summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletInverseDynamics
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/bullet/BulletInverseDynamics')
-rw-r--r--thirdparty/bullet/BulletInverseDynamics/IDConfig.hpp26
-rw-r--r--thirdparty/bullet/BulletInverseDynamics/IDConfigBuiltin.hpp19
-rw-r--r--thirdparty/bullet/BulletInverseDynamics/IDConfigEigen.hpp3
-rw-r--r--thirdparty/bullet/BulletInverseDynamics/IDErrorMessages.hpp18
-rw-r--r--thirdparty/bullet/BulletInverseDynamics/IDMath.cpp351
-rw-r--r--thirdparty/bullet/BulletInverseDynamics/IDMath.hpp15
-rw-r--r--thirdparty/bullet/BulletInverseDynamics/MultiBodyTree.cpp345
-rw-r--r--thirdparty/bullet/BulletInverseDynamics/MultiBodyTree.hpp94
-rw-r--r--thirdparty/bullet/BulletInverseDynamics/details/IDEigenInterface.hpp23
-rw-r--r--thirdparty/bullet/BulletInverseDynamics/details/IDLinearMathInterface.hpp156
-rw-r--r--thirdparty/bullet/BulletInverseDynamics/details/IDMatVec.hpp324
-rw-r--r--thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeImpl.cpp933
-rw-r--r--thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeImpl.hpp93
-rw-r--r--thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeInitCache.cpp60
-rw-r--r--thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeInitCache.hpp14
15 files changed, 1504 insertions, 970 deletions
diff --git a/thirdparty/bullet/BulletInverseDynamics/IDConfig.hpp b/thirdparty/bullet/BulletInverseDynamics/IDConfig.hpp
index ebb10e7a16..b662b80152 100644
--- a/thirdparty/bullet/BulletInverseDynamics/IDConfig.hpp
+++ b/thirdparty/bullet/BulletInverseDynamics/IDConfig.hpp
@@ -32,10 +32,10 @@
#define BT_ID_POW(x, y) btPow(x, y)
#define BT_ID_PI SIMD_PI
#ifdef _WIN32
- #define BT_ID_SNPRINTF _snprintf
+#define BT_ID_SNPRINTF _snprintf
#else
- #define BT_ID_SNPRINTF snprintf
-#endif //
+#define BT_ID_SNPRINTF snprintf
+#endif //
#endif
// error messages
#include "IDErrorMessages.hpp"
@@ -52,8 +52,8 @@
#error "custom inverse dynamics config, but no custom namespace defined"
#endif
-#define BT_ID_MAX(a,b) std::max(a,b)
-#define BT_ID_MIN(a,b) std::min(a,b)
+#define BT_ID_MAX(a, b) std::max(a, b)
+#define BT_ID_MIN(a, b) std::min(a, b)
#else
#define btInverseDynamics btInverseDynamicsBullet3
@@ -62,8 +62,8 @@
#include "LinearMath/btScalar.h"
typedef btScalar idScalar;
#include "LinearMath/btMinMax.h"
-#define BT_ID_MAX(a,b) btMax(a,b)
-#define BT_ID_MIN(a,b) btMin(a,b)
+#define BT_ID_MAX(a, b) btMax(a, b)
+#define BT_ID_MIN(a, b) btMin(a, b)
#ifdef BT_USE_DOUBLE_PRECISION
#define BT_ID_USE_DOUBLE_PRECISION
@@ -71,31 +71,31 @@ typedef btScalar idScalar;
#ifndef BT_USE_INVERSE_DYNAMICS_WITH_BULLET2
-
// use bullet types for arrays and array indices
#include "Bullet3Common/b3AlignedObjectArray.h"
// this is to make it work with C++2003, otherwise we could do this:
// template <typename T>
// using idArray = b3AlignedObjectArray<T>;
template <typename T>
-struct idArray {
+struct idArray
+{
typedef b3AlignedObjectArray<T> type;
};
typedef int idArrayIdx;
#define ID_DECLARE_ALIGNED_ALLOCATOR() B3_DECLARE_ALIGNED_ALLOCATOR()
-#else // BT_USE_INVERSE_DYNAMICS_WITH_BULLET2
+#else // BT_USE_INVERSE_DYNAMICS_WITH_BULLET2
#include "LinearMath/btAlignedObjectArray.h"
template <typename T>
-struct idArray {
+struct idArray
+{
typedef btAlignedObjectArray<T> type;
};
typedef int idArrayIdx;
#define ID_DECLARE_ALIGNED_ALLOCATOR() BT_DECLARE_ALIGNED_ALLOCATOR()
-#endif // BT_USE_INVERSE_DYNAMICS_WITH_BULLET2
-
+#endif // BT_USE_INVERSE_DYNAMICS_WITH_BULLET2
// use bullet's allocator functions
#define idMalloc btAllocFunc
diff --git a/thirdparty/bullet/BulletInverseDynamics/IDConfigBuiltin.hpp b/thirdparty/bullet/BulletInverseDynamics/IDConfigBuiltin.hpp
index 130c19c6d6..6392367924 100644
--- a/thirdparty/bullet/BulletInverseDynamics/IDConfigBuiltin.hpp
+++ b/thirdparty/bullet/BulletInverseDynamics/IDConfigBuiltin.hpp
@@ -14,7 +14,8 @@ typedef float idScalar;
// template <typename T>
// using idArray = std::vector<T>;
template <typename T>
-struct idArray {
+struct idArray
+{
typedef std::vector<T> type;
};
typedef std::vector<int>::size_type idArrayIdx;
@@ -23,14 +24,14 @@ typedef std::vector<int>::size_type idArrayIdx;
#define idMalloc ::malloc
#define idFree ::free
// currently not aligned at all...
