),
- m_el[0].z(), m_el[1].z(), m_el[2].z());
+ return btMatrix3x3(m_el[0].x(), m_el[1].x(), m_el[2].x(),
+ m_el[0].y(), m_el[1].y(), m_el[2].y(),
+ m_el[0].z(), m_el[1].z(), m_el[2].z());
#endif
}
-SIMD_FORCE_INLINE btMatrix3x3
-btMatrix3x3::adjoint() const
+SIMD_FORCE_INLINE btMatrix3x3
+btMatrix3x3::adjoint() const
{
return btMatrix3x3(cofac(1, 1, 2, 2), cofac(0, 2, 2, 1), cofac(0, 1, 1, 2),
- cofac(1, 2, 2, 0), cofac(0, 0, 2, 2), cofac(0, 2, 1, 0),
- cofac(1, 0, 2, 1), cofac(0, 1, 2, 0), cofac(0, 0, 1, 1));
+ cofac(1, 2, 2, 0), cofac(0, 0, 2, 2), cofac(0, 2, 1, 0),
+ cofac(1, 0, 2, 1), cofac(0, 1, 2, 0), cofac(0, 0, 1, 1));
}
-SIMD_FORCE_INLINE btMatrix3x3
+SIMD_FORCE_INLINE btMatrix3x3
btMatrix3x3::inverse() const
{
btVector3 co(cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1));
@@ -1080,54 +1075,54 @@ btMatrix3x3::inverse() const
btAssert(det != btScalar(0.0));
btScalar s = btScalar(1.0) / det;
return btMatrix3x3(co.x() * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s,
- co.y() * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s,
- co.z() * s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s);
+ co.y() * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s,
+ co.z() * s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s);
}
-SIMD_FORCE_INLINE btMatrix3x3
+SIMD_FORCE_INLINE btMatrix3x3
btMatrix3x3::transposeTimes(const btMatrix3x3& m) const
{
-#if defined BT_USE_SIMD_VECTOR3 && (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
- // zeros w
-// static const __m128i xyzMask = (const __m128i){ -1ULL, 0xffffffffULL };
- __m128 row = m_el[0].mVec128;
- __m128 m0 = _mm_and_ps( m.getRow(0).mVec128, btvFFF0fMask );
- __m128 m1 = _mm_and_ps( m.getRow(1).mVec128, btvFFF0fMask);
- __m128 m2 = _mm_and_ps( m.getRow(2).mVec128, btvFFF0fMask );
- __m128 r0 = _mm_mul_ps(m0, _mm_shuffle_ps(row, row, 0));
- __m128 r1 = _mm_mul_ps(m0, _mm_shuffle_ps(row, row, 0x55));
- __m128 r2 = _mm_mul_ps(m0, _mm_shuffle_ps(row, row, 0xaa));
- row = m_el[1].mVec128;
- r0 = _mm_add_ps( r0, _mm_mul_ps(m1, _mm_shuffle_ps(row, row, 0)));
- r1 = _mm_add_ps( r1, _mm_mul_ps(m1, _mm_shuffle_ps(row, row, 0x55)));
- r2 = _mm_add_ps( r2, _mm_mul_ps(m1, _mm_shuffle_ps(row, row, 0xaa)));
- row = m_el[2].mVec128;
- r0 = _mm_add_ps( r0, _mm_mul_ps(m2, _mm_shuffle_ps(row, row, 0)));
- r1 = _mm_add_ps( r1, _mm_mul_ps(m2, _mm_shuffle_ps(row, row, 0x55)));
- r2 = _mm_add_ps( r2, _mm_mul_ps(m2, _mm_shuffle_ps(row, row, 0xaa)));
- return btMatrix3x3( r0, r1, r2 );
+#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))
