summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletSoftBody/btSoftBody.h
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/bullet/BulletSoftBody/btSoftBody.h')
-rw-r--r--thirdparty/bullet/BulletSoftBody/btSoftBody.h1005
1 files changed, 1005 insertions, 0 deletions
diff --git a/thirdparty/bullet/BulletSoftBody/btSoftBody.h b/thirdparty/bullet/BulletSoftBody/btSoftBody.h
new file mode 100644
index 0000000000..ada0dfd1a5
--- /dev/null
+++ b/thirdparty/bullet/BulletSoftBody/btSoftBody.h
@@ -0,0 +1,1005 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+///btSoftBody implementation by Nathanael Presson
+
+#ifndef _BT_SOFT_BODY_H
+#define _BT_SOFT_BODY_H
+
+#include "LinearMath/btAlignedObjectArray.h"
+#include "LinearMath/btTransform.h"
+#include "LinearMath/btIDebugDraw.h"
+#include "BulletDynamics/Dynamics/btRigidBody.h"
+
+#include "BulletCollision/CollisionShapes/btConcaveShape.h"
+#include "BulletCollision/CollisionDispatch/btCollisionCreateFunc.h"
+#include "btSparseSDF.h"
+#include "BulletCollision/BroadphaseCollision/btDbvt.h"
+
+//#ifdef BT_USE_DOUBLE_PRECISION
+//#define btRigidBodyData btRigidBodyDoubleData
+//#define btRigidBodyDataName "btRigidBodyDoubleData"
+//#else
+#define btSoftBodyData btSoftBodyFloatData
+#define btSoftBodyDataName "btSoftBodyFloatData"
+//#endif //BT_USE_DOUBLE_PRECISION
+
+class btBroadphaseInterface;
+class btDispatcher;
+class btSoftBodySolver;
+
+/* btSoftBodyWorldInfo */
+struct btSoftBodyWorldInfo
+{
+ btScalar air_density;
+ btScalar water_density;
+ btScalar water_offset;
+ btScalar m_maxDisplacement;
+ btVector3 water_normal;
+ btBroadphaseInterface* m_broadphase;
+ btDispatcher* m_dispatcher;
+ btVector3 m_gravity;
+ btSparseSdf<3> m_sparsesdf;
+
+ btSoftBodyWorldInfo()
+ :air_density((btScalar)1.2),
+ water_density(0),
+ water_offset(0),
+ m_maxDisplacement(1000.f),//avoid soft body from 'exploding' so use some upper threshold of maximum motion that a node can travel per frame
+ water_normal(0,0,0),
+ m_broadphase(0),
+ m_dispatcher(0),
+ m_gravity(0,-10,0)
+ {
+ }
+};
+
+
+///The btSoftBody is an class to simulate cloth and volumetric soft bodies.
+///There is two-way interaction between btSoftBody and btRigidBody/btCollisionObject.
+class btSoftBody : public btCollisionObject
+{
+public:
+ btAlignedObjectArray<const class btCollisionObject*> m_collisionDisabledObjects;
+
+ // The solver object that handles this soft body
+ btSoftBodySolver *m_softBodySolver;
+
+ //
+ // Enumerations
+ //
+
+ ///eAeroModel
+ struct eAeroModel { enum _ {
+ V_Point, ///Vertex normals are oriented toward velocity
+ V_TwoSided, ///Vertex normals are flipped to match velocity
+ V_TwoSidedLiftDrag, ///Vertex normals are flipped to match velocity and lift and drag forces are applied
+ V_OneSided, ///Vertex normals are taken as it is
+ F_TwoSided, ///Face normals are flipped to match velocity
+ F_TwoSidedLiftDrag, ///Face normals are flipped to match velocity and lift and drag forces are applied
+ F_OneSided, ///Face normals are taken as it is
+ END
+ };};
+
+ ///eVSolver : velocities solvers
+ struct eVSolver { enum _ {
+ Linear, ///Linear solver
+ END
+ };};
+
+ ///ePSolver : positions solvers
+ struct ePSolver { enum _ {
+ Linear, ///Linear solver
+ Anchors, ///Anchor solver
+ RContacts, ///Rigid contacts solver
