summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletSoftBody/btConjugateGradient.h
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/bullet/BulletSoftBody/btConjugateGradient.h')
-rw-r--r--thirdparty/bullet/BulletSoftBody/btConjugateGradient.h229
1 files changed, 94 insertions, 135 deletions
diff --git a/thirdparty/bullet/BulletSoftBody/btConjugateGradient.h b/thirdparty/bullet/BulletSoftBody/btConjugateGradient.h
index bd51e584b9..bcd5e6b519 100644
--- a/thirdparty/bullet/BulletSoftBody/btConjugateGradient.h
+++ b/thirdparty/bullet/BulletSoftBody/btConjugateGradient.h
@@ -15,144 +15,103 @@
#ifndef BT_CONJUGATE_GRADIENT_H
#define BT_CONJUGATE_GRADIENT_H
-#include <iostream>
-#include <cmath>
-#include <limits>
-#include <LinearMath/btAlignedObjectArray.h>
-#include <LinearMath/btVector3.h>
-#include "LinearMath/btQuickprof.h"
+#include "btKrylovSolver.h"
template <class MatrixX>
-class btConjugateGradient
+class btConjugateGradient : public btKrylovSolver<MatrixX>
{
- typedef btAlignedObjectArray<btVector3> TVStack;
- TVStack r,p,z,temp;
- int max_iterations;
- btScalar tolerance_squared;
+ typedef btAlignedObjectArray<btVector3> TVStack;
+ typedef btKrylovSolver<MatrixX> Base;
+ TVStack r, p, z, temp;
+
public:
- btConjugateGradient(const int max_it_in)
- : max_iterations(max_it_in)
- {
- tolerance_squared = 1e-5;
- }
-
- virtual ~btConjugateGradient(){}
-
- // return the number of iterations taken
- int solve(MatrixX& A, TVStack& x, const TVStack& b, bool verbose = false)
- {
- BT_PROFILE("CGSolve");
- btAssert(x.size() == b.size());
- reinitialize(b);
- // r = b - A * x --with assigned dof zeroed out
- A.multiply(x, temp);
- r = sub(b, temp);
- A.project(r);
- // z = M^(-1) * r
- A.precondition(r, z);
- A.project(z);
- btScalar r_dot_z = dot(z,r);
- if (r_dot_z <= tolerance_squared) {
- if (verbose)
- {
- std::cout << "Iteration = 0" << std::endl;
- std::cout << "Two norm of the residual = " << r_dot_z << std::endl;
- }
- return 0;
- }
- p = z;
- btScalar r_dot_z_new = r_dot_z;
- for (int k = 1; k <= max_iterations; k++) {
- // temp = A*p
- A.multiply(p, temp);
- A.project(temp);
- if (dot(p,temp) < SIMD_EPSILON)
- {
- if (verbose)
- std::cout << "Encountered negative direction in CG!" << std::endl;
- if (k == 1)
- {
- x = b;
- }
- return k;
- }
- // alpha = r^T * z / (p^T * A * p)
- btScalar alpha = r_dot_z_new / dot(p, temp);
- // x += alpha * p;
- multAndAddTo(alpha, p, x);
- // r -= alpha * temp;
- multAndAddTo(-alpha, temp, r);
- // z = M^(-1) * r
- A.precondition(r, z);
- r_dot_z = r_dot_z_new;
- r_dot_z_new = dot(r,z);
- if (r_dot_z_new < tolerance_squared) {
- if (verbose)
- {
- std::cout << "ConjugateGradient iterations " << k << std::endl;
- }
- return k;
- }
+ btConjugateGradient(const int max_it_in)
+ : btKrylovSolver<MatrixX>(max_it_in, SIMD_EPSILON)
+ {
+ }
+
+ virtual ~btConjugateGradient() {}
+
+ // return the number of iterations taken
+ int solve(MatrixX& A, TVStack& x, const TVStack& b, bool verbose = false)
+ {
+ BT_PROFILE("CGSolve");
+ btAssert(x.size() == b.size());