+ // zeros w
+ // static const __m128i xyzMask = (const __m128i){ -1ULL, 0xffffffffULL };
+ __m128 row = m_el[0].mVec128;
+ __m128 m0 = _mm_and_ps(m.getRow(0).mVec128, btvFFF0fMask);
+ __m128 m1 = _mm_and_ps(m.getRow(1).mVec128, btvFFF0fMask);
+ __m128 m2 = _mm_and_ps(m.getRow(2).mVec128, btvFFF0fMask);
+ __m128 r0 = _mm_mul_ps(m0, _mm_shuffle_ps(row, row, 0));
+ __m128 r1 = _mm_mul_ps(m0, _mm_shuffle_ps(row, row, 0x55));
+ __m128 r2 = _mm_mul_ps(m0, _mm_shuffle_ps(row, row, 0xaa));
+ row = m_el[1].mVec128;
+ r0 = _mm_add_ps(r0, _mm_mul_ps(m1, _mm_shuffle_ps(row, row, 0)));
+ r1 = _mm_add_ps(r1, _mm_mul_ps(m1, _mm_shuffle_ps(row, row, 0x55)));
+ r2 = _mm_add_ps(r2, _mm_mul_ps(m1, _mm_shuffle_ps(row, row, 0xaa)));
+ row = m_el[2].mVec128;
+ r0 = _mm_add_ps(r0, _mm_mul_ps(m2, _mm_shuffle_ps(row, row, 0)));
+ r1 = _mm_add_ps(r1, _mm_mul_ps(m2, _mm_shuffle_ps(row, row, 0x55)));
+ r2 = _mm_add_ps(r2, _mm_mul_ps(m2, _mm_shuffle_ps(row, row, 0xaa)));
+ return btMatrix3x3(r0, r1, r2);
#elif defined BT_USE_NEON
- // zeros w
- static const uint32x4_t xyzMask = (const uint32x4_t){ static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), 0 };
- float32x4_t m0 = (float32x4_t) vandq_u32( (uint32x4_t) m.getRow(0).mVec128, xyzMask );
- float32x4_t m1 = (float32x4_t) vandq_u32( (uint32x4_t) m.getRow(1).mVec128, xyzMask );
- float32x4_t m2 = (float32x4_t) vandq_u32( (uint32x4_t) m.getRow(2).mVec128, xyzMask );
- float32x4_t row = m_el[0].mVec128;
- float32x4_t r0 = vmulq_lane_f32( m0, vget_low_f32(row), 0);
- float32x4_t r1 = vmulq_lane_f32( m0, vget_low_f32(row), 1);
- float32x4_t r2 = vmulq_lane_f32( m0, vget_high_f32(row), 0);
- row = m_el[1].mVec128;
- r0 = vmlaq_lane_f32( r0, m1, vget_low_f32(row), 0);
- r1 = vmlaq_lane_f32( r1, m1, vget_low_f32(row), 1);
- r2 = vmlaq_lane_f32( r2, m1, vget_high_f32(row), 0);
- row = m_el[2].mVec128;
- r0 = vmlaq_lane_f32( r0, m2, vget_low_f32(row), 0);
- r1 = vmlaq_lane_f32( r1, m2, vget_low_f32(row), 1);
- r2 = vmlaq_lane_f32( r2, m2, vget_high_f32(row), 0);
- return btMatrix3x3( r0, r1, r2 );
+ // zeros w
+ static const uint32x4_t xyzMask = (const uint32x4_t){static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), 0};
+ float32x4_t m0 = (float32x4_t)vandq_u32((uint32x4_t)m.getRow(0).mVec128, xyzMask);
+ float32x4_t m1 = (float32x4_t)vandq_u32((uint32x4_t)m.getRow(1).mVec128, xyzMask);
+ float32x4_t m2 = (float32x4_t)vandq_u32((uint32x4_t)m.getRow(2).mVec128, xyzMask);
+ float32x4_t row = m_el[0].mVec128;