+ SContacts, ///Soft contacts solver
+ END
+ };};
+
+ ///eSolverPresets
+ struct eSolverPresets { enum _ {
+ Positions,
+ Velocities,
+ Default = Positions,
+ END
+ };};
+
+ ///eFeature
+ struct eFeature { enum _ {
+ None,
+ Node,
+ Link,
+ Face,
+ Tetra,
+ END
+ };};
+
+ typedef btAlignedObjectArray<eVSolver::_> tVSolverArray;
+ typedef btAlignedObjectArray<ePSolver::_> tPSolverArray;
+
+ //
+ // Flags
+ //
+
+ ///fCollision
+ struct fCollision { enum _ {
+ RVSmask = 0x000f, ///Rigid versus soft mask
+ SDF_RS = 0x0001, ///SDF based rigid vs soft
+ CL_RS = 0x0002, ///Cluster vs convex rigid vs soft
+
+ SVSmask = 0x0030, ///Rigid versus soft mask
+ VF_SS = 0x0010, ///Vertex vs face soft vs soft handling
+ CL_SS = 0x0020, ///Cluster vs cluster soft vs soft handling
+ CL_SELF = 0x0040, ///Cluster soft body self collision
+ /* presets */
+ Default = SDF_RS,
+ END
+ };};
+
+ ///fMaterial
+ struct fMaterial { enum _ {
+ DebugDraw = 0x0001, /// Enable debug draw
+ /* presets */
+ Default = DebugDraw,
+ END
+ };};
+
+ //
+ // API Types
+ //
+
+ /* sRayCast */
+ struct sRayCast
+ {
+ btSoftBody* body; /// soft body
+ eFeature::_ feature; /// feature type
+ int index; /// feature index
+ btScalar fraction; /// time of impact fraction (rayorg+(rayto-rayfrom)*fraction)
+ };
+
+ /* ImplicitFn */
+ struct ImplicitFn
+ {
+ virtual ~ImplicitFn() {}
+ virtual btScalar Eval(const btVector3& x)=0;
+ };
+
+ //
+ // Internal types
+ //
+
+ typedef btAlignedObjectArray<btScalar> tScalarArray;
+ typedef btAlignedObjectArray<btVector3> tVector3Array;
+
+ /* sCti is Softbody contact info */
+ struct sCti
+ {
+ const btCollisionObject* m_colObj; /* Rigid body */
+ btVector3 m_normal; /* Outward normal */
+ btScalar m_offset; /* Offset from origin */
+ };
+
+ /* sMedium */
+ struct sMedium
+ {
+ btVector3 m_velocity; /* Velocity */
+ btScalar m_pressure; /* Pressure */
+ btScalar m_density; /* Density */
+ };
+
+ /* Base type */
+ struct Element
+ {
+ void* m_tag; // User data
+ Element() : m_tag(0) {}
+ };
+ /* Material */
+ struct Material : Element
+ {
+ btScalar m_kLST; // Linear stiffness coefficient [0,1]
+ btScalar m_kAST; // Area/Angular stiffness coefficient [0,1]
+ btScalar m_kVST; // Volume stiffness coefficient [0,1]
+ int m_flags; // Flags
+ };
+
+ /* Feature */
+ struct Feature : Element
+ {
+ Material* m_material; // Material
+ };
+ /* Node */
+ struct Node : Feature
+ {
+ btVector3 m_x; // Position
+ btVector3 m_q; // Previous step position
+ btVector3 m_v; // Velocity
+ btVector3 m_f; // Force accumulator
+ btVector3 m_n; // Normal
+ btScalar m_im; // 1/mass
+ btScalar m_area; // Area
+ btDbvtNode* m_leaf; // Leaf data
+ int m_battach:1; // Attached
+ };
+ /* Link */
+ ATTRIBUTE_ALIGNED16(struct) Link : Feature
+ {
+ btVector3 m_c3; // gradient
+ Node* m_n[2]; // Node pointers
+ btScalar m_rl; // Rest length
+ int m_bbending:1; // Bending link
+ btScalar m_c0; // (ima+imb)*kLST
+ btScalar m_c1; // rl^2
+ btScalar m_c2; // |gradient|^2/c0
+
+ BT_DECLARE_ALIGNED_ALLOCATOR();
+
+ };
+ /* Face */
+ struct Face : Feature
+ {
+ Node* m_n[3]; // Node pointers
+ btVector3 m_normal; // Normal
+ btScalar m_ra; // Rest area
+ btDbvtNode* m_leaf; // Leaf data
+ };
+ /* Tetra */
+ struct Tetra : Feature
+ {
+ Node* m_n[4]; // Node pointers
+ btScalar m_rv; // Rest volume
