diff options
Diffstat (limited to 'thirdparty/bullet/LinearMath/btMatrix3x3.h')
-rw-r--r-- | thirdparty/bullet/LinearMath/btMatrix3x3.h | 1431 |
1 files changed, 0 insertions, 1431 deletions
diff --git a/thirdparty/bullet/LinearMath/btMatrix3x3.h b/thirdparty/bullet/LinearMath/btMatrix3x3.h deleted file mode 100644 index 9c90fee1d2..0000000000 --- a/thirdparty/bullet/LinearMath/btMatrix3x3.h +++ /dev/null @@ -1,1431 +0,0 @@ -/* -Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/ - -This software is provided 'as-is', without any express or implied warranty. -In no event will the authors be held liable for any damages arising from the use of this software. -Permission is granted to anyone to use this software for any purpose, -including commercial applications, and to alter it and redistribute it freely, -subject to the following restrictions: - -1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. -2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. -3. This notice may not be removed or altered from any source distribution. -*/ - -#ifndef BT_MATRIX3x3_H -#define BT_MATRIX3x3_H - -#include "btVector3.h" -#include "btQuaternion.h" -#include <stdio.h> - -#ifdef BT_USE_SSE -//const __m128 ATTRIBUTE_ALIGNED16(v2220) = {2.0f, 2.0f, 2.0f, 0.0f}; -//const __m128 ATTRIBUTE_ALIGNED16(vMPPP) = {-0.0f, +0.0f, +0.0f, +0.0f}; -#define vMPPP (_mm_set_ps(+0.0f, +0.0f, +0.0f, -0.0f)) -#endif - -#if defined(BT_USE_SSE) -#define v0000 (_mm_set_ps(0.0f, 0.0f, 0.0f, 0.0f)) -#define v1000 (_mm_set_ps(0.0f, 0.0f, 0.0f, 1.0f)) -#define v0100 (_mm_set_ps(0.0f, 0.0f, 1.0f, 0.0f)) -#define v0010 (_mm_set_ps(0.0f, 1.0f, 0.0f, 0.0f)) -#elif defined(BT_USE_NEON) -const btSimdFloat4 ATTRIBUTE_ALIGNED16(v0000) = {0.0f, 0.0f, 0.0f, 0.0f}; -const btSimdFloat4 ATTRIBUTE_ALIGNED16(v1000) = {1.0f, 0.0f, 0.0f, 0.0f}; -const btSimdFloat4 ATTRIBUTE_ALIGNED16(v0100) = {0.0f, 1.0f, 0.0f, 0.0f}; -const btSimdFloat4 ATTRIBUTE_ALIGNED16(v0010) = {0.0f, 0.0f, 1.0f, 0.0f}; -#endif - -#ifdef BT_USE_DOUBLE_PRECISION -#define btMatrix3x3Data btMatrix3x3DoubleData -#else -#define btMatrix3x3Data btMatrix3x3FloatData -#endif //BT_USE_DOUBLE_PRECISION - -/**@brief The btMatrix3x3 class implements a 3x3 rotation matrix, to perform linear algebra in combination with btQuaternion, btTransform and btVector3. -* Make sure to only include a pure orthogonal matrix without scaling. */ -ATTRIBUTE_ALIGNED16(class) -btMatrix3x3 -{ - ///Data storage for the matrix, each vector is a row of the matrix - btVector3 m_el[3]; - -public: - /** @brief No initializaion constructor */ - btMatrix3x3() {} - - // explicit btMatrix3x3(const btScalar *m) { setFromOpenGLSubMatrix(m); } - - /**@brief Constructor from Quaternion */ - explicit btMatrix3x3(const btQuaternion& q) { setRotation(q); } - /* - template <typename btScalar> - Matrix3x3(const btScalar& yaw, const btScalar& pitch, const btScalar& roll) - { - setEulerYPR(yaw, pitch, roll); - } - */ - /** @brief Constructor with row major formatting */ - btMatrix3x3(const btScalar& xx, const btScalar& xy, const btScalar& xz, - const btScalar& yx, const btScalar& yy, const btScalar& yz, - const btScalar& zx, const btScalar& zy, const btScalar& zz) - { - setValue(xx, xy, xz, - yx, yy, yz, - zx, zy, zz); - } - -#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON) - SIMD_FORCE_INLINE btMatrix3x3(const btSimdFloat4 v0, const btSimdFloat4 v1, const btSimdFloat4 v2) - { - m_el[0].mVec128 = v0; - m_el[1].mVec128 = v1; - m_el[2].mVec128 = v2; - } - - SIMD_FORCE_INLINE btMatrix3x3(const btVector3& v0, const btVector3& v1, const btVector3& v2) - { - m_el[0] = v0; - m_el[1] = v1; - m_el[2] = v2; - } - - // Copy constructor - SIMD_FORCE_INLINE btMatrix3x3(const btMatrix3x3& rhs) - { - m_el[0].mVec128 = rhs.m_el[0].mVec128; - m_el[1].mVec128 = rhs.m_el[1].mVec128; - m_el[2].mVec128 = rhs.m_el[2].mVec128; - } - - // Assignment Operator - SIMD_FORCE_INLINE btMatrix3x3& operator=(const btMatrix3x3& m) - { - m_el[0].mVec128 = m.m_el[0].mVec128; - m_el[1].mVec128 = m.m_el[1].mVec128; - m_el[2].mVec128 = m.m_el[2].mVec128; - - return *this; - } - -#else - - /** @brief Copy constructor */ - SIMD_FORCE_INLINE btMatrix3x3(const btMatrix3x3& other) - { - m_el[0] = other.m_el[0]; - m_el[1] = other.m_el[1]; - m_el[2] = other.m_el[2]; - } - - /** @brief Assignment Operator */ - SIMD_FORCE_INLINE btMatrix3x3& operator=(const btMatrix3x3& other) - { - m_el[0] = other.m_el[0]; - m_el[1] = other.m_el[1]; - m_el[2] = other.m_el[2]; - return *this; - } - - SIMD_FORCE_INLINE btMatrix3x3(const btVector3& v0, const btVector3& v1, const btVector3& v2) - { - m_el[0] = v0; - m_el[1] = v1; - m_el[2] = v2; - } - -#endif - - /** @brief Get a column of the matrix as a vector - * @param i Column number 0 indexed */ - SIMD_FORCE_INLINE btVector3 getColumn(int i) const - { - return btVector3(m_el[0][i], m_el[1][i], m_el[2][i]); - } - - /** @brief Get a row of the matrix as a vector - * @param i Row number 0 indexed */ - SIMD_FORCE_INLINE const btVector3& getRow(int i) const - { - btFullAssert(0 <= i && i < 3); - return m_el[i]; - } - - /** @brief Get a mutable reference to a row of the matrix as a vector - * @param i Row number 0 indexed */ - SIMD_FORCE_INLINE btVector3& operator[](int i) - { - btFullAssert(0 <= i && i < 3); - return m_el[i]; - } - - /** @brief Get a const reference to a row of the matrix as a vector - * @param i Row number 0 indexed */ - SIMD_FORCE_INLINE const btVector3& operator[](int i) const - { - btFullAssert(0 <= i && i < 3); - return m_el[i]; - } - - /** @brief Multiply by the target matrix on the right - * @param m Rotation