diff options
Diffstat (limited to 'thirdparty/bullet/BulletSoftBody/btDeformableLinearElasticityForce.h')
-rw-r--r-- | thirdparty/bullet/BulletSoftBody/btDeformableLinearElasticityForce.h | 462 |
1 files changed, 0 insertions, 462 deletions
diff --git a/thirdparty/bullet/BulletSoftBody/btDeformableLinearElasticityForce.h b/thirdparty/bullet/BulletSoftBody/btDeformableLinearElasticityForce.h deleted file mode 100644 index 971192050b..0000000000 --- a/thirdparty/bullet/BulletSoftBody/btDeformableLinearElasticityForce.h +++ /dev/null @@ -1,462 +0,0 @@ -/* - Written by Xuchen Han <xuchenhan2015@u.northwestern.edu> - - Bullet Continuous Collision Detection and Physics Library - Copyright (c) 2019 Google Inc. http://bulletphysics.org - This software is provided 'as-is', without any express or implied warranty. - In no event will the authors be held liable for any damages arising from the use of this software. - Permission is granted to anyone to use this software for any purpose, - including commercial applications, and to alter it and redistribute it freely, - subject to the following restrictions: - 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. - 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. - 3. This notice may not be removed or altered from any source distribution. - */ - -#ifndef BT_LINEAR_ELASTICITY_H -#define BT_LINEAR_ELASTICITY_H - -#include "btDeformableLagrangianForce.h" -#include "LinearMath/btQuickprof.h" -#include "btSoftBodyInternals.h" -#define TETRA_FLAT_THRESHOLD 0.01 -class btDeformableLinearElasticityForce : public btDeformableLagrangianForce -{ -public: - typedef btAlignedObjectArray<btVector3> TVStack; - btScalar m_mu, m_lambda; - btScalar m_E, m_nu; // Young's modulus and Poisson ratio - btScalar m_damping_alpha, m_damping_beta; - btDeformableLinearElasticityForce() : m_mu(1), m_lambda(1), m_damping_alpha(0.01), m_damping_beta(0.01) - { - updateYoungsModulusAndPoissonRatio(); - } - - btDeformableLinearElasticityForce(btScalar mu, btScalar lambda, btScalar damping_alpha = 0.01, btScalar damping_beta = 0.01) : m_mu(mu), m_lambda(lambda), m_damping_alpha(damping_alpha), m_damping_beta(damping_beta) - { - updateYoungsModulusAndPoissonRatio(); - } - - void updateYoungsModulusAndPoissonRatio() - { - // conversion from Lame Parameters to Young's modulus and Poisson ratio - // https://en.wikipedia.org/wiki/Lam%C3%A9_parameters - m_E = m_mu * (3 * m_lambda + 2 * m_mu) / (m_lambda + m_mu); - m_nu = m_lambda * 0.5 / (m_mu + m_lambda); - } - - void updateLameParameters() - { - // conversion from Young's modulus and Poisson ratio to Lame Parameters - // https://en.wikipedia.org/wiki/Lam%C3%A9_parameters - m_mu = m_E * 0.5 / (1 + m_nu); - m_lambda = m_E * m_nu / ((1 + m_nu) * (1 - 2 * m_nu)); - } - - void setYoungsModulus(btScalar E) - { - m_E = E; - updateLameParameters(); - } - - void setPoissonRatio(btScalar nu) - { - m_nu = nu; - updateLameParameters(); - } - - void setDamping(btScalar damping_alpha, btScalar damping_beta) - { - m_damping_alpha = damping_alpha; - m_damping_beta = damping_beta; - } - - void setLameParameters(btScalar mu, btScalar lambda) - { - m_mu = mu; - m_lambda = lambda; - updateYoungsModulusAndPoissonRatio(); - } - - virtual void addScaledForces(btScalar