-#define ID_DECLARE_ALIGNED_ALLOCATOR() \
- inline void* operator new(std::size_t sizeInBytes) { return idMalloc(sizeInBytes); } \
- inline void operator delete(void* ptr) { idFree(ptr); } \
- inline void* operator new(std::size_t, void* ptr) { return ptr; } \
- inline void operator delete(void*, void*) {} \
- inline void* operator new[](std::size_t sizeInBytes) { return idMalloc(sizeInBytes); } \
- inline void operator delete[](void* ptr) { idFree(ptr); } \
- inline void* operator new[](std::size_t, void* ptr) { return ptr; } \
+#define ID_DECLARE_ALIGNED_ALLOCATOR() \
+ inline void* operator new(std::size_t sizeInBytes) { return idMalloc(sizeInBytes); } \
+ inline void operator delete(void* ptr) { idFree(ptr); } \
+ inline void* operator new(std::size_t, void* ptr) { return ptr; } \
+ inline void operator delete(void*, void*) {} \
+ inline void* operator new[](std::size_t sizeInBytes) { return idMalloc(sizeInBytes); } \
+ inline void operator delete[](void* ptr) { idFree(ptr); } \
+ inline void* operator new[](std::size_t, void* ptr) { return ptr; } \
inline void operator delete[](void*, void*) {}
#include "details/IDMatVec.hpp"
diff --git a/thirdparty/bullet/BulletInverseDynamics/IDConfigEigen.hpp b/thirdparty/bullet/BulletInverseDynamics/IDConfigEigen.hpp
index cbd7e8a9c4..cfb308ee55 100644
--- a/thirdparty/bullet/BulletInverseDynamics/IDConfigEigen.hpp
+++ b/thirdparty/bullet/BulletInverseDynamics/IDConfigEigen.hpp
@@ -15,7 +15,8 @@ typedef float idScalar;
// template <typename T>
// using idArray = std::vector<T>;
template <typename T>
-struct idArray {
+struct idArray
+{
typedef std::vector<T> type;
};
typedef std::vector<int>::size_type idArrayIdx;
diff --git a/thirdparty/bullet/BulletInverseDynamics/IDErrorMessages.hpp b/thirdparty/bullet/BulletInverseDynamics/IDErrorMessages.hpp
index 1b3fd268a0..5a98f01498 100644
--- a/thirdparty/bullet/BulletInverseDynamics/IDErrorMessages.hpp
+++ b/thirdparty/bullet/BulletInverseDynamics/IDErrorMessages.hpp
@@ -13,16 +13,18 @@
#else // BT_ID_WO_BULLET
#include <cstdio>
/// print error message with file/line information
-#define bt_id_error_message(...) \
- do { \
- fprintf(stderr, "[Error:%s:%d] ", __INVDYN_FILE_WO_DIR__, __LINE__); \
- fprintf(stderr, __VA_ARGS__); \
+#define bt_id_error_message(...) \
+ do \
+ { \
+ fprintf(stderr, "[Error:%s:%d] ", __INVDYN_FILE_WO_DIR__, __LINE__); \
+ fprintf(stderr, __VA_ARGS__); \
} while (0)
/// print warning message with file/line information
-#define bt_id_warning_message(...) \
- do { \
- fprintf(stderr, "[Warning:%s:%d] ", __INVDYN_FILE_WO_DIR__, __LINE__); \
- fprintf(stderr, __VA_ARGS__); \
+#define bt_id_warning_message(...) \
+ do \
+ { \
+ fprintf(stderr, "[Warning:%s:%d] ", __INVDYN_FILE_WO_DIR__, __LINE__); \
+ fprintf(stderr, __VA_ARGS__); \
} while (0)
#define id_printf(...) printf(__VA_ARGS__)
#endif // BT_ID_WO_BULLET
diff --git a/thirdparty/bullet/BulletInverseDynamics/IDMath.cpp b/thirdparty/bullet/BulletInverseDynamics/IDMath.cpp
index d279d3435c..2f120ed489 100644
--- a/thirdparty/bullet/BulletInverseDynamics/IDMath.cpp
+++ b/thirdparty/bullet/BulletInverseDynamics/IDMath.cpp
@@ -3,25 +3,30 @@
#include <cmath>
#include <limits>
-namespace btInverseDynamics {
+namespace btInverseDynamics
+{
static const idScalar kIsZero = 5 * std::numeric_limits<idScalar>::epsilon();
// requirements for axis length deviation from 1.0
// experimentally set from random euler angle rotation matrices
static const idScalar kAxisLengthEpsilon = 10 * kIsZero;
-void setZero(vec3 &v) {
+void setZero(vec3 &v)
+{
v(0) = 0;
v(1) = 0;
v(2) = 0;
}
-void setZero(vecx &v) {
- for (int i = 0; i < v.size(); i++) {
+void setZero(vecx &v)
+{
+ for (int i = 0; i < v.size(); i++)
+ {
v(i) = 0;
}
}
-void setZero(mat33 &m) {
+void setZero(mat33 &m)
+{
m(0, 0) = 0;
m(0, 1) = 0;
m(0, 2) = 0;
@@ -33,7 +38,8 @@ void setZero(mat33 &m) {
m(2, 2) = 0;
}
-void skew(vec3& v, mat33* result) {
+void skew(vec3 &v, mat33 *result)
+{
(*result)(0, 0) = 0.0;
(*result)(0, 1) = -v(2);
(*result)(0, 2) = v(1);
@@ -45,22 +51,28 @@ void skew(vec3& v, mat33* result) {
(*result)(2, 2) = 0.0;
}
-idScalar maxAbs(const vecx &v) {
+idScalar maxAbs(const vecx &v)
+{
idScalar result = 0.0;
- for (int i = 0; i < v.size(); i++) {
+ for (int i = 0; i < v.size(); i++)
+ {
const idScalar tmp = BT_ID_FABS(v(i));
- if (tmp > result) {
+ if (tmp > result)
+ {
result = tmp;
}
}
return result;
}
-idScalar maxAbs(const vec3 &v) {
+idScalar maxAbs(const vec3 &v)
+{
idScalar result = 0.0;
- for (int i = 0; i < 3; i++) {
+ for (int i = 0; i < 3; i++)
+ {
const idScalar tmp = BT_ID_FABS(v(i));
- if (tmp > result) {
+ if (tmp > result)
+ {
result = tmp;
}
}
@@ -68,60 +80,75 @@ idScalar maxAbs(const vec3 &v) {
}
#if (defined BT_ID_HAVE_MAT3X)
-idScalar maxAbsMat3x(const mat3x &m) {
- // only used for tests -- so just loop here for portability
- idScalar result = 0.0;
- for (idArrayIdx col = 0; col < m.cols(); col++) {
- for (idArrayIdx row = 0; row < 3; row++) {
- result = BT_ID_MAX(result, std::fabs(m(row, col)));
- }
- }
- return result;
+idScalar maxAbsMat3x(const mat3x &m)
+{
