diff options
Diffstat (limited to 'thirdparty/bullet/LinearMath/btMatrix3x3.h')
| -rw-r--r-- | thirdparty/bullet/LinearMath/btMatrix3x3.h | 1431 | 
1 files changed, 0 insertions, 1431 deletions
diff --git a/thirdparty/bullet/LinearMath/btMatrix3x3.h b/thirdparty/bullet/LinearMath/btMatrix3x3.h deleted file mode 100644 index 9c90fee1d2..0000000000 --- a/thirdparty/bullet/LinearMath/btMatrix3x3.h +++ /dev/null @@ -1,1431 +0,0 @@ -/* -Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans  http://continuousphysics.com/Bullet/ - -This software is provided 'as-is', without any express or implied warranty. -In no event will the authors be held liable for any damages arising from the use of this software. -Permission is granted to anyone to use this software for any purpose,  -including commercial applications, and to alter it and redistribute it freely,  -subject to the following restrictions: - -1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. -2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. -3. This notice may not be removed or altered from any source distribution. -*/ - -#ifndef BT_MATRIX3x3_H -#define BT_MATRIX3x3_H - -#include "btVector3.h" -#include "btQuaternion.h" -#include <stdio.h> - -#ifdef BT_USE_SSE -//const __m128 ATTRIBUTE_ALIGNED16(v2220) = {2.0f, 2.0f, 2.0f, 0.0f}; -//const __m128 ATTRIBUTE_ALIGNED16(vMPPP) = {-0.0f, +0.0f, +0.0f, +0.0f}; -#define vMPPP (_mm_set_ps(+0.0f, +0.0f, +0.0f, -0.0f)) -#endif - -#if defined(BT_USE_SSE) -#define v0000 (_mm_set_ps(0.0f, 0.0f, 0.0f, 0.0f)) -#define v1000 (_mm_set_ps(0.0f, 0.0f, 0.0f, 1.0f)) -#define v0100 (_mm_set_ps(0.0f, 0.0f, 1.0f, 0.0f)) -#define v0010 (_mm_set_ps(0.0f, 1.0f, 0.0f, 0.0f)) -#elif defined(BT_USE_NEON) -const btSimdFloat4 ATTRIBUTE_ALIGNED16(v0000) = {0.0f, 0.0f, 0.0f, 0.0f}; -const btSimdFloat4 ATTRIBUTE_ALIGNED16(v1000) = {1.0f, 0.0f, 0.0f, 0.0f}; -const btSimdFloat4 ATTRIBUTE_ALIGNED16(v0100) = {0.0f, 1.0f, 0.0f, 0.0f}; -const btSimdFloat4 ATTRIBUTE_ALIGNED16(v0010) = {0.0f, 0.0f, 1.0f, 0.0f}; -#endif - -#ifdef BT_USE_DOUBLE_PRECISION -#define btMatrix3x3Data btMatrix3x3DoubleData -#else -#define btMatrix3x3Data btMatrix3x3FloatData -#endif  //BT_USE_DOUBLE_PRECISION - -/**@brief The btMatrix3x3 class implements a 3x3 rotation matrix, to perform linear algebra in combination with btQuaternion, btTransform and btVector3. -* Make sure to only include a pure orthogonal matrix without scaling. */ -ATTRIBUTE_ALIGNED16(class) -btMatrix3x3 -{ -	///Data storage for the matrix, each vector is a row of the matrix -	btVector3 m_el[3]; - -public: -	/** @brief No initializaion constructor */ -	btMatrix3x3() {} - -	//		explicit btMatrix3x3(const btScalar *m) { setFromOpenGLSubMatrix(m); } - -	/**@brief Constructor from Quaternion */ -	explicit btMatrix3x3(const btQuaternion& q) { setRotation(q); } -	/* -	template <typename btScalar> -	Matrix3x3(const btScalar& yaw, const btScalar& pitch, const btScalar& roll) -	{  -	setEulerYPR(yaw, pitch, roll); -	} -	*/ -	/** @brief Constructor with row major formatting */ -	btMatrix3x3(const btScalar& xx, const btScalar& xy, const btScalar& xz, -				const btScalar& yx, const btScalar& yy, const btScalar& yz, -				const btScalar& zx, const btScalar& zy, const btScalar& zz) -	{ -		setValue(xx, xy, xz, -				 yx, yy, yz, -				 zx, zy, zz); -	} - -#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON) -	SIMD_FORCE_INLINE btMatrix3x3(const btSimdFloat4 v0, const btSimdFloat4 v1, const btSimdFloat4 v2) -	{ -		m_el[0].mVec128 = v0; -		m_el[1].mVec128 = v1; -		m_el[2].mVec128 = v2; -	} - -	SIMD_FORCE_INLINE btMatrix3x3(const btVector3& v0, const btVector3& v1, const btVector3& v2) -	{ -		m_el[0] = v0; -		m_el[1] = v1; -		m_el[2] = v2; -	} - -	// Copy constructor -	SIMD_FORCE_INLINE btMatrix3x3(const btMatrix3x3& rhs) -	{ -		m_el[0].mVec128 = rhs.m_el[0].mVec128; -		m_el[1].mVec128 = rhs.m_el[1].mVec128; -		m_el[2].mVec128 = rhs.m_el[2].mVec128; -	} - -	// Assignment Operator -	SIMD_FORCE_INLINE btMatrix3x3& operator=(const btMatrix3x3& m) -	{ -		m_el[0].mVec128 = m.m_el[0].mVec128; -		m_el[1].mVec128 = m.m_el[1].mVec128; -		m_el[2].mVec128 = m.m_el[2].mVec128; - -		return *this; -	} - -#else - -	/** @brief Copy constructor */ -	SIMD_FORCE_INLINE btMatrix3x3(const btMatrix3x3& other) -	{ -		m_el[0] = other.m_el[0]; -		m_el[1] = other.m_el[1]; -		m_el[2] = other.m_el[2]; -	} - -	/** @brief Assignment Operator */ -	SIMD_FORCE_INLINE btMatrix3x3& operator=(const btMatrix3x3& other) -	{ -		m_el[0] = other.m_el[0]; -		m_el[1] = other.m_el[1]; -		m_el[2] = other.m_el[2]; -		return *this; -	} -     -    SIMD_FORCE_INLINE btMatrix3x3(const btVector3& v0, const btVector3& v1, const btVector3& v2) -    { -        m_el[0] = v0; -        m_el[1] = v1; -        m_el[2] = v2; -    } - -#endif - -	/** @brief Get a column of the matrix as a vector  -	*  @param i Column number 0 indexed */ -	SIMD_FORCE_INLINE btVector3 getColumn(int i) const -	{ -		return btVector3(m_el[0][i], m_el[1][i], m_el[2][i]); -	} - -	/** @brief Get a row of the matrix as a vector  -	*  @param i Row number 0 indexed */ -	SIMD_FORCE_INLINE const btVector3& getRow(int i) const -	{ -		btFullAssert(0 <= i && i < 3); -		return m_el[i]; -	} - -	/** @brief Get a mutable reference to a row of the matrix as a vector  -	*  @param i Row number 0 indexed */ -	SIMD_FORCE_INLINE btVector3& operator[](int i) -	{ -		btFullAssert(0 <= i && i < 3); -		return m_el[i]; -	} - -	/** @brief Get a const reference to a row of the matrix as a vector  -	*  @param i Row number 0 indexed */ -	SIMD_FORCE_INLINE const btVector3& operator[](int i) const -	{ -		btFullAssert(0 <= i && i < 3); -		return m_el[i]; -	} - -	/** @brief Multiply by the target matrix on the right -	*  @param m Rotation matrix to be applied  -	* Equivilant to this = this * m */ -	