+ float32x4_t r0 = vmulq_lane_f32(m0, vget_low_f32(row), 0);
+ float32x4_t r1 = vmulq_lane_f32(m0, vget_low_f32(row), 1);
+ float32x4_t r2 = vmulq_lane_f32(m0, vget_high_f32(row), 0);
+ row = m_el[1].mVec128;
+ r0 = vmlaq_lane_f32(r0, m1, vget_low_f32(row), 0);
+ r1 = vmlaq_lane_f32(r1, m1, vget_low_f32(row), 1);
+ r2 = vmlaq_lane_f32(r2, m1, vget_high_f32(row), 0);
+ row = m_el[2].mVec128;
+ r0 = vmlaq_lane_f32(r0, m2, vget_low_f32(row), 0);
+ r1 = vmlaq_lane_f32(r1, m2, vget_low_f32(row), 1);
+ r2 = vmlaq_lane_f32(r2, m2, vget_high_f32(row), 0);
+ return btMatrix3x3(r0, r1, r2);
#else
- return btMatrix3x3(
+ return btMatrix3x3(
m_el[0].x() * m[0].x() + m_el[1].x() * m[1].x() + m_el[2].x() * m[2].x(),
m_el[0].x() * m[0].y() + m_el[1].x() * m[1].y() + m_el[2].x() * m[2].y(),
m_el[0].x() * m[0].z() + m_el[1].x() * m[1].z() + m_el[2].x() * m[2].z(),
@@ -1140,51 +1135,51 @@ btMatrix3x3::transposeTimes(const btMatrix3x3& m) const
#endif
}
-SIMD_FORCE_INLINE btMatrix3x3
+SIMD_FORCE_INLINE btMatrix3x3
btMatrix3x3::timesTranspose(const btMatrix3x3& m) const
{
-#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
- __m128 a0 = m_el[0].mVec128;
- __m128 a1 = m_el[1].mVec128;
- __m128 a2 = m_el[2].mVec128;
-
- btMatrix3x3 mT = m.transpose(); // we rely on transpose() zeroing w channel so that we don't have to do it here
- __m128 mx = mT[0].mVec128;
- __m128 my = mT[1].mVec128;
- __m128 mz = mT[2].mVec128;
-
- __m128 r0 = _mm_mul_ps(mx, _mm_shuffle_ps(a0, a0, 0x00));
- __m128 r1 = _mm_mul_ps(mx, _mm_shuffle_ps(a1, a1, 0x00));
- __m128 r2 = _mm_mul_ps(mx, _mm_shuffle_ps(a2, a2, 0x00));
- r0 = _mm_add_ps(r0, _mm_mul_ps(my, _mm_shuffle_ps(a0, a0, 0x55)));
- r1 = _mm_add_ps(r1, _mm_mul_ps(my, _mm_shuffle_ps(a1, a1, 0x55)));
- r2 = _mm_add_ps(r2, _mm_mul_ps(my, _mm_shuffle_ps(a2, a2, 0x55)));
- r0 = _mm_add_ps(r0, _mm_mul_ps(mz, _mm_shuffle_ps(a0, a0, 0xaa)));
- r1 = _mm_add_ps(r1, _mm_mul_ps(mz, _mm_shuffle_ps(a1, a1, 0xaa)));
- r2 = _mm_add_ps(r2, _mm_mul_ps(mz, _mm_shuffle_ps(a2, a2, 0xaa)));
- return btMatrix3x3( r0, r1, r2);
-
+#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))
+ __m128 a0 = m_el[0].mVec128;
+ __m128 a1 = m_el[1].mVec128;
+ __m128 a2 = m_el[2].mVec128;
+
+ btMatrix3x3 mT = m.transpose(); // we rely on transpose() zeroing w channel so that we don't have to do it here
+ __m128 mx = mT[0].mVec128;
+ __m128 my = mT[1].mVec128;
+ __m128 mz = mT[2].mVec128;
+
+ __m128 r0 = _mm_mul_ps(mx, _mm_shuffle_ps(a0, a0, 0x00));
+ __m128 r1 = _mm_mul_ps(mx, _mm_shuffle_ps(a1, a1, 0x00));