+ // only used for tests -- so just loop here for portability
+ idScalar result = 0.0;
+ for (idArrayIdx col = 0; col < m.cols(); col++)
+ {
+ for (idArrayIdx row = 0; row < 3; row++)
+ {
+ result = BT_ID_MAX(result, std::fabs(m(row, col)));
+ }
+ }
+ return result;
}
-void mul(const mat33 &a, const mat3x &b, mat3x *result) {
- if (b.cols() != result->cols()) {
- bt_id_error_message("size missmatch. b.cols()= %d, result->cols()= %d\n",
- static_cast<int>(b.cols()), static_cast<int>(result->cols()));
- abort();
- }
-
- for (idArrayIdx col = 0; col < b.cols(); col++) {
- const idScalar x = a(0,0)*b(0,col)+a(0,1)*b(1,col)+a(0,2)*b(2,col);
- const idScalar y = a(1,0)*b(0,col)+a(1,1)*b(1,col)+a(1,2)*b(2,col);
- const idScalar z = a(2,0)*b(0,col)+a(2,1)*b(1,col)+a(2,2)*b(2,col);
- setMat3xElem(0, col, x, result);
- setMat3xElem(1, col, y, result);
- setMat3xElem(2, col, z, result);
- }
+void mul(const mat33 &a, const mat3x &b, mat3x *result)
+{
+ if (b.cols() != result->cols())
+ {
+ bt_id_error_message("size missmatch. b.cols()= %d, result->cols()= %d\n",
+ static_cast<int>(b.cols()), static_cast<int>(result->cols()));
+ abort();
+ }
+
+ for (idArrayIdx col = 0; col < b.cols(); col++)
+ {
+ const idScalar x = a(0, 0) * b(0, col) + a(0, 1) * b(1, col) + a(0, 2) * b(2, col);
+ const idScalar y = a(1, 0) * b(0, col) + a(1, 1) * b(1, col) + a(1, 2) * b(2, col);
+ const idScalar z = a(2, 0) * b(0, col) + a(2, 1) * b(1, col) + a(2, 2) * b(2, col);
+ setMat3xElem(0, col, x, result);
+ setMat3xElem(1, col, y, result);
+ setMat3xElem(2, col, z, result);
+ }
}
-void add(const mat3x &a, const mat3x &b, mat3x *result) {
- if (a.cols() != b.cols()) {
- bt_id_error_message("size missmatch. a.cols()= %d, b.cols()= %d\n",
- static_cast<int>(a.cols()), static_cast<int>(b.cols()));
- abort();
- }
- for (idArrayIdx col = 0; col < b.cols(); col++) {
- for (idArrayIdx row = 0; row < 3; row++) {
- setMat3xElem(row, col, a(row, col) + b(row, col), result);
- }
- }
+void add(const mat3x &a, const mat3x &b, mat3x *result)
+{
+ if (a.cols() != b.cols())
+ {
+ bt_id_error_message("size missmatch. a.cols()= %d, b.cols()= %d\n",
+ static_cast<int>(a.cols()), static_cast<int>(b.cols()));
+ abort();
+ }
+ for (idArrayIdx col = 0; col < b.cols(); col++)
+ {
+ for (idArrayIdx row = 0; row < 3; row++)
+ {
+ setMat3xElem(row, col, a(row, col) + b(row, col), result);
+ }
+ }
}
-void sub(const mat3x &a, const mat3x &b, mat3x *result) {
- if (a.cols() != b.cols()) {
- bt_id_error_message("size missmatch. a.cols()= %d, b.cols()= %d\n",
- static_cast<int>(a.cols()), static_cast<int>(b.cols()));
- abort();
- }
- for (idArrayIdx col = 0; col < b.cols(); col++) {
- for (idArrayIdx row = 0; row < 3; row++) {
- setMat3xElem(row, col, a(row, col) - b(row, col), result);
- }
- }
+void sub(const mat3x &a, const mat3x &b, mat3x *result)
+{
+ if (a.cols() != b.cols())
+ {
+ bt_id_error_message("size missmatch. a.cols()= %d, b.cols()= %d\n",
+ static_cast<int>(a.cols()), static_cast<int>(b.cols()));
+ abort();
+ }
+ for (idArrayIdx col = 0; col < b.cols(); col++)
+ {
+ for (idArrayIdx row = 0; row < 3; row++)
+ {
+ setMat3xElem(row, col, a(row, col) - b(row, col), result);
+ }
+ }
}
#endif
-mat33 transformX(const idScalar &alpha) {
+mat33 transformX(const idScalar &alpha)
+{
mat33 T;
const idScalar cos_alpha = BT_ID_COS(alpha);
const idScalar sin_alpha = BT_ID_SIN(alpha);
@@ -143,7 +170,8 @@ mat33 transformX(const idScalar &alpha) {
return T;
}
-mat33 transformY(const idScalar &beta) {
+mat33 transformY(const idScalar &beta)
+{
mat33 T;
const idScalar cos_beta = BT_ID_COS(beta);
const idScalar sin_beta = BT_ID_SIN(beta);
@@ -165,7 +193,8 @@ mat33 transformY(const idScalar &beta) {
return T;
}
-mat33 transformZ(const idScalar &gamma) {
+mat33 transformZ(const idScalar &gamma)
+{
mat33 T;
const idScalar cos_gamma = BT_ID_COS(gamma);
const idScalar sin_gamma = BT_ID_SIN(gamma);
@@ -187,7 +216,8 @@ mat33 transformZ(const idScalar &gamma) {
return T;
}
-mat33 tildeOperator(const vec3 &v) {
+mat33 tildeOperator(const vec3 &v)
+{
mat33 m;
m(0, 0) = 0.0;
m(0, 1) = -v(2);
@@ -201,7 +231,8 @@ mat33 tildeOperator(const vec3 &v) {
return m;
}
-void getVecMatFromDH(idScalar theta, idScalar d, idScalar a, idScalar alpha, vec3 *r, mat33 *T) {
+void getVecMatFromDH(idScalar theta, idScalar d, idScalar a, idScalar alpha, vec3 *r, mat33 *T)
+{
const idScalar sa = BT_ID_SIN(alpha);
const idScalar ca = BT_ID_COS(alpha);
const idScalar st = BT_ID_SIN(theta);
@@ -224,7 +255,8 @@ void getVecMatFromDH(idScalar theta, idScalar d, idScalar a, idScalar alpha, vec
(*T)(2, 2) = ca;
}
-void bodyTParentFromAxisAngle(const vec3 &axis, const idScalar &angle, mat33 *T) {
+void bodyTParentFromAxisAngle(const vec3 &axis, const idScalar &angle, mat33 *T)
+{
const idScalar c = BT_ID_COS(angle);
const idScalar s = -BT_ID_SIN(angle);
const idScalar one_m_c = 1.0 - c;
@@ -246,175 +278,214 @@ void bodyTParentFromAxisAngle(const vec3 &axis, const idScalar &angle, mat33 *T)
(*T)(2, 2) = z * z * one_m_c + c;
}
-bool isPositiveDefinite(const mat33 &m) {
+bool isPositiveDefinite(const mat33 &m)
+{