+ btDbvtNode* m_leaf; // Leaf data
+ btVector3 m_c0[4]; // gradients
+ btScalar m_c1; // (4*kVST)/(im0+im1+im2+im3)
+ btScalar m_c2; // m_c1/sum(|g0..3|^2)
+ };
+ /* RContact */
+ struct RContact
+ {
+ sCti m_cti; // Contact infos
+ Node* m_node; // Owner node
+ btMatrix3x3 m_c0; // Impulse matrix
+ btVector3 m_c1; // Relative anchor
+ btScalar m_c2; // ima*dt
+ btScalar m_c3; // Friction
+ btScalar m_c4; // Hardness
+ };
+ /* SContact */
+ struct SContact
+ {
+ Node* m_node; // Node
+ Face* m_face; // Face
+ btVector3 m_weights; // Weigths
+ btVector3 m_normal; // Normal
+ btScalar m_margin; // Margin
+ btScalar m_friction; // Friction
+ btScalar m_cfm[2]; // Constraint force mixing
+ };
+ /* Anchor */
+ struct Anchor
+ {
+ Node* m_node; // Node pointer
+ btVector3 m_local; // Anchor position in body space
+ btRigidBody* m_body; // Body
+ btScalar m_influence;
+ btMatrix3x3 m_c0; // Impulse matrix
+ btVector3 m_c1; // Relative anchor
+ btScalar m_c2; // ima*dt
+ };
+ /* Note */
+ struct Note : Element
+ {
+ const char* m_text; // Text
+ btVector3 m_offset; // Offset
+ int m_rank; // Rank
+ Node* m_nodes[4]; // Nodes
+ btScalar m_coords[4]; // Coordinates
+ };
+ /* Pose */
+ struct Pose
+ {
+ bool m_bvolume; // Is valid
+ bool m_bframe; // Is frame
+ btScalar m_volume; // Rest volume
+ tVector3Array m_pos; // Reference positions
+ tScalarArray m_wgh; // Weights
+ btVector3 m_com; // COM
+ btMatrix3x3 m_rot; // Rotation
+ btMatrix3x3 m_scl; // Scale
+ btMatrix3x3 m_aqq; // Base scaling
+ };
+ /* Cluster */
+ struct Cluster
+ {
+ tScalarArray m_masses;
+ btAlignedObjectArray<Node*> m_nodes;
+ tVector3Array m_framerefs;
+ btTransform m_framexform;
+ btScalar m_idmass;
+ btScalar m_imass;
+ btMatrix3x3 m_locii;
+ btMatrix3x3 m_invwi;
+ btVector3 m_com;
+ btVector3 m_vimpulses[2];
+ btVector3 m_dimpulses[2];
+ int m_nvimpulses;
+ int m_ndimpulses;
+ btVector3 m_lv;
+ btVector3 m_av;
+ btDbvtNode* m_leaf;
+ btScalar m_ndamping; /* Node damping */
+ btScalar m_ldamping; /* Linear damping */
+ btScalar m_adamping; /* Angular damping */
+ btScalar m_matching;
+ btScalar m_maxSelfCollisionImpulse;
+ btScalar m_selfCollisionImpulseFactor;
+ bool m_containsAnchor;
+ bool m_collide;
+ int m_clusterIndex;
+ Cluster() : m_leaf(0),m_ndamping(0),m_ldamping(0),m_adamping(0),m_matching(0)
+ ,m_maxSelfCollisionImpulse(100.f),
+ m_selfCollisionImpulseFactor(0.01f),
+ m_containsAnchor(false)
+ {}
+ };
+ /* Impulse */
+ struct Impulse
+ {
+ btVector3 m_velocity;
+ btVector3 m_drift;
+ int m_asVelocity:1;
+ int m_asDrift:1;
+ Impulse() : m_velocity(0,0,0),m_drift(0,0,0),m_asVelocity(0),m_asDrift(0) {}
+ Impulse operator -() const
+ {
+ Impulse i=*this;
+ i.m_velocity=-i.m_velocity;
+ i.m_drift=-i.m_drift;
+ return(i);
+ }
+ Impulse operator*(btScalar x) const
+ {
+ Impulse i=*this;
+ i.m_velocity*=x;
+ i.m_drift*=x;
+ return(i);
+ }
+ };
+ /* Body */
+ struct Body
+ {
+ Cluster* m_soft;
+ btRigidBody* m_rigid;
+ const btCollisionObject* m_collisionObject;
+
+ Body() : m_soft(0),m_rigid(0),m_collisionObject(0) {}
+ Body(Cluster* p) : m_soft(p),m_rigid(0),m_collisionObject(0) {}
+ Body(const btCollisionObject* colObj) : m_soft(0),m_collisionObject(colObj)
+ {
+ m_rigid = (btRigidBody*)btRigidBody::upcast(m_collisionObject);
+ }
+
+ void activate() const
+ {
+ if(m_rigid)
+ m_rigid->activate();