btMatrix3x3& operator*=(const btMatrix3x3& m); - -	/** @brief Adds by the target matrix on the right -	*  @param m matrix to be applied  -	* Equivilant to this = this + m */ -	btMatrix3x3& operator+=(const btMatrix3x3& m); - -	/** @brief Substractss by the target matrix on the right -	*  @param m matrix to be applied  -	* Equivilant to this = this - m */ -	btMatrix3x3& operator-=(const btMatrix3x3& m); - -	/** @brief Set from the rotational part of a 4x4 OpenGL matrix -	*  @param m A pointer to the beginning of the array of scalars*/ -	void setFromOpenGLSubMatrix(const btScalar* m) -	{ -		m_el[0].setValue(m[0], m[4], m[8]); -		m_el[1].setValue(m[1], m[5], m[9]); -		m_el[2].setValue(m[2], m[6], m[10]); -	} -	/** @brief Set the values of the matrix explicitly (row major) -	*  @param xx Top left -	*  @param xy Top Middle -	*  @param xz Top Right -	*  @param yx Middle Left -	*  @param yy Middle Middle -	*  @param yz Middle Right -	*  @param zx Bottom Left -	*  @param zy Bottom Middle -	*  @param zz Bottom Right*/ -	void setValue(const btScalar& xx, const btScalar& xy, const btScalar& xz, -				  const btScalar& yx, const btScalar& yy, const btScalar& yz, -				  const btScalar& zx, const btScalar& zy, const btScalar& zz) -	{ -		m_el[0].setValue(xx, xy, xz); -		m_el[1].setValue(yx, yy, yz); -		m_el[2].setValue(zx, zy, zz); -	} - -	/** @brief Set the matrix from a quaternion -	*  @param q The Quaternion to match */ -	void setRotation(const btQuaternion& q) -	{ -		btScalar d = q.length2(); -		btFullAssert(d != btScalar(0.0)); -		btScalar s = btScalar(2.0) / d; - -#if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) -		__m128 vs, Q = q.get128(); -		__m128i Qi = btCastfTo128i(Q); -		__m128 Y, Z; -		__m128 V1, V2, V3; -		__m128 V11, V21, V31; -		__m128 NQ = _mm_xor_ps(Q, btvMzeroMask); -		__m128i NQi = btCastfTo128i(NQ); - -		V1 = btCastiTo128f(_mm_shuffle_epi32(Qi, BT_SHUFFLE(1, 0, 2, 3)));  // Y X Z W -		V2 = _mm_shuffle_ps(NQ, Q, BT_SHUFFLE(0, 0, 1, 3));                 // -X -X  Y  W -		V3 = btCastiTo128f(_mm_shuffle_epi32(Qi, BT_SHUFFLE(2, 1, 0, 3)));  // Z Y X W -		V1 = _mm_xor_ps(V1, vMPPP);                                         //	change the sign of the first element - -		V11 = btCastiTo128f(_mm_shuffle_epi32(Qi, BT_SHUFFLE(1, 1, 0, 3)));  // Y Y X W -		V21 = _mm_unpackhi_ps(Q, Q);                                         //  Z  Z  W  W -		V31 = _mm_shuffle_ps(Q, NQ, BT_SHUFFLE(0, 2, 0, 3));                 //  X  Z -X -W - -		V2 = V2 * V1;   // -		V1 = V1 * V11;  // -		V3 = V3 * V31;  // - -		V11 = _mm_shuffle_ps(NQ, Q, BT_SHUFFLE(2, 3, 1, 3));                //	-Z -W  Y  W -		V11 = V11 * V21;                                                    // -		V21 = _mm_xor_ps(V21, vMPPP);                                       //	change the sign of the first element -		V31 = _mm_shuffle_ps(Q, NQ, BT_SHUFFLE(3, 3, 1, 3));                //	 W  W -Y -W -		V31 = _mm_xor_ps(V31, vMPPP);                                       //	change the sign of the first element -		Y = btCastiTo128f(_mm_shuffle_epi32(NQi, BT_SHUFFLE(3, 2, 0, 3)));  // -W -Z -X -W -		Z = btCastiTo128f(_mm_shuffle_epi32(Qi, BT_SHUFFLE(1, 0, 1, 3)));   //  Y  X  Y  W - -		vs = _mm_load_ss(&s); -		V21 = V21 * Y; -		V31 = V31 * Z; - -		V1 = V1 + V11; -		V2 = V2 + V21; -		V3 = V3 + V31; - -		vs = bt_splat3_ps(vs, 0); -		//	s ready -		V1 = V1 * vs; -		V2 = V2 * vs; -		V3 = V3 * vs; - -		V1 = V1 + v1000; -		V2 = V2 + v0100; -		V3 = V3 + v0010; - -		m_el[0] = V1; -		m_el[1] = V2; -		m_el[2] = V3; -#else -		btScalar xs = q.x() * s, ys = q.y() * s, zs = q.z() * s; -		btScalar wx = q.w() * xs, wy = q.w() * ys, wz = q.w() * zs; -		btScalar xx = q.x() * xs, xy = q.x() * ys, xz = q.x() * zs; -		btScalar yy = q.y() * ys, yz = q.y() * zs, zz = q.z() * zs; -		setValue( -			btScalar(1.0) - (yy + zz), xy - wz, xz + wy, -			xy + wz, btScalar(1.0) - (xx + zz), yz - wx, -			xz - wy, yz + wx, btScalar(1.0) - (xx + yy)); -#endif -	} - -	/** @brief Set the matrix from euler angles using YPR around YXZ respectively -	*  @param yaw Yaw about Y axis -	*  @param pitch Pitch about X axis -	*  @param roll Roll about Z axis  -	*/ -	void setEulerYPR(const btScalar& yaw, const btScalar& pitch, const btScalar& roll) -	{ -		setEulerZYX(roll, pitch, yaw); -	} - -	/** @brief Set the matrix from euler angles YPR around ZYX axes -	* @param eulerX Roll about X axis -	* @param eulerY Pitch around Y axis -	* @param eulerZ Yaw about Z axis -	*  -	* These angles are used to produce a rotation matrix. The euler -	* angles are applied in ZYX order. I.e a vector is first rotated  -	* about X then Y and then Z -	**/ -	void setEulerZYX(btScalar eulerX, btScalar eulerY, btScalar eulerZ) -	{ -		///@todo proposed to reverse this since it's labeled zyx but takes arguments xyz and it will match all other parts of the code -		btScalar ci(btCos(eulerX)); -		btScalar cj(btCos(eulerY)); -		btScalar ch(btCos(eulerZ)); -		btScalar si(btSin(eulerX)); -		btScalar sj(btSin(eulerY)); -		btScalar sh(btSin(eulerZ)); -		btScalar cc = ci * ch; -		btScalar cs = ci * sh; -		btScalar sc = si * ch; -		btScalar ss = si * sh; - -		setValue(cj * ch, sj * sc - cs, sj * cc + ss, -				 cj * sh, sj * ss + cc, sj * cs - sc, -				 -sj, cj * si, cj * ci); -	} - -	/**@brief Set the matrix to the identity */ -	void setIdentity() -	{ -#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON) -		m_el[0] = v1000; -		m_el[1] = v0100; -		m_el[2] = v0010; -#else -		setValue(btScalar(1.0), btScalar(0.0), btScalar(0.0), -				 btScalar(0.0), btScalar(1.0), btScalar(0.0), -				 btScalar(0.0), btScalar(0.0), btScalar(1.0)); -#endif -	} -     -    /**@brief Set the matrix to the identity */ -    void setZero() -    { -#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON) -        m_el[0] = v0000; -        