// test if all upper left determinants are positive
- if (m(0, 0) <= 0) { // upper 1x1
+ if (m(0, 0) <= 0)
+ { // upper 1x1
return false;
}
- if (m(0, 0) * m(1, 1) - m(0, 1) * m(1, 0) <= 0) { // upper 2x2
+ if (m(0, 0) * m(1, 1) - m(0, 1) * m(1, 0) <= 0)
+ { // upper 2x2
return false;
}
if ((m(0, 0) * (m(1, 1) * m(2, 2) - m(1, 2) * m(2, 1)) -
m(0, 1) * (m(1, 0) * m(2, 2) - m(1, 2) * m(2, 0)) +
- m(0, 2) * (m(1, 0) * m(2, 1) - m(1, 1) * m(2, 0))) < 0) {
+ m(0, 2) * (m(1, 0) * m(2, 1) - m(1, 1) * m(2, 0))) < 0)
+ {
return false;
}
return true;
}
-bool isPositiveSemiDefinite(const mat33 &m) {
+bool isPositiveSemiDefinite(const mat33 &m)
+{
// test if all upper left determinants are positive
- if (m(0, 0) < 0) { // upper 1x1
+ if (m(0, 0) < 0)
+ { // upper 1x1
return false;
}
- if (m(0, 0) * m(1, 1) - m(0, 1) * m(1, 0) < 0) { // upper 2x2
+ if (m(0, 0) * m(1, 1) - m(0, 1) * m(1, 0) < 0)
+ { // upper 2x2
return false;
}
if ((m(0, 0) * (m(1, 1) * m(2, 2) - m(1, 2) * m(2, 1)) -
m(0, 1) * (m(1, 0) * m(2, 2) - m(1, 2) * m(2, 0)) +
- m(0, 2) * (m(1, 0) * m(2, 1) - m(1, 1) * m(2, 0))) < 0) {
+ m(0, 2) * (m(1, 0) * m(2, 1) - m(1, 1) * m(2, 0))) < 0)
+ {
return false;
}
return true;
}
-bool isPositiveSemiDefiniteFuzzy(const mat33 &m) {
+bool isPositiveSemiDefiniteFuzzy(const mat33 &m)
+{
// test if all upper left determinants are positive
- if (m(0, 0) < -kIsZero) { // upper 1x1
+ if (m(0, 0) < -kIsZero)
+ { // upper 1x1
return false;
}
- if (m(0, 0) * m(1, 1) - m(0, 1) * m(1, 0) < -kIsZero) { // upper 2x2
+ if (m(0, 0) * m(1, 1) - m(0, 1) * m(1, 0) < -kIsZero)
+ { // upper 2x2
return false;
}
if ((m(0, 0) * (m(1, 1) * m(2, 2) - m(1, 2) * m(2, 1)) -
m(0, 1) * (m(1, 0) * m(2, 2) - m(1, 2) * m(2, 0)) +
- m(0, 2) * (m(1, 0) * m(2, 1) - m(1, 1) * m(2, 0))) < -kIsZero) {
+ m(0, 2) * (m(1, 0) * m(2, 1) - m(1, 1) * m(2, 0))) < -kIsZero)
+ {
return false;
}
return true;
}
-idScalar determinant(const mat33 &m) {
+idScalar determinant(const mat33 &m)
+{
return m(0, 0) * m(1, 1) * m(2, 2) + m(0, 1) * m(1, 2) * m(2, 0) + m(0, 2) * m(1, 0) * m(2, 1) -
m(0, 2) * m(1, 1) * m(2, 0) - m(0, 0) * m(1, 2) * m(2, 1) - m(0, 1) * m(1, 0) * m(2, 2);
}
-bool isValidInertiaMatrix(const mat33 &I, const int index, bool has_fixed_joint) {
+bool isValidInertiaMatrix(const mat33 &I, const int index, bool has_fixed_joint)
+{
// TODO(Thomas) do we really want this?
// in cases where the inertia tensor about the center of mass is zero,
// the determinant of the inertia tensor about the joint axis is almost
// zero and can have a very small negative value.
- if (!isPositiveSemiDefiniteFuzzy(I)) {
- bt_id_error_message("invalid inertia matrix for body %d, not positive definite "
- "(fixed joint)\n",
- index);
- bt_id_error_message("matrix is:\n"
- "[%.20e %.20e %.20e;\n"
- "%.20e %.20e %.20e;\n"
- "%.20e %.20e %.20e]\n",
- I(0, 0), I(0, 1), I(0, 2), I(1, 0), I(1, 1), I(1, 2), I(2, 0), I(2, 1),
- I(2, 2));
+ if (!isPositiveSemiDefiniteFuzzy(I))
+ {
+ bt_id_error_message(
+ "invalid inertia matrix for body %d, not positive definite "
+ "(fixed joint)\n",
+ index);
+ bt_id_error_message(
+ "matrix is:\n"
+ "[%.20e %.20e %.20e;\n"
+ "%.20e %.20e %.20e;\n"
+ "%.20e %.20e %.20e]\n",
+ I(0, 0), I(0, 1), I(0, 2), I(1, 0), I(1, 1), I(1, 2), I(2, 0), I(2, 1),
+ I(2, 2));
return false;
}
// check triangle inequality, must have I(i,i)+I(j,j)>=I(k,k)
- if (!has_fixed_joint) {
- if (I(0, 0) + I(1, 1) < I(2, 2)) {
+ if (!has_fixed_joint)
+ {
+ if (I(0, 0) + I(1, 1) < I(2, 2))
+ {
bt_id_error_message("invalid inertia tensor for body %d, I(0,0) + I(1,1) < I(2,2)\n", index);
- bt_id_error_message("matrix is:\n"
- "[%.20e %.20e %.20e;\n"
- "%.20e %.20e %.20e;\n"
- "%.20e %.20e %.20e]\n",
- I(0, 0), I(0, 1), I(0, 2), I(1, 0), I(1, 1), I(1, 2), I(2, 0), I(2, 1),
- I(2, 2));
+ bt_id_error_message(
+ "matrix is:\n"
+ "[%.20e %.20e %.20e;\n"
+ "%.20e %.20e %.20e;\n"
+ "%.20e %.20e %.20e]\n",
+ I(0, 0), I(0, 1), I(0, 2), I(1, 0), I(1, 1), I(1, 2), I(2, 0), I(2, 1),
+ I(2, 2));
return false;
}
- if (I(0, 0) + I(1, 1) < I(2, 2)) {
+ if (I(0, 0) + I(1, 1) < I(2, 2))
+ {
bt_id_error_message("invalid inertia tensor for body %d, I(0,0) + I(1,1) < I(2,2)\n", index);
- bt_id_error_message("matrix is:\n"
- "[%.20e %.20e %.20e;\n"
- "%.20e %.20e %.20e;\n"
- "%.20e %.20e %.20e]\n",
- I(0, 0), I(0, 1), I(0, 2), I(1, 0), I(1, 1), I(1, 2), I(2, 0), I(2, 1),
- I(2, 2));
+ bt_id_error_message(
+ "matrix is:\n"
+ "[%.20e %.20e %.20e;\n"
+ "%.20e %.20e %.20e;\n"
+ "%.20e %.20e %.20e]\n",
+ I(0, 0), I(0, 1), I(0, 2), I(1, 0), I(1, 1), I(1, 2), I(2, 0), I(2, 1),
+ I(2, 2));
return false;
}
- if (I(1, 1) + I(2, 2) < I(0, 0)) {
+ if (I(1, 1) + I(2, 2) < I(0, 0))
+ {
bt_id_error_message("invalid inertia tensor for body %d, I(1,1) + I(2,2) < I(0,0)\n", index);
- bt_id_error_message("matrix is:\n"
- "[%.20e %.20e %.20e;\n"
- "%.20e %.20e %.20e;\n"
- "%.20e %.20e %.20e]\n",
- I(0, 0), I(0, 1), I(0, 2), I(1, 0), I(1, 1), I(1, 2), I(2, 0), I(2, 1),
- I(2, 2));
+ bt_id_error_message(
+ "matrix is:\n"
+ "[%.20e %.20e %.20e;\n"
+ "%.20e %.20e %.20e;\n"
+ "%.20e %.20e %.20e]\n",
+ I(0, 0), I(0, 1), I(0, 2), I(1, 0), I(1, 1), I(1, 2), I(2, 0), I(2, 1),