matrix to be applied - * Equivilant to this = this * m */ - btMatrix3x3& operator*=(const btMatrix3x3& m); - - /** @brief Adds by the target matrix on the right - * @param m matrix to be applied - * Equivilant to this = this + m */ - btMatrix3x3& operator+=(const btMatrix3x3& m); - - /** @brief Substractss by the target matrix on the right - * @param m matrix to be applied - * Equivilant to this = this - m */ - btMatrix3x3& operator-=(const btMatrix3x3& m); - - /** @brief Set from the rotational part of a 4x4 OpenGL matrix - * @param m A pointer to the beginning of the array of scalars*/ - void setFromOpenGLSubMatrix(const btScalar* m) - { - m_el[0].setValue(m[0], m[4], m[8]); - m_el[1].setValue(m[1], m[5], m[9]); - m_el[2].setValue(m[2], m[6], m[10]); - } - /** @brief Set the values of the matrix explicitly (row major) - * @param xx Top left - * @param xy Top Middle - * @param xz Top Right - * @param yx Middle Left - * @param yy Middle Middle - * @param yz Middle Right - * @param zx Bottom Left - * @param zy Bottom Middle - * @param zz Bottom Right*/ - void setValue(const btScalar& xx, const btScalar& xy, const btScalar& xz, - const btScalar& yx, const btScalar& yy, const btScalar& yz, - const btScalar& zx, const btScalar& zy, const btScalar& zz) - { - m_el[0].setValue(xx, xy, xz); - m_el[1].setValue(yx, yy, yz); - m_el[2].setValue(zx, zy, zz); - } - - /** @brief Set the matrix from a quaternion - * @param q The Quaternion to match */ - void setRotation(const btQuaternion& q) - { - btScalar d = q.length2(); - btFullAssert(d != btScalar(0.0)); - btScalar s = btScalar(2.0) / d; - -#if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) - __m128 vs, Q = q.get128(); - __m128i Qi = btCastfTo128i(Q); - __m128 Y, Z; - __m128 V1, V2, V3; - __m128 V11, V21, V31; - __m128 NQ = _mm_xor_ps(Q, btvMzeroMask); - __m128i NQi = btCastfTo128i(NQ); - - V1 = btCastiTo128f(_mm_shuffle_epi32(Qi, BT_SHUFFLE(1, 0, 2, 3))); // Y X Z W - V2 = _mm_shuffle_ps(NQ, Q, BT_SHUFFLE(0, 0, 1, 3)); // -X -X Y W - V3 = btCastiTo128f(_mm_shuffle_epi32(Qi, BT_SHUFFLE(2, 1, 0, 3))); // Z Y X W - V1 = _mm_xor_ps(V1, vMPPP); // change the sign of the first element - - V11 = btCastiTo128f(_mm_shuffle_epi32(Qi, BT_SHUFFLE(1, 1, 0, 3))); // Y Y X W - V21 = _mm_unpackhi_ps(Q, Q); // Z Z W W - V31 = _mm_shuffle_ps(Q, NQ, BT_SHUFFLE(0, 2, 0, 3)); // X Z -X -W - - V2 = V2 * V1; // - V1 = V1 * V11; // - V3 = V3 * V31; // - - V11 = _mm_shuffle_ps(NQ, Q, BT_SHUFFLE(2, 3, 1, 3)); // -Z -W Y W - V11 = V11 * V21; // - V21 = _mm_xor_ps(V21, vMPPP); // change the sign of the first element - V31 = _mm_shuffle_ps(Q, NQ, BT_SHUFFLE(3, 3, 1, 3)); // W W -Y -W - V31 = _mm_xor_ps(V31, vMPPP); // change the sign of the first element - Y = btCastiTo128f(_mm_shuffle_epi32(NQi, BT_SHUFFLE(3, 2, 0, 3))); // -W -Z -X -W - Z = btCastiTo128f(_mm_shuffle_epi32(Qi, BT_SHUFFLE(1, 0, 1, 3))); // Y X Y W - - vs = _mm_load_ss(&s); - V21 = V21 * Y; - V31 = V31 * Z; - - V1 = V1 + V11; - V2 = V2 + V21; - V3 = V3 + V31; - - vs = bt_splat3_ps(vs, 0); - // s ready - V1 = V1 * vs; - V2 = V2 * vs; - V3 = V3 * vs; - - V1 = V1 + v1000; - V2 = V2 + v0100; - V3 = V3 + v0010; - - m_el[0] = V1; - m_el[1] = V2; - m_el[2] = V3; -#else - btScalar xs = q.x() * s, ys = q.y() * s, zs = q.z() * s; - btScalar wx = q.w() * xs, wy = q.w() * ys, wz = q.w() * zs; - btScalar xx = q.x() * xs, xy = q.x() * ys, xz = q.x() * zs; - btScalar yy = q.y() * ys, yz = q.y() * zs, zz = q.z() * zs; - setValue( - btScalar(1.0) - (yy + zz), xy - wz, xz + wy, - xy + wz, btScalar(1.0) - (xx + zz), yz - wx, - xz - wy, yz + wx, btScalar(1.0) - (xx + yy)); -#endif - } - - /** @brief Set the matrix from euler angles using YPR around YXZ respectively - * @param yaw Yaw about Y axis - * @param pitch Pitch about X axis - * @param roll Roll about Z axis - */ - void setEulerYPR(const btScalar& yaw, const btScalar& pitch, const btScalar& roll) - { - setEulerZYX(roll, pitch, yaw); - } - - /** @brief Set the matrix from euler angles YPR around ZYX axes - * @param eulerX Roll about X axis - * @param eulerY Pitch around Y axis - * @param eulerZ Yaw about Z axis - * - * These angles are used to produce a rotation matrix. The euler - * angles are applied in ZYX order. I.e a vector is first rotated - * about X then Y and then Z - **/ - void setEulerZYX(btScalar eulerX, btScalar eulerY, btScalar eulerZ) - { - ///@todo proposed to reverse this since it's labeled zyx but takes arguments xyz and it will match all other parts of the code - btScalar ci(btCos(eulerX)); - btScalar cj(btCos(eulerY)); - btScalar ch(btCos(eulerZ)); - btScalar si(btSin(eulerX)); - btScalar sj(btSin(eulerY)); - btScalar sh(btSin(eulerZ)); - btScalar cc = ci * ch; - btScalar cs = ci * sh; - btScalar sc = si * ch; - btScalar ss = si * sh; - - setValue(cj * ch, sj * sc - cs, sj * cc + ss, - cj * sh, sj * ss + cc, sj * cs - sc, - -sj, cj * si, cj * ci); - } - - /**@brief Set the matrix to the identity */ - void setIdentity() - { -#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON) - m_el[0] = v1000; - m_el[1] = v0100; - m_el[2] = v0010; -#else - setValue(btScalar(1.0), btScalar(0.0), btScalar(0.0), - btScalar(0.0), btScalar(1.0), btScalar(0.0), - btScalar(0.0), btScalar(0.0), btScalar(1.0)); -#endif - } - - /**@brief Set the matrix to the identity */ - void setZero() - { -#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON) - m_el[0] = v0000; - m_el[1] = v0000; - m_el[2] = v0000; -#else - setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0), - btScalar(0.0), btScalar(0.0), btScalar(0.0), - btScalar(0.0), btScalar(0.0), btScalar(0.0)); -#endif - } - - static const btMatrix3x3& getIdentity() - { -#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON) - static const btMatrix3x3 - identityMatrix(v1000, v0100, v0010); -#else - static const btMatrix3x3 - identityMatrix( - btScalar(1.0), btScalar(0.0), btScalar(0.0), - btScalar(0.0), btScalar(1.0), btScalar(0.0), - btScalar(0.0), btScalar(0.0), btScalar(1.0)); -#endif - return identityMatrix; - } - - /**@brief Fill the rotational part of an OpenGL matrix and clear the shear/perspective - * @param m The array to be filled */ - void getOpenGLSubMatrix(btScalar * m) const - { -#if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) - __m128 v0 = m_el[0].mVec128; - __m128 v1 = m_el[1].mVec128; - __m128 v2 = m_el[2].mVec128; // x2 y2 z2 w2 - __m128* vm = (__m128*)m; - __m128 vT; - - v2 = _mm_and_ps(v2, btvFFF0fMask); // x2 y2 z2 0 - - vT = _mm_unpackhi_ps(v0, v1); // z0 z1 * * - v0 = _mm_unpacklo_ps(v0, v1); // x0 x1 y0 y1 - - v1 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(2, 3, 1, 3)); // y0 y1 y2 0 - v0 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(0, 1, 0, 3)); // x0 x1 x2 0 - v2 = btCastdTo128f(_mm_move_sd(btCastfTo128d(v2), btCastfTo128d(vT))); // z0 z1 z2 0 - - vm[0] = v0; - vm[1] = v1; - vm[2] = v2; -#elif defined(BT_USE_NEON) - // note: zeros the w channel. We can preserve it at the cost of two more vtrn instructions. - static const uint32x2_t zMask = (const uint32x2_t){static_cast<uint32_t>(-1), 0}; - float32x4_t* vm = (float32x4_t*)m; - float32x4x2_t top = vtrnq_f32(m_el[0].mVec128, m_el[1].mVec128); // {x0 x1 z0 z1}, {y0 y1 w0 w1} - float32x2x2_t bl = vtrn_f32(vget_low_f32(m_el[2].mVec128), vdup_n_f32(0.0f)); // {x2 0 }, {y2 0} - float32x4_t v0 = vcombine_f32(vget_low_f32(top.val[0]), bl.val[0]); - float32x4_t v1 = vcombine_f32(vget_low_f32(top.val[1]), bl.val[1]); - float32x2_t q = (float32x2_t)vand_u32((uint32x2_t)vget_high_f32(m_el[2].mVec128), zMask); - float32x4_t v2 = vcombine_f32(vget_high_f32(top.val[0]), q); // z0 z1 z2 0 - - vm[0] = v0; - vm[1] = v1; - vm[2] = v2; -#else - m[0] = btScalar(m_el[0].x()); - m[1] = btScalar(m_el[1].x()); - m[2] = btScalar(m_el[2].x()); - m[3] = btScalar(0.0); - m[4] = btScalar(m_el[0].y()); - m[5] = btScalar(m_el[1].y()); - m[6] = btScalar(m_el[2].y()); - m[7] = btScalar(0.0); - m[8] = btScalar(m_el[0].z()); - m[9] = btScalar(m_el[1].z()); - m[10] = btScalar(m_el[2].z()); - m[11] = btScalar(0.0); -#endif - } - - /**@brief Get the matrix represented as a quaternion - * @param q The quaternion which will be set */ - void getRotation(btQuaternion & q) const - { -#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON) - btScalar trace = m_el[0].x() + m_el[1].y() + m_el[2].z(); - btScalar s, x; - - union { - btSimdFloat4 vec; - btScalar f[4]; - } temp; - - if (trace > btScalar(0.0)) - { - x = trace + btScalar(1.0); - - temp.f[0] = m_el[2].y() - m_el[1].z(); - temp.f[1] = m_el[0].z() - m_el[2].x(); - temp.f[2] = m_el[1].x() - m_el[0].y(); - temp.f[3] = x; - //temp.f[3]= s * btScalar(0.5); - } - else - { - int i, j, k; - if (m_el[0].x() < m_el[1].y()) - { - if (m_el[1].y() < m_el[2].z()) - { - i = 2; - j = 0; - k = 1; - } - else - { - i = 1; - j = 2; - k = 0; - } - } - else - { - if (m_el[0].x() < m_el[2].z()) - { - i = 2; - j = 0; - k = 1; - } - else - { - i = 0; - j = 1; - k = 2; - } - } - - x = m_el[i][i] - m_el[j][j] - m_el[k][k] + btScalar(1.0); - - temp.f[3] = (m_el[k][j] - m_el[j][k]); - temp.f[j] = (m_el[j][i] + m_el[i][j]); - temp.f[k] = (m_el[k][i] + m_el[i][k]); - temp.f[i] = x; - //temp.f[i] = s * btScalar(0.5); - } - - s = btSqrt(x); - q.set128(temp.vec); - s = btScalar(0.5) / s; - - q *= s; -#else - btScalar trace = m_el[0].x() + m_el[1].y() + m_el[2].z(); - - btScalar temp[4]; - - if (trace > btScalar(0.0)) - { - btScalar s = btSqrt(trace + btScalar(1.0)); - temp[3] = (s * btScalar(0.5)); - s = btScalar(0.5) / s; - - temp[0] = ((m_el[2].y() - m_el[1].z()) * s); - temp[1] = ((m_el[0].z() - m_el[2].x()) * s); - temp[2] = ((m_el[1].x() - m_el[0].y()) * s); - } - else - { - int i = m_el[0].x() < m_el[1].y() ? (m_el[1].y() < m_el[2].z() ? 2 : 1) : (m_el[0].x() < m_el[2].z() ? 2 : 0); - int j = (i + 1) % 3; - int k = (i + 2) % 3; - - btScalar s = btSqrt(m_el[i][i] - m_el[j][j] - m_el[k][k] + btScalar(1.0)); - temp[i] = s * btScalar(0.5); - s = btScalar(0.5) / s; - - temp[3] = (m_el[k][j] - m_el[j][k]) * s; - temp[j] = (m_el[j][i] + m_el[i][j]) * s; - temp[k] = (m_el[k][i] + m_el[i][k]) * s; - } - q.setValue(temp[0], temp[1], temp[2], temp[3]); -#endif - } - - /**@brief Get the matrix represented as euler angles around YXZ, roundtrip with setEulerYPR - * @param yaw Yaw around Y axis - * @param pitch Pitch around X axis - * @param roll around Z axis */ - void getEulerYPR(btScalar & yaw, btScalar & pitch, btScalar & roll) const - { - // first use the normal calculus - yaw = btScalar(btAtan2(m_el[1].x(), m_el[0].x())); - pitch = btScalar(btAsin(-m_el[2].x())); - roll = btScalar(btAtan2(m_el[2].y(), m_el[2].z())); - - // on pitch = +/-HalfPI - if (btFabs(pitch) == SIMD_HALF_PI) - { - if (yaw > 0) - yaw -= SIMD_PI; - else - yaw += SIMD_PI; - - if (roll > 0) - roll -= SIMD_PI; - else - roll += SIMD_PI; - } - }; - - /**@brief Get the matrix represented as euler angles around ZYX - * @param yaw Yaw around Z axis - * @param pitch Pitch around Y axis - * @param roll around X axis - * @param solution_number Which solution of two possible solutions ( 1 or 2) are possible values*/ - void getEulerZYX(btScalar & yaw, btScalar & pitch, btScalar & roll, unsigned int solution_number = 1) const - { - struct Euler - { - btScalar