diff options
Diffstat (limited to 'thirdparty/bullet/BulletSoftBody/poly34.cpp')
-rw-r--r-- | thirdparty/bullet/BulletSoftBody/poly34.cpp | 419 |
1 files changed, 419 insertions, 0 deletions
diff --git a/thirdparty/bullet/BulletSoftBody/poly34.cpp b/thirdparty/bullet/BulletSoftBody/poly34.cpp new file mode 100644 index 0000000000..819d0c79f7 --- /dev/null +++ b/thirdparty/bullet/BulletSoftBody/poly34.cpp @@ -0,0 +1,419 @@ +// poly34.cpp : solution of cubic and quartic equation +// (c) Khashin S.I. http://math.ivanovo.ac.ru/dalgebra/Khashin/index.html +// khash2 (at) gmail.com +// Thanks to Alexandr Rakhmanin <rakhmanin (at) gmail.com> +// public domain +// +#include <math.h> + +#include "poly34.h" // solution of cubic and quartic equation +#define TwoPi 6.28318530717958648 +const btScalar eps = SIMD_EPSILON; + +//============================================================================= +// _root3, root3 from http://prografix.narod.ru +//============================================================================= +static SIMD_FORCE_INLINE btScalar _root3(btScalar x) +{ + btScalar s = 1.; + while (x < 1.) { + x *= 8.; + s *= 0.5; + } + while (x > 8.) { + x *= 0.125; + s *= 2.; + } + btScalar r = 1.5; + r -= 1. / 3. * (r - x / (r * r)); + r -= 1. / 3. * (r - x / (r * r)); + r -= 1. / 3. * (r - x / (r * r)); + r -= 1. / 3. * (r - x / (r * r)); + r -= 1. / 3. * (r - x / (r * r)); + r -= 1. / 3. * (r - x / (r * r)); + return r * s; +} + +btScalar SIMD_FORCE_INLINE root3(btScalar x) +{ + if (x > 0) + return _root3(x); + else if (x < 0) + return -_root3(-x); + else + return 0.; +} + +// x - array of size 2 +// return 2: 2 real roots x[0], x[1] +// return 0: pair of complex roots: x[0]i*x[1] +int SolveP2(btScalar* x, btScalar a, btScalar b) +{ // solve equation x^2 + a*x + b = 0 + btScalar D = 0.25 * a * a - b; + if (D >= 0) { + D = sqrt(D); + x[0] = -0.5 * a + D; + x[1] = -0.5 * a - D; + return 2; + } + x[0] = -0.5 * a; + x[1] = sqrt(-D); + return 0; +} +//--------------------------------------------------------------------------- +// x - array of size 3 +// In case 3 real roots: => x[0], x[1], x[2], return 3 +// 2 real roots: x[0], x[1], return 2 +// 1 real root : x[0], x[1] i*x[2], return 1 +int SolveP3(btScalar* x, btScalar a, btScalar b, btScalar c) +{ // solve cubic equation x^3 + a*x^2 + b*x + c = 0 + btScalar a2 = a * a; + btScalar q = (a2 - 3 * b) / 9; + if (q < 0) + q = eps; + btScalar r = (a * (2 * a2 - 9 * b) + 27 * c) / 54; + // equation x^3 + q*x + r = 0 + btScalar r2 = r * r; + btScalar q3 = q * q * q; + btScalar A, B; + if (r2 <= (q3 + eps)) { //<<-- FIXED! + btScalar t = r / sqrt(q3); + if (t < -1) + t = -1; + if (t > 1) + t = 1; + t = acos(t); + a /= 3; + q = -2 * sqrt(q); + x[0] = q * cos(t / 3) - a; + x[1] = q * cos((t + TwoPi) / 3) - a; + x[2] = q * cos((t - TwoPi) / 3) - a; + return (3); + } + else { + //A =-pow(fabs(r)+sqrt(r2-q3),1./3); + A = -root3(fabs(r) + sqrt(r2 - q3)); + if (r < 0) + A = -A; + B = (A == 0 ? 