+ I(2, 2));
return false;
}
}
// check positive/zero diagonal elements
- for (int i = 0; i < 3; i++) {
- if (I(i, i) < 0) { // accept zero
+ for (int i = 0; i < 3; i++)
+ {
+ if (I(i, i) < 0)
+ { // accept zero
bt_id_error_message("invalid inertia tensor, I(%d,%d)= %e <0\n", i, i, I(i, i));
return false;
}
}
// check symmetry
- if (BT_ID_FABS(I(1, 0) - I(0, 1)) > kIsZero) {
- bt_id_error_message("invalid inertia tensor for body %d I(1,0)!=I(0,1). I(1,0)-I(0,1)= "
- "%e\n",
- index, I(1, 0) - I(0, 1));
+ if (BT_ID_FABS(I(1, 0) - I(0, 1)) > kIsZero)
+ {
+ bt_id_error_message(
+ "invalid inertia tensor for body %d I(1,0)!=I(0,1). I(1,0)-I(0,1)= "
+ "%e\n",
+ index, I(1, 0) - I(0, 1));
return false;
}
- if (BT_ID_FABS(I(2, 0) - I(0, 2)) > kIsZero) {
- bt_id_error_message("invalid inertia tensor for body %d I(2,0)!=I(0,2). I(2,0)-I(0,2)= "
- "%e\n",
- index, I(2, 0) - I(0, 2));
+ if (BT_ID_FABS(I(2, 0) - I(0, 2)) > kIsZero)
+ {
+ bt_id_error_message(
+ "invalid inertia tensor for body %d I(2,0)!=I(0,2). I(2,0)-I(0,2)= "
+ "%e\n",
+ index, I(2, 0) - I(0, 2));
return false;
}
- if (BT_ID_FABS(I(1, 2) - I(2, 1)) > kIsZero) {
+ if (BT_ID_FABS(I(1, 2) - I(2, 1)) > kIsZero)
+ {
bt_id_error_message("invalid inertia tensor body %d I(1,2)!=I(2,1). I(1,2)-I(2,1)= %e\n", index,
- I(1, 2) - I(2, 1));
+ I(1, 2) - I(2, 1));
return false;
}
return true;
}
-bool isValidTransformMatrix(const mat33 &m) {
-#define print_mat(x) \
- bt_id_error_message("matrix is [%e, %e, %e; %e, %e, %e; %e, %e, %e]\n", x(0, 0), x(0, 1), x(0, 2), \
- x(1, 0), x(1, 1), x(1, 2), x(2, 0), x(2, 1), x(2, 2))
+bool isValidTransformMatrix(const mat33 &m)
+{
+#define print_mat(x) \
+ bt_id_error_message("matrix is [%e, %e, %e; %e, %e, %e; %e, %e, %e]\n", x(0, 0), x(0, 1), x(0, 2), \
+ x(1, 0), x(1, 1), x(1, 2), x(2, 0), x(2, 1), x(2, 2))
// check for unit length column vectors
- for (int i = 0; i < 3; i++) {
+ for (int i = 0; i < 3; i++)
+ {
const idScalar length_minus_1 =
BT_ID_FABS(m(0, i) * m(0, i) + m(1, i) * m(1, i) + m(2, i) * m(2, i) - 1.0);
- if (length_minus_1 > kAxisLengthEpsilon) {
- bt_id_error_message("Not a valid rotation matrix (column %d not unit length)\n"
- "column = [%.18e %.18e %.18e]\n"
- "length-1.0= %.18e\n",
- i, m(0, i), m(1, i), m(2, i), length_minus_1);
+ if (length_minus_1 > kAxisLengthEpsilon)
+ {
+ bt_id_error_message(
+ "Not a valid rotation matrix (column %d not unit length)\n"
+ "column = [%.18e %.18e %.18e]\n"
+ "length-1.0= %.18e\n",
+ i, m(0, i), m(1, i), m(2, i), length_minus_1);
print_mat(m);
return false;
}
}
// check for orthogonal column vectors
- if (BT_ID_FABS(m(0, 0) * m(0, 1) + m(1, 0) * m(1, 1) + m(2, 0) * m(2, 1)) > kAxisLengthEpsilon) {
+ if (BT_ID_FABS(m(0, 0) * m(0, 1) + m(1, 0) * m(1, 1) + m(2, 0) * m(2, 1)) > kAxisLengthEpsilon)
+ {
bt_id_error_message("Not a valid rotation matrix (columns 0 and 1 not orthogonal)\n");
print_mat(m);
return false;
}
- if (BT_ID_FABS(m(0, 0) * m(0, 2) + m(1, 0) * m(1, 2) + m(2, 0) * m(2, 2)) > kAxisLengthEpsilon) {
+ if (BT_ID_FABS(m(0, 0) * m(0, 2) + m(1, 0) * m(1, 2) + m(2, 0) * m(2, 2)) > kAxisLengthEpsilon)
+ {
bt_id_error_message("Not a valid rotation matrix (columns 0 and 2 not orthogonal)\n");
print_mat(m);
return false;
}
- if (BT_ID_FABS(m(0, 1) * m(0, 2) + m(1, 1) * m(1, 2) + m(2, 1) * m(2, 2)) > kAxisLengthEpsilon) {
+ if (BT_ID_FABS(m(0, 1) * m(0, 2) + m(1, 1) * m(1, 2) + m(2, 1) * m(2, 2)) > kAxisLengthEpsilon)
+ {
bt_id_error_message("Not a valid rotation matrix (columns 0 and 2 not orthogonal)\n");
print_mat(m);
return false;
}
// check determinant (rotation not reflection)
- if (determinant(m) <= 0) {
+ if (determinant(m) <= 0)
+ {
bt_id_error_message("Not a valid rotation matrix (determinant <=0)\n");
print_mat(m);
return false;
@@ -422,16 +493,18 @@ bool isValidTransformMatrix(const mat33 &m) {
return true;
}
-bool isUnitVector(const vec3 &vector) {
+bool isUnitVector(const vec3 &vector)
+{
return BT_ID_FABS(vector(0) * vector(0) + vector(1) * vector(1) + vector(2) * vector(2) - 1.0) <
kIsZero;
}
-vec3 rpyFromMatrix(const mat33 &rot) {
+vec3 rpyFromMatrix(const mat33 &rot)
+{
vec3 rpy;
rpy(2) = BT_ID_ATAN2(-rot(1, 0), rot(0, 0));
rpy(1) = BT_ID_ATAN2(rot(2, 0), BT_ID_COS(rpy(2)) * rot(0, 0) - BT_ID_SIN(rpy(0)) * rot(1, 0));
rpy(0) = BT_ID_ATAN2(-rot(2, 0), rot(2, 2));
return rpy;
}
-}
+} // namespace btInverseDynamics
diff --git a/thirdparty/bullet/BulletInverseDynamics/IDMath.hpp b/thirdparty/bullet/BulletInverseDynamics/IDMath.hpp
index b355474d44..40bee5302b 100644
--- a/thirdparty/bullet/BulletInverseDynamics/IDMath.hpp
+++ b/thirdparty/bullet/BulletInverseDynamics/IDMath.hpp
@@ -5,7 +5,8 @@
#define IDMATH_HPP_
#include "IDConfig.hpp"
-namespace btInverseDynamics {
+namespace btInverseDynamics
+{
/// set all elements to zero
void setZero(vec3& v);
/// set all elements to zero
@@ -23,11 +24,11 @@ idScalar maxAbs(const vec3& v);
#if (defined BT_ID_HAVE_MAT3X)
idScalar maxAbsMat3x(const mat3x& m);
-void setZero(mat3x&m);
+void setZero(mat3x& m);
// define math functions on mat3x here to avoid allocations in operators.