+ if (m_collisionObject)
+ m_collisionObject->activate();
+
+ }
+ const btMatrix3x3& invWorldInertia() const
+ {
+ static const btMatrix3x3 iwi(0,0,0,0,0,0,0,0,0);
+ if(m_rigid) return(m_rigid->getInvInertiaTensorWorld());
+ if(m_soft) return(m_soft->m_invwi);
+ return(iwi);
+ }
+ btScalar invMass() const
+ {
+ if(m_rigid) return(m_rigid->getInvMass());
+ if(m_soft) return(m_soft->m_imass);
+ return(0);
+ }
+ const btTransform& xform() const
+ {
+ static const btTransform identity=btTransform::getIdentity();
+ if(m_collisionObject) return(m_collisionObject->getWorldTransform());
+ if(m_soft) return(m_soft->m_framexform);
+ return(identity);
+ }
+ btVector3 linearVelocity() const
+ {
+ if(m_rigid) return(m_rigid->getLinearVelocity());
+ if(m_soft) return(m_soft->m_lv);
+ return(btVector3(0,0,0));
+ }
+ btVector3 angularVelocity(const btVector3& rpos) const
+ {
+ if(m_rigid) return(btCross(m_rigid->getAngularVelocity(),rpos));
+ if(m_soft) return(btCross(m_soft->m_av,rpos));
+ return(btVector3(0,0,0));
+ }
+ btVector3 angularVelocity() const
+ {
+ if(m_rigid) return(m_rigid->getAngularVelocity());
+ if(m_soft) return(m_soft->m_av);
+ return(btVector3(0,0,0));
+ }
+ btVector3 velocity(const btVector3& rpos) const
+ {
+ return(linearVelocity()+angularVelocity(rpos));
+ }
+ void applyVImpulse(const btVector3& impulse,const btVector3& rpos) const
+ {
+ if(m_rigid) m_rigid->applyImpulse(impulse,rpos);
+ if(m_soft) btSoftBody::clusterVImpulse(m_soft,rpos,impulse);
+ }
+ void applyDImpulse(const btVector3& impulse,const btVector3& rpos) const
+ {
+ if(m_rigid) m_rigid->applyImpulse(impulse,rpos);
+ if(m_soft) btSoftBody::clusterDImpulse(m_soft,rpos,impulse);
+ }
+ void applyImpulse(const Impulse& impulse,const btVector3& rpos) const
+ {
+ if(impulse.m_asVelocity)
+ {
+// printf("impulse.m_velocity = %f,%f,%f\n",impulse.m_velocity.getX(),impulse.m_velocity.getY(),impulse.m_velocity.getZ());
+ applyVImpulse(impulse.m_velocity,rpos);
+ }
+ if(impulse.m_asDrift)
+ {
+// printf("impulse.m_drift = %f,%f,%f\n",impulse.m_drift.getX(),impulse.m_drift.getY(),impulse.m_drift.getZ());
+ applyDImpulse(impulse.m_drift,rpos);
+ }
+ }
+ void applyVAImpulse(const btVector3& impulse) const
+ {
+ if(m_rigid) m_rigid->applyTorqueImpulse(impulse);
+ if(m_soft) btSoftBody::clusterVAImpulse(m_soft,impulse);
+ }
+ void applyDAImpulse(const btVector3& impulse) const
+ {
+ if(m_rigid) m_rigid->applyTorqueImpulse(impulse);
+ if(m_soft) btSoftBody::clusterDAImpulse(m_soft,impulse);
+ }
+ void applyAImpulse(const Impulse& impulse) const
+ {
+ if(impulse.m_asVelocity) applyVAImpulse(impulse.m_velocity);
+ if(impulse.m_asDrift) applyDAImpulse(impulse.m_drift);
+ }
+ void applyDCImpulse(const btVector3& impulse) const
+ {
+ if(m_rigid) m_rigid->applyCentralImpulse(impulse);
+ if(m_soft) btSoftBody::clusterDCImpulse(m_soft,impulse);
+ }
+ };
+ /* Joint */
+ struct Joint
+ {
+ struct eType { enum _ {
+ Linear=0,
+ Angular,
+ Contact
+ };};
+ struct Specs
+ {
+ Specs() : erp(1),cfm(1),split(1) {}
+ btScalar erp;
+ btScalar cfm;
+ btScalar split;
+ };
+ Body m_bodies[2];
+ btVector3 m_refs[2];
+ btScalar m_cfm;
+ btScalar m_erp;
+ btScalar m_split;
+ btVector3 m_drift;
+ btVector3 m_sdrift;
+ btMatrix3x3 m_massmatrix;
+ bool m_delete;
+ virtual ~Joint() {}
+ Joint() : m_delete(false) {}