m_el[1] = v0000; -        m_el[2] = v0000; -#else -        setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0), -                 btScalar(0.0), btScalar(0.0), btScalar(0.0), -                 btScalar(0.0), btScalar(0.0), btScalar(0.0)); -#endif -    } - -	static const btMatrix3x3& getIdentity() -	{ -#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON) -		static const btMatrix3x3 -			identityMatrix(v1000, v0100, v0010); -#else -		static const btMatrix3x3 -			identityMatrix( -				btScalar(1.0), btScalar(0.0), btScalar(0.0), -				btScalar(0.0), btScalar(1.0), btScalar(0.0), -				btScalar(0.0), btScalar(0.0), btScalar(1.0)); -#endif -		return identityMatrix; -	} - -	/**@brief Fill the rotational part of an OpenGL matrix and clear the shear/perspective -	* @param m The array to be filled */ -	void getOpenGLSubMatrix(btScalar * m) const -	{ -#if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) -		__m128 v0 = m_el[0].mVec128; -		__m128 v1 = m_el[1].mVec128; -		__m128 v2 = m_el[2].mVec128;  //  x2 y2 z2 w2 -		__m128* vm = (__m128*)m; -		__m128 vT; - -		v2 = _mm_and_ps(v2, btvFFF0fMask);  //  x2 y2 z2 0 - -		vT = _mm_unpackhi_ps(v0, v1);  //	z0 z1 * * -		v0 = _mm_unpacklo_ps(v0, v1);  //	x0 x1 y0 y1 - -		v1 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(2, 3, 1, 3));                    // y0 y1 y2 0 -		v0 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(0, 1, 0, 3));                    // x0 x1 x2 0 -		v2 = btCastdTo128f(_mm_move_sd(btCastfTo128d(v2), btCastfTo128d(vT)));  // z0 z1 z2 0 - -		vm[0] = v0; -		vm[1] = v1; -		vm[2] = v2; -#elif defined(BT_USE_NEON) -		// note: zeros the w channel. We can preserve it at the cost of two more vtrn instructions. -		static const uint32x2_t zMask = (const uint32x2_t){static_cast<uint32_t>(-1), 0}; -		float32x4_t* vm = (float32x4_t*)m; -		float32x4x2_t top = vtrnq_f32(m_el[0].mVec128, m_el[1].mVec128);               // {x0 x1 z0 z1}, {y0 y1 w0 w1} -		float32x2x2_t bl = vtrn_f32(vget_low_f32(m_el[2].mVec128), vdup_n_f32(0.0f));  // {x2  0 }, {y2 0} -		float32x4_t v0 = vcombine_f32(vget_low_f32(top.val[0]), bl.val[0]); -		float32x4_t v1 = vcombine_f32(vget_low_f32(top.val[1]), bl.val[1]); -		float32x2_t q = (float32x2_t)vand_u32((uint32x2_t)vget_high_f32(m_el[2].mVec128), zMask); -		float32x4_t v2 = vcombine_f32(vget_high_f32(top.val[0]), q);  // z0 z1 z2  0 - -		vm[0] = v0; -		vm[1] = v1; -		vm[2] = v2; -#else -		m[0] = btScalar(m_el[0].x()); -		m[1] = btScalar(m_el[1].x()); -		m[2] = btScalar(m_el[2].x()); -		m[3] = btScalar(0.0); -		m[4] = btScalar(m_el[0].y()); -		m[5] = btScalar(m_el[1].y()); -		m[6] = btScalar(m_el[2].y()); -		m[7] = btScalar(0.0); -		m[8] = btScalar(m_el[0].z()); -		m[9] = btScalar(m_el[1].z()); -		m[10] = btScalar(m_el[2].z()); -		m[11] = btScalar(0.0); -#endif -	} - -	/**@brief Get the matrix represented as a quaternion  -	* @param q The quaternion which will be set */ -	void getRotation(btQuaternion & q) const -	{ -#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON) -		btScalar trace = m_el[0].x() + m_el[1].y() + m_el[2].z(); -		btScalar s, x; - -		union { -			btSimdFloat4 vec; -			btScalar f[4]; -		} temp; - -		if (trace > btScalar(0.0)) -		{ -			x = trace + btScalar(1.0); - -			temp.f[0] = m_el[2].y() - m_el[1].z(); -			temp.f[1] = m_el[0].z() - m_el[2].x(); -			temp.f[2] = m_el[1].x() - m_el[0].y(); -			temp.f[3] = x; -			//temp.f[3]= s * btScalar(0.5); -		} -		else -		{ -			int i, j, k; -			if (m_el[0].x() < m_el[1].y()) -			{ -				if (m_el[1].y() < m_el[2].z()) -				{ -					i = 2; -					j = 0; -					k = 1; -				} -				else -				{ -					i = 1; -					j = 2; -					k = 0; -				} -			} -			else -			{ -				if (m_el[0].x() < m_el[2].z()) -				{ -					i = 2; -					j = 0; -					k = 1; -				} -				else -				{ -					i = 0; -					j = 1; -					k = 2; -				} -			} - -			x = m_el[i][i] - m_el[j][j] - m_el[k][k] + btScalar(1.0); - -			temp.f[3] = (m_el[k][j] - m_el[j][k]); -			temp.f[j] = (m_el[j][i] + m_el[i][j]); -			temp.f[k] = (m_el[k][i] + m_el[i][k]); -			temp.f[i] = x; -			//temp.f[i] = s * btScalar(0.5); -		} - -		s = btSqrt(x); -		q.set128(temp.vec); -		s = btScalar(0.5) / s; - -		q *= s; -#else -		btScalar trace = m_el[0].x() + m_el[1].y() + m_el[2].z(); - -		btScalar temp[4]; - -		if (trace > btScalar(0.0)) -		{ -			btScalar s = btSqrt(trace + btScalar(1.0)); -			temp[3] = (s * btScalar(0.5)); -			s = btScalar(0.5) / s; - -			temp[0] = ((m_el[2].y() - m_el[1].z()) * s); -			temp[1] = ((m_el[0].z() - m_el[2].x()) * s); -			temp[2] = ((m_el[1].x() - m_el[0].y()) * s); -		} -		else -		{ -			int i = m_el[0].x() < m_el[1].y() ? (m_el[1].y() < m_el[2].z() ? 2 : 1) : (m_el[0].x() < m_el[2].z() ? 2 : 0); -			int j = (i + 1) % 3; -			int k = (i + 2) % 3; - -			btScalar s = btSqrt(m_el[i][i] - m_el[j][j] - m_el[k][k] + btScalar(1.0)); -			temp[i] = s * btScalar(0.5); -			s = btScalar(0.5) / s; - -			temp[3] = (m_el[k][j] - m_el[j][k]) * s; -			temp[j] = (m_el[j][i] + m_el[i][j]) * s; -			temp[k] = (m_el[k][i] + m_el[i][k]) * s; -		} -		q.setValue(temp[0], temp[1], temp[2], temp[3]); -#endif -	} - -	/**@brief Get the matrix represented as euler angles around YXZ, roundtrip with setEulerYPR -	* @param yaw Yaw around Y axis -	* @param pitch Pitch around X axis -	* @param roll around Z axis */ -	void getEulerYPR(btScalar & yaw, btScalar & pitch, btScalar & roll) const -	{ -		// first use the normal calculus -		yaw = btScalar(btAtan2(m_el[1].x(), m_el[0].x())); -		pitch = btScalar(btAsin(-m_el[2].x())); -		roll = btScalar(btAtan2(m_el[2].y(), m_el[2].z())); - -		// on pitch = +/-HalfPI -		if (btFabs(pitch) == SIMD_HALF_PI) -		{ -			if (yaw > 0) -				yaw -= SIMD_PI; -			else -				yaw += SIMD_PI; - -			if (roll > 0) -				roll -= SIMD_PI; -			else -				roll += SIMD_PI; -		} -	}; - -	/**@brief Get the matrix represented as