-void mul(const mat33&a, const mat3x&b, mat3x* result);
-void add(const mat3x&a, const mat3x&b, mat3x* result);
-void sub(const mat3x&a, const mat3x&b, mat3x* result);
+void mul(const mat33& a, const mat3x& b, mat3x* result);
+void add(const mat3x& a, const mat3x& b, mat3x* result);
+void sub(const mat3x& a, const mat3x& b, mat3x* result);
#endif
/// get offset vector & transform matrix from DH parameters
@@ -94,6 +95,6 @@ mat33 transformZ(const idScalar& gamma);
///calculate rpy angles (x-y-z Euler angles) from a given rotation matrix
/// @param rot rotation matrix
/// @returns x-y-z Euler angles
-vec3 rpyFromMatrix(const mat33&rot);
-}
+vec3 rpyFromMatrix(const mat33& rot);
+} // namespace btInverseDynamics
#endif // IDMATH_HPP_
diff --git a/thirdparty/bullet/BulletInverseDynamics/MultiBodyTree.cpp b/thirdparty/bullet/BulletInverseDynamics/MultiBodyTree.cpp
index becfe0f4a2..f150b5ae4c 100644
--- a/thirdparty/bullet/BulletInverseDynamics/MultiBodyTree.cpp
+++ b/thirdparty/bullet/BulletInverseDynamics/MultiBodyTree.cpp
@@ -8,69 +8,84 @@
#include "details/MultiBodyTreeImpl.hpp"
#include "details/MultiBodyTreeInitCache.hpp"
-namespace btInverseDynamics {
-
+namespace btInverseDynamics
+{
MultiBodyTree::MultiBodyTree()
: m_is_finalized(false),
m_mass_parameters_are_valid(true),
m_accept_invalid_mass_parameters(false),
m_impl(0x0),
- m_init_cache(0x0) {
+ m_init_cache(0x0)
+{
m_init_cache = new InitCache();
}
-MultiBodyTree::~MultiBodyTree() {
+MultiBodyTree::~MultiBodyTree()
+{
delete m_impl;
delete m_init_cache;
}
-void MultiBodyTree::setAcceptInvalidMassParameters(bool flag) {
+void MultiBodyTree::setAcceptInvalidMassParameters(bool flag)
+{
m_accept_invalid_mass_parameters = flag;
}
-bool MultiBodyTree::getAcceptInvalidMassProperties() const {
+bool MultiBodyTree::getAcceptInvalidMassProperties() const
+{
return m_accept_invalid_mass_parameters;
}
-int MultiBodyTree::getBodyOrigin(const int body_index, vec3 *world_origin) const {
+int MultiBodyTree::getBodyOrigin(const int body_index, vec3 *world_origin) const
+{
return m_impl->getBodyOrigin(body_index, world_origin);
}
-int MultiBodyTree::getBodyCoM(const int body_index, vec3 *world_com) const {
+int MultiBodyTree::getBodyCoM(const int body_index, vec3 *world_com) const
+{
return m_impl->getBodyCoM(body_index, world_com);
}
-int MultiBodyTree::getBodyTransform(const int body_index, mat33 *world_T_body) const {
+int MultiBodyTree::getBodyTransform(const int body_index, mat33 *world_T_body) const
+{
return m_impl->getBodyTransform(body_index, world_T_body);
}
-int MultiBodyTree::getBodyAngularVelocity(const int body_index, vec3 *world_omega) const {
+int MultiBodyTree::getBodyAngularVelocity(const int body_index, vec3 *world_omega) const
+{
return m_impl->getBodyAngularVelocity(body_index, world_omega);
}
-int MultiBodyTree::getBodyLinearVelocity(const int body_index, vec3 *world_velocity) const {
+int MultiBodyTree::getBodyLinearVelocity(const int body_index, vec3 *world_velocity) const
+{
return m_impl->getBodyLinearVelocity(body_index, world_velocity);
}
-int MultiBodyTree::getBodyLinearVelocityCoM(const int body_index, vec3 *world_velocity) const {
+int MultiBodyTree::getBodyLinearVelocityCoM(const int body_index, vec3 *world_velocity) const
+{
return m_impl->getBodyLinearVelocityCoM(body_index, world_velocity);
}
-int MultiBodyTree::getBodyAngularAcceleration(const int body_index, vec3 *world_dot_omega) const {
+int MultiBodyTree::getBodyAngularAcceleration(const int body_index, vec3 *world_dot_omega) const
+{
return m_impl->getBodyAngularAcceleration(body_index, world_dot_omega);
}
-int MultiBodyTree::getBodyLinearAcceleration(const int body_index, vec3 *world_acceleration) const {
+int MultiBodyTree::getBodyLinearAcceleration(const int body_index, vec3 *world_acceleration) const
+{
return m_impl->getBodyLinearAcceleration(body_index, world_acceleration);
}
-int MultiBodyTree::getParentRParentBodyRef(const int body_index, vec3* r) const {
- return m_impl->getParentRParentBodyRef(body_index, r);
+int MultiBodyTree::getParentRParentBodyRef(const int body_index, vec3 *r) const
+{
+ return m_impl->getParentRParentBodyRef(body_index, r);
}
-int MultiBodyTree::getBodyTParentRef(const int body_index, mat33* T) const {
- return m_impl->getBodyTParentRef(body_index, T);
+int MultiBodyTree::getBodyTParentRef(const int body_index, mat33 *T) const
+{
+ return m_impl->getBodyTParentRef(body_index, T);
}
-int MultiBodyTree::getBodyAxisOfMotion(const int body_index, vec3* axis) const {
- return m_impl->getBodyAxisOfMotion(body_index, axis);
+int MultiBodyTree::getBodyAxisOfMotion(const int body_index, vec3 *axis) const
+{
+ return m_impl->getBodyAxisOfMotion(body_index, axis);
}
void MultiBodyTree::printTree() { m_impl->printTree(); }
@@ -81,12 +96,15 @@ int MultiBodyTree::numBodies() const { return m_impl->m_num_bodies; }
int MultiBodyTree::numDoFs() const { return m_impl->m_num_dofs; }
int MultiBodyTree::calculateInverseDynamics(const vecx &q, const vecx &u, const vecx &dot_u,
