diff options
Diffstat (limited to 'thirdparty/bullet/LinearMath/btAlignedObjectArray.h')
-rw-r--r-- | thirdparty/bullet/LinearMath/btAlignedObjectArray.h | 530 |
1 files changed, 530 insertions, 0 deletions
diff --git a/thirdparty/bullet/LinearMath/btAlignedObjectArray.h b/thirdparty/bullet/LinearMath/btAlignedObjectArray.h new file mode 100644 index 0000000000..f0b646529a --- /dev/null +++ b/thirdparty/bullet/LinearMath/btAlignedObjectArray.h @@ -0,0 +1,530 @@ +/* +Bullet Continuous Collision Detection and Physics Library +Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ + +This software is provided 'as-is', without any express or implied warranty. +In no event will the authors be held liable for any damages arising from the use of this software. +Permission is granted to anyone to use this software for any purpose, +including commercial applications, and to alter it and redistribute it freely, +subject to the following restrictions: + +1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. +2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. +3. This notice may not be removed or altered from any source distribution. +*/ + + +#ifndef BT_OBJECT_ARRAY__ +#define BT_OBJECT_ARRAY__ + +#include "btScalar.h" // has definitions like SIMD_FORCE_INLINE +#include "btAlignedAllocator.h" + +///If the platform doesn't support placement new, you can disable BT_USE_PLACEMENT_NEW +///then the btAlignedObjectArray doesn't support objects with virtual methods, and non-trivial constructors/destructors +///You can enable BT_USE_MEMCPY, then swapping elements in the array will use memcpy instead of operator= +///see discussion here: http://continuousphysics.com/Bullet/phpBB2/viewtopic.php?t=1231 and +///http://www.continuousphysics.com/Bullet/phpBB2/viewtopic.php?t=1240 + +#define BT_USE_PLACEMENT_NEW 1 +//#define BT_USE_MEMCPY 1 //disable, because it is cumbersome to find out for each platform where memcpy is defined. It can be in <memory.h> or <string.h> or otherwise... +#define BT_ALLOW_ARRAY_COPY_OPERATOR // enabling this can accidently perform deep copies of data if you are not careful + +#ifdef BT_USE_MEMCPY +#include <memory.h> +#include <string.h> +#endif //BT_USE_MEMCPY + +#ifdef BT_USE_PLACEMENT_NEW +#include <new> //for placement new +#endif //BT_USE_PLACEMENT_NEW + +// The register keyword is deprecated in C++11 so don't use it. +#if __cplusplus > 199711L +#define BT_REGISTER +#else +#define BT_REGISTER register +#endif + +///The btAlignedObjectArray template class uses a subset of the stl::vector interface for its methods +///It is developed to replace stl::vector to avoid portability issues, including STL alignment issues to add SIMD/SSE data +template <typename T> +//template <class T> +class btAlignedObjectArray +{ + btAlignedAllocator<T , 16> m_allocator; + + int m_size; + int m_capacity; + T* m_data; + //PCK: added this line + bool m_ownsMemory; + +#ifdef BT_ALLOW_ARRAY_COPY_OPERATOR +public: + SIMD_FORCE_INLINE btAlignedObjectArray<T>& operator=(const btAlignedObjectArray<T> &other) + { + copyFromArray(other); + return *this; + } +#else//BT_ALLOW_ARRAY_COPY_OPERATOR +private: + SIMD_FORCE_INLINE btAlignedObjectArray<T>& operator=(const btAlignedObjectArray<T> &other); +#endif//BT_ALLOW_ARRAY_COPY_OPERATOR + +protected: + SIMD_FORCE_INLINE int allocSize(int size) + { + return (size ? size*2 : 1); + } + SIMD_FORCE_INLINE void copy(int start,int end, T* dest) const + { + int i; + for (i=start;i<end;++i) +#ifdef BT_USE_PLACEMENT_NEW + new (&dest[i]) T(m_data[i]); +#else + dest[i] = m_data[i]; +#endif //BT_USE_PLACEMENT_NEW + } + + SIMD_FORCE_INLINE void init() + { + //PCK: added this line + m_ownsMemory = true; + m_data = 0; + m_size = 0; + m_capacity = 0; + } + SIMD_FORCE_INLINE void destroy(int first,int last) + { + int i; + for (i=first; i<last;i++) + { + m_data[i].