euler angles around ZYX -	* @param yaw Yaw around Z axis -	* @param pitch Pitch around Y axis -	* @param roll around X axis  -	* @param solution_number Which solution of two possible solutions ( 1 or 2) are possible values*/ -	void getEulerZYX(btScalar & yaw, btScalar & pitch, btScalar & roll, unsigned int solution_number = 1) const -	{ -		struct Euler -		{ -			btScalar yaw; -			btScalar pitch; -			btScalar roll; -		}; - -		Euler euler_out; -		Euler euler_out2;  //second solution -		//get the pointer to the raw data - -		// Check that pitch is not at a singularity -		if (btFabs(m_el[2].x()) >= 1) -		{ -			euler_out.yaw = 0; -			euler_out2.yaw = 0; - -			// From difference of angles formula -			btScalar delta = btAtan2(m_el[0].x(), m_el[0].z()); -			if (m_el[2].x() > 0)  //gimbal locked up -			{ -				euler_out.pitch = SIMD_PI / btScalar(2.0); -				euler_out2.pitch = SIMD_PI / btScalar(2.0); -				euler_out.roll = euler_out.pitch + delta; -				euler_out2.roll = euler_out.pitch + delta; -			} -			else  // gimbal locked down -			{ -				euler_out.pitch = -SIMD_PI / btScalar(2.0); -				euler_out2.pitch = -SIMD_PI / btScalar(2.0); -				euler_out.roll = -euler_out.pitch + delta; -				euler_out2.roll = -euler_out.pitch + delta; -			} -		} -		else -		{ -			euler_out.pitch = -btAsin(m_el[2].x()); -			euler_out2.pitch = SIMD_PI - euler_out.pitch; - -			euler_out.roll = btAtan2(m_el[2].y() / btCos(euler_out.pitch), -									 m_el[2].z() / btCos(euler_out.pitch)); -			euler_out2.roll = btAtan2(m_el[2].y() / btCos(euler_out2.pitch), -									  m_el[2].z() / btCos(euler_out2.pitch)); - -			euler_out.yaw = btAtan2(m_el[1].x() / btCos(euler_out.pitch), -									m_el[0].x() / btCos(euler_out.pitch)); -			euler_out2.yaw = btAtan2(m_el[1].x() / btCos(euler_out2.pitch), -									 m_el[0].x() / btCos(euler_out2.pitch)); -		} - -		if (solution_number == 1) -		{ -			yaw = euler_out.yaw; -			pitch = euler_out.pitch; -			roll = euler_out.roll; -		} -		else -		{ -			yaw = euler_out2.yaw; -			pitch = euler_out2.pitch; -			roll = euler_out2.roll; -		} -	} - -	/**@brief Create a scaled copy of the matrix  -	* @param s Scaling vector The elements of the vector will scale each column */ - -	btMatrix3x3 scaled(const btVector3& s) const -	{ -#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON) -		return btMatrix3x3(m_el[0] * s, m_el[1] * s, m_el[2] * s); -#else -		return btMatrix3x3( -			m_el[0].x() * s.x(), m_el[0].y() * s.y(), m_el[0].z() * s.z(), -			m_el[1].x() * s.x(), m_el[1].y() * s.y(), m_el[1].z() * s.z(), -			m_el[2].x() * s.x(), m_el[2].y() * s.y(), m_el[2].z() * s.z()); -#endif -	} - -	/**@brief Return the determinant of the matrix */ -	btScalar determinant() const; -	/**@brief Return the adjoint of the matrix */ -	btMatrix3x3 adjoint() const; -	/**@brief Return the matrix with all values non negative */ -	btMatrix3x3 absolute() const; -	/**@brief Return the transpose of the matrix */ -	btMatrix3x3 transpose() const; -	/**@brief Return the inverse of the matrix */ -	btMatrix3x3 inverse() const; - -	/// Solve A * x = b, where b is a column vector. This is more efficient -	/// than computing the inverse in one-shot cases. -	///Solve33 is from Box2d, thanks to Erin Catto, -	btVector3 solve33(const btVector3& b) const -	{ -		btVector3 col1 = getColumn(0); -		btVector3 col2 = getColumn(1); -		btVector3 col3 = getColumn(2); - -		btScalar det = btDot(col1, btCross(col2, col3)); -		if (btFabs(det) > SIMD_EPSILON) -		{ -			det = 1.0f / det; -		} -		btVector3 x; -		x[0] = det * btDot(b, btCross(col2, col3)); -		x[1] = det * btDot(col1, btCross(b, col3)); -		x[2] = det * btDot(col1, btCross(col2, b)); -		return x; -	} - -	btMatrix3x3 transposeTimes(const btMatrix3x3& m) const; -	btMatrix3x3 timesTranspose(const btMatrix3x3& m) const; - -	SIMD_FORCE_INLINE btScalar tdotx(const btVector3& v) const -	{ -		return m_el[0].x() * v.x() + m_el[1].x() * v.y() + m_el[2].x() * v.z(); -	} -	SIMD_FORCE_INLINE btScalar tdoty(const btVector3& v) const -	{ -		return m_el[0].y() * v.x() + m_el[1].y() * v.y() + m_el[2].y() * v.z(); -	} -	SIMD_FORCE_INLINE btScalar tdotz(const btVector3& v) const -	{ -		return m_el[0].z() * v.x() + m_el[1].z() * v.y() + m_el[2].z() * v.z(); -	} - -	///extractRotation is from "A robust method to extract the rotational part of deformations" -	///See http://dl.acm.org/citation.cfm?doid=2994258.2994269 -	///decomposes a matrix A in a orthogonal matrix R and a -	///symmetric matrix S: -	///A = R*S. -	///note that R can include both rotation and scaling. -	SIMD_FORCE_INLINE void extractRotation(btQuaternion & q, btScalar tolerance = 1.0e-9, int maxIter = 100) -	{ -		int iter = 0; -		btScalar w; -		const btMatrix3x3& A = *this; -		for (iter = 0; iter < maxIter; iter++) -		{ -			btMatrix3x3 R(q); -			btVector3 omega = (R.getColumn(0).cross(A.getColumn(0)) + R.getColumn(1).cross(A.getColumn(1)) + R.getColumn(2).cross(A.getColumn(2))) * (btScalar(1.0) / btFabs(R.getColumn(0).dot(A.getColumn(0)) + R.getColumn(1).dot(A.getColumn(1)) + R.getColumn(2).dot(A.getColumn(2))) + -																																					  tolerance); -			w = omega.norm(); -			if (w < tolerance) -				break; -			q = btQuaternion(btVector3((btScalar(1.0) / w) * omega), w) * -				q; -			q.normalize(); -		} -	} - -	/**@brief diagonalizes this matrix by the Jacobi method. -	* @param rot stores the rotation from the coordinate system in which the matrix is diagonal to the original -	* coordinate system, i.e., old_this = rot * new_this * rot^T. -	* @param threshold See iteration -	* @param iteration The iteration stops when all off-diagonal elements are less than the threshold multiplied -	* by the sum of the absolute values of the diagonal, or when maxSteps have been executed. -	* -	* Note that this matrix is assumed to be symmetric. -	