summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletSoftBody/btConjugateResidual.h
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/bullet/BulletSoftBody/btConjugateResidual.h')
-rw-r--r--thirdparty/bullet/BulletSoftBody/btConjugateResidual.h188
1 files changed, 188 insertions, 0 deletions
diff --git a/thirdparty/bullet/BulletSoftBody/btConjugateResidual.h b/thirdparty/bullet/BulletSoftBody/btConjugateResidual.h
new file mode 100644
index 0000000000..7b211c4172
--- /dev/null
+++ b/thirdparty/bullet/BulletSoftBody/btConjugateResidual.h
@@ -0,0 +1,188 @@
+/*
+ Written by Xuchen Han <xuchenhan2015@u.northwestern.edu>
+
+ Bullet Continuous Collision Detection and Physics Library
+ Copyright (c) 2019 Google Inc. http://bulletphysics.org
+ This software is provided 'as-is', without any express or implied warranty.
+ In no event will the authors be held liable for any damages arising from the use of this software.
+ Permission is granted to anyone to use this software for any purpose,
+ including commercial applications, and to alter it and redistribute it freely,
+ subject to the following restrictions:
+ 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+ 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+ 3. This notice may not be removed or altered from any source distribution.
+ */
+
+#ifndef BT_CONJUGATE_RESIDUAL_H
+#define BT_CONJUGATE_RESIDUAL_H
+#include <iostream>
+#include <cmath>
+#include <limits>
+#include <LinearMath/btAlignedObjectArray.h>
+#include <LinearMath/btVector3.h>
+#include <LinearMath/btScalar.h>
+#include "LinearMath/btQuickprof.h"
+template <class MatrixX>
+class btConjugateResidual
+{
+ typedef btAlignedObjectArray<btVector3> TVStack;
+ TVStack r,p,z,temp_p, temp_r, best_x;
+ // temp_r = A*r
+ // temp_p = A*p
+ // z = M^(-1) * temp_p = M^(-1) * A * p
+ int max_iterations;
+ btScalar tolerance_squared, best_r;
+public:
+ btConjugateResidual(const int max_it_in)
+ : max_iterations(max_it_in)
+ {
+ tolerance_squared = 1e-2;
+ }
+
+ virtual ~btConjugateResidual(){}
+
+ // return the number of iterations taken
+ int solve(MatrixX& A, TVStack& x, const TVStack& b, bool verbose = false)
+ {
+ BT_PROFILE("CRSolve");
+ btAssert(x.size() == b.size());
+ reinitialize(b);
+ // r = b - A * x --with assigned dof zeroed out
+ A.multiply(x, temp_r); // borrow temp_r here to store A*x
+ r = sub(b, temp_r);
+ // z = M^(-1) * r
+ A.precondition(r, z); // borrow z to store preconditioned r
+ r = z;
+ btScalar residual_norm = norm(r);
+ if (residual_norm <= tolerance_squared) {
+ if (verbose)
+ {
+ std::cout << "Iteration = 0" << std::endl;
+ std::cout << "Two norm of the residual = " << residual_norm << std::endl;
+ }
+ return 0;
+ }
+ p = r;
+ btScalar r_dot_Ar, r_dot_Ar_new;
+ // temp_p = A*p
+ A.multiply(p, temp_p);
+ // temp_r = A*r
+ temp_r = temp_p;
+ r_dot_Ar = dot(r, temp_r);
+ for (int k = 1; k <= max_iterations; k++) {
+ // z = M^(-1) * Ap
+ A.precondition(temp_p, z);
+ // alpha = r^T * A * r / (Ap)^T * M^-1 * Ap)
+ btScalar alpha = r_dot_Ar / dot(temp_p, z);
+ // x += alpha * p;
+ multAndAddTo(alpha, p, x);
+ // r -= alpha * z;
+ multAndAddTo(-alpha, z, r);
+ btScalar norm_r = norm(r);
+ if (norm_r < best_r)
+ {
+ best_x = x;
+ best_r = norm_r;
+ if (norm_r < tolerance_squared) {
+ if (verbose)
+ {
+ std::cout << "ConjugateResidual iterations " << k << std::endl;
+ }
+ return k;
+ }
+ else
+ {
+ if (verbose)
+ {
+ std::cout << "ConjugateResidual iterations " << k << " has residual "<< norm_r << std::endl;
+ }
+ }
+ }
+ // temp_r = A * r;
+ A.multiply(r, temp_r);
+ r_dot_Ar_new = dot(r, temp_r);
+ btScalar beta = r_dot_Ar_new/r_dot_Ar;
+ r_dot_Ar = r_dot_Ar_new;
+ // p = beta*p + r;
+ p = multAndAdd(beta, p, r);
+ // temp_p = beta*temp_p + temp_r;
+ temp_p = multAndAdd(beta, temp_p, temp_r);
+ }
+ if (verbose)
+ {
+ std::cout << "ConjugateResidual max iterations reached " << max_iterations << std::endl;
+ }
+ x = best_x;
+ return max_iterations;
+ }
+
+ void reinitialize(const TVStack& b)
+ {
+ r.resize(b.size());
+ p.resize(b.size());
+ z.resize(b.size());
+ temp_p.resize(b.size());
+ temp_r.resize(b.size());
+ best_x.resize(b.size());
+ best_r = SIMD_INFINITY;
+ }
+
+ TVStack sub(const TVStack& a, const TVStack& b)
+ {
+ // c = a-b
+ btAssert(a.size() == b.size());
+ TVStack c;
+ c.resize(a.size());
+ for (int i = 0; i < a.size(); ++i)
+ {
+ c[i] = a[i] - b[i];
+ }
+ return c;
+ }
+
+ btScalar squaredNorm(const TVStack& a)
+ {
+ return dot(a,a);
+ }
+
+ btScalar norm(const TVStack& a)
+ {
+ btScalar ret = 0;
+ for (int i = 0; i < a.size(); ++i)
+ {
+ for (int d = 0; d < 3; ++d)
+ {
+ ret = btMax(ret, btFabs(a[i][d]));
+ }
+ }
+ return ret;
+ }
+
+ btScalar dot(const TVStack& a, const TVStack& b)
+ {
+ btScalar ans(0);
+ for (int i = 0; i < a.size(); ++i)
+ ans += a[i].dot(b[i]);
+ return ans;
+ }
+
+ void multAndAddTo(btScalar s, const TVStack& a, TVStack& result)
+ {
+ // result += s*a
+ btAssert(a.size() == result.size());
+ for (int i = 0; i < a.size(); ++i)
+ result[i] += s * a[i];
+ }
+
+ TVStack multAndAdd(btScalar s, const TVStack& a, const TVStack& b)
+ {
+ // result = a*s + b
+ TVStack result;
+ result.resize(a.size());
+ for (int i = 0; i < a.size(); ++i)
+ result[i] = s * a[i] + b[i];
+ return result;
+ }
+};
+#endif /* btConjugateResidual_h */
+