+ __m128 r2 = _mm_mul_ps(mx, _mm_shuffle_ps(a2, a2, 0x00));
+ r0 = _mm_add_ps(r0, _mm_mul_ps(my, _mm_shuffle_ps(a0, a0, 0x55)));
+ r1 = _mm_add_ps(r1, _mm_mul_ps(my, _mm_shuffle_ps(a1, a1, 0x55)));
+ r2 = _mm_add_ps(r2, _mm_mul_ps(my, _mm_shuffle_ps(a2, a2, 0x55)));
+ r0 = _mm_add_ps(r0, _mm_mul_ps(mz, _mm_shuffle_ps(a0, a0, 0xaa)));
+ r1 = _mm_add_ps(r1, _mm_mul_ps(mz, _mm_shuffle_ps(a1, a1, 0xaa)));
+ r2 = _mm_add_ps(r2, _mm_mul_ps(mz, _mm_shuffle_ps(a2, a2, 0xaa)));
+ return btMatrix3x3(r0, r1, r2);
+
#elif defined BT_USE_NEON
- float32x4_t a0 = m_el[0].mVec128;
- float32x4_t a1 = m_el[1].mVec128;
- float32x4_t a2 = m_el[2].mVec128;
-
- btMatrix3x3 mT = m.transpose(); // we rely on transpose() zeroing w channel so that we don't have to do it here
- float32x4_t mx = mT[0].mVec128;
- float32x4_t my = mT[1].mVec128;
- float32x4_t mz = mT[2].mVec128;
-
- float32x4_t r0 = vmulq_lane_f32( mx, vget_low_f32(a0), 0);
- float32x4_t r1 = vmulq_lane_f32( mx, vget_low_f32(a1), 0);
- float32x4_t r2 = vmulq_lane_f32( mx, vget_low_f32(a2), 0);
- r0 = vmlaq_lane_f32( r0, my, vget_low_f32(a0), 1);
- r1 = vmlaq_lane_f32( r1, my, vget_low_f32(a1), 1);
- r2 = vmlaq_lane_f32( r2, my, vget_low_f32(a2), 1);
- r0 = vmlaq_lane_f32( r0, mz, vget_high_f32(a0), 0);
- r1 = vmlaq_lane_f32( r1, mz, vget_high_f32(a1), 0);
- r2 = vmlaq_lane_f32( r2, mz, vget_high_f32(a2), 0);
- return btMatrix3x3( r0, r1, r2 );
-
+ float32x4_t a0 = m_el[0].mVec128;
+ float32x4_t a1 = m_el[1].mVec128;
+ float32x4_t a2 = m_el[2].mVec128;
+
+ btMatrix3x3 mT = m.transpose(); // we rely on transpose() zeroing w channel so that we don't have to do it here
+ float32x4_t mx = mT[0].mVec128;
+ float32x4_t my = mT[1].mVec128;
+ float32x4_t mz = mT[2].mVec128;
+
+ float32x4_t r0 = vmulq_lane_f32(mx, vget_low_f32(a0), 0);
+ float32x4_t r1 = vmulq_lane_f32(mx, vget_low_f32(a1), 0);
+ float32x4_t r2 = vmulq_lane_f32(mx, vget_low_f32(a2), 0);
+ r0 = vmlaq_lane_f32(r0, my, vget_low_f32(a0), 1);
+ r1 = vmlaq_lane_f32(r1, my, vget_low_f32(a1), 1);
+ r2 = vmlaq_lane_f32(r2, my, vget_low_f32(a2), 1);
+ r0 = vmlaq_lane_f32(r0, mz, vget_high_f32(a0), 0);
+ r1 = vmlaq_lane_f32(r1, mz, vget_high_f32(a1), 0);
+ r2 = vmlaq_lane_f32(r2, mz, vget_high_f32(a2), 0);
+ return btMatrix3x3(r0, r1, r2);
+
#else
return btMatrix3x3(
m_el[0].dot(m[0]), m_el[0].dot(m[1]), m_el[0].dot(m[2]),
@@ -1193,139 +1188,138 @@ btMatrix3x3::timesTranspose(const btMatrix3x3& m) const
#endif
}
-SIMD_FORCE_INLINE btVector3
-operator*(const btMatrix3x3& m, const btVector3& v)
+SIMD_FORCE_INLINE btVector3