*/ -	void diagonalize(btMatrix3x3 & rot, btScalar threshold, int maxSteps) -	{ -		rot.setIdentity(); -		for (int step = maxSteps; step > 0; step--) -		{ -			// find off-diagonal element [p][q] with largest magnitude -			int p = 0; -			int q = 1; -			int r = 2; -			btScalar max = btFabs(m_el[0][1]); -			btScalar v = btFabs(m_el[0][2]); -			if (v > max) -			{ -				q = 2; -				r = 1; -				max = v; -			} -			v = btFabs(m_el[1][2]); -			if (v > max) -			{ -				p = 1; -				q = 2; -				r = 0; -				max = v; -			} - -			btScalar t = threshold * (btFabs(m_el[0][0]) + btFabs(m_el[1][1]) + btFabs(m_el[2][2])); -			if (max <= t) -			{ -				if (max <= SIMD_EPSILON * t) -				{ -					return; -				} -				step = 1; -			} - -			// compute Jacobi rotation J which leads to a zero for element [p][q] -			btScalar mpq = m_el[p][q]; -			btScalar theta = (m_el[q][q] - m_el[p][p]) / (2 * mpq); -			btScalar theta2 = theta * theta; -			btScalar cos; -			btScalar sin; -			if (theta2 * theta2 < btScalar(10 / SIMD_EPSILON)) -			{ -				t = (theta >= 0) ? 1 / (theta + btSqrt(1 + theta2)) -								 : 1 / (theta - btSqrt(1 + theta2)); -				cos = 1 / btSqrt(1 + t * t); -				sin = cos * t; -			} -			else -			{ -				// approximation for large theta-value, i.e., a nearly diagonal matrix -				t = 1 / (theta * (2 + btScalar(0.5) / theta2)); -				cos = 1 - btScalar(0.5) * t * t; -				sin = cos * t; -			} - -			// apply rotation to matrix (this = J^T * this * J) -			m_el[p][q] = m_el[q][p] = 0; -			m_el[p][p] -= t * mpq; -			m_el[q][q] += t * mpq; -			btScalar mrp = m_el[r][p]; -			btScalar mrq = m_el[r][q]; -			m_el[r][p] = m_el[p][r] = cos * mrp - sin * mrq; -			m_el[r][q] = m_el[q][r] = cos * mrq + sin * mrp; - -			// apply rotation to rot (rot = rot * J) -			for (int i = 0; i < 3; i++) -			{ -				btVector3& row = rot[i]; -				mrp = row[p]; -				mrq = row[q]; -				row[p] = cos * mrp - sin * mrq; -				row[q] = cos * mrq + sin * mrp; -			} -		} -	} - -	/**@brief Calculate the matrix cofactor  -	* @param r1 The first row to use for calculating the cofactor -	* @param c1 The first column to use for calculating the cofactor -	* @param r1 The second row to use for calculating the cofactor -	* @param c1 The second column to use for calculating the cofactor -	* See http://en.wikipedia.org/wiki/Cofactor_(linear_algebra) for more details -	*/ -	btScalar cofac(int r1, int c1, int r2, int c2) const -	{ -		return m_el[r1][c1] * m_el[r2][c2] - m_el[r1][c2] * m_el[r2][c1]; -	} - -	void serialize(struct btMatrix3x3Data & dataOut) const; - -	void serializeFloat(struct btMatrix3x3FloatData & dataOut) const; - -	void deSerialize(const struct btMatrix3x3Data& dataIn); - -	void deSerializeFloat(const struct btMatrix3x3FloatData& dataIn); - -	void deSerializeDouble(const struct btMatrix3x3DoubleData& dataIn); -}; - -SIMD_FORCE_INLINE btMatrix3x3& -btMatrix3x3::operator*=(const btMatrix3x3& m) -{ -#if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) -	__m128 rv00, rv01, rv02; -	__m128 rv10, rv11, rv12; -	__m128 rv20, rv21, rv22; -	__m128 mv0, mv1, mv2; - -	rv02 = m_el[0].mVec128; -	rv12 = m_el[1].mVec128; -	rv22 = m_el[2].mVec128; - -	mv0 = _mm_and_ps(m[0].mVec128, btvFFF0fMask); -	mv1 = _mm_and_ps(m[1].mVec128, btvFFF0fMask); -	mv2 = _mm_and_ps(m[2].mVec128, btvFFF0fMask); - -	// rv0 -	rv00 = bt_splat_ps(rv02, 0); -	rv01 = bt_splat_ps(rv02, 1); -	rv02 = bt_splat_ps(rv02, 2); - -	rv00 = _mm_mul_ps(rv00, mv0); -	rv01 = _mm_mul_ps(rv01, mv1); -	rv02 = _mm_mul_ps(rv02, mv2); - -	// rv1 -	rv10 = bt_splat_ps(rv12, 0); -	rv11 = bt_splat_ps(rv12, 1); -	rv12 = bt_splat_ps(rv12, 2); - -	rv10 = _mm_mul_ps(rv10, mv0); -	rv11 = _mm_mul_ps(rv11, mv1); -	rv12 = _mm_mul_ps(rv12, mv2); - -	// rv2 -	rv20 = bt_splat_ps(rv22, 0); -	rv21 = bt_splat_ps(rv22, 1); -	rv22 = bt_splat_ps(rv22, 2); - -	rv20 = _mm_mul_ps(rv20, mv0); -	rv21 = _mm_mul_ps(rv21, mv1); -	rv22 = _mm_mul_ps(rv22, mv2); - -	rv00 = _mm_add_ps(rv00, rv01); -	rv10 = _mm_add_ps(rv10, rv11); -	rv20 = _mm_add_ps(rv20, rv21); - -	m_el[0].mVec128 = _mm_add_ps(rv00, rv02); -	m_el[1].mVec128 = _mm_add_ps(rv10, rv12); -	m_el[2].mVec128 = _mm_add_ps(rv20, rv22); - -#elif defined(BT_USE_NEON) - -	float32x4_t rv0, rv1, rv2; -	float32x4_t v0, v1, v2; -	float32x4_t mv0, mv1, mv2; - -	v0 = m_el[0].mVec128; -	v1 = m_el[1].mVec128; -	v2 = m_el[2].mVec128; - -	mv0 = (float32x4_t)vandq_s32((int32x4_t)m[0].mVec128, btvFFF0Mask); -	mv1 = (float32x4_t)vandq_s32((int32x4_t)m[1].mVec128, btvFFF0Mask); -	mv2 = (float32x4_t)vandq_s32((int32x4_t)m[2].mVec128, btvFFF0Mask); - -	rv0 = vmulq_lane_f32(mv0, vget_low_f32(v0), 0); -	rv1 = vmulq_lane_f32(mv0, vget_low_f32(v1), 0); -	rv2 = vmulq_lane_f32(mv0, vget_low_f32(v2), 0); - -	rv0 = vmlaq_lane_f32(rv0, mv1, vget_low_f32(v0), 1); -	rv1 = vmlaq_lane_f32(rv1, mv1, vget_low_f32(v1), 1); -	rv2 = vmlaq_lane_f32(rv2, mv1, vget_low_f32(v2), 1); - -	rv0 = vmlaq_lane_f32(rv0, mv2, vget_high_f32(v0), 0); -	rv1 = vmlaq_lane_f32(rv1, mv2, vget_high_f32(v1), 0); -	rv2 = vmlaq_lane_f32(rv2, mv2, vget_high_f32(v2), 0); - -	m_el[0].mVec128 = rv0; -	m_el[1].mVec128 = rv1; -	m_el[2].mVec128 = rv2; -#else -	setValue( -		m.tdotx(m_el[0]), m.tdoty(m_el[0]), m.tdotz(m_el[0]), -		m.tdotx(m_el[1]), m.tdoty(m_el[1]), m.tdotz(m_el[1]), -		m.tdotx(m_el[2]), m.tdoty(m_el[2]), m.tdotz(m_el[2])); -#endif -	return *this; -} - -SIMD_FORCE_INLINE btMatrix3x3& -btMatrix3x3::operator+=(const btMatrix3x3& m) -{ -#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON) -	m_el[0].mVec128 = m_el[0].mVec128 + m.m_el[0].mVec128; -	m_el[1].mVec128 = m_el[1].mVec128 + m.m_el[1].mVec128; -	m_el[2].mVec128 = m_el[2].mVec128 + m.m_el[2].mVec128; -#else -	setValue( -		m_el[0][0] + m.m_el[0][0], -		m_el[0][1] + m.m_el[0][1], -		m_el[0][2] + m.m_el[0][2], -		m_el[1][0] + m.m_el[1][0], -		m_el[1][1] + m.m_el[1][1], -		