- vecx *joint_forces) {
- if (false == m_is_finalized) {
+ vecx *joint_forces)
+{
+ if (false == m_is_finalized)
+ {
bt_id_error_message("system has not been initialized\n");
return -1;
}
- if (-1 == m_impl->calculateInverseDynamics(q, u, dot_u, joint_forces)) {
+ if (-1 == m_impl->calculateInverseDynamics(q, u, dot_u, joint_forces))
+ {
bt_id_error_message("error in inverse dynamics calculation\n");
return -1;
}
@@ -95,141 +113,164 @@ int MultiBodyTree::calculateInverseDynamics(const vecx &q, const vecx &u, const
int MultiBodyTree::calculateMassMatrix(const vecx &q, const bool update_kinematics,
const bool initialize_matrix,
- const bool set_lower_triangular_matrix, matxx *mass_matrix) {
- if (false == m_is_finalized) {
+ const bool set_lower_triangular_matrix, matxx *mass_matrix)
+{
+ if (false == m_is_finalized)
+ {
bt_id_error_message("system has not been initialized\n");
return -1;
}
if (-1 ==
m_impl->calculateMassMatrix(q, update_kinematics, initialize_matrix,
- set_lower_triangular_matrix, mass_matrix)) {
+ set_lower_triangular_matrix, mass_matrix))
+ {
bt_id_error_message("error in mass matrix calculation\n");
return -1;
}
return 0;
}
-int MultiBodyTree::calculateMassMatrix(const vecx &q, matxx *mass_matrix) {
+int MultiBodyTree::calculateMassMatrix(const vecx &q, matxx *mass_matrix)
+{
return calculateMassMatrix(q, true, true, true, mass_matrix);
}
+int MultiBodyTree::calculateKinematics(const vecx &q, const vecx &u, const vecx &dot_u)
+{
+ vec3 world_gravity(m_impl->m_world_gravity);
+ // temporarily set gravity to zero, to ensure we get the actual accelerations
+ setZero(m_impl->m_world_gravity);
+ if (false == m_is_finalized)
+ {
+ bt_id_error_message("system has not been initialized\n");
+ return -1;
+ }
+ if (-1 == m_impl->calculateKinematics(q, u, dot_u,
+ MultiBodyTree::MultiBodyImpl::POSITION_VELOCITY_ACCELERATION))
+ {
+ bt_id_error_message("error in kinematics calculation\n");
+ return -1;
+ }
-int MultiBodyTree::calculateKinematics(const vecx& q, const vecx& u, const vecx& dot_u) {
- vec3 world_gravity(m_impl->m_world_gravity);
- // temporarily set gravity to zero, to ensure we get the actual accelerations
- setZero(m_impl->m_world_gravity);
-
- if (false == m_is_finalized) {
- bt_id_error_message("system has not been initialized\n");
- return -1;
- }
- if (-1 == m_impl->calculateKinematics(q, u, dot_u,
- MultiBodyTree::MultiBodyImpl::POSITION_VELOCITY_ACCELERATION)) {
- bt_id_error_message("error in kinematics calculation\n");
- return -1;
- }
-
- m_impl->m_world_gravity=world_gravity;
- return 0;
+ m_impl->m_world_gravity = world_gravity;
+ return 0;
}
-
-int MultiBodyTree::calculatePositionKinematics(const vecx& q) {
- if (false == m_is_finalized) {
+int MultiBodyTree::calculatePositionKinematics(const vecx &q)
+{
+ if (false == m_is_finalized)
+ {
bt_id_error_message("system has not been initialized\n");
return -1;
}
if (-1 == m_impl->calculateKinematics(q, q, q,
- MultiBodyTree::MultiBodyImpl::POSITION_VELOCITY)) {
+ MultiBodyTree::MultiBodyImpl::POSITION_VELOCITY))
+ {
bt_id_error_message("error in kinematics calculation\n");
return -1;
}
return 0;
}
-int MultiBodyTree::calculatePositionAndVelocityKinematics(const vecx& q, const vecx& u) {
- if (false == m_is_finalized) {
+int MultiBodyTree::calculatePositionAndVelocityKinematics(const vecx &q, const vecx &u)
+{
+ if (false == m_is_finalized)
+ {
bt_id_error_message("system has not been initialized\n");
return -1;
}
if (-1 == m_impl->calculateKinematics(q, u, u,
- MultiBodyTree::MultiBodyImpl::POSITION_VELOCITY)) {
+ MultiBodyTree::MultiBodyImpl::POSITION_VELOCITY))
+ {
bt_id_error_message("error in kinematics calculation\n");
return -1;
}
return 0;
}
-
#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS)
-int MultiBodyTree::calculateJacobians(const vecx& q, const vecx& u) {
- if (false == m_is_finalized) {
- bt_id_error_message("system has not been initialized\n");
- return -1;
- }
- if (-1 == m_impl->calculateJacobians(q, u,
- MultiBodyTree::MultiBodyImpl::POSITION_VELOCITY)) {
- bt_id_error_message("error in jacobian calculation\n");
- return -1;
- }
- return 0;
+int MultiBodyTree::calculateJacobians(const vecx &q, const vecx &u)
+{
+ if (false == m_is_finalized)
+ {
+ bt_id_error_message("system has not been initialized\n");
+ return -1;
+ }
+ if (-1 == m_impl->calculateJacobians(q, u,
+ MultiBodyTree::MultiBodyImpl::POSITION_VELOCITY))
+ {
+ bt_id_error_message("error in jacobian calculation\n");
+ return -1;
+ }
+ return 0;
}
-int MultiBodyTree::calculateJacobians(const vecx& q){
- if (false == m_is_finalized) {
- bt_id_error_message("system has not been initialized\n");
- return -1;
- }
- if (-1 == m_impl->calculateJacobians(q, q,
- MultiBodyTree::MultiBodyImpl::POSITION_ONLY)) {
- bt_id_error_message("error in jacobian calculation\n");
- return -1;
- }
- return 0;
+int MultiBodyTree::calculateJacobians(const vecx &q)
+{
+ if (false == m_is_finalized)
+ {
+ bt_id_error_message("system has not been initialized\n");
+ return -1;
+ }
+ if (-1 == m_impl->calculateJacobians(q, q,