0 : q / A); + + a /= 3; + x[0] = (A + B) - a; + x[1] = -0.5 * (A + B) - a; + x[2] = 0.5 * sqrt(3.) * (A - B); + if (fabs(x[2]) < eps) { + x[2] = x[1]; + return (2); + } + return (1); + } +} // SolveP3(btScalar *x,btScalar a,btScalar b,btScalar c) { +//--------------------------------------------------------------------------- +// a>=0! +void CSqrt(btScalar x, btScalar y, btScalar& a, btScalar& b) // returns: a+i*s = sqrt(x+i*y) +{ + btScalar r = sqrt(x * x + y * y); + if (y == 0) { + r = sqrt(r); + if (x >= 0) { + a = r; + b = 0; + } + else { + a = 0; + b = r; + } + } + else { // y != 0 + a = sqrt(0.5 * (x + r)); + b = 0.5 * y / a; + } +} +//--------------------------------------------------------------------------- +int SolveP4Bi(btScalar* x, btScalar b, btScalar d) // solve equation x^4 + b*x^2 + d = 0 +{ + btScalar D = b * b - 4 * d; + if (D >= 0) { + btScalar sD = sqrt(D); + btScalar x1 = (-b + sD) / 2; + btScalar x2 = (-b - sD) / 2; // x2 <= x1 + if (x2 >= 0) // 0 <= x2 <= x1, 4 real roots + { + btScalar sx1 = sqrt(x1); + btScalar sx2 = sqrt(x2); + x[0] = -sx1; + x[1] = sx1; + x[2] = -sx2; + x[3] = sx2; + return 4; + } + if (x1 < 0) // x2 <= x1 < 0, two pair of imaginary roots + { + btScalar sx1 = sqrt(-x1); + btScalar sx2 = sqrt(-x2); + x[0] = 0; + x[1] = sx1; + x[2] = 0; + x[3] = sx2; + return 0; + } + // now x2 < 0 <= x1 , two real roots and one pair of imginary root + btScalar sx1 = sqrt(x1); + btScalar sx2 = sqrt(-x2); + x[0] = -sx1; + x[1] = sx1; + x[2] = 0; + x[3] = sx2; + return 2; + } + else { // if( D < 0 ), two pair of compex roots + btScalar sD2 = 0.5 * sqrt(-D); + CSqrt(-0.5 * b, sD2, x[0], x[1]); + CSqrt(-0.5 * b, -sD2, x[2], x[3]); + return 0; + } // if( D>=0 ) +} // SolveP4Bi(btScalar *x, btScalar b, btScalar d) // solve equation x^4 + b*x^2 d +//--------------------------------------------------------------------------- +#define SWAP(a, b) \ +{ \ +t = b; \ +b = a; \ +a = t; \ +} +static void dblSort3(btScalar& a, btScalar& b, btScalar& c) // make: a <= b <= c +{ + btScalar t; + if (a > b) + SWAP(a, b); // now a<=b + if (c < b) { + SWAP(b, c); // now a<=b, b<=c + if (a > b) + SWAP(a, b); // now a<=b + } +} +//--------------------------------------------------------------------------- +int SolveP4De(btScalar* x, btScalar b, btScalar c, btScalar d) // solve equation x^4 + b*x^2 + c*x + d +{ + //if( c==0 ) return SolveP4Bi(x,b,d); // After that, c!=0 + if (fabs(c) < 1e-14 * (fabs(b) + fabs(d))) + return SolveP4Bi(x, b, d); // After that, c!=0 + + int res3 = SolveP3(x, 2 * b, b * b - 4 * d, -c * c); // solve resolvent + // by Viet theorem: x1*x2*x3=-c*c not equals to 0, so x1!=0, x2!=0, x3!