yaw; - btScalar pitch; - btScalar roll; - }; - - Euler euler_out; - Euler euler_out2; //second solution - //get the pointer to the raw data - - // Check that pitch is not at a singularity - if (btFabs(m_el[2].x()) >= 1) - { - euler_out.yaw = 0; - euler_out2.yaw = 0; - - // From difference of angles formula - btScalar delta = btAtan2(m_el[0].x(), m_el[0].z()); - if (m_el[2].x() > 0) //gimbal locked up - { - euler_out.pitch = SIMD_PI / btScalar(2.0); - euler_out2.pitch = SIMD_PI / btScalar(2.0); - euler_out.roll = euler_out.pitch + delta; - euler_out2.roll = euler_out.pitch + delta; - } - else // gimbal locked down - { - euler_out.pitch = -SIMD_PI / btScalar(2.0); - euler_out2.pitch = -SIMD_PI / btScalar(2.0); - euler_out.roll = -euler_out.pitch + delta; - euler_out2.roll = -euler_out.pitch + delta; - } - } - else - { - euler_out.pitch = -btAsin(m_el[2].x()); - euler_out2.pitch = SIMD_PI - euler_out.pitch; - - euler_out.roll = btAtan2(m_el[2].y() / btCos(euler_out.pitch), - m_el[2].z() / btCos(euler_out.pitch)); - euler_out2.roll = btAtan2(m_el[2].y() / btCos(euler_out2.pitch), - m_el[2].z() / btCos(euler_out2.pitch)); - - euler_out.yaw = btAtan2(m_el[1].x() / btCos(euler_out.pitch), - m_el[0].x() / btCos(euler_out.pitch)); - euler_out2.yaw = btAtan2(m_el[1].x() / btCos(euler_out2.pitch), - m_el[0].x() / btCos(euler_out2.pitch)); - } - - if (solution_number == 1) - { - yaw = euler_out.yaw; - pitch = euler_out.pitch; - roll = euler_out.roll; - } - else - { - yaw = euler_out2.yaw; - pitch = euler_out2.pitch; - roll = euler_out2.roll; - } - } - - /**@brief Create a scaled copy of the matrix - * @param s Scaling vector The elements of the vector will scale each column */ - - btMatrix3x3 scaled(const btVector3& s) const - { -#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON) - return btMatrix3x3(m_el[0] * s, m_el[1] * s, m_el[2] * s); -#else - return btMatrix3x3( - m_el[0].x() * s.x(), m_el[0].y() * s.y(), m_el[0].z() * s.z(), - m_el[1].x() * s.x(), m_el[1].y() * s.y(), m_el[1].z() * s.z(), - m_el[2].x() * s.x(), m_el[2].y() * s.y(), m_el[2].z() * s.z()); -#endif - } - - /**@brief Return the determinant of the matrix */ - btScalar determinant() const; - /**@brief Return the adjoint of the matrix */ - btMatrix3x3 adjoint() const; - /**@brief Return the matrix with all values non negative */ - btMatrix3x3 absolute() const; - /**@brief Return the transpose of the matrix */ - btMatrix3x3 transpose() const; - /**@brief Return the inverse of the matrix */ - btMatrix3x3 inverse() const; - - /// Solve A * x = b, where b is a column vector. This is more efficient - /// than computing the inverse in one-shot cases. - ///Solve33 is from Box2d, thanks to Erin Catto, - btVector3 solve33(const btVector3& b) const - { - btVector3 col1 = getColumn(0); - btVector3 col2 = getColumn(1); - btVector3 col3 = getColumn(2); - - btScalar det = btDot(col1, btCross(col2, col3)); - if (btFabs(det) > SIMD_EPSILON) - { - det = 1.0f / det; - } - btVector3 x; - x[0] = det * btDot(b, btCross(col2, col3)); - x[1] = det * btDot(col1, btCross(b, col3)); - x[2] = det * btDot(col1, btCross(col2, b)); - return x; - } - - btMatrix3x3 transposeTimes(const btMatrix3x3& m) const; - btMatrix3x3 timesTranspose(const btMatrix3x3& m) const; - - SIMD_FORCE_INLINE btScalar tdotx(const btVector3& v) const - { - return m_el[0].x() * v.x() + m_el[1].x() * v.y() + m_el[2].x() * v.z(); - } - SIMD_FORCE_INLINE btScalar tdoty(const btVector3& v) const - { - return m_el[0].y() * v.x() + m_el[1].y() * v.y() + m_el[2].y() * v.z(); - } - SIMD_FORCE_INLINE btScalar tdotz(const btVector3& v) const - { - return m_el[0].z() * v.x() + m_el[1].z() * v.y() + m_el[2].z() * v.z(); - } - - ///extractRotation is from "A robust method to extract the rotational part of deformations" - ///See http://dl.acm.org/citation.cfm?doid=2994258.2994269 - ///decomposes a matrix A in a orthogonal matrix R and a - ///symmetric matrix S: - ///A = R*S. - ///note that R can include both rotation and scaling. - SIMD_FORCE_INLINE void extractRotation(btQuaternion & q, btScalar tolerance = 1.0e-9, int maxIter = 100) - { - int iter = 0; - btScalar w; - const btMatrix3x3& A = *this; - for (iter = 0; iter < maxIter; iter++) - { - btMatrix3x3 R(q); - btVector3 omega = (R.getColumn(0).cross(A.getColumn(0)) + R.getColumn(1).cross(A.getColumn(1)) + R.getColumn(2).cross(A.getColumn(2))) * (btScalar(1.0) / btFabs(R.getColumn(0).dot(A.getColumn(0)) + R.getColumn(1).dot(A.getColumn(1)) + R.getColumn(2).dot(A.getColumn(2))) + - tolerance); - w = omega.norm(); - if (w < tolerance) - break; - q = btQuaternion(btVector3((btScalar(1.0) / w) * omega), w) * - q; - q.normalize(); - } - } - - /**@brief diagonalizes this matrix by the Jacobi method. - * @param rot stores the rotation from the coordinate system in which the matrix is diagonal to the original - * coordinate system, i.e., old_this = rot * new_this * rot^T. - * @param threshold See iteration - * @param iteration The iteration stops when all off-diagonal elements are less than the threshold multiplied - * by the sum of the absolute values of the diagonal, or when maxSteps have been executed. - * - * Note that this matrix is assumed to be symmetric. - */ - void diagonalize(btMatrix3x3 & rot, btScalar threshold, int maxSteps) - { - rot.setIdentity(); - for (int step = maxSteps; step > 0; step--) - { - // find off-diagonal element [p][q] with largest magnitude - int p = 0; - int q = 1; - int r = 2; - btScalar max = btFabs(m_el[0][1]); - btScalar v = btFabs(m_el[0][2]); - if (v > max) - { - q = 2; - r = 1; - max = v; - } - v = btFabs(m_el[1][2]); - if (v > max) - { - p = 1; - q = 2; - r = 0; - max = v; - } - - btScalar t = threshold * (btFabs(m_el[0][0]) + btFabs(m_el[1][1]) + btFabs(m_el[2][2])); - if (max <= t) - { - if (max <= SIMD_EPSILON * t) - { - return; - } - step = 1; - } - - // compute Jacobi rotation J which leads to a zero for element [p][q] - btScalar mpq = m_el[p][q]; - btScalar theta = (m_el[q][q] - m_el[p][p]) / (2 * mpq); - btScalar theta2 = theta * theta; - btScalar cos; - btScalar sin; - if (theta2 * theta2 < btScalar(10 / SIMD_EPSILON)) - { - t = (theta >= 0) ? 