m_el[1][2] + m.m_el[1][2], -		m_el[2][0] + m.m_el[2][0], -		m_el[2][1] + m.m_el[2][1], -		m_el[2][2] + m.m_el[2][2]); -#endif -	return *this; -} - -SIMD_FORCE_INLINE btMatrix3x3 -operator*(const btMatrix3x3& m, const btScalar& k) -{ -#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) -	__m128 vk = bt_splat_ps(_mm_load_ss((float*)&k), 0x80); -	return btMatrix3x3( -		_mm_mul_ps(m[0].mVec128, vk), -		_mm_mul_ps(m[1].mVec128, vk), -		_mm_mul_ps(m[2].mVec128, vk)); -#elif defined(BT_USE_NEON) -	return btMatrix3x3( -		vmulq_n_f32(m[0].mVec128, k), -		vmulq_n_f32(m[1].mVec128, k), -		vmulq_n_f32(m[2].mVec128, k)); -#else -	return btMatrix3x3( -		m[0].x() * k, m[0].y() * k, m[0].z() * k, -		m[1].x() * k, m[1].y() * k, m[1].z() * k, -		m[2].x() * k, m[2].y() * k, m[2].z() * k); -#endif -} - -SIMD_FORCE_INLINE btMatrix3x3 -operator+(const btMatrix3x3& m1, const btMatrix3x3& m2) -{ -#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON) -	return btMatrix3x3( -		m1[0].mVec128 + m2[0].mVec128, -		m1[1].mVec128 + m2[1].mVec128, -		m1[2].mVec128 + m2[2].mVec128); -#else -	return btMatrix3x3( -		m1[0][0] + m2[0][0], -		m1[0][1] + m2[0][1], -		m1[0][2] + m2[0][2], - -		m1[1][0] + m2[1][0], -		m1[1][1] + m2[1][1], -		m1[1][2] + m2[1][2], - -		m1[2][0] + m2[2][0], -		m1[2][1] + m2[2][1], -		m1[2][2] + m2[2][2]); -#endif -} - -SIMD_FORCE_INLINE btMatrix3x3 -operator-(const btMatrix3x3& m1, const btMatrix3x3& m2) -{ -#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON) -	return btMatrix3x3( -		m1[0].mVec128 - m2[0].mVec128, -		m1[1].mVec128 - m2[1].mVec128, -		m1[2].mVec128 - m2[2].mVec128); -#else -	return btMatrix3x3( -		m1[0][0] - m2[0][0], -		m1[0][1] - m2[0][1], -		m1[0][2] - m2[0][2], - -		m1[1][0] - m2[1][0], -		m1[1][1] - m2[1][1], -		m1[1][2] - m2[1][2], - -		m1[2][0] - m2[2][0], -		m1[2][1] - m2[2][1], -		m1[2][2] - m2[2][2]); -#endif -} - -SIMD_FORCE_INLINE btMatrix3x3& -btMatrix3x3::operator-=(const btMatrix3x3& m) -{ -#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON) -	m_el[0].mVec128 = m_el[0].mVec128 - m.m_el[0].mVec128; -	m_el[1].mVec128 = m_el[1].mVec128 - m.m_el[1].mVec128; -	m_el[2].mVec128 = m_el[2].mVec128 - m.m_el[2].mVec128; -#else -	setValue( -		m_el[0][0] - m.m_el[0][0], -		m_el[0][1] - m.m_el[0][1], -		m_el[0][2] - m.m_el[0][2], -		m_el[1][0] - m.m_el[1][0], -		m_el[1][1] - m.m_el[1][1], -		m_el[1][2] - m.m_el[1][2], -		m_el[2][0] - m.m_el[2][0], -		m_el[2][1] - m.m_el[2][1], -		m_el[2][2] - m.m_el[2][2]); -#endif -	return *this; -} - -SIMD_FORCE_INLINE btScalar -btMatrix3x3::determinant() const -{ -	return btTriple((*this)[0], (*this)[1], (*this)[2]); -} - -SIMD_FORCE_INLINE btMatrix3x3 -btMatrix3x3::absolute() const -{ -#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) -	return btMatrix3x3( -		_mm_and_ps(m_el[0].mVec128, btvAbsfMask), -		_mm_and_ps(m_el[1].mVec128, btvAbsfMask), -		_mm_and_ps(m_el[2].mVec128, btvAbsfMask)); -#elif defined(BT_USE_NEON) -	return btMatrix3x3( -		(float32x4_t)vandq_s32((int32x4_t)m_el[0].mVec128, btv3AbsMask), -		(float32x4_t)vandq_s32((int32x4_t)m_el[1].mVec128, btv3AbsMask), -		(float32x4_t)vandq_s32((int32x4_t)m_el[2].mVec128, btv3AbsMask)); -#else -	return btMatrix3x3( -		btFabs(m_el[0].x()), btFabs(m_el[0].y()), btFabs(m_el[0].z()), -		btFabs(m_el[1].x()), btFabs(m_el[1].y()), btFabs(m_el[1].z()), -		btFabs(m_el[2].x()), btFabs(m_el[2].y()), btFabs(m_el[2].z())); -#endif -} - -SIMD_FORCE_INLINE btMatrix3x3 -btMatrix3x3::transpose() const -{ -#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) -	__m128 v0 = m_el[0].mVec128; -	__m128 v1 = m_el[1].mVec128; -	__m128 v2 = m_el[2].mVec128;  //  x2 y2 z2 w2 -	__m128 vT; - -	v2 = _mm_and_ps(v2, btvFFF0fMask);  //  x2 y2 z2 0 - -	vT = _mm_unpackhi_ps(v0, v1);  //	z0 z1 * * -	v0 = _mm_unpacklo_ps(v0, v1);  //	x0 x1 y0 y1 - -	v1 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(2, 3, 1, 3));                    // y0 y1 y2 0 -	v0 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(0, 1, 0, 3));                    // x0 x1 x2 0 -	v2 = btCastdTo128f(_mm_move_sd(btCastfTo128d(v2), btCastfTo128d(vT)));  // z0 z1 z2 0 - -	return btMatrix3x3(v0, v1, v2); -#elif defined(BT_USE_NEON) -	// note: zeros the w channel. We can preserve it at the cost of two more vtrn instructions. -	static const uint32x2_t zMask = (const uint32x2_t){static_cast<uint32_t>(-1), 0}; -	float32x4x2_t top = vtrnq_f32(m_el[0].mVec128, m_el[1].mVec128);               // {x0 x1 z0 z1}, {y0 y1 w0 w1} -	float32x2x2_t bl = vtrn_f32(vget_low_f32(m_el[2].mVec128), vdup_n_f32(0.0f));  // {x2  0 }, {y2 0} -	float32x4_t v0 = vcombine_f32(vget_low_f32(top.val[0]), bl.val[0]); -	float32x4_t v1 = vcombine_f32(vget_low_f32(top.val[1]), bl.val[1]); -	float32x2_t q = (float32x2_t)vand_u32((uint32x2_t)vget_high_f32(m_el[2].mVec128), zMask); -	float32x4_t v2 = vcombine_f32(vget_high_f32(top.val[0]), q);  // z0 z1 z2  0 -	return btMatrix3x3(v0, v1, v2); -#else -	return btMatrix3x3(m_el[0].x(), m_el[1].x(), m_el[2].x(), -					   m_el[0].y(), m_el[1].y(), m_el[2].y(), -					   m_el[0].z(), m_el[1].z(), m_el[2].z()); -#endif -} - -SIMD_FORCE_INLINE btMatrix3x3 -btMatrix3x3::adjoint() const -{ -	return btMatrix3x3(cofac(1, 1, 2, 2), cofac(0, 2, 2, 1), cofac(0, 1, 1, 2), -					   cofac(1, 2, 2, 0), cofac(0, 0, 2, 2), cofac(0, 2, 1, 0), -					   cofac(1, 0, 2, 1), cofac(0, 1, 2, 0), cofac(0, 0, 1, 1)); -} - -SIMD_FORCE_INLINE btMatrix3x3 -btMatrix3x3::inverse() const -{ -	btVector3 co(cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1)); -	btScalar det = (*this)[0].dot(co); -	//btFullAssert(det != btScalar(0.0)); -	btAssert(det != btScalar(0.0)); -	btScalar s = btScalar(1.0) / det; -	return btMatrix3x3(co.x() * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s, -					   co.y() * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s, -					   