+operator*(const btMatrix3x3& m, const btVector3& v)
{
-#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))|| defined (BT_USE_NEON)
- return v.dot3(m[0], m[1], m[2]);
+#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON)
+ return v.dot3(m[0], m[1], m[2]);
#else
return btVector3(m[0].dot(v), m[1].dot(v), m[2].dot(v));
#endif
}
-
SIMD_FORCE_INLINE btVector3
operator*(const btVector3& v, const btMatrix3x3& m)
{
-#if defined BT_USE_SIMD_VECTOR3 && (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
+#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))
+
+ const __m128 vv = v.mVec128;
- const __m128 vv = v.mVec128;
+ __m128 c0 = bt_splat_ps(vv, 0);
+ __m128 c1 = bt_splat_ps(vv, 1);
+ __m128 c2 = bt_splat_ps(vv, 2);
- __m128 c0 = bt_splat_ps( vv, 0);
- __m128 c1 = bt_splat_ps( vv, 1);
- __m128 c2 = bt_splat_ps( vv, 2);
+ c0 = _mm_mul_ps(c0, _mm_and_ps(m[0].mVec128, btvFFF0fMask));
+ c1 = _mm_mul_ps(c1, _mm_and_ps(m[1].mVec128, btvFFF0fMask));
+ c0 = _mm_add_ps(c0, c1);
+ c2 = _mm_mul_ps(c2, _mm_and_ps(m[2].mVec128, btvFFF0fMask));
- c0 = _mm_mul_ps(c0, _mm_and_ps(m[0].mVec128, btvFFF0fMask) );
- c1 = _mm_mul_ps(c1, _mm_and_ps(m[1].mVec128, btvFFF0fMask) );
- c0 = _mm_add_ps(c0, c1);
- c2 = _mm_mul_ps(c2, _mm_and_ps(m[2].mVec128, btvFFF0fMask) );
-
- return btVector3(_mm_add_ps(c0, c2));
+ return btVector3(_mm_add_ps(c0, c2));
#elif defined(BT_USE_NEON)
- const float32x4_t vv = v.mVec128;
- const float32x2_t vlo = vget_low_f32(vv);
- const float32x2_t vhi = vget_high_f32(vv);
-
- float32x4_t c0, c1, c2;
-
- c0 = (float32x4_t) vandq_s32((int32x4_t)m[0].mVec128, btvFFF0Mask);
- c1 = (float32x4_t) vandq_s32((int32x4_t)m[1].mVec128, btvFFF0Mask);
- c2 = (float32x4_t) vandq_s32((int32x4_t)m[2].mVec128, btvFFF0Mask);
-
- c0 = vmulq_lane_f32(c0, vlo, 0);
- c1 = vmulq_lane_f32(c1, vlo, 1);
- c2 = vmulq_lane_f32(c2, vhi, 0);
- c0 = vaddq_f32(c0, c1);
- c0 = vaddq_f32(c0, c2);
-
- return btVector3(c0);
+ const float32x4_t vv = v.mVec128;
+ const float32x2_t vlo = vget_low_f32(vv);
+ const float32x2_t vhi = vget_high_f32(vv);
+
+ float32x4_t c0, c1, c2;
+
+ c0 = (float32x4_t)vandq_s32((int32x4_t)m[0].mVec128, btvFFF0Mask);
+ c1 = (float32x4_t)vandq_s32((int32x4_t)m[1].mVec128, btvFFF0Mask);
+ c2 = (float32x4_t)vandq_s32((int32x4_t)m[2].mVec128, btvFFF0Mask);
+
+ c0 = vmulq_lane_f32(c0, vlo, 0);
+ c1 = vmulq_lane_f32(c1, vlo, 1);
+ c2 = vmulq_lane_f32(c2, vhi, 0);
+ c0 = vaddq_f32(c0, c1);
+ c0 = vaddq_f32(c0, c2);
+
+ return btVector3(c0);
#else
return btVector3(m.tdotx(v), m.tdoty(v), m.tdotz(v));