+ reinitialize(b);
+ temp = b;
+ A.project(temp);
+ p = temp;
+ A.precondition(p, z);
+ btScalar d0 = this->dot(z, temp);
+ d0 = btMin(btScalar(1), d0);
+ // r = b - A * x --with assigned dof zeroed out
+ A.multiply(x, temp);
+ r = this->sub(b, temp);
+ A.project(r);
+ // z = M^(-1) * r
+ A.precondition(r, z);
+ A.project(z);
+ btScalar r_dot_z = this->dot(z, r);
+ if (r_dot_z <= Base::m_tolerance * d0)
+ {
+ if (verbose)
+ {
+ std::cout << "Iteration = 0" << std::endl;
+ std::cout << "Two norm of the residual = " << r_dot_z << std::endl;
+ }
+ return 0;
+ }
+ p = z;
+ btScalar r_dot_z_new = r_dot_z;
+ for (int k = 1; k <= Base::m_maxIterations; k++)
+ {
+ // temp = A*p
+ A.multiply(p, temp);
+ A.project(temp);
+ if (this->dot(p, temp) < 0)
+ {
+ if (verbose)
+ std::cout << "Encountered negative direction in CG!" << std::endl;
+ if (k == 1)
+ {
+ x = b;
+ }
+ return k;
+ }
+ // alpha = r^T * z / (p^T * A * p)
+ btScalar alpha = r_dot_z_new / this->dot(p, temp);
+ // x += alpha * p;
+ this->multAndAddTo(alpha, p, x);
+ // r -= alpha * temp;
+ this->multAndAddTo(-alpha, temp, r);
+ // z = M^(-1) * r
+ A.precondition(r, z);
+ r_dot_z = r_dot_z_new;
+ r_dot_z_new = this->dot(r, z);
+ if (r_dot_z_new < Base::m_tolerance * d0)
+ {
+ if (verbose)
+ {
+ std::cout << "ConjugateGradient iterations " << k << " residual = " << r_dot_z_new << std::endl;
+ }
+ return k;
+ }
+
+ btScalar beta = r_dot_z_new / r_dot_z;
+ p = this->multAndAdd(beta, p, z);
+ }
+ if (verbose)
+ {
+ std::cout << "ConjugateGradient max iterations reached " << Base::m_maxIterations << " error = " << r_dot_z_new << std::endl;
+ }
+ return Base::m_maxIterations;
+ }
- btScalar beta = r_dot_z_new/r_dot_z;
- p = multAndAdd(beta, p, z);
- }
- if (verbose)
- {
- std::cout << "ConjugateGradient max iterations reached " << max_iterations << std::endl;
- }
- return max_iterations;
- }
-
- void reinitialize(const TVStack& b)
- {
- r.resize(b.size());
- p.resize(b.size());
- z.resize(b.size());
- temp.resize(b.size());
- }
-
- TVStack sub(const TVStack& a, const TVStack& b)
- {
- // c = a-b
- btAssert(a.size() == b.size());
- TVStack c;
- c.resize(a.size());
- for (int i = 0; i < a.size(); ++i)
- {
- c[i] = a[i] - b[i];
- }
- return c;
- }
-
- btScalar squaredNorm(const TVStack& a)
- {
- return dot(a,a);
- }
-
- btScalar dot(const TVStack& a, const TVStack& b)
- {
- btScalar ans(0);
- for (int i = 0; i < a.size(); ++i)
- ans += a[i].dot(b[i]);
- return ans;
- }
-
- void multAndAddTo(btScalar s, const TVStack& a, TVStack& result)
- {
-// result += s*a
- btAssert(a.size() == result.size());
- for (int i = 0; i < a.size(); ++i)
- result[i] += s * a[i];
- }
-
- TVStack multAndAdd(btScalar s, const TVStack& a, const TVStack& b)
- {
- // result = a*s + b
- TVStack result;
- result.resize(a.size());
- for (int i = 0; i < a.size(); ++i)
- result[i] = s * a[i] + b[i];
- return result;
- }
+ void reinitialize(const TVStack& b)
+ {
+ r.resize(b.size());
+ p.resize(b.size());
+ z.resize(b.size());
+ temp.resize(b.size());
+ }
};
#endif /* btConjugateGradient_h */