diff options
Diffstat (limited to 'thirdparty/bullet/BulletSoftBody/btConjugateResidual.h')
-rw-r--r-- | thirdparty/bullet/BulletSoftBody/btConjugateResidual.h | 188 |
1 files changed, 188 insertions, 0 deletions
diff --git a/thirdparty/bullet/BulletSoftBody/btConjugateResidual.h b/thirdparty/bullet/BulletSoftBody/btConjugateResidual.h new file mode 100644 index 0000000000..7b211c4172 --- /dev/null +++ b/thirdparty/bullet/BulletSoftBody/btConjugateResidual.h @@ -0,0 +1,188 @@ +/* + Written by Xuchen Han <xuchenhan2015@u.northwestern.edu> + + Bullet Continuous Collision Detection and Physics Library + Copyright (c) 2019 Google Inc. http://bulletphysics.org + This software is provided 'as-is', without any express or implied warranty. + In no event will the authors be held liable for any damages arising from the use of this software. + Permission is granted to anyone to use this software for any purpose, + including commercial applications, and to alter it and redistribute it freely, + subject to the following restrictions: + 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. + 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. + 3. This notice may not be removed or altered from any source distribution. + */ + +#ifndef BT_CONJUGATE_RESIDUAL_H +#define BT_CONJUGATE_RESIDUAL_H +#include <iostream> +#include <cmath> +#include <limits> +#include <LinearMath/btAlignedObjectArray.h> +#include <LinearMath/btVector3.h> +#include <LinearMath/btScalar.h> +#include "LinearMath/btQuickprof.h" +template <class MatrixX> +class btConjugateResidual +{ + typedef btAlignedObjectArray<btVector3> TVStack; + TVStack r,p,z,temp_p, temp_r, best_x; + // temp_r = A*r + // temp_p = A*p + // z = M^(-1) * temp_p = M^(-1) * A * p + int max_iterations; + btScalar tolerance_squared, best_r; +public: + btConjugateResidual(const int max_it_in) + : max_iterations(max_it_in) + { + tolerance_squared = 1e-2; + } + + virtual ~btConjugateResidual(){} + + // return the number of iterations taken + int solve(MatrixX& A, TVStack& x, const TVStack& b, bool verbose = false) + { + BT_PROFILE("CRSolve"); + btAssert(x.size() == b.size()); + reinitialize(b); + // r = b - A * x --with assigned dof zeroed out + A.multiply(x, temp_r); // borrow temp_r here to store A*x + r = sub(b, temp_r); + // z = M^(-1) * r + A.precondition(r, z); // borrow z to store preconditioned r + r = z; + btScalar residual_norm = norm(r); + if (residual_norm <= tolerance_squared) { + if (verbose) + { + std::cout << "Iteration = 0" << std::endl; + std::cout << "Two norm of the residual = " << residual_norm << std::endl; + } + return 0; + } + p = r; + btScalar r_dot_Ar, r_dot_Ar_new; + // temp_p = A*p + A.multiply(p, temp_p); + // temp_r = A*r + temp_r = temp_p; + r_dot_Ar = dot(r, temp_r); + for (int k = 1; k <= max_iterations; k++) { + // z = M^(-1) * Ap + A.precondition(temp_p, z); + // alpha = r^T * A * r / (Ap)^T * M^-1 * Ap) + btScalar alpha = r_dot_Ar / dot(temp_p, z); + // x += alpha * p; + multAndAddTo(alpha, p, x); + // r -= alpha * z; + multAndAddTo(-alpha, z, r); + btScalar norm_r = norm(r); + if (norm_r < best_r) + { + best_x = x; + best_r = norm_r; + if (norm_r < tolerance_squared) { + if (verbose) + { + std::cout << "ConjugateResidual iterations " << k << std::endl; + } + return k; + } + else + { + if (verbose) + { + std::cout << "ConjugateResidual iterations " << k << " has residual "<< norm_r << std::endl; + } + } + } + // temp_r = A * r; + A.multiply(r, temp_r); + r_dot_Ar_new = dot(r, temp_r); + btScalar beta = r_dot_Ar_new/r_dot_Ar; + r_dot_Ar = r_dot_Ar_new; + // p = beta*p + r; + p = multAndAdd(beta, p, r); + // temp_p = beta*temp_p + temp_r; + temp_p = multAndAdd(beta, temp_p, temp_r); + } + if (verbose) + { + std::cout << "ConjugateResidual max iterations reached " << max_iterations << std::endl; + } + x = best_x; + return max_iterations; + } + + void reinitialize(const TVStack& b) + { + r.resize(b.size()); + p.resize(b.size()); + z.resize(b.size()); + temp_p.resize(b.size()); + temp_r.resize(b.size()); + best_x.resize(b.size()); + best_r = SIMD_INFINITY; + } + + TVStack sub(const TVStack& a, const TVStack& b) + { + // c = a-b + btAssert(a.size() == b.size()); + TVStack c; + c.resize(a.size()); + for (int i = 0; i < a.size(); ++i) + { + c[i] = a[i] - b[i]; + } + return c; + } + + btScalar squaredNorm(const TVStack& a) + { + return dot(a,a); + } + + btScalar norm(const TVStack& a) + { + btScalar ret = 0; + for (int i = 0; i < a.size(); ++i) + { + for (int d = 0; d < 3; ++d) + { + ret = btMax(ret, btFabs(a[i][d])); + } + } + return ret; + } + + btScalar dot(const TVStack& a, const TVStack& b) + { + btScalar ans(0); + for (int i = 0; i < a.size(); ++i) + ans += a[i].dot(b[i]); + return ans; + } + + void multAndAddTo(btScalar s, const TVStack& a, TVStack& result) + { + // result += s*a + btAssert(a.size() == result.size()); + for (int i = 0; i < a.size(); ++i) + result[i] += s * a[i]; + } + + TVStack multAndAdd(btScalar s, const TVStack& a, const TVStack& b) + { + // result = a*s + b + TVStack result; + result.resize(a.size()); + for (int i = 0; i < a.size(); ++i) + result[i] = s * a[i] + b[i]; + return result; + } +}; +#endif /* btConjugateResidual_h */ + |