#endif
}
-SIMD_FORCE_INLINE btMatrix3x3
+SIMD_FORCE_INLINE btMatrix3x3
operator*(const btMatrix3x3& m1, const btMatrix3x3& m2)
{
-#if defined BT_USE_SIMD_VECTOR3 && (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
-
- __m128 m10 = m1[0].mVec128;
- __m128 m11 = m1[1].mVec128;
- __m128 m12 = m1[2].mVec128;
-
- __m128 m2v = _mm_and_ps(m2[0].mVec128, btvFFF0fMask);
-
- __m128 c0 = bt_splat_ps( m10, 0);
- __m128 c1 = bt_splat_ps( m11, 0);
- __m128 c2 = bt_splat_ps( m12, 0);
-
- c0 = _mm_mul_ps(c0, m2v);
- c1 = _mm_mul_ps(c1, m2v);
- c2 = _mm_mul_ps(c2, m2v);
-
- m2v = _mm_and_ps(m2[1].mVec128, btvFFF0fMask);
-
- __m128 c0_1 = bt_splat_ps( m10, 1);
- __m128 c1_1 = bt_splat_ps( m11, 1);
- __m128 c2_1 = bt_splat_ps( m12, 1);
-
- c0_1 = _mm_mul_ps(c0_1, m2v);
- c1_1 = _mm_mul_ps(c1_1, m2v);
- c2_1 = _mm_mul_ps(c2_1, m2v);
-
- m2v = _mm_and_ps(m2[2].mVec128, btvFFF0fMask);
-
- c0 = _mm_add_ps(c0, c0_1);
- c1 = _mm_add_ps(c1, c1_1);
- c2 = _mm_add_ps(c2, c2_1);
-
- m10 = bt_splat_ps( m10, 2);
- m11 = bt_splat_ps( m11, 2);
- m12 = bt_splat_ps( m12, 2);
-
- m10 = _mm_mul_ps(m10, m2v);
- m11 = _mm_mul_ps(m11, m2v);
- m12 = _mm_mul_ps(m12, m2v);
-
- c0 = _mm_add_ps(c0, m10);
- c1 = _mm_add_ps(c1, m11);
- c2 = _mm_add_ps(c2, m12);
-
- return btMatrix3x3(c0, c1, c2);
+#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))
+
+ __m128 m10 = m1[0].mVec128;
+ __m128 m11 = m1[1].mVec128;
+ __m128 m12 = m1[2].mVec128;
+
+ __m128 m2v = _mm_and_ps(m2[0].mVec128, btvFFF0fMask);
+
+ __m128 c0 = bt_splat_ps(m10, 0);
+ __m128 c1 = bt_splat_ps(m11, 0);
+ __m128 c2 = bt_splat_ps(m12, 0);
+
+ c0 = _mm_mul_ps(c0, m2v);
+ c1 = _mm_mul_ps(c1, m2v);
+ c2 = _mm_mul_ps(c2, m2v);
+
+ m2v = _mm_and_ps(m2[1].mVec128, btvFFF0fMask);
+
+ __m128 c0_1 = bt_splat_ps(m10, 1);
+ __m128 c1_1 = bt_splat_ps(m11, 1);
+ __m128 c2_1 = bt_splat_ps(m12, 1);
+
+ c0_1 = _mm_mul_ps(c0_1, m2v);
+ c1_1 = _mm_mul_ps(c1_1, m2v);
+ c2_1 = _mm_mul_ps(c2_1, m2v);
+
+ m2v = _mm_and_ps(m2[2].mVec128, btvFFF0fMask);
+
+ c0 = _mm_add_ps(c0, c0_1);
+ c1 = _mm_add_ps(c1, c1_1);
+ c2 = _mm_add_ps(c2, c2_1);
+
+ m10 = bt_splat_ps(m10, 2);
+ m11 = bt_splat_ps(m11, 2);
+ m12 = bt_splat_ps(m12, 2);
+
+ m10 = _mm_mul_ps(m10, m2v);
+ m11 = _mm_mul_ps(m11, m2v);
+ m12 = _mm_mul_ps(m12, m2v);
+
+ c0 = _mm_add_ps(c0, m10);
+ c1 = _mm_add_ps(c1, m11);
+ c2 = _mm_add_ps(c2, m12);
+
+ return btMatrix3x3(c0, c1, c2);
#elif defined(BT_USE_NEON)
- float32x4_t rv0, rv1, rv2;
- float32x4_t v0, v1, v2;
- float32x4_t mv0, mv1, mv2;
-
- v0 = m1[0].mVec128;