+ virtual void Prepare(btScalar dt,int iterations);
+ virtual void Solve(btScalar dt,btScalar sor)=0;
+ virtual void Terminate(btScalar dt)=0;
+ virtual eType::_ Type() const=0;
+ };
+ /* LJoint */
+ struct LJoint : Joint
+ {
+ struct Specs : Joint::Specs
+ {
+ btVector3 position;
+ };
+ btVector3 m_rpos[2];
+ void Prepare(btScalar dt,int iterations);
+ void Solve(btScalar dt,btScalar sor);
+ void Terminate(btScalar dt);
+ eType::_ Type() const { return(eType::Linear); }
+ };
+ /* AJoint */
+ struct AJoint : Joint
+ {
+ struct IControl
+ {
+ virtual ~IControl() {}
+ virtual void Prepare(AJoint*) {}
+ virtual btScalar Speed(AJoint*,btScalar current) { return(current); }
+ static IControl* Default() { static IControl def;return(&def); }
+ };
+ struct Specs : Joint::Specs
+ {
+ Specs() : icontrol(IControl::Default()) {}
+ btVector3 axis;
+ IControl* icontrol;
+ };
+ btVector3 m_axis[2];
+ IControl* m_icontrol;
+ void Prepare(btScalar dt,int iterations);
+ void Solve(btScalar dt,btScalar sor);
+ void Terminate(btScalar dt);
+ eType::_ Type() const { return(eType::Angular); }
+ };
+ /* CJoint */
+ struct CJoint : Joint
+ {
+ int m_life;
+ int m_maxlife;
+ btVector3 m_rpos[2];
+ btVector3 m_normal;
+ btScalar m_friction;
+ void Prepare(btScalar dt,int iterations);
+ void Solve(btScalar dt,btScalar sor);
+ void Terminate(btScalar dt);
+ eType::_ Type() const { return(eType::Contact); }
+ };
+ /* Config */
+ struct Config
+ {
+ eAeroModel::_ aeromodel; // Aerodynamic model (default: V_Point)
+ btScalar kVCF; // Velocities correction factor (Baumgarte)
+ btScalar kDP; // Damping coefficient [0,1]
+ btScalar kDG; // Drag coefficient [0,+inf]
+ btScalar kLF; // Lift coefficient [0,+inf]
+ btScalar kPR; // Pressure coefficient [-inf,+inf]
+ btScalar kVC; // Volume conversation coefficient [0,+inf]
+ btScalar kDF; // Dynamic friction coefficient [0,1]
+ btScalar kMT; // Pose matching coefficient [0,1]
+ btScalar kCHR; // Rigid contacts hardness [0,1]
+ btScalar kKHR; // Kinetic contacts hardness [0,1]
+ btScalar kSHR; // Soft contacts hardness [0,1]
+ btScalar kAHR; // Anchors hardness [0,1]
+ btScalar kSRHR_CL; // Soft vs rigid hardness [0,1] (cluster only)
+ btScalar kSKHR_CL; // Soft vs kinetic hardness [0,1] (cluster only)
+ btScalar kSSHR_CL; // Soft vs soft hardness [0,1] (cluster only)
+ btScalar kSR_SPLT_CL; // Soft vs rigid impulse split [0,1] (cluster only)
+ btScalar kSK_SPLT_CL; // Soft vs rigid impulse split [0,1] (cluster only)
+ btScalar kSS_SPLT_CL; // Soft vs rigid impulse split [0,1] (cluster only)
+ btScalar maxvolume; // Maximum volume ratio for pose
+ btScalar timescale; // Time scale
+ int viterations; // Velocities solver iterations
+ int piterations; // Positions solver iterations
+ int diterations; // Drift solver iterations
+ int citerations; // Cluster solver iterations
+ int collisions; // Collisions flags
+ tVSolverArray m_vsequence; // Velocity solvers sequence
+ tPSolverArray m_psequence; // Position solvers sequence
+ tPSolverArray m_dsequence; // Drift solvers sequence
+ };
+ /* SolverState */
+ struct SolverState
+ {
+ btScalar sdt; // dt*timescale
+ btScalar isdt; // 1/sdt
+ btScalar velmrg; // velocity margin
+ btScalar radmrg; // radial margin
+ btScalar updmrg; // Update margin
+ };
+ /// RayFromToCaster takes a ray from, ray to (instead of direction!)