1 / (theta + btSqrt(1 + theta2)) - : 1 / (theta - btSqrt(1 + theta2)); - cos = 1 / btSqrt(1 + t * t); - sin = cos * t; - } - else - { - // approximation for large theta-value, i.e., a nearly diagonal matrix - t = 1 / (theta * (2 + btScalar(0.5) / theta2)); - cos = 1 - btScalar(0.5) * t * t; - sin = cos * t; - } - - // apply rotation to matrix (this = J^T * this * J) - m_el[p][q] = m_el[q][p] = 0; - m_el[p][p] -= t * mpq; - m_el[q][q] += t * mpq; - btScalar mrp = m_el[r][p]; - btScalar mrq = m_el[r][q]; - m_el[r][p] = m_el[p][r] = cos * mrp - sin * mrq; - m_el[r][q] = m_el[q][r] = cos * mrq + sin * mrp; - - // apply rotation to rot (rot = rot * J) - for (int i = 0; i < 3; i++) - { - btVector3& row = rot[i]; - mrp = row[p]; - mrq = row[q]; - row[p] = cos * mrp - sin * mrq; - row[q] = cos * mrq + sin * mrp; - } - } - } - - /**@brief Calculate the matrix cofactor - * @param r1 The first row to use for calculating the cofactor - * @param c1 The first column to use for calculating the cofactor - * @param r1 The second row to use for calculating the cofactor - * @param c1 The second column to use for calculating the cofactor - * See http://en.wikipedia.org/wiki/Cofactor_(linear_algebra) for more details - */ - btScalar cofac(int r1, int c1, int r2, int c2) const - { - return m_el[r1][c1] * m_el[r2][c2] - m_el[r1][c2] * m_el[r2][c1]; - } - - void serialize(struct btMatrix3x3Data & dataOut) const; - - void serializeFloat(struct btMatrix3x3FloatData & dataOut) const; - - void deSerialize(const struct btMatrix3x3Data& dataIn); - - void deSerializeFloat(const struct btMatrix3x3FloatData& dataIn); - - void deSerializeDouble(const struct btMatrix3x3DoubleData& dataIn); -}; - -SIMD_FORCE_INLINE btMatrix3x3& -btMatrix3x3::operator*=(const btMatrix3x3& m) -{ -#if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE) - __m128 rv00, rv01, rv02; - __m128 rv10, rv11, rv12; - __m128 rv20, rv21, rv22; - __m128 mv0, mv1, mv2; - - rv02 = m_el[0].mVec128; - rv12 = m_el[1].mVec128; - rv22 = m_el[2].mVec128; - - mv0 = _mm_and_ps(m[0].mVec128, btvFFF0fMask); - mv1 = _mm_and_ps(m[1].mVec128, btvFFF0fMask); - mv2 = _mm_and_ps(m[2].mVec128, btvFFF0fMask); - - // rv0 - rv00 = bt_splat_ps(rv02, 0); - rv01 = bt_splat_ps(rv02, 1); - rv02 = bt_splat_ps(rv02, 2); - - rv00 = _mm_mul_ps(rv00, mv0); - rv01 = _mm_mul_ps(rv01, mv1); - rv02 = _mm_mul_ps(rv02, mv2); - - // rv1 - rv10 = bt_splat_ps(rv12, 0); - rv11 = bt_splat_ps(rv12, 1); - rv12 = bt_splat_ps(rv12, 2); - - rv10 = _mm_mul_ps(rv10, mv0); - rv11 = _mm_mul_ps(rv11, mv1); - rv12 = _mm_mul_ps(rv12, mv2); - - // rv2 - rv20 = bt_splat_ps(rv22, 0); - rv21 = bt_splat_ps(rv22, 1); - rv22 = bt_splat_ps(rv22, 2); - - rv20 = _mm_mul_ps(rv20, mv0); - rv21 = _mm_mul_ps(rv21, mv1); - rv22 = _mm_mul_ps(rv22, mv2); - - rv00 = _mm_add_ps(rv00, rv01); - rv10 = _mm_add_ps(rv10, rv11); - rv20 = _mm_add_ps(rv20, rv21); - - m_el[0].mVec128 = _mm_add_ps(rv00, rv02); - m_el[1].mVec128 = _mm_add_ps(rv10, rv12); - m_el[2].mVec128 = _mm_add_ps(rv20, rv22); - -#elif defined(BT_USE_NEON) - - float32x4_t rv0, rv1, rv2; - float32x4_t v0, v1, v2; - float32x4_t mv0, mv1, mv2; - - v0 = m_el[0].mVec128; - v1 = m_el[1].mVec128; - v2 = m_el[2].mVec128; - - mv0 = (float32x4_t)vandq_s32((int32x4_t)m[0].mVec128, btvFFF0Mask); - mv1 = (float32x4_t)vandq_s32((int32x4_t)m[1].mVec128, btvFFF0Mask); - mv2 = (float32x4_t)vandq_s32((int32x4_t)m[2].mVec128, btvFFF0Mask); - - rv0 = vmulq_lane_f32(mv0, vget_low_f32(v0), 0); - rv1 = vmulq_lane_f32(mv0, vget_low_f32(v1), 0); - rv2 = vmulq_lane_f32(mv0, vget_low_f32(v2), 0); - - rv0 = vmlaq_lane_f32(rv0, mv1, vget_low_f32(v0), 1); - rv1 = vmlaq_lane_f32(rv1, mv1, vget_low_f32(v1), 1); - rv2 = vmlaq_lane_f32(rv2, mv1, vget_low_f32(v2), 1); - - rv0 = vmlaq_lane_f32(rv0, mv2, vget_high_f32(v0), 0); - rv1 = vmlaq_lane_f32(rv1, mv2, vget_high_f32(v1), 0); - rv2 = vmlaq_lane_f32(rv2, mv2, vget_high_f32(v2), 0); - - m_el[0].mVec128 = rv0; - m_el[1].mVec128 = rv1; - m_el[2].mVec128 = rv2; -#else - setValue( - m.tdotx(m_el[0]), m.tdoty(m_el[0]), m.tdotz(m_el[0]), - m.tdotx(m_el[1]), m.tdoty(m_el[1]), m.tdotz(m_el[1]), - m.tdotx(m_el[2]), m.tdoty(m_el[2]), m.tdotz(m_el[2])); -#endif - return *this; -} - -SIMD_FORCE_INLINE btMatrix3x3& -btMatrix3x3::operator+=(const btMatrix3x3& m) -{ -#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON) - m_el[0].mVec128 = m_el[0].mVec128 + m.m_el[0].mVec128; - m_el[1].mVec128 = m_el[1].mVec128 + m.m_el[1].mVec128; - m_el[2].mVec128 = m_el[2].mVec128 + m.m_el[2].mVec128; -#else - setValue( - m_el[0][0] + m.m_el[0][0], - m_el[0][1] + m.m_el[0][1], - m_el[0][2] + m.m_el[0][2], - m_el[1][0] + m.m_el[1][0], - m_el[1][1] + m.m_el[1][1], - m_el[1][2] + m.m_el[1][2], - m_el[2][0] + m.m_el[2][0], - m_el[2][1] + m.m_el[2][1], - m_el[2][2] + m.m_el[2][2]); -#endif - return *this; -} - -SIMD_FORCE_INLINE btMatrix3x3 -operator*(const btMatrix3x3& m, const btScalar& k) -{ -#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) - __m128 vk = bt_splat_ps(_mm_load_ss((float*)&k), 0x80); - return