- v1 = m1[1].mVec128;
- v2 = m1[2].mVec128;
-
- mv0 = (float32x4_t) vandq_s32((int32x4_t)m2[0].mVec128, btvFFF0Mask);
- mv1 = (float32x4_t) vandq_s32((int32x4_t)m2[1].mVec128, btvFFF0Mask);
- mv2 = (float32x4_t) vandq_s32((int32x4_t)m2[2].mVec128, btvFFF0Mask);
-
- rv0 = vmulq_lane_f32(mv0, vget_low_f32(v0), 0);
- rv1 = vmulq_lane_f32(mv0, vget_low_f32(v1), 0);
- rv2 = vmulq_lane_f32(mv0, vget_low_f32(v2), 0);
-
- rv0 = vmlaq_lane_f32(rv0, mv1, vget_low_f32(v0), 1);
- rv1 = vmlaq_lane_f32(rv1, mv1, vget_low_f32(v1), 1);
- rv2 = vmlaq_lane_f32(rv2, mv1, vget_low_f32(v2), 1);
-
- rv0 = vmlaq_lane_f32(rv0, mv2, vget_high_f32(v0), 0);
- rv1 = vmlaq_lane_f32(rv1, mv2, vget_high_f32(v1), 0);
- rv2 = vmlaq_lane_f32(rv2, mv2, vget_high_f32(v2), 0);
+ float32x4_t rv0, rv1, rv2;
+ float32x4_t v0, v1, v2;
+ float32x4_t mv0, mv1, mv2;
+
+ v0 = m1[0].mVec128;
+ v1 = m1[1].mVec128;
+ v2 = m1[2].mVec128;
+
+ mv0 = (float32x4_t)vandq_s32((int32x4_t)m2[0].mVec128, btvFFF0Mask);
+ mv1 = (float32x4_t)vandq_s32((int32x4_t)m2[1].mVec128, btvFFF0Mask);
+ mv2 = (float32x4_t)vandq_s32((int32x4_t)m2[2].mVec128, btvFFF0Mask);
+
+ rv0 = vmulq_lane_f32(mv0, vget_low_f32(v0), 0);
+ rv1 = vmulq_lane_f32(mv0, vget_low_f32(v1), 0);
+ rv2 = vmulq_lane_f32(mv0, vget_low_f32(v2), 0);
+
+ rv0 = vmlaq_lane_f32(rv0, mv1, vget_low_f32(v0), 1);
+ rv1 = vmlaq_lane_f32(rv1, mv1, vget_low_f32(v1), 1);
+ rv2 = vmlaq_lane_f32(rv2, mv1, vget_low_f32(v2), 1);
+
+ rv0 = vmlaq_lane_f32(rv0, mv2, vget_high_f32(v0), 0);
+ rv1 = vmlaq_lane_f32(rv1, mv2, vget_high_f32(v1), 0);
+ rv2 = vmlaq_lane_f32(rv2, mv2, vget_high_f32(v2), 0);
return btMatrix3x3(rv0, rv1, rv2);
-
-#else
+
+#else
return btMatrix3x3(
- m2.tdotx( m1[0]), m2.tdoty( m1[0]), m2.tdotz( m1[0]),
- m2.tdotx( m1[1]), m2.tdoty( m1[1]), m2.tdotz( m1[1]),
- m2.tdotx( m1[2]), m2.tdoty( m1[2]), m2.tdotz( m1[2]));
+ m2.tdotx(m1[0]), m2.tdoty(m1[0]), m2.tdotz(m1[0]),
+ m2.tdotx(m1[1]), m2.tdoty(m1[1]), m2.tdotz(m1[1]),
+ m2.tdotx(m1[2]), m2.tdoty(m1[2]), m2.tdotz(m1[2]));
#endif
}
@@ -1348,73 +1342,67 @@ m1[0][2] * m2[0][2] + m1[1][2] * m2[1][2] + m1[2][2] * m2[2][2]);
* It will test all elements are equal. */
SIMD_FORCE_INLINE bool operator==(const btMatrix3x3& m1, const btMatrix3x3& m2)
{
-#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
+#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))
+
+ __m128 c0, c1, c2;
- __m128 c0, c1, c2;
+ c0 = _mm_cmpeq_ps(m1[0].mVec128, m2[0].mVec128);
+ c1 = _mm_cmpeq_ps(m1[1].mVec128, m2[1].mVec128);
+ c2 = _mm_cmpeq_ps(m1[2].mVec128, m2[2].mVec128);