+ MultiBodyTree::MultiBodyImpl::POSITION_ONLY))
+ {
+ bt_id_error_message("error in jacobian calculation\n");
+ return -1;
+ }
+ return 0;
}
-int MultiBodyTree::getBodyDotJacobianTransU(const int body_index, vec3* world_dot_jac_trans_u) const {
- return m_impl->getBodyDotJacobianTransU(body_index,world_dot_jac_trans_u);
+int MultiBodyTree::getBodyDotJacobianTransU(const int body_index, vec3 *world_dot_jac_trans_u) const
+{
+ return m_impl->getBodyDotJacobianTransU(body_index, world_dot_jac_trans_u);
}
-int MultiBodyTree::getBodyDotJacobianRotU(const int body_index, vec3* world_dot_jac_rot_u) const {
- return m_impl->getBodyDotJacobianRotU(body_index,world_dot_jac_rot_u);
+int MultiBodyTree::getBodyDotJacobianRotU(const int body_index, vec3 *world_dot_jac_rot_u) const
+{
+ return m_impl->getBodyDotJacobianRotU(body_index, world_dot_jac_rot_u);
}
-int MultiBodyTree::getBodyJacobianTrans(const int body_index, mat3x* world_jac_trans) const {
- return m_impl->getBodyJacobianTrans(body_index,world_jac_trans);
+int MultiBodyTree::getBodyJacobianTrans(const int body_index, mat3x *world_jac_trans) const
+{
+ return m_impl->getBodyJacobianTrans(body_index, world_jac_trans);
}
-int MultiBodyTree::getBodyJacobianRot(const int body_index, mat3x* world_jac_rot) const {
- return m_impl->getBodyJacobianRot(body_index,world_jac_rot);
+int MultiBodyTree::getBodyJacobianRot(const int body_index, mat3x *world_jac_rot) const
+{
+ return m_impl->getBodyJacobianRot(body_index, world_jac_rot);
}
-
#endif
int MultiBodyTree::addBody(int body_index, int parent_index, JointType joint_type,
const vec3 &parent_r_parent_body_ref, const mat33 &body_T_parent_ref,
const vec3 &body_axis_of_motion_, idScalar mass,
const vec3 &body_r_body_com, const mat33 &body_I_body,
- const int user_int, void *user_ptr) {
- if (body_index < 0) {
+ const int user_int, void *user_ptr)
+{
+ if (body_index < 0)
+ {
bt_id_error_message("body index must be positive (got %d)\n", body_index);
return -1;
}
vec3 body_axis_of_motion(body_axis_of_motion_);
- switch (joint_type) {
+ switch (joint_type)
+ {
case REVOLUTE:
case PRISMATIC:
// check if axis is unit vector
- if (!isUnitVector(body_axis_of_motion)) {
+ if (!isUnitVector(body_axis_of_motion))
+ {
bt_id_warning_message(
"axis of motion not a unit axis ([%f %f %f]), will use normalized vector\n",
body_axis_of_motion(0), body_axis_of_motion(1), body_axis_of_motion(2));
idScalar length = BT_ID_SQRT(BT_ID_POW(body_axis_of_motion(0), 2) +
- BT_ID_POW(body_axis_of_motion(1), 2) +
- BT_ID_POW(body_axis_of_motion(2), 2));
- if (length < BT_ID_SQRT(std::numeric_limits<idScalar>::min())) {
+ BT_ID_POW(body_axis_of_motion(1), 2) +
+ BT_ID_POW(body_axis_of_motion(2), 2));
+ if (length < BT_ID_SQRT(std::numeric_limits<idScalar>::min()))
+ {
bt_id_error_message("axis of motion vector too short (%e)\n", length);
return -1;
}
@@ -240,29 +281,36 @@ int MultiBodyTree::addBody(int body_index, int parent_index, JointType joint_typ
break;
case FLOATING:
break;
+ case SPHERICAL:
+ break;
default:
bt_id_error_message("unknown joint type %d\n", joint_type);
return -1;
}
// sanity check for mass properties. Zero mass is OK.
- if (mass < 0) {
+ if (mass < 0)
+ {
m_mass_parameters_are_valid = false;
bt_id_error_message("Body %d has invalid mass %e\n", body_index, mass);
- if (!m_accept_invalid_mass_parameters) {
+ if (!m_accept_invalid_mass_parameters)
+ {
return -1;
}
}
- if (!isValidInertiaMatrix(body_I_body, body_index, FIXED == joint_type)) {
+ if (!isValidInertiaMatrix(body_I_body, body_index, FIXED == joint_type))
+ {
m_mass_parameters_are_valid = false;
// error message printed in function call
- if (!m_accept_invalid_mass_parameters) {
+ if (!m_accept_invalid_mass_parameters)
+ {
return -1;
}
}
- if (!isValidTransformMatrix(body_T_parent_ref)) {
+ if (!isValidTransformMatrix(body_T_parent_ref))
+ {
return -1;
}
@@ -271,52 +319,63 @@ int MultiBodyTree::addBody(int body_index, int parent_index, JointType joint_typ
body_I_body, user_int, user_ptr);
}
-int MultiBodyTree::getParentIndex(const int body_index, int *parent_index) const {
+int MultiBodyTree::getParentIndex(const int body_index, int *parent_index) const
+{
return m_impl->getParentIndex(body_index, parent_index);
}
-int MultiBodyTree::getUserInt(const int body_index, int *user_int) const {
+int MultiBodyTree::getUserInt(const int body_index, int *user_int) const
+{
return m_impl->getUserInt(body_index, user_int);
}
-int MultiBodyTree::getUserPtr(const int body_index, void **user_ptr) const {
+int MultiBodyTree::getUserPtr(const int body_index, void **user_ptr) const
+{
return m_impl->getUserPtr(body_index, user_ptr);
}
-int MultiBodyTree::setUserInt(const int body_index, const int user_int) {
+int MultiBodyTree::setUserInt(const int body_index, const int user_int)
+{
return m_impl->setUserInt(body_index, user_int);
}
-int MultiBodyTree::setUserPtr(const int body_index, void *const user_ptr) {
+int MultiBodyTree::setUserPtr(const int body_index, void *const user_ptr)
+{
return m