=0 + if (res3 > 1) // 3 real roots, + { + dblSort3(x[0], x[1], x[2]); // sort roots to x[0] <= x[1] <= x[2] + // Note: x[0]*x[1]*x[2]= c*c > 0 + if (x[0] > 0) // all roots are positive + { + btScalar sz1 = sqrt(x[0]); + btScalar sz2 = sqrt(x[1]); + btScalar sz3 = sqrt(x[2]); + // Note: sz1*sz2*sz3= -c (and not equal to 0) + if (c > 0) { + x[0] = (-sz1 - sz2 - sz3) / 2; + x[1] = (-sz1 + sz2 + sz3) / 2; + x[2] = (+sz1 - sz2 + sz3) / 2; + x[3] = (+sz1 + sz2 - sz3) / 2; + return 4; + } + // now: c<0 + x[0] = (-sz1 - sz2 + sz3) / 2; + x[1] = (-sz1 + sz2 - sz3) / 2; + x[2] = (+sz1 - sz2 - sz3) / 2; + x[3] = (+sz1 + sz2 + sz3) / 2; + return 4; + } // if( x[0] > 0) // all roots are positive + // now x[0] <= x[1] < 0, x[2] > 0 + // two pair of comlex roots + btScalar sz1 = sqrt(-x[0]); + btScalar sz2 = sqrt(-x[1]); + btScalar sz3 = sqrt(x[2]); + + if (c > 0) // sign = -1 + { + x[0] = -sz3 / 2; + x[1] = (sz1 - sz2) / 2; // x[0]i*x[1] + x[2] = sz3 / 2; + x[3] = (-sz1 - sz2) / 2; // x[2]i*x[3] + return 0; + } + // now: c<0 , sign = +1 + x[0] = sz3 / 2; + x[1] = (-sz1 + sz2) / 2; + x[2] = -sz3 / 2; + x[3] = (sz1 + sz2) / 2; + return 0; + } // if( res3>1 ) // 3 real roots, + // now resoventa have 1 real and pair of compex roots + // x[0] - real root, and x[0]>0, + // x[1]i*x[2] - complex roots, + // x[0] must be >=0. But one times x[0]=~ 1e-17, so: + if (x[0] < 0) + x[0] = 0; + btScalar sz1 = sqrt(x[0]); + btScalar szr, szi; + CSqrt(x[1], x[2], szr, szi); // (szr+i*szi)^2 = x[1]+i*x[2] + if (c > 0) // sign = -1 + { + x[0] = -sz1 / 2 - szr; // 1st real root + x[1] = -sz1 / 2 + szr; // 2nd real root + x[2] = sz1 / 2; + x[3] = szi; + return 2; + } + // now: c<0 , sign = +1 + x[0] = sz1 / 2 - szr; // 1st real root + x[1] = sz1 / 2 + szr; // 2nd real root + x[2] = -sz1 / 2; + x[3] = szi; + return 2; +} // SolveP4De(btScalar *x, btScalar b, btScalar c, btScalar d) // solve equation x^4 + b*x^2 + c*x + d +//----------------------------------------------------------------------------- +btScalar N4Step(btScalar x, btScalar a, btScalar b, btScalar c, btScalar d) // one Newton step for x^4 + a*x^3 + b*x^2 + c*x + d +{ + btScalar fxs = ((4 * x + 3 * a) * x + 2 * b) * x + c; // f'(x) + if (fxs == 0) + return x; //return 1e99; <<-- FIXED! + btScalar fx = (((x + a) * x + b) * x + c) * x + d; // f(x) + return x - fx / fxs; +} +//----------------------------------------------------------------------------- +// x - array of size 4 +// return 4: 4 real roots x[0], x[1], x[2], x[3], possible multiple roots +// return 2: 2 real roots x[0], x[1] and complex x[2]i*x[3], +// return 0: two pair of complex roots: x[0]i*x[1], x[2]i*x[3], +int SolveP4(btScalar* x, btScalar a, btScalar b, btScalar c, btScalar d) +{ // solve equation x^4 + a*x^3 + b*x^2 + c*x + d by Dekart-Euler method + // move to a=0: + btScalar d1 = d + 0.25 * a * (0.25 * b * a - 3. / 64 * a * a * a - c); + btScalar c1 = c + 0.5 * a * (0.25 * a * a - b); + btScalar b1 = b - 0.375 * a * a; + int res = SolveP4De(x, b1, c1, d1); + if (res == 4) { + x[0] -= a / 4; + x[1] -= a / 4; + x[2] -= a / 4; + x[3] -= a / 4; + } + else if (res == 2) { + x[0] -= a / 4; + x[1] -= a / 4; + x[2] -= a / 4; + } + else { + x[0] -= a / 4; + x[2] -= a / 4; + } + // one Newton step