+ struct RayFromToCaster : btDbvt::ICollide
+ {
+ btVector3 m_rayFrom;
+ btVector3 m_rayTo;
+ btVector3 m_rayNormalizedDirection;
+ btScalar m_mint;
+ Face* m_face;
+ int m_tests;
+ RayFromToCaster(const btVector3& rayFrom,const btVector3& rayTo,btScalar mxt);
+ void Process(const btDbvtNode* leaf);
+
+ static /*inline*/ btScalar rayFromToTriangle(const btVector3& rayFrom,
+ const btVector3& rayTo,
+ const btVector3& rayNormalizedDirection,
+ const btVector3& a,
+ const btVector3& b,
+ const btVector3& c,
+ btScalar maxt=SIMD_INFINITY);
+ };
+
+ //
+ // Typedefs
+ //
+
+ typedef void (*psolver_t)(btSoftBody*,btScalar,btScalar);
+ typedef void (*vsolver_t)(btSoftBody*,btScalar);
+ typedef btAlignedObjectArray<Cluster*> tClusterArray;
+ typedef btAlignedObjectArray<Note> tNoteArray;
+ typedef btAlignedObjectArray<Node> tNodeArray;
+ typedef btAlignedObjectArray<btDbvtNode*> tLeafArray;
+ typedef btAlignedObjectArray<Link> tLinkArray;
+ typedef btAlignedObjectArray<Face> tFaceArray;
+ typedef btAlignedObjectArray<Tetra> tTetraArray;
+ typedef btAlignedObjectArray<Anchor> tAnchorArray;
+ typedef btAlignedObjectArray<RContact> tRContactArray;
+ typedef btAlignedObjectArray<SContact> tSContactArray;
+ typedef btAlignedObjectArray<Material*> tMaterialArray;
+ typedef btAlignedObjectArray<Joint*> tJointArray;
+ typedef btAlignedObjectArray<btSoftBody*> tSoftBodyArray;
+
+ //
+ // Fields
+ //
+
+ Config m_cfg; // Configuration
+ SolverState m_sst; // Solver state
+ Pose m_pose; // Pose
+ void* m_tag; // User data
+ btSoftBodyWorldInfo* m_worldInfo; // World info
+ tNoteArray m_notes; // Notes
+ tNodeArray m_nodes; // Nodes
+ tLinkArray m_links; // Links
+ tFaceArray m_faces; // Faces
+ tTetraArray m_tetras; // Tetras
+ tAnchorArray m_anchors; // Anchors
+ tRContactArray m_rcontacts; // Rigid contacts
+ tSContactArray m_scontacts; // Soft contacts
+ tJointArray m_joints; // Joints
+ tMaterialArray m_materials; // Materials
+ btScalar m_timeacc; // Time accumulator
+ btVector3 m_bounds[2]; // Spatial bounds
+ bool m_bUpdateRtCst; // Update runtime constants
+ btDbvt m_ndbvt; // Nodes tree
+ btDbvt m_fdbvt; // Faces tree
+ btDbvt m_cdbvt; // Clusters tree
+ tClusterArray m_clusters; // Clusters
+
+ btAlignedObjectArray<bool>m_clusterConnectivity;//cluster connectivity, for self-collision
+
+ btTransform m_initialWorldTransform;
+
+ btVector3 m_windVelocity;
+
+ btScalar m_restLengthScale;
+
+ //
+ // Api
+ //
+
+ /* ctor */
+ btSoftBody( btSoftBodyWorldInfo* worldInfo,int node_count, const btVector3* x, const btScalar* m);
+
+ /* ctor */
+ btSoftBody( btSoftBodyWorldInfo* worldInfo);
+
+ void initDefaults();
+
+ /* dtor */
+ virtual ~btSoftBody();
+ /* Check for existing link */
+
+ btAlignedObjectArray<int> m_userIndexMapping;
+
+ btSoftBodyWorldInfo* getWorldInfo()
+ {
+ return m_worldInfo;
+ }
+
+ ///@todo: avoid internal softbody shape hack and move collision code to collision library
+ virtual void setCollisionShape(btCollisionShape* collisionShape)
+ {
+
+ }
+
+ bool checkLink( int node0,
+ int node1) const;
+ bool checkLink( const Node* node0,
+ const Node* node1) const;
+ /* Check for existring face */
+ bool checkFace( int node0,
+ int node1,
+ int node2) const;
+ /* Append material */
+ Material* appendMaterial();
+ /* Append note */
+ void appendNote( const char* text,
+ const btVector3& o,
+ const btVector4& c=btVector4(1,0,0,0),
+ Node* n0=0,
+ Node* n1=0,
+ Node* n2=0,
+ Node* n3=0);
+ void appendNote( const char* text,
+ const btVector3& o,
+ Node* feature);
+ void appendNote( const char* text,
+ const btVector3& o,
+ Link* feature);
+ void appendNote( const char* text,
+ const btVector3& o,
+ Face* feature);
+ /* Append node */
+ void appendNode( const btVector3& x,btScalar m);
+ /* Append link */
+ void appendLink(int model=-1,Material* mat=0);
+ void appendLink( int node0,
+ int node1,
+ Material* mat=0,
+ bool bcheckexist=false);
+ void appendLink( Node* node0,
+ Node* node1,
+ Material* mat=0,
+ bool bcheckexist=false);
+ /* Append face */
+ void appendFace(int model=-1,Material* mat=0);
+ void appendFace( int node0,
+ int node1,
+ int node2,
+ Material* mat=0);
+ void appendTetra(int model,Material* mat);
+ //
+ void appendTetra(int node0,
+ int node1,
+ int node2,
+ int node3,
+ Material* mat=0);
+
+
+ /* Append anchor */
+ void appendAnchor( int node,