co.z() * s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s); -} - -SIMD_FORCE_INLINE btMatrix3x3 -btMatrix3x3::transposeTimes(const btMatrix3x3& m) const -{ -#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) -	// zeros w -	//    static const __m128i xyzMask = (const __m128i){ -1ULL, 0xffffffffULL }; -	__m128 row = m_el[0].mVec128; -	__m128 m0 = _mm_and_ps(m.getRow(0).mVec128, btvFFF0fMask); -	__m128 m1 = _mm_and_ps(m.getRow(1).mVec128, btvFFF0fMask); -	__m128 m2 = _mm_and_ps(m.getRow(2).mVec128, btvFFF0fMask); -	__m128 r0 = _mm_mul_ps(m0, _mm_shuffle_ps(row, row, 0)); -	__m128 r1 = _mm_mul_ps(m0, _mm_shuffle_ps(row, row, 0x55)); -	__m128 r2 = _mm_mul_ps(m0, _mm_shuffle_ps(row, row, 0xaa)); -	row = m_el[1].mVec128; -	r0 = _mm_add_ps(r0, _mm_mul_ps(m1, _mm_shuffle_ps(row, row, 0))); -	r1 = _mm_add_ps(r1, _mm_mul_ps(m1, _mm_shuffle_ps(row, row, 0x55))); -	r2 = _mm_add_ps(r2, _mm_mul_ps(m1, _mm_shuffle_ps(row, row, 0xaa))); -	row = m_el[2].mVec128; -	r0 = _mm_add_ps(r0, _mm_mul_ps(m2, _mm_shuffle_ps(row, row, 0))); -	r1 = _mm_add_ps(r1, _mm_mul_ps(m2, _mm_shuffle_ps(row, row, 0x55))); -	r2 = _mm_add_ps(r2, _mm_mul_ps(m2, _mm_shuffle_ps(row, row, 0xaa))); -	return btMatrix3x3(r0, r1, r2); - -#elif defined BT_USE_NEON -	// zeros w -	static const uint32x4_t xyzMask = (const uint32x4_t){static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), 0}; -	float32x4_t m0 = (float32x4_t)vandq_u32((uint32x4_t)m.getRow(0).mVec128, xyzMask); -	float32x4_t m1 = (float32x4_t)vandq_u32((uint32x4_t)m.getRow(1).mVec128, xyzMask); -	float32x4_t m2 = (float32x4_t)vandq_u32((uint32x4_t)m.getRow(2).mVec128, xyzMask); -	float32x4_t row = m_el[0].mVec128; -	float32x4_t r0 = vmulq_lane_f32(m0, vget_low_f32(row), 0); -	float32x4_t r1 = vmulq_lane_f32(m0, vget_low_f32(row), 1); -	float32x4_t r2 = vmulq_lane_f32(m0, vget_high_f32(row), 0); -	row = m_el[1].mVec128; -	r0 = vmlaq_lane_f32(r0, m1, vget_low_f32(row), 0); -	r1 = vmlaq_lane_f32(r1, m1, vget_low_f32(row), 1); -	r2 = vmlaq_lane_f32(r2, m1, vget_high_f32(row), 0); -	row = m_el[2].mVec128; -	r0 = vmlaq_lane_f32(r0, m2, vget_low_f32(row), 0); -	r1 = vmlaq_lane_f32(r1, m2, vget_low_f32(row), 1); -	r2 = vmlaq_lane_f32(r2, m2, vget_high_f32(row), 0); -	return btMatrix3x3(r0, r1, r2); -#else -	return btMatrix3x3( -		m_el[0].x() * m[0].x() + m_el[1].x() * m[1].x() + m_el[2].x() * m[2].x(), -		m_el[0].x() * m[0].y() + m_el[1].x() * m[1].y() + m_el[2].x() * m[2].y(), -		m_el[0].x() * m[0].z() + m_el[1].x() * m[1].z() + m_el[2].x() * m[2].z(), -		m_el[0].y() * m[0].x() + m_el[1].y() * m[1].x() + m_el[2].y() * m[2].x(), -		m_el[0].y() * m[0].y() + m_el[1].y() * m[1].y() + m_el[2].y() * m[2].y(), -		m_el[0].y() * m[0].z() + m_el[1].y() * m[1].z() + m_el[2].y() * m[2].z(), -		m_el[0].z() * m[0].x() + m_el[1].z() * m[1].x() + m_el[2].z() * m[2].x(), -		m_el[0].z() * m[0].y() + m_el[1].z() * m[1].y() + m_el[2].z() * m[2].y(), -		m_el[0].z() * m[0].z() + m_el[1].z() * m[1].z() + m_el[2].z() * m[2].z()); -#endif -} - -SIMD_FORCE_INLINE btMatrix3x3 -btMatrix3x3::timesTranspose(const btMatrix3x3& m) const -{ -#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) -	__m128 a0 = m_el[0].mVec128; -	__m128 a1 = m_el[1].mVec128; -	__m128 a2 = m_el[2].mVec128; - -	btMatrix3x3 mT = m.transpose();  // we rely on transpose() zeroing w channel so that we don't have to do it here -	__m128 mx = mT[0].mVec128; -	__m128 my = mT[1].mVec128; -	__m128 mz = mT[2].mVec128; - -	__m128 r0 = _mm_mul_ps(mx, _mm_shuffle_ps(a0, a0, 0x00)); -	__m128 r1 = _mm_mul_ps(mx, _mm_shuffle_ps(a1, a1, 0x00)); -	__m128 r2 = _mm_mul_ps(mx, _mm_shuffle_ps(a2, a2, 0x00)); -	r0 = _mm_add_ps(r0, _mm_mul_ps(my, _mm_shuffle_ps(a0, a0, 0x55))); -	r1 = _mm_add_ps(r1, _mm_mul_ps(my, _mm_shuffle_ps(a1, a1, 0x55))); -	r2 = _mm_add_ps(r2, _mm_mul_ps(my, _mm_shuffle_ps(a2, a2, 0x55))); -	r0 = _mm_add_ps(r0, _mm_mul_ps(mz, _mm_shuffle_ps(a0, a0, 0xaa))); -	r1 = _mm_add_ps(r1, _mm_mul_ps(mz, _mm_shuffle_ps(a1, a1, 0xaa))); -	r2 = _mm_add_ps(r2, _mm_mul_ps(mz, _mm_shuffle_ps(a2, a2, 0xaa))); -	return btMatrix3x3(r0, r1, r2); - -#elif defined BT_USE_NEON -	float32x4_t a0 = m_el[0].mVec128; -	float32x4_t a1 = m_el[1].mVec128; -	float32x4_t a2 = m_el[2].mVec128; - -	btMatrix3x3 mT = m.transpose();  // we rely on transpose() zeroing w channel so that we don't have to do it here -	float32x4_t mx = mT[0].mVec128; -	float32x4_t my = mT[1].mVec128; -	float32x4_t mz = mT[2].mVec128; - -	float32x4_t r0 = vmulq_lane_f32(mx, vget_low_f32(a0), 0); -	float32x4_t r1 = vmulq_lane_f32(mx, vget_low_f32(a1), 0); -	float32x4_t r2 = vmulq_lane_f32(mx, vget_low_f32(a2), 0); -	r0 = vmlaq_lane_f32(r0, my, vget_low_f32(a0), 1); -	r1 = vmlaq_lane_f32(r1, my, vget_low_f32(a1), 1); -	r2 = vmlaq_lane_f32(r2, my, vget_low_f32(a2), 1); -	r0 = vmlaq_lane_f32(r0, mz, vget_high_f32(a0), 0); -	r1 = vmlaq_lane_f32(r1, mz, vget_high_f32(a1), 0); -	r2 = vmlaq_lane_f32(r2, mz, vget_high_f32(a2), 0); -	return btMatrix3x3(r0, r1, r2); - -#else -	return btMatrix3x3( -		m_el[0].dot(m[0]), m_el[0].dot(m[1]), m_el[0].dot(m[2]), -		m_el[1].dot(m[0]), m_el[1].dot(m[1]), m_el[1].dot(m[2]), -		m_el[2].dot(m[0]), m_el[2].dot(m[1]), m_el[2].dot(m[2])); -#endif -} - -SIMD_FORCE_INLINE btVector3 -operator*(const btMatrix3x3& m, const btVector3& v) -{ -#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON) -	return v.dot3(m[0], m[1], m[2]); -#else -	return btVector3(m[0].dot(v), m[1].dot(v), m[2].dot(v)); -#endif -} - -SIMD_FORCE_INLINE btVector3 -operator*(const btVector3& v, const btMatrix3x3& m) -{ -#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) - -	const __m128 vv = v.mVec128; - -	__m128 c0 = bt_splat_ps(vv, 0); -	__m128 c1 = bt_splat_ps(vv, 1); -	__m128 c2 = bt_splat_ps(vv, 2); - -	c0 = _mm_mul_ps(c0, _mm_and_ps(m[0].mVec128, btvFFF0fMask)); -	