for each real root: + if (res > 0) { + x[0] = N4Step(x[0], a, b, c, d); + x[1] = N4Step(x[1], a, b, c, d); + } + if (res > 2) { + x[2] = N4Step(x[2], a, b, c, d); + x[3] = N4Step(x[3], a, b, c, d); + } + return res; +} +//----------------------------------------------------------------------------- +#define F5(t) (((((t + a) * t + b) * t + c) * t + d) * t + e) +//----------------------------------------------------------------------------- +btScalar SolveP5_1(btScalar a, btScalar b, btScalar c, btScalar d, btScalar e) // return real root of x^5 + a*x^4 + b*x^3 + c*x^2 + d*x + e = 0 +{ + int cnt; + if (fabs(e) < eps) + return 0; + + btScalar brd = fabs(a); // brd - border of real roots + if (fabs(b) > brd) + brd = fabs(b); + if (fabs(c) > brd) + brd = fabs(c); + if (fabs(d) > brd) + brd = fabs(d); + if (fabs(e) > brd) + brd = fabs(e); + brd++; // brd - border of real roots + + btScalar x0, f0; // less than root + btScalar x1, f1; // greater than root + btScalar x2, f2, f2s; // next values, f(x2), f'(x2) + btScalar dx = 0; + + if (e < 0) { + x0 = 0; + x1 = brd; + f0 = e; + f1 = F5(x1); + x2 = 0.01 * brd; + } // positive root + else { + x0 = -brd; + x1 = 0; + f0 = F5(x0); + f1 = e; + x2 = -0.01 * brd; + } // negative root + + if (fabs(f0) < eps) + return x0; + if (fabs(f1) < eps) + return x1; + + // now x0<x1, f(x0)<0, f(x1)>0 + // Firstly 10 bisections + for (cnt = 0; cnt < 10; cnt++) { + x2 = (x0 + x1) / 2; // next point + //x2 = x0 - f0*(x1 - x0) / (f1 - f0); // next point + f2 = F5(x2); // f(x2) + if (fabs(f2) < eps) + return x2; + if (f2 > 0) { + x1 = x2; + f1 = f2; + } + else { + x0 = x2; + f0 = f2; + } + } + + // At each step: + // x0<x1, f(x0)<0, f(x1)>0. + // x2 - next value + // we hope that x0 < x2 < x1, but not necessarily + do { + if (cnt++ > 50) + break; + if (x2 <= x0 || x2 >= x1) + x2 = (x0 + x1) / 2; // now x0 < x2 < x1 + f2 = F5(x2); // f(x2) + if (fabs(f2) < eps) + return x2; + if (f2 > 0) { + x1 = x2; + f1 = f2; + } + else { + x0 = x2; + f0 = f2; + } + f2s = (((5 * x2 + 4 * a) * x2 + 3 * b) * x2 + 2 * c) * x2 + d; // f'(x2) + if (fabs(f2s) < eps) { + x2 = 1e99; + continue; + } + dx = f2 / f2s; + x2 -= dx; + } while (fabs(dx) > eps); + return x2; +} // SolveP5_1(btScalar a,btScalar b,btScalar c,btScalar d,btScalar e) // return real root of x^5 + a*x^4 + b*x^3 + c*x^2 + d*x + e = 0 +//----------------------------------------------------------------------------- +int SolveP5(btScalar* x, btScalar a, btScalar b, btScalar c, btScalar d, btScalar e) // solve equation x^5 + a*x^4 + b*x^3 + c*x^2 + d*x + e = 0 +{ + btScalar r = x[0] = SolveP5_1(a, b, c, d, e); + btScalar a1 = a + r, b1 = b + r * a1, c1 = c + r * b1, d1 = d + r * c1; + return 1 + SolveP4(x + 1, a1, b1, c1, d1); +} // SolveP5(btScalar *x,btScalar a,btScalar b,btScalar c,btScalar d,btScalar e) // solve equation x^5 + a*x^4 + b*x^3 + c*x^2 + d*x + e = 0 +//----------------------------------------------------------------------------- |