btMatrix3x3( - _mm_mul_ps(m[0].mVec128, vk), - _mm_mul_ps(m[1].mVec128, vk), - _mm_mul_ps(m[2].mVec128, vk)); -#elif defined(BT_USE_NEON) - return btMatrix3x3( - vmulq_n_f32(m[0].mVec128, k), - vmulq_n_f32(m[1].mVec128, k), - vmulq_n_f32(m[2].mVec128, k)); -#else - return btMatrix3x3( - m[0].x() * k, m[0].y() * k, m[0].z() * k, - m[1].x() * k, m[1].y() * k, m[1].z() * k, - m[2].x() * k, m[2].y() * k, m[2].z() * k); -#endif -} - -SIMD_FORCE_INLINE btMatrix3x3 -operator+(const btMatrix3x3& m1, const btMatrix3x3& m2) -{ -#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON) - return btMatrix3x3( - m1[0].mVec128 + m2[0].mVec128, - m1[1].mVec128 + m2[1].mVec128, - m1[2].mVec128 + m2[2].mVec128); -#else - return btMatrix3x3( - m1[0][0] + m2[0][0], - m1[0][1] + m2[0][1], - m1[0][2] + m2[0][2], - - m1[1][0] + m2[1][0], - m1[1][1] + m2[1][1], - m1[1][2] + m2[1][2], - - m1[2][0] + m2[2][0], - m1[2][1] + m2[2][1], - m1[2][2] + m2[2][2]); -#endif -} - -SIMD_FORCE_INLINE btMatrix3x3 -operator-(const btMatrix3x3& m1, const btMatrix3x3& m2) -{ -#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON) - return btMatrix3x3( - m1[0].mVec128 - m2[0].mVec128, - m1[1].mVec128 - m2[1].mVec128, - m1[2].mVec128 - m2[2].mVec128); -#else - return btMatrix3x3( - m1[0][0] - m2[0][0], - m1[0][1] - m2[0][1], - m1[0][2] - m2[0][2], - - m1[1][0] - m2[1][0], - m1[1][1] - m2[1][1], - m1[1][2] - m2[1][2], - - m1[2][0] - m2[2][0], - m1[2][1] - m2[2][1], - m1[2][2] - m2[2][2]); -#endif -} - -SIMD_FORCE_INLINE btMatrix3x3& -btMatrix3x3::operator-=(const btMatrix3x3& m) -{ -#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON) - m_el[0].mVec128 = m_el[0].mVec128 - m.m_el[0].mVec128; - m_el[1].mVec128 = m_el[1].mVec128 - m.m_el[1].mVec128; - m_el[2].mVec128 = m_el[2].mVec128 - m.m_el[2].mVec128; -#else - setValue( - m_el[0][0] - m.m_el[0][0], - m_el[0][1] - m.m_el[0][1], - m_el[0][2] - m.m_el[0][2], - m_el[1][0] - m.m_el[1][0], - m_el[1][1] - m.m_el[1][1], - m_el[1][2] - m.m_el[1][2], - m_el[2][0] - m.m_el[2][0], - m_el[2][1] - m.m_el[2][1], - m_el[2][2] - m.m_el[2][2]); -#endif - return *this; -} - -SIMD_FORCE_INLINE btScalar -btMatrix3x3::determinant() const -{ - return btTriple((*this)[0], (*this)[1], (*this)[2]); -} - -SIMD_FORCE_INLINE btMatrix3x3 -btMatrix3x3::absolute() const -{ -#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) - return btMatrix3x3( - _mm_and_ps(m_el[0].mVec128, btvAbsfMask), - _mm_and_ps(m_el[1].mVec128, btvAbsfMask), - _mm_and_ps(m_el[2].mVec128, btvAbsfMask)); -#elif defined(BT_USE_NEON) - return btMatrix3x3( - (float32x4_t)vandq_s32((int32x4_t)m_el[0].mVec128, btv3AbsMask), - (float32x4_t)vandq_s32((int32x4_t)m_el[1].mVec128, btv3AbsMask), - (float32x4_t)vandq_s32((int32x4_t)m_el[2].mVec128, btv3AbsMask)); -#else - return btMatrix3x3( - btFabs(m_el[0].x()), btFabs(m_el[0].y()), btFabs(m_el[0].z()), - btFabs(m_el[1].x()), btFabs(m_el[1].y()), btFabs(m_el[1].z()), - btFabs(m_el[2].x()), btFabs(m_el[2].y()), btFabs(m_el[2].z())); -#endif -} - -SIMD_FORCE_INLINE btMatrix3x3 -btMatrix3x3::transpose() const -{ -#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) - __m128 v0 = m_el[0].mVec128; - __m128 v1 = m_el[1].mVec128; - __m128 v2 = m_el[2].mVec128; // x2 y2 z2 w2 - __m128 vT; - - v2 = _mm_and_ps(v2, btvFFF0fMask); // x2 y2 z2 0 - - vT = _mm_unpackhi_ps(v0, v1); // z0 z1 * * - v0 = _mm_unpacklo_ps(v0, v1); // x0 x1 y0 y1 - - v1 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(2, 3, 1, 3)); // y0 y1 y2 0 - v0 = _mm_shuffle_ps(v0, v2, BT_SHUFFLE(0, 1, 0, 3)); // x0 x1 x2 0 - v2 = btCastdTo128f(_mm_move_sd(btCastfTo128d(v2), btCastfTo128d(vT))); // z0 z1 z2 0 - - return btMatrix3x3(v0, v1, v2); -#elif defined(BT_USE_NEON) - // note: zeros the w channel. We can preserve it at the cost of two more vtrn instructions. - static const uint32x2_t zMask = (const uint32x2_t){static_cast<uint32_t>(-1), 0}; - float32x4x2_t top = vtrnq_f32(m_el[0].mVec128, m_el[1].mVec128); // {x0 x1 z0 z1}, {y0 y1 w0 w1} - float32x2x2_t bl = vtrn_f32(vget_low_f32(m_el[2].mVec128), vdup_n_f32(0.0f)); // {x2 0 }, {y2 0} - float32x4_t v0 = vcombine_f32(vget_low_f32(top.val[0]), bl.val[0]); - float32x4_t v1 = vcombine_f32(vget_low_f32(top.val[1]), bl.val[1]); - float32x2_t q = (float32x2_t)vand_u32((uint32x2_t)vget_high_f32(m_el[2].mVec128), zMask); - float32x4_t v2 = vcombine_f32(vget_high_f32(top.val[0]), q); // z0 z1 z2 0 - return btMatrix3x3(v0, v1, v2); -#else - return btMatrix3x3(m_el[0].x(), m_el[1].x(), m_el[2].x(), - m_el[0].y(), m_el[1].y(), m_el[2].y(), - m_el[0].z(), m_el[1].z(), m_el[2].z()); -#endif -} - -SIMD_FORCE_INLINE btMatrix3x3 -btMatrix3x3::adjoint() const -{ - return btMatrix3x3(cofac(1, 1, 2, 2), cofac(0, 2, 2, 1), cofac(0, 1, 1, 2), - cofac(1, 2, 2, 0), cofac(0, 0, 2, 2), cofac(0, 2, 1, 0), - cofac(1, 0, 2, 1), cofac(0, 1, 2, 0), cofac(0, 0, 1, 1)); -} - -SIMD_FORCE_INLINE btMatrix3x3 -btMatrix3x3::inverse() const -{ - btVector3 co(cofac(1, 1, 2, 2), cofac(1, 2, 2, 0), cofac(1, 0, 2, 1)); - btScalar det = (*this)[0].dot(co); - //btFullAssert(det != btScalar(0.0)); - btAssert(det != btScalar(0.0)); - btScalar s = btScalar(1.0) / det; - return btMatrix3x3(co.x() * s, cofac(0, 2, 2, 1) * s, cofac(0, 1, 1, 2) * s, - co.y() * s, cofac(0, 0, 2, 2) * s, cofac(0, 2, 1, 0) * s, - co.z() * s, cofac(0, 1, 2, 0) * s, cofac(0, 0, 1, 1) * s); -} - -SIMD_FORCE_INLINE btMatrix3x3 -btMatrix3x3::transposeTimes(const btMatrix3x3& m) const -{ -#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) - // zeros w - // static const __m128i xyzMask = (const __m128i){ -1ULL, 0xffffffffULL }; - __m128 row = m_el[0].mVec128; - __m128 m0 = _mm_and_ps(m.getRow(0).mVec128, btvFFF0fMask); - __m128 m1 = _mm_and_ps(m.getRow(1).mVec128, btvFFF0fMask); - __m128 m2 = _mm_and_ps(m.getRow(2).mVec128, btvFFF0fMask); - __m128 r0 = _mm_mul_ps(m0, _mm_shuffle_ps(row, row, 0)); - __m128 r1 = _mm_mul_ps(m0, _mm_shuffle_ps(row, row, 0x55)); - __m128 r2 = _mm_mul_ps(m0, _mm_shuffle_ps(row, row, 0xaa)); - row = m_el[1].mVec128; - r0 = _mm_add_ps(r0, _mm_mul_ps(m1, _mm_shuffle_ps(row, row, 0))); - r1 = _mm_add_ps(r1, _mm_mul_ps(m1, _mm_shuffle_ps(row, row, 0x55))); - r2 = _mm_add_ps(r2, _mm_mul_ps(m1, _mm_shuffle_ps(row, row, 0xaa))); - row = m_el[2].mVec128; - r0 = _mm_add_ps(r0, _mm_mul_ps(m2, _mm_shuffle_ps(row, row, 0))); - r1 = _mm_add_ps(r1, _mm_mul_ps(m2, _mm_shuffle_ps(row, row, 0x55))); - r2 = _mm_add_ps(r2, _mm_mul_ps(m2, _mm_shuffle_ps(row, row, 0xaa))); - return btMatrix3x3(r0, r1, r2); - -#elif defined BT_USE_NEON - // zeros w - static const uint32x4_t xyzMask = (const uint32x4_t){static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), 0}; - float32x4_t m0 = (float32x4_t)vandq_u32((uint32x4_t)m.getRow(0).mVec128, xyzMask); - float32x4_t m1 = (float32x4_t)vandq_u32((uint32x4_t)m.getRow(1).mVec128, xyzMask); - float32x4_t m2 = (float32x4_t)vandq_u32((uint32x4_t)m.getRow(2).mVec128, xyzMask); - float32x4_t row = m_el[0].mVec128; - float32x4_t r0 = vmulq_lane_f32(m0, vget_low_f32(row), 0); - float32x4_t r1 = vmulq_lane_f32(m0, vget_low_f32(row), 1); - float32x4_t r2 = vmulq_lane_f32(m0, vget_high_f32(row), 0); - row = m_el[1].mVec128; - r0 = vmlaq_lane_f32(r0, m1, vget_low_f32(row), 0); - r1 = vmlaq_lane_f32(r1, m1, vget_low_f32(row), 1); - r2 = vmlaq_lane_f32(r2, m1, vget_high_f32(row), 0); - row = m_el[2].mVec128; - r0 = vmlaq_lane_f32(r0, m2, vget_low_f32(row), 0); - r1 = vmlaq_lane_f32(r1, m2, vget_low_f32(row), 1); - r2 = vmlaq_lane_f32(r2, m2, vget_high_f32(row), 0); - return btMatrix3x3(r0, r1, r2); -#else - return btMatrix3x3( - m_el[0].x() * m[0].x() + m_el[1].x() * m[1].x() + m_el[2].x() * m[2].x(), - m_el[0].x() * m[0].y() + m_el[1].x() * m[1].y() + m_el[2].x() * m[2].y(), - m_el[0].x() * m[0].z() + m_el[1].x() * m[1].z() + m_el[2].x() * m[2].z(), - m_el[0].y() * m[0].x() + m_el[1].y() * m[1].x() + m_el[2].y() * m[2].x(), - m_el[0].y() * m[0].y() + m_el[1].y() * m[1].y() + m_el[2].y() * m[2].y(), - m_el[0].y() * m[0].z() + m_el[1].y() * m[1].z() + m_el[2].y() * m[2].z(), - m_el[0].z() * m[0].x() + m_el[1].z() * m[1].x() + m_el[2].z() * m[2].x(), - m_el[0].z() * m[0].y() + m_el[1].z() * m[1].y() + m_el[2].z() * m[2].y(), - m_el[0].z() * m[0].z() + m_el[1].z() * m[1].z() + m_el[2].z() * m[2].z()); -#endif -} - -SIMD_FORCE_INLINE btMatrix3x3 -btMatrix3x3::timesTranspose(const btMatrix3x3& m) const -{ -#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) - __m128 a0 = m_el[0].mVec128; - __m128 a1 = m_el[1].mVec128; - __m128 a2 = m_el[2].mVec128; - - btMatrix3x3 mT = m.transpose(); // we rely on transpose() zeroing w channel so that we don't have to do it here - __m128 mx = mT[0].mVec128; - __m128 my = mT[1].mVec128; - __m128 mz = mT[2].mVec128; - - __m128 r0 = _mm_mul_ps(mx, _mm_shuffle_ps(a0, a0, 0x00)); - __m128 r1 = _mm_mul_ps(mx, _mm_shuffle_ps(a1, a1, 0x00)); - __m128 r2 = _mm_mul_ps(mx, _mm_shuffle_ps(a2, a2, 0x00)); - r0 = _mm_add_ps(r0, _mm_mul_ps(my, _mm_shuffle_ps(a0, a0, 0x55))); - r1 = _mm_add_ps(r1, _mm_mul_ps(my, _mm_shuffle_ps(a1, a1, 0x55))); - r2 = _mm_add_ps(r2, _mm_mul_ps(my, _mm_shuffle_ps(a2, a2, 0x55))); - r0 = _mm_add_ps(r0, _mm_mul_ps(mz, _mm_shuffle_ps(a0, a0, 0xaa))); - r1 = _mm_add_ps(r1, _mm_mul_ps(mz, _mm_shuffle_ps(a1, a1, 0xaa))); - r2 = _mm_add_ps(r2, _mm_mul_ps(mz, _mm_shuffle_ps(a2, a2, 0xaa))); - return btMatrix3x3(r0, r1, r2); - -#elif defined BT_USE_NEON - float32x4_t a0 = m_el[0].mVec128; - float32x4_t a1 = m_el[1].mVec128; - float32x4_t a2 = m_el[2].mVec128; - - btMatrix3x3 mT = m.transpose(); // we rely on transpose() zeroing w channel so that we don't have to do it here - float32x4_t mx = mT[0].mVec128; - float32x4_t my = mT[1].mVec128; - float32x4_t mz = mT[2].mVec128; - - float32x4_t r0 = vmulq_lane_f32(mx, vget_low_f32(a0), 0); - float32x4_t r1 = vmulq_lane_f32(mx, vget_low_f32(a1), 0); - float32x4_t r2 = vmulq_lane_f32(mx, vget_low_f32(a2), 0); - r0 = vmlaq_lane_f32(r0, my, vget_low_f32(a0), 1); - r1 = vmlaq_lane_f32(r1, my, vget_low_f32(a1), 1); - r2 = vmlaq_lane_f32(r2, my, vget_low_f32(a2), 1); - r0 = vmlaq_lane_f32(r0, mz, vget_high_f32(a0), 0); - r1 = vmlaq_lane_f32(r1, mz, vget_high_f32(a1), 0); - r2 = vmlaq_lane_f32(r2, mz, vget_high_f32(a2), 0); - return btMatrix3x3(r0, r1, r2); - -#else - return btMatrix3x3( - m_el[0].dot(m[0]), m_el[0].dot(m[1]), m_el[0].dot(m[2]), - m_el[1].dot(m[0]), m_el[1].dot(m[1]), m_el[1].dot(m[2]), - m_el[2].dot(m[0]), m_el[2].dot(m[1]), m_el[2].dot(m[2])); -#endif -} - -SIMD_FORCE_INLINE btVector3 -operator*(const btMatrix3x3& m, const btVector3& v) -{ -#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) || defined(BT_USE_NEON) - return v.dot3(m[0], m[1], m[2]); -#else - return btVector3(m[0].dot(v), m[1].dot(v), m[2].dot(v)); -#endif -} - -SIMD_FORCE_INLINE btVector3 -operator*(const btVector3& v, const btMatrix3x3& m) -{ -#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) - - const __m128 vv = v.mVec128; - - __m128 c0 = bt_splat_ps(vv, 0); - __m128 c1 = bt_splat_ps(vv, 1); - __m128 c2 = bt_splat_ps(vv, 2); - - c0 = _mm_mul_ps(c0, _mm_and_ps(m[0].mVec128, btvFFF0fMask)); - c1 = _mm_mul_ps(c1, _mm_and_ps(m[1].mVec128, btvFFF0fMask)); - c0 = _mm_add_ps(c0, c1); - c2 = _mm_mul_ps(c2, _mm_and_ps(m[2].mVec128, btvFFF0fMask)); - - return