c1 = _mm_mul_ps(c1, _mm_and_ps(m[1].mVec128, btvFFF0fMask)); -	c0 = _mm_add_ps(c0, c1); -	c2 = _mm_mul_ps(c2, _mm_and_ps(m[2].mVec128, btvFFF0fMask)); - -	return btVector3(_mm_add_ps(c0, c2)); -#elif defined(BT_USE_NEON) -	const float32x4_t vv = v.mVec128; -	const float32x2_t vlo = vget_low_f32(vv); -	const float32x2_t vhi = vget_high_f32(vv); - -	float32x4_t c0, c1, c2; - -	c0 = (float32x4_t)vandq_s32((int32x4_t)m[0].mVec128, btvFFF0Mask); -	c1 = (float32x4_t)vandq_s32((int32x4_t)m[1].mVec128, btvFFF0Mask); -	c2 = (float32x4_t)vandq_s32((int32x4_t)m[2].mVec128, btvFFF0Mask); - -	c0 = vmulq_lane_f32(c0, vlo, 0); -	c1 = vmulq_lane_f32(c1, vlo, 1); -	c2 = vmulq_lane_f32(c2, vhi, 0); -	c0 = vaddq_f32(c0, c1); -	c0 = vaddq_f32(c0, c2); - -	return btVector3(c0); -#else -	return btVector3(m.tdotx(v), m.tdoty(v), m.tdotz(v)); -#endif -} - -SIMD_FORCE_INLINE btMatrix3x3 -operator*(const btMatrix3x3& m1, const btMatrix3x3& m2) -{ -#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) - -	__m128 m10 = m1[0].mVec128; -	__m128 m11 = m1[1].mVec128; -	__m128 m12 = m1[2].mVec128; - -	__m128 m2v = _mm_and_ps(m2[0].mVec128, btvFFF0fMask); - -	__m128 c0 = bt_splat_ps(m10, 0); -	__m128 c1 = bt_splat_ps(m11, 0); -	__m128 c2 = bt_splat_ps(m12, 0); - -	c0 = _mm_mul_ps(c0, m2v); -	c1 = _mm_mul_ps(c1, m2v); -	c2 = _mm_mul_ps(c2, m2v); - -	m2v = _mm_and_ps(m2[1].mVec128, btvFFF0fMask); - -	__m128 c0_1 = bt_splat_ps(m10, 1); -	__m128 c1_1 = bt_splat_ps(m11, 1); -	__m128 c2_1 = bt_splat_ps(m12, 1); - -	c0_1 = _mm_mul_ps(c0_1, m2v); -	c1_1 = _mm_mul_ps(c1_1, m2v); -	c2_1 = _mm_mul_ps(c2_1, m2v); - -	m2v = _mm_and_ps(m2[2].mVec128, btvFFF0fMask); - -	c0 = _mm_add_ps(c0, c0_1); -	c1 = _mm_add_ps(c1, c1_1); -	c2 = _mm_add_ps(c2, c2_1); - -	m10 = bt_splat_ps(m10, 2); -	m11 = bt_splat_ps(m11, 2); -	m12 = bt_splat_ps(m12, 2); - -	m10 = _mm_mul_ps(m10, m2v); -	m11 = _mm_mul_ps(m11, m2v); -	m12 = _mm_mul_ps(m12, m2v); - -	c0 = _mm_add_ps(c0, m10); -	c1 = _mm_add_ps(c1, m11); -	c2 = _mm_add_ps(c2, m12); - -	return btMatrix3x3(c0, c1, c2); - -#elif defined(BT_USE_NEON) - -	float32x4_t rv0, rv1, rv2; -	float32x4_t v0, v1, v2; -	float32x4_t mv0, mv1, mv2; - -	v0 = m1[0].mVec128; -	v1 = m1[1].mVec128; -	v2 = m1[2].mVec128; - -	mv0 = (float32x4_t)vandq_s32((int32x4_t)m2[0].mVec128, btvFFF0Mask); -	mv1 = (float32x4_t)vandq_s32((int32x4_t)m2[1].mVec128, btvFFF0Mask); -	mv2 = (float32x4_t)vandq_s32((int32x4_t)m2[2].mVec128, btvFFF0Mask); - -	rv0 = vmulq_lane_f32(mv0, vget_low_f32(v0), 0); -	rv1 = vmulq_lane_f32(mv0, vget_low_f32(v1), 0); -	rv2 = vmulq_lane_f32(mv0, vget_low_f32(v2), 0); - -	rv0 = vmlaq_lane_f32(rv0, mv1, vget_low_f32(v0), 1); -	rv1 = vmlaq_lane_f32(rv1, mv1, vget_low_f32(v1), 1); -	rv2 = vmlaq_lane_f32(rv2, mv1, vget_low_f32(v2), 1); - -	rv0 = vmlaq_lane_f32(rv0, mv2, vget_high_f32(v0), 0); -	rv1 = vmlaq_lane_f32(rv1, mv2, vget_high_f32(v1), 0); -	rv2 = vmlaq_lane_f32(rv2, mv2, vget_high_f32(v2), 0); - -	return btMatrix3x3(rv0, rv1, rv2); - -#else -	return btMatrix3x3( -		m2.tdotx(m1[0]), m2.tdoty(m1[0]), m2.tdotz(m1[0]), -		m2.tdotx(m1[1]), m2.tdoty(m1[1]), m2.tdotz(m1[1]), -		m2.tdotx(m1[2]), m2.tdoty(m1[2]), m2.tdotz(m1[2])); -#endif -} - -/* -SIMD_FORCE_INLINE btMatrix3x3 btMultTransposeLeft(const btMatrix3x3& m1, const btMatrix3x3& m2) { -return btMatrix3x3( -m1[0][0] * m2[0][0] + m1[1][0] * m2[1][0] + m1[2][0] * m2[2][0], -m1[0][0] * m2[0][1] + m1[1][0] * m2[1][1] + m1[2][0] * m2[2][1], -m1[0][0] * m2[0][2] + m1[1][0] * m2[1][2] + m1[2][0] * m2[2][2], -m1[0][1] * m2[0][0] + m1[1][1] * m2[1][0] + m1[2][1] * m2[2][0], -m1[0][1] * m2[0][1] + m1[1][1] * m2[1][1] + m1[2][1] * m2[2][1], -m1[0][1] * m2[0][2] + m1[1][1] * m2[1][2] + m1[2][1] * m2[2][2], -m1[0][2] * m2[0][0] + m1[1][2] * m2[1][0] + m1[2][2] * m2[2][0], -m1[0][2] * m2[0][1] + m1[1][2] * m2[1][1] + m1[2][2] * m2[2][1], -m1[0][2] * m2[0][2] + m1[1][2] * m2[1][2] + m1[2][2] * m2[2][2]); -} -*/ - -/**@brief Equality operator between two matrices -* It will test all elements are equal.  */ -SIMD_FORCE_INLINE bool operator==(const btMatrix3x3& m1, const btMatrix3x3& m2) -{ -#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) - -	__m128 c0, c1, c2; - -	c0 = _mm_cmpeq_ps(m1[0].mVec128, m2[0].mVec128); -	c1 = _mm_cmpeq_ps(m1[1].mVec128, m2[1].mVec128); -	c2 = _mm_cmpeq_ps(m1[2].mVec128, m2[2].mVec128); - -	c0 = _mm_and_ps(c0, c1); -	c0 = _mm_and_ps(c0, c2); - -	int m = _mm_movemask_ps((__m128)c0); -	return (0x7 == (m & 0x7)); - -#else -	return (m1[0][0] == m2[0][0] && m1[1][0] == m2[1][0] && m1[2][0] == m2[2][0] && -			m1[0][1] == m2[0][1] && m1[1][1] == m2[1][1] && m1[2][1] == m2[2][1] && -			m1[0][2] == m2[0][2] && m1[1][2] == m2[1][2] && m1[2][2] == m2[2][2]); -#endif -} - -///for serialization -struct btMatrix3x3FloatData -{ -	btVector3FloatData m_el[3]; -}; - -///for serialization -struct btMatrix3x3DoubleData -{ -	btVector3DoubleData m_el[3]; -}; - -SIMD_FORCE_INLINE void btMatrix3x3::serialize(struct btMatrix3x3Data& dataOut) const -{ -	for (int i = 0; i < 3; i++) -		m_el[i].serialize(dataOut.m_el[i]); -} - -SIMD_FORCE_INLINE void btMatrix3x3::serializeFloat(struct btMatrix3x3FloatData& dataOut) const -{ -	for (int i = 0; i < 3; i++) -		m_el[i].serializeFloat(dataOut.m_el[i]); -} - -SIMD_FORCE_INLINE void btMatrix3x3::deSerialize(const struct btMatrix3x3Data& dataIn) -{ -	for (int i = 0; i < 3; i++) -		m_el[i].deSerialize(dataIn.m_el[i]); -} - -SIMD_FORCE_INLINE void btMatrix3x3::deSerializeFloat(const struct btMatrix3x3FloatData& dataIn) -{ -	for (int i = 0; i < 3; i++) -		m_el[i].deSerializeFloat(dataIn.m_el[i]); -} - -SIMD_FORCE_INLINE void btMatrix3x3::deSerializeDouble(const struct btMatrix3x3DoubleData& dataIn) -{ -	for (int i = 0; i < 3; i++) -		m_el[i].deSerializeDouble(dataIn.m_el[i]); -} - -#endif  //BT_MATRIX3x3_H  |