+ btRigidBody* body, bool disableCollisionBetweenLinkedBodies=false,btScalar influence = 1);
+ void appendAnchor(int node,btRigidBody* body, const btVector3& localPivot,bool disableCollisionBetweenLinkedBodies=false,btScalar influence = 1);
+ /* Append linear joint */
+ void appendLinearJoint(const LJoint::Specs& specs,Cluster* body0,Body body1);
+ void appendLinearJoint(const LJoint::Specs& specs,Body body=Body());
+ void appendLinearJoint(const LJoint::Specs& specs,btSoftBody* body);
+ /* Append linear joint */
+ void appendAngularJoint(const AJoint::Specs& specs,Cluster* body0,Body body1);
+ void appendAngularJoint(const AJoint::Specs& specs,Body body=Body());
+ void appendAngularJoint(const AJoint::Specs& specs,btSoftBody* body);
+ /* Add force (or gravity) to the entire body */
+ void addForce( const btVector3& force);
+ /* Add force (or gravity) to a node of the body */
+ void addForce( const btVector3& force,
+ int node);
+ /* Add aero force to a node of the body */
+ void addAeroForceToNode(const btVector3& windVelocity,int nodeIndex);
+
+ /* Add aero force to a face of the body */
+ void addAeroForceToFace(const btVector3& windVelocity,int faceIndex);
+
+ /* Add velocity to the entire body */
+ void addVelocity( const btVector3& velocity);
+
+ /* Set velocity for the entire body */
+ void setVelocity( const btVector3& velocity);
+
+ /* Add velocity to a node of the body */
+ void addVelocity( const btVector3& velocity,
+ int node);
+ /* Set mass */
+ void setMass( int node,
+ btScalar mass);
+ /* Get mass */
+ btScalar getMass( int node) const;
+ /* Get total mass */
+ btScalar getTotalMass() const;
+ /* Set total mass (weighted by previous masses) */
+ void setTotalMass( btScalar mass,
+ bool fromfaces=false);
+ /* Set total density */
+ void setTotalDensity(btScalar density);
+ /* Set volume mass (using tetrahedrons) */
+ void setVolumeMass( btScalar mass);
+ /* Set volume density (using tetrahedrons) */
+ void setVolumeDensity( btScalar density);
+ /* Transform */
+ void transform( const btTransform& trs);
+ /* Translate */
+ void translate( const btVector3& trs);
+ /* Rotate */
+ void rotate( const btQuaternion& rot);
+ /* Scale */
+ void scale( const btVector3& scl);
+ /* Get link resting lengths scale */
+ btScalar getRestLengthScale();
+ /* Scale resting length of all springs */
+ void setRestLengthScale(btScalar restLength);
+ /* Set current state as pose */
+ void setPose( bool bvolume,
+ bool bframe);
+ /* Set current link lengths as resting lengths */
+ void resetLinkRestLengths();
+ /* Return the volume */
+ btScalar getVolume() const;
+ /* Cluster count */
+ int clusterCount() const;
+ /* Cluster center of mass */
+ static btVector3 clusterCom(const Cluster* cluster);
+ btVector3 clusterCom(int cluster) const;
+ /* Cluster velocity at rpos */
+ static btVector3 clusterVelocity(const Cluster* cluster,const btVector3& rpos);
+ /* Cluster impulse */
+ static void clusterVImpulse(Cluster* cluster,const btVector3& rpos,const btVector3& impulse);
+ static void clusterDImpulse(Cluster* cluster,const btVector3& rpos,const btVector3& impulse);
+ static void clusterImpulse(Cluster* cluster,const btVector3& rpos,const Impulse& impulse);
+ static void clusterVAImpulse(Cluster* cluster,const btVector3& impulse);
+ static void clusterDAImpulse(Cluster* cluster,const btVector3& impulse);
+ static void clusterAImpulse(Cluster* cluster,const Impulse& impulse);
+ static void clusterDCImpulse(Cluster* cluster,const btVector3& impulse);
+ /* Generate bending constraints based on distance in the adjency graph */
+ int generateBendingConstraints( int distance,
+ Material* mat=0);
+ /* Randomize constraints to reduce solver bias */
+ void randomizeConstraints();
+ /* Release clusters */
+ void releaseCluster(int index);
+ void releaseClusters();
+ /* Generate clusters (K-mean) */
+ ///generateClusters with k=0 will create a convex cluster for each tetrahedron or triangle
+ ///otherwise an approximation will be used (better performance)
+ int generateClusters(int k,int maxiterations=8192);
+ /* Refine */
+ void refine(ImplicitFn* ifn,btScalar accurary,bool cut);
+ /* CutLink */
+ bool cutLink(int node0,int node1,btScalar position);
+ bool cutLink(const Node* node0,const Node* node1,btScalar position);
+
+ ///Ray casting using rayFrom and rayTo in worldspace, (not direction!)