btVector3(_mm_add_ps(c0, c2)); -#elif defined(BT_USE_NEON) - const float32x4_t vv = v.mVec128; - const float32x2_t vlo = vget_low_f32(vv); - const float32x2_t vhi = vget_high_f32(vv); - - float32x4_t c0, c1, c2; - - c0 = (float32x4_t)vandq_s32((int32x4_t)m[0].mVec128, btvFFF0Mask); - c1 = (float32x4_t)vandq_s32((int32x4_t)m[1].mVec128, btvFFF0Mask); - c2 = (float32x4_t)vandq_s32((int32x4_t)m[2].mVec128, btvFFF0Mask); - - c0 = vmulq_lane_f32(c0, vlo, 0); - c1 = vmulq_lane_f32(c1, vlo, 1); - c2 = vmulq_lane_f32(c2, vhi, 0); - c0 = vaddq_f32(c0, c1); - c0 = vaddq_f32(c0, c2); - - return btVector3(c0); -#else - return btVector3(m.tdotx(v), m.tdoty(v), m.tdotz(v)); -#endif -} - -SIMD_FORCE_INLINE btMatrix3x3 -operator*(const btMatrix3x3& m1, const btMatrix3x3& m2) -{ -#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) - - __m128 m10 = m1[0].mVec128; - __m128 m11 = m1[1].mVec128; - __m128 m12 = m1[2].mVec128; - - __m128 m2v = _mm_and_ps(m2[0].mVec128, btvFFF0fMask); - - __m128 c0 = bt_splat_ps(m10, 0); - __m128 c1 = bt_splat_ps(m11, 0); - __m128 c2 = bt_splat_ps(m12, 0); - - c0 = _mm_mul_ps(c0, m2v); - c1 = _mm_mul_ps(c1, m2v); - c2 = _mm_mul_ps(c2, m2v); - - m2v = _mm_and_ps(m2[1].mVec128, btvFFF0fMask); - - __m128 c0_1 = bt_splat_ps(m10, 1); - __m128 c1_1 = bt_splat_ps(m11, 1); - __m128 c2_1 = bt_splat_ps(m12, 1); - - c0_1 = _mm_mul_ps(c0_1, m2v); - c1_1 = _mm_mul_ps(c1_1, m2v); - c2_1 = _mm_mul_ps(c2_1, m2v); - - m2v = _mm_and_ps(m2[2].mVec128, btvFFF0fMask); - - c0 = _mm_add_ps(c0, c0_1); - c1 = _mm_add_ps(c1, c1_1); - c2 = _mm_add_ps(c2, c2_1); - - m10 = bt_splat_ps(m10, 2); - m11 = bt_splat_ps(m11, 2); - m12 = bt_splat_ps(m12, 2); - - m10 = _mm_mul_ps(m10, m2v); - m11 = _mm_mul_ps(m11, m2v); - m12 = _mm_mul_ps(m12, m2v); - - c0 = _mm_add_ps(c0, m10); - c1 = _mm_add_ps(c1, m11); - c2 = _mm_add_ps(c2, m12); - - return btMatrix3x3(c0, c1, c2); - -#elif defined(BT_USE_NEON) - - float32x4_t rv0, rv1, rv2; - float32x4_t v0, v1, v2; - float32x4_t mv0, mv1, mv2; - - v0 = m1[0].mVec128; - v1 = m1[1].mVec128; - v2 = m1[2].mVec128; - - mv0 = (float32x4_t)vandq_s32((int32x4_t)m2[0].mVec128, btvFFF0Mask); - mv1 = (float32x4_t)vandq_s32((int32x4_t)m2[1].mVec128, btvFFF0Mask); - mv2 = (float32x4_t)vandq_s32((int32x4_t)m2[2].mVec128, btvFFF0Mask); - - rv0 = vmulq_lane_f32(mv0, vget_low_f32(v0), 0); - rv1 = vmulq_lane_f32(mv0, vget_low_f32(v1), 0); - rv2 = vmulq_lane_f32(mv0, vget_low_f32(v2), 0); - - rv0 = vmlaq_lane_f32(rv0, mv1, vget_low_f32(v0), 1); - rv1 = vmlaq_lane_f32(rv1, mv1, vget_low_f32(v1), 1); - rv2 = vmlaq_lane_f32(rv2, mv1, vget_low_f32(v2), 1); - - rv0 = vmlaq_lane_f32(rv0, mv2, vget_high_f32(v0), 0); - rv1 = vmlaq_lane_f32(rv1, mv2, vget_high_f32(v1), 0); - rv2 = vmlaq_lane_f32(rv2, mv2, vget_high_f32(v2), 0); - - return btMatrix3x3(rv0, rv1, rv2); - -#else - return btMatrix3x3( - m2.tdotx(m1[0]), m2.tdoty(m1[0]), m2.tdotz(m1[0]), - m2.tdotx(m1[1]), m2.tdoty(m1[1]), m2.tdotz(m1[1]), - m2.tdotx(m1[2]), m2.tdoty(m1[2]), m2.tdotz(m1[2])); -#endif -} - -/* -SIMD_FORCE_INLINE btMatrix3x3 btMultTransposeLeft(const btMatrix3x3& m1, const btMatrix3x3& m2) { -return btMatrix3x3( -m1[0][0] * m2[0][0] + m1[1][0] * m2[1][0] + m1[2][0] * m2[2][0], -m1[0][0] * m2[0][1] + m1[1][0] * m2[1][1] + m1[2][0] * m2[2][1], -m1[0][0] * m2[0][2] + m1[1][0] * m2[1][2] + m1[2][0] * m2[2][2], -m1[0][1] * m2[0][0] + m1[1][1] * m2[1][0] + m1[2][1] * m2[2][0], -m1[0][1] * m2[0][1] + m1[1][1] * m2[1][1] + m1[2][1] * m2[2][1], -m1[0][1] * m2[0][2] + m1[1][1] * m2[1][2] + m1[2][1] * m2[2][2], -m1[0][2] * m2[0][0] + m1[1][2] * m2[1][0] + m1[2][2] * m2[2][0], -m1[0][2] * m2[0][1] + m1[1][2] * m2[1][1] + m1[2][2] * m2[2][1], -m1[0][2] * m2[0][2] + m1[1][2] * m2[1][2] + m1[2][2] * m2[2][2]); -} -*/ - -/**@brief Equality operator between two matrices -* It will test all elements are equal. */ -SIMD_FORCE_INLINE bool operator==(const btMatrix3x3& m1, const btMatrix3x3& m2) -{ -#if (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE)) - - __m128 c0, c1, c2; - - c0 = _mm_cmpeq_ps(m1[0].mVec128, m2[0].mVec128); - c1 = _mm_cmpeq_ps(m1[1].mVec128, m2[1].mVec128); - c2 = _mm_cmpeq_ps(m1[2].mVec128, m2[2].mVec128); - - c0 = _mm_and_ps(c0, c1); - c0 = _mm_and_ps(c0, c2); - - int m = _mm_movemask_ps((__m128)c0); - return (0x7 == (m & 0x7)); - -#else - return (m1[0][0] == m2[0][0] && m1[1][0] == m2[1][0] && m1[2][0] == m2[2][0] && - m1[0][1] == m2[0][1] && m1[1][1] == m2[1][1] && m1[2][1] == m2[2][1] && - m1[0][2] == m2[0][2] && m1[1][2] == m2[1][2] && m1[2][2] == m2[2][2]); -#endif -} - -///for serialization -struct btMatrix3x3FloatData -{ - btVector3FloatData m_el[3]; -}; - -///for serialization -struct btMatrix3x3DoubleData -{ - btVector3DoubleData m_el[3]; -}; - -SIMD_FORCE_INLINE void btMatrix3x3::serialize(struct btMatrix3x3Data& dataOut) const -{ - for (int i = 0; i < 3; i++) - m_el[i].serialize(dataOut.m_el[i]); -} - -SIMD_FORCE_INLINE void btMatrix3x3::serializeFloat(struct btMatrix3x3FloatData& dataOut) const -{ - for (int i = 0; i < 3; i++) - m_el[i].serializeFloat(dataOut.m_el[i]); -} - -SIMD_FORCE_INLINE void btMatrix3x3::deSerialize(const struct btMatrix3x3Data& dataIn) -{ - for (int i = 0; i < 3; i++) - m_el[i].deSerialize(dataIn.m_el[i]); -} - -SIMD_FORCE_INLINE void btMatrix3x3::deSerializeFloat(const struct btMatrix3x3FloatData& dataIn) -{ - for (int i = 0; i < 3; i++) - m_el[i].deSerializeFloat(dataIn.m_el[i]); -} - -SIMD_FORCE_INLINE void btMatrix3x3::deSerializeDouble(const struct btMatrix3x3DoubleData& dataIn) -{ - for (int i = 0; i < 3; i++) - m_el[i].deSerializeDouble(dataIn.m_el[i]); -} - -#endif //BT_MATRIX3x3_H |