scale, TVStack& force) - { - addScaledDampingForce(scale, force); - addScaledElasticForce(scale, force); - } - - virtual void addScaledExplicitForce(btScalar scale, TVStack& force) - { - addScaledElasticForce(scale, force); - } - - // The damping matrix is calculated using the time n state as described in https://www.math.ucla.edu/~jteran/papers/GSSJT15.pdf to allow line search - virtual void addScaledDampingForce(btScalar scale, TVStack& force) - { - if (m_damping_alpha == 0 && m_damping_beta == 0) - return; - btScalar mu_damp = m_damping_beta * m_mu; - btScalar lambda_damp = m_damping_beta * m_lambda; - int numNodes = getNumNodes(); - btAssert(numNodes <= force.size()); - btVector3 grad_N_hat_1st_col = btVector3(-1, -1, -1); - for (int i = 0; i < m_softBodies.size(); ++i) - { - btSoftBody* psb = m_softBodies[i]; - if (!psb->isActive()) - { - continue; - } - for (int j = 0; j < psb->m_tetras.size(); ++j) - { - bool close_to_flat = (psb->m_tetraScratches[j].m_J < TETRA_FLAT_THRESHOLD); - btSoftBody::Tetra& tetra = psb->m_tetras[j]; - btSoftBody::Node* node0 = tetra.m_n[0]; - btSoftBody::Node* node1 = tetra.m_n[1]; - btSoftBody::Node* node2 = tetra.m_n[2]; - btSoftBody::Node* node3 = tetra.m_n[3]; - size_t id0 = node0->index; - size_t id1 = node1->index; - size_t id2 = node2->index; - size_t id3 = node3->index; - btMatrix3x3 dF = DsFromVelocity(node0, node1, node2, node3) * tetra.m_Dm_inverse; - if (!close_to_flat) - { - dF = psb->m_tetraScratches[j].m_corotation.transpose() * dF; - } - btMatrix3x3 I; - I.setIdentity(); - btMatrix3x3 dP = (dF + dF.transpose()) * mu_damp + I * ((dF[0][0] + dF[1][1] + dF[2][2]) * lambda_damp); - btMatrix3x3 df_on_node123 = dP * tetra.m_Dm_inverse.transpose(); - if (!close_to_flat) - { - df_on_node123 = psb->m_tetraScratches[j].m_corotation * df_on_node123; - } - btVector3 df_on_node0 = df_on_node123 * grad_N_hat_1st_col; - // damping force differential - btScalar scale1 = scale * tetra.m_element_measure; - force[id0] -= scale1 * df_on_node0; - force[id1] -= scale1 * df_on_node123.getColumn(0); - force[id2] -= scale1 * df_on_node123.getColumn(1); - force[id3] -= scale1 * df_on_node123.getColumn(2); - } - for (int j = 0; j < psb->m_nodes.size(); ++j) - { - const btSoftBody::Node& node = psb->m_nodes[j]; - size_t id = node.index; - if (node.m_im > 0) - { - force[id] -= scale * node.m_v / node.m_im * m_damping_alpha; - } - } - } - } - - virtual double totalElasticEnergy(btScalar dt) - { - double energy = 0; - for (int i = 0; i < m_softBodies.size(); ++i) - { - btSoftBody* psb = m_softBodies[i]; - if (!psb->isActive()) - { - continue; - } - for (int j = 0; j < psb->m_tetraScratches.size(); ++j) - { - btSoftBody::Tetra& tetra = psb->m_tetras[j]; - btSoftBody::TetraScratch& s = psb->m_tetraScratches[j]; - energy += tetra.m_element_measure * elasticEnergyDensity(s); - } - } - return energy; - } - - // The damping energy is formulated as in https://www.math.ucla.edu/~jteran/papers/GSSJT15.pdf to allow line search - virtual double totalDampingEnergy(btScalar dt) - { - double energy = 0; - int sz = 0; - for (int i = 0; i < m_softBodies.size(); ++i) - { - btSoftBody* psb = m_softBodies[i]; - if (!psb->isActive()) - { - continue; - } - for (int j = 0; j < psb->m_nodes.size(); ++j) - { - sz = btMax(sz, psb->m_nodes[j].index); - } - } - TVStack dampingForce; - dampingForce.resize(sz + 1); - for (int i = 0; i < dampingForce.size(); ++i) - dampingForce[i].setZero(); - addScaledDampingForce(0.5, dampingForce); - for (int i = 0; i < m_softBodies.size(); ++i) - { - btSoftBody* psb = m_softBodies[i]; - for (int j = 0; j < psb->m_nodes.size(); ++j) - { - const btSoftBody::Node& node = psb->m_nodes[j]; - energy -= dampingForce[node.index].dot(node.m_v) / dt; - } - } - return energy; - } - - double elasticEnergyDensity(const btSoftBody::TetraScratch& s) - { - double density = 0; - btMatrix3x3 epsilon = (s.m_F + s.m_F.transpose()) * 0.5 - btMatrix3x3::getIdentity(); - btScalar trace = epsilon[0][0] + epsilon[1][1] + epsilon[2][2]; - density += m_mu * (epsilon[0].length2() + epsilon[1].length2() + epsilon[2].length2()); - density += m_lambda * trace * trace * 0.5; - return density; - } - - virtual void addScaledElasticForce(btScalar scale, TVStack& force) - { - int numNodes = getNumNodes(); - btAssert(numNodes <= force.size()); - btVector3 grad_N_hat_1st_col = btVector3(-1, -1, -1); - for (int i = 0; i < m_softBodies.size(); ++i) - { - btSoftBody* psb = m_softBodies[i]; - if (!psb->isActive()) - { - continue; - } - btScalar max_p = psb->m_cfg.m_maxStress; - for (int j = 0; j < psb->m_tetras.size(); ++j) - { - btSoftBody::Tetra& tetra = psb->m_tetras[j]; - btMatrix3x3 P; - firstPiola(psb->m_tetraScratches[j], P); -#if USE_SVD - if (max_p > 0) - { - // since we want to clamp the principal stress to max_p, we only need to - // calculate SVD when sigma_0^2 + sigma_1^2 + sigma_2^2 > max_p * max_p - btScalar trPTP = (P[0].length2() + P[1].length2() + P[2].length2()); - if (trPTP > max_p * max_p) - { - btMatrix3x3 U, V; - btVector3 sigma; - singularValueDecomposition(P, U, sigma, V); - sigma[0] = btMin(sigma[0], max_p); - sigma[1] = btMin(sigma[1], max_p); - sigma[2] = btMin(sigma[2], max_p); - sigma[0] = btMax(sigma[0], -max_p); - sigma[1] = btMax(sigma[1], -max_p); - sigma[2] = btMax(sigma[2], -max_p); - btMatrix3x3 Sigma; - Sigma.setIdentity(); - Sigma[0][0] = sigma[0]; - Sigma[1][1] = sigma[1]; - Sigma[2][2] = sigma[2]; - P = U * Sigma * V.transpose(); - } - } -#endif - // btVector3 force_on_node0 = P * (tetra.m_Dm_inverse.transpose()*grad_N_hat_1st_col); - btMatrix3x3 force_on_node123 = psb->m_tetraScratches[j].m_corotation * P * tetra.m_Dm_inverse.transpose(); - btVector3 force_on_node0 = force_on_node123 * grad_N_hat_1st_col; - - btSoftBody::Node* node0 = tetra.m_n[0]; - btSoftBody::Node* node1 = tetra.m_n[1]; - btSoftBody::Node* node2 = tetra.m_n[2]; - btSoftBody::Node* node3 = tetra.m_n[3]; - size_t id0 = node0->index; - size_t id1 = node1->index; - size_t id2 = node2->index; - size_t id3 = node3->index; - - // elastic force - btScalar scale1 = scale * tetra.m_element_measure; - force[id0] -= scale1 * force_on_node0; - force[id1] -= scale1 * force_on_node123.getColumn(0); - force[id2] -= scale1 * force_on_node123.getColumn(1); - force[id3] -= scale1 * force_on_node123.getColumn(2); - } - } - } - - virtual void buildDampingForceDifferentialDiagonal(btScalar scale, TVStack& diagA) {} - - // The damping matrix is calculated using the time n state as described