~T(); + } + } + + SIMD_FORCE_INLINE void* allocate(int size) + { + if (size) + return m_allocator.allocate(size); + return 0; + } + + SIMD_FORCE_INLINE void deallocate() + { + if(m_data) { + //PCK: enclosed the deallocation in this block + if (m_ownsMemory) + { + m_allocator.deallocate(m_data); + } + m_data = 0; + } + } + + + + + public: + + btAlignedObjectArray() + { + init(); + } + + ~btAlignedObjectArray() + { + clear(); + } + + ///Generally it is best to avoid using the copy constructor of an btAlignedObjectArray, and use a (const) reference to the array instead. + btAlignedObjectArray(const btAlignedObjectArray& otherArray) + { + init(); + + int otherSize = otherArray.size(); + resize (otherSize); + otherArray.copy(0, otherSize, m_data); + } + + + + /// return the number of elements in the array + SIMD_FORCE_INLINE int size() const + { + return m_size; + } + + SIMD_FORCE_INLINE const T& at(int n) const + { + btAssert(n>=0); + btAssert(n<size()); + return m_data[n]; + } + + SIMD_FORCE_INLINE T& at(int n) + { + btAssert(n>=0); + btAssert(n<size()); + return m_data[n]; + } + + SIMD_FORCE_INLINE const T& operator[](int n) const + { + btAssert(n>=0); + btAssert(n<size()); + return m_data[n]; + } + + SIMD_FORCE_INLINE T& operator[](int n) + { + btAssert(n>=0); + btAssert(n<size()); + return m_data[n]; + } + + + ///clear the array, deallocated memory. Generally it is better to use array.resize(0), to reduce performance overhead of run-time memory (de)allocations. + SIMD_FORCE_INLINE void clear() + { + destroy(0,size()); + + deallocate(); + + init(); + } + + SIMD_FORCE_INLINE void pop_back() + { + btAssert(m_size>0); + m_size--; + m_data[m_size].~T(); + } + + + ///resize changes the number of elements in the array. If the new size is larger, the new elements will be constructed using the optional second argument. + ///when the new number of elements is smaller, the destructor will be called, but memory will not be freed, to reduce performance overhead of run-time memory (de)allocations. + SIMD_FORCE_INLINE void resizeNoInitialize(int newsize) + { + if (newsize > size()) + { + reserve(newsize); + } + m_size = newsize; + } + + SIMD_FORCE_INLINE void resize(int newsize, const T& fillData=T()) + { + const BT_REGISTER int curSize = size(); + + if (newsize < curSize) + { + for(int i = newsize; i < curSize; i++) + { + m_data[i].~T(); + } + } else + { + if (newsize > curSize) + { + reserve(newsize); + } +#ifdef BT_USE_PLACEMENT_NEW + for (int i=curSize;i<newsize;i++) + { + new ( &m_data[i]) T(fillData); + } +#endif //BT_USE_PLACEMENT_NEW + + } + + m_size = newsize; + } + SIMD_FORCE_INLINE T& expandNonInitializing( ) + { + const BT_REGISTER int sz = size(); + if( sz == capacity() ) + { + reserve( allocSize(size()) ); + } + m_size++; + + return m_data[sz]; + } + + + SIMD_FORCE_INLINE T& expand( const T& fillValue=T()) + { + const BT_REGISTER int sz = size(); + if( sz == capacity() ) + { + reserve( allocSize(size()) ); + } + m_size++; +#ifdef BT_USE_PLACEMENT_NEW + new (&m_data[sz]) T(fillValue); //use the in-place new (not really allocating heap memory) +#endif + + return m_data[sz]; + } + + + SIMD_FORCE_INLINE void push_back(const T& _Val) + { + const BT_REGISTER int sz = size(); + if( sz == capacity() ) + { + reserve( allocSize(size()) ); + } + +#ifdef BT_USE_PLACEMENT_NEW + new ( &m_data[m_size] ) T(_Val); +#else + m_data[size()] = _Val; +#endif //BT_USE_PLACEMENT_NEW + + m_size++; + } + + + /// return the pre-allocated (reserved) elements, this is at least as large as the total number of elements,see size() and reserve() + SIMD_FORCE_INLINE int capacity() const + { + return m_capacity; + } + + SIMD_FORCE_INLINE void reserve(int _Count) + { // determine new minimum length of allocated storage + if (capacity() < _Count) + { // not enough room, reallocate + T* s = (T*)allocate(_Count); + + copy(0, size(), s); + + destroy(0,size()); + + deallocate(); + + //PCK: added this line + m_ownsMemory = true; + + m_data = s; + + m_capacity = _Count; + + } + } + + + class less + { + public: + + bool operator() ( const T& a, const T& b ) const + { + return ( a < b ); + } + }; + + + template <typename L> + void quickSortInternal(const L& CompareFunc,int lo, int hi) + { + // lo is the lower index, hi is the upper index + // of the region of array a that is to be sorted + int i=lo, j=hi; + T x=m_data[(lo+hi)/2]; + + // partition + do + { + while (CompareFunc(m_data[i],x)) + i++; + while (CompareFunc(x,m_data[j])) + j--; + if (i<=j) + { + swap(i,j); + i++; j--; + } + } while (i<=j); + + // recursion + if (lo<j) + quickSortInternal( CompareFunc, lo, j); + if (i<hi) + quickSortInternal( CompareFunc, i, hi); + } + + + template <typename L> + void quickSort(const L& CompareFunc) + { + //don't sort 0 or 1 elements + if (size()>1) + { + quickSortInternal(CompareFunc,0,size()-1); + } + } + + + ///heap sort from http://www.csse.monash.edu.au/~lloyd/tildeAlgDS/Sort/Heap/ + template <typename L> + void downHeap(T *pArr, int k, int n, const L& CompareFunc) + { + /* PRE: a[k+1..N] is a heap */ + /* POST: a[k..N] is a heap */ + + T temp = pArr[k - 1]; + /* k has child(s) */ + while (k <= n/2) + { + int child = 2*k; + + if ((child < n) && CompareFunc(pArr[child - 1] , pArr[child])) + { + child++; + } + /* pick larger child */ + if (CompareFunc(temp , pArr[child - 1])) + { + /* move child up */ + pArr[k - 1] = pArr[child - 1]; + k = child; + } + else + { + break; + } + } + pArr[k - 1] = temp; + } /*downHeap*/ + + void swap(int index0,int index1) + { +#ifdef BT_USE_MEMCPY + char temp[sizeof(T)]; + memcpy(temp,&m_data[index0],sizeof(T)); + memcpy(&m_data[index0],&m_data[index1],sizeof(T)); + memcpy(&m_data[index1],temp,sizeof(T)); +#else + T temp = m_data[index0]; + m_data[index0] = m_data[index1]; + m_data[index1] = temp; +#endif //BT_USE_PLACEMENT_NEW + + } + + template <typename L> + void heapSort(const L& CompareFunc) + { + /* sort a[0..N-1], N.B. 0 to N-1 */ + int k; + int n = m_size; + for (k = n/2; k > 0; k--) + { + downHeap(m_data, k, n, CompareFunc); + } + + /* a[1..N] is now a heap */ + while ( n>=1 ) + { + swap(0,n-1); /* largest of a[0..n-1] */ + + + n = n - 1; + /* restore a[1..i-1] heap */ + downHeap(m_data, 1, n, CompareFunc); + } + } + + ///non-recursive binary search, assumes sorted array + int findBinarySearch(const T& key) const + { + int first = 0; + int last = size()-1; + + //assume sorted array + while (first <= last) { + int mid = (first + last) / 2; // compute mid point. + if (key > m_data[mid]) + first = mid + 1; // repeat search in top half. + else if (key < m_data[mid]) + last = mid - 1; // repeat search in bottom half. + else + return mid; // found it. return position ///// + } + return size(); // failed to find key + } + + + int findLinearSearch(const T& key) const + { + int index=size(); + int i; + + for (i=0;i<size();i++) + { + if (m_data[i] == key) + { + index = i; + break; + } + } + return index; + } + + // If the key is not in the array, return -1 instead of 0, + // since 0 also means the first element in the array. + int findLinearSearch2(const T& key) const + { + int index=-1; + int i; + + for (i=0;i<size();i++) + { + if (m_data[i] == key) + { + index = i; + break; + } + } + return index; + } + + void removeAtIndex(int index) + { + if (index<size()) + { + swap( index,size()-1); + pop_back(); + } + } + void remove(const T& key) + { + int findIndex = findLinearSearch(key); + removeAtIndex(findIndex); + } + + //PCK: whole function + void initializeFromBuffer(void *buffer, int size, int capacity) + { + clear(); + m_ownsMemory = false; + m_data = (T*)buffer; + m_size = size; + m_capacity = capacity; + } + + void copyFromArray(const btAlignedObjectArray& otherArray) + { + int otherSize = otherArray.size(); + resize (otherSize); + otherArray.copy(0, otherSize, m_data); + } + +}; + +#endif //BT_OBJECT_ARRAY__ |