- c0 = _mm_cmpeq_ps(m1[0].mVec128, m2[0].mVec128);
- c1 = _mm_cmpeq_ps(m1[1].mVec128, m2[1].mVec128);
- c2 = _mm_cmpeq_ps(m1[2].mVec128, m2[2].mVec128);
-
- c0 = _mm_and_ps(c0, c1);
- c0 = _mm_and_ps(c0, c2);
+ c0 = _mm_and_ps(c0, c1);
+ c0 = _mm_and_ps(c0, c2);
int m = _mm_movemask_ps((__m128)c0);
return (0x7 == (m & 0x7));
-
-#else
- return
- ( m1[0][0] == m2[0][0] && m1[1][0] == m2[1][0] && m1[2][0] == m2[2][0] &&
- m1[0][1] == m2[0][1] && m1[1][1] == m2[1][1] && m1[2][1] == m2[2][1] &&
- m1[0][2] == m2[0][2] && m1[1][2] == m2[1][2] && m1[2][2] == m2[2][2] );
+
+#else
+ return (m1[0][0] == m2[0][0] && m1[1][0] == m2[1][0] && m1[2][0] == m2[2][0] &&
+ m1[0][1] == m2[0][1] && m1[1][1] == m2[1][1] && m1[2][1] == m2[2][1] &&
+ m1[0][2] == m2[0][2] && m1[1][2] == m2[1][2] && m1[2][2] == m2[2][2]);
#endif
}
///for serialization
-struct btMatrix3x3FloatData
+struct btMatrix3x3FloatData
{
btVector3FloatData m_el[3];
};
///for serialization
-struct btMatrix3x3DoubleData
+struct btMatrix3x3DoubleData
{
btVector3DoubleData m_el[3];
};
-
-
-
-SIMD_FORCE_INLINE void btMatrix3x3::serialize(struct btMatrix3x3Data& dataOut) const
+SIMD_FORCE_INLINE void btMatrix3x3::serialize(struct btMatrix3x3Data& dataOut) const
{
- for (int i=0;i<3;i++)
+ for (int i = 0; i < 3; i++)
m_el[i].serialize(dataOut.m_el[i]);
}
-SIMD_FORCE_INLINE void btMatrix3x3::serializeFloat(struct btMatrix3x3FloatData& dataOut) const
+SIMD_FORCE_INLINE void btMatrix3x3::serializeFloat(struct btMatrix3x3FloatData& dataOut) const
{
- for (int i=0;i<3;i++)
+ for (int i = 0; i < 3; i++)
m_el[i].serializeFloat(dataOut.m_el[i]);
}
-
-SIMD_FORCE_INLINE void btMatrix3x3::deSerialize(const struct btMatrix3x3Data& dataIn)
+SIMD_FORCE_INLINE void btMatrix3x3::deSerialize(const struct btMatrix3x3Data& dataIn)
{
- for (int i=0;i<3;i++)
+ for (int i = 0; i < 3; i++)
m_el[i].deSerialize(dataIn.m_el[i]);
}
-SIMD_FORCE_INLINE void btMatrix3x3::deSerializeFloat(const struct btMatrix3x3FloatData& dataIn)
+SIMD_FORCE_INLINE void btMatrix3x3::deSerializeFloat(const struct btMatrix3x3FloatData& dataIn)
{
- for (int i=0;i<3;i++)
+ for (int i = 0; i < 3; i++)
m_el[i].deSerializeFloat(dataIn.m_el[i]);
}
-SIMD_FORCE_INLINE void btMatrix3x3::deSerializeDouble(const struct btMatrix3x3DoubleData& dataIn)
+SIMD_FORCE_INLINE void btMatrix3x3::deSerializeDouble(const struct btMatrix3x3DoubleData& dataIn)
{
- for (int i=0;i<3;i++)
+ for (int i = 0; i < 3; i++)
m_el[i].deSerializeDouble(dataIn.m_el[i]);
}
-#endif //BT_MATRIX3x3_H
-
+#endif //BT_MATRIX3x3_H