in https://www.math.ucla.edu/~jteran/papers/GSSJT15.pdf to allow line search - virtual void addScaledDampingForceDifferential(btScalar scale, const TVStack& dv, TVStack& df) - { - if (m_damping_alpha == 0 && m_damping_beta == 0) - return; - btScalar mu_damp = m_damping_beta * m_mu; - btScalar lambda_damp = m_damping_beta * m_lambda; - int numNodes = getNumNodes(); - btAssert(numNodes <= df.size()); - btVector3 grad_N_hat_1st_col = btVector3(-1, -1, -1); - for (int i = 0; i < m_softBodies.size(); ++i) - { - btSoftBody* psb = m_softBodies[i]; - if (!psb->isActive()) - { - continue; - } - for (int j = 0; j < psb->m_tetras.size(); ++j) - { - bool close_to_flat = (psb->m_tetraScratches[j].m_J < TETRA_FLAT_THRESHOLD); - btSoftBody::Tetra& tetra = psb->m_tetras[j]; - btSoftBody::Node* node0 = tetra.m_n[0]; - btSoftBody::Node* node1 = tetra.m_n[1]; - btSoftBody::Node* node2 = tetra.m_n[2]; - btSoftBody::Node* node3 = tetra.m_n[3]; - size_t id0 = node0->index; - size_t id1 = node1->index; - size_t id2 = node2->index; - size_t id3 = node3->index; - btMatrix3x3 dF = Ds(id0, id1, id2, id3, dv) * tetra.m_Dm_inverse; - if (!close_to_flat) - { - dF = psb->m_tetraScratches[j].m_corotation.transpose() * dF; - } - btMatrix3x3 I; - I.setIdentity(); - btMatrix3x3 dP = (dF + dF.transpose()) * mu_damp + I * ((dF[0][0] + dF[1][1] + dF[2][2]) * lambda_damp); - btMatrix3x3 df_on_node123 = dP * tetra.m_Dm_inverse.transpose(); - if (!close_to_flat) - { - df_on_node123 = psb->m_tetraScratches[j].m_corotation * df_on_node123; - } - btVector3 df_on_node0 = df_on_node123 * grad_N_hat_1st_col; - - // damping force differential - btScalar scale1 = scale * tetra.m_element_measure; - df[id0] -= scale1 * df_on_node0; - df[id1] -= scale1 * df_on_node123.getColumn(0); - df[id2] -= scale1 * df_on_node123.getColumn(1); - df[id3] -= scale1 * df_on_node123.getColumn(2); - } - for (int j = 0; j < psb->m_nodes.size(); ++j) - { - const btSoftBody::Node& node = psb->m_nodes[j]; - size_t id = node.index; - if (node.m_im > 0) - { - df[id] -= scale * dv[id] / node.m_im * m_damping_alpha; - } - } - } - } - - virtual void addScaledElasticForceDifferential(btScalar scale, const TVStack& dx, TVStack& df) - { - int numNodes = getNumNodes(); - btAssert(numNodes <= df.size()); - btVector3 grad_N_hat_1st_col = btVector3(-1, -1, -1); - for (int i = 0; i < m_softBodies.size(); ++i) - { - btSoftBody* psb = m_softBodies[i]; - if (!psb->isActive()) - { - continue; - } - for (int j = 0; j < psb->m_tetras.size(); ++j) - { - btSoftBody::Tetra& tetra = psb->m_tetras[j]; - btSoftBody::Node* node0 = tetra.m_n[0]; - btSoftBody::Node* node1 = tetra.m_n[1]; - btSoftBody::Node* node2 = tetra.m_n[2]; - btSoftBody::Node* node3 = tetra.m_n[3]; - size_t id0 = node0->index; - size_t id1 = node1->index; - size_t id2 = node2->index; - size_t id3 = node3->index; - btMatrix3x3 dF = psb->m_tetraScratches[j].m_corotation.transpose() * Ds(id0, id1, id2, id3, dx) * tetra.m_Dm_inverse; - btMatrix3x3 dP; - firstPiolaDifferential(psb->m_tetraScratches[j], dF, dP); - // btVector3 df_on_node0 = dP * (tetra.m_Dm_inverse.transpose()*grad_N_hat_1st_col); - btMatrix3x3 df_on_node123 = psb->m_tetraScratches[j].m_corotation * dP * tetra.m_Dm_inverse.transpose(); - btVector3 df_on_node0 = df_on_node123 * grad_N_hat_1st_col; - - // elastic force differential - btScalar scale1 = scale * tetra.m_element_measure; - df[id0] -= scale1 * df_on_node0; - df[id1] -= scale1 * df_on_node123.getColumn(0); - df[id2] -= scale1 * df_on_node123.getColumn(1); - df[id3] -= scale1 * df_on_node123.getColumn(2); - } - } - } - - void firstPiola(const btSoftBody::TetraScratch& s, btMatrix3x3& P) - { - btMatrix3x3 corotated_F = s.m_corotation.transpose() * s.m_F; - - btMatrix3x3 epsilon = (corotated_F + corotated_F.transpose()) * 0.5 - btMatrix3x3::getIdentity(); - btScalar trace = epsilon[0][0] + epsilon[1][1] + epsilon[2][2]; - P = epsilon * btScalar(2) * m_mu + btMatrix3x3::getIdentity() * m_lambda * trace; - } - - // Let P be the first piola stress. - // This function calculates the dP = dP/dF * dF - void firstPiolaDifferential(const btSoftBody::TetraScratch& s, const btMatrix3x3& dF, btMatrix3x3& dP) - { - btScalar trace = (dF[0][0] + dF[1][1] + dF[2][2]); - dP = (dF + dF.transpose()) * m_mu + btMatrix3x3::getIdentity() * m_lambda * trace; - } - - // Let Q be the damping stress. - // This function calculates the dP = dQ/dF * dF - void firstPiolaDampingDifferential(const btSoftBody::TetraScratch& s, const btMatrix3x3& dF, btMatrix3x3& dP) - { - btScalar mu_damp = m_damping_beta * m_mu; - btScalar lambda_damp = m_damping_beta * m_lambda; - btScalar trace = (dF[0][0] + dF[1][1] + dF[2][2]); - dP = (dF + dF.transpose()) * mu_damp + btMatrix3x3::getIdentity() * lambda_damp * trace; - } - - virtual void addScaledHessian(btScalar scale) - { - btVector3 grad_N_hat_1st_col = btVector3(-1, -1, -1); - for (int i = 0; i < m_softBodies.size(); ++i) - { - btSoftBody* psb = m_softBodies[i]; - if (!psb->isActive()) - { - continue; - } - for (int j = 0; j < psb->m_tetras.size(); ++j) - { - btSoftBody::Tetra& tetra = psb->m_tetras[j]; - btMatrix3x3 P; - firstPiola(psb->m_tetraScratches[j], P); // make sure scratch is evaluated at x_n + dt * vn - btMatrix3x3 force_on_node123 = psb->m_tetraScratches[j].m_corotation * P * tetra.m_Dm_inverse.transpose(); - btVector3 force_on_node0 = force_on_node123 * grad_N_hat_1st_col; - btSoftBody::Node* node0 = tetra.m_n[0]; - btSoftBody::Node* node1 = tetra.m_n[1]; - btSoftBody::Node* node2 = tetra.m_n[2]; - btSoftBody::Node* node3 = tetra.m_n[3]; - btScalar scale1 = scale * (scale + m_damping_beta) * tetra.m_element_measure; // stiff and stiffness-damping terms; - node0->m_effectiveMass += OuterProduct(force_on_node0, force_on_node0) * scale1; - node1->m_effectiveMass += OuterProduct(force_on_node123.getColumn(0), force_on_node123.getColumn(0)) * scale1; - node2->m_effectiveMass += OuterProduct(force_on_node123.getColumn(1), force_on_node123.getColumn(1)) * scale1; - node3->m_effectiveMass += OuterProduct(force_on_node123.getColumn(2), force_on_node123.getColumn(2)) * scale1; - } - for (int j = 0; j < psb->m_nodes.size(); ++j) - { - btSoftBody::Node& node = psb->m_nodes[j]; - if (node.m_im > 0) - { - btMatrix3x3 I; - I.setIdentity(); - node.m_effectiveMass += I * (scale * (1.0 / node.m_im) * m_damping_alpha); - } - } - } - } - - virtual btDeformableLagrangianForceType getForceType() - { - return BT_LINEAR_ELASTICITY_FORCE; - } -}; -#endif /* BT_LINEAR_ELASTICITY_H */ |