+ bool rayTest(const btVector3& rayFrom,
+ const btVector3& rayTo,
+ sRayCast& results);
+ /* Solver presets */
+ void setSolver(eSolverPresets::_ preset);
+ /* predictMotion */
+ void predictMotion(btScalar dt);
+ /* solveConstraints */
+ void solveConstraints();
+ /* staticSolve */
+ void staticSolve(int iterations);
+ /* solveCommonConstraints */
+ static void solveCommonConstraints(btSoftBody** bodies,int count,int iterations);
+ /* solveClusters */
+ static void solveClusters(const btAlignedObjectArray<btSoftBody*>& bodies);
+ /* integrateMotion */
+ void integrateMotion();
+ /* defaultCollisionHandlers */
+ void defaultCollisionHandler(const btCollisionObjectWrapper* pcoWrap);
+ void defaultCollisionHandler(btSoftBody* psb);
+
+
+
+ //
+ // Functionality to deal with new accelerated solvers.
+ //
+
+ /**
+ * Set a wind velocity for interaction with the air.
+ */
+ void setWindVelocity( const btVector3 &velocity );
+
+
+ /**
+ * Return the wind velocity for interaction with the air.
+ */
+ const btVector3& getWindVelocity();
+
+ //
+ // Set the solver that handles this soft body
+ // Should not be allowed to get out of sync with reality
+ // Currently called internally on addition to the world
+ void setSoftBodySolver( btSoftBodySolver *softBodySolver )
+ {
+ m_softBodySolver = softBodySolver;
+ }
+
+ //
+ // Return the solver that handles this soft body
+ //
+ btSoftBodySolver *getSoftBodySolver()
+ {
+ return m_softBodySolver;
+ }
+
+ //
+ // Return the solver that handles this soft body
+ //
+ btSoftBodySolver *getSoftBodySolver() const
+ {
+ return m_softBodySolver;
+ }
+
+
+ //
+ // Cast
+ //
+
+ static const btSoftBody* upcast(const btCollisionObject* colObj)
+ {
+ if (colObj->getInternalType()==CO_SOFT_BODY)
+ return (const btSoftBody*)colObj;
+ return 0;
+ }
+ static btSoftBody* upcast(btCollisionObject* colObj)
+ {
+ if (colObj->getInternalType()==CO_SOFT_BODY)
+ return (btSoftBody*)colObj;
+ return 0;
+ }
+
+ //
+ // ::btCollisionObject
+ //
+
+ virtual void getAabb(btVector3& aabbMin,btVector3& aabbMax) const
+ {
+ aabbMin = m_bounds[0];
+ aabbMax = m_bounds[1];
+ }
+ //
+ // Private
+ //
+ void pointersToIndices();
+ void indicesToPointers(const int* map=0);
+
+ int rayTest(const btVector3& rayFrom,const btVector3& rayTo,
+ btScalar& mint,eFeature::_& feature,int& index,bool bcountonly) const;
+ void initializeFaceTree();
+ btVector3 evaluateCom() const;
+ bool checkContact(const btCollisionObjectWrapper* colObjWrap,const btVector3& x,btScalar margin,btSoftBody::sCti& cti) const;
+ void updateNormals();
+ void updateBounds();
+ void updatePose();
+ void updateConstants();
+ void updateLinkConstants();
+ void updateArea(bool averageArea = true);
+ void initializeClusters();
+ void updateClusters();
+ void cleanupClusters();
+ void prepareClusters(int iterations);
+ void solveClusters(btScalar sor);
+ void applyClusters(bool drift);
+ void dampClusters();
+ void applyForces();
+ static void PSolve_Anchors(btSoftBody* psb,btScalar kst,btScalar ti);
+ static void PSolve_RContacts(btSoftBody* psb,btScalar kst,btScalar ti);
+ static void PSolve_SContacts(btSoftBody* psb,btScalar,btScalar ti);
+ static void PSolve_Links(btSoftBody* psb,btScalar kst,btScalar ti);
+ static void VSolve_Links(btSoftBody* psb,btScalar kst);
+ static psolver_t getSolver(ePSolver::_ solver);
+ static vsolver_t getSolver(eVSolver::_ solver);
+
+
+ virtual int calculateSerializeBufferSize() const;
+
+ ///fills the dataBuffer and returns the struct name (and 0 on failure)
+ virtual const char* serialize(void* dataBuffer, class btSerializer* serializer) const;
+
+ //virtual void serializeSingleObject(class btSerializer* serializer) const;
+
+
+};
+
+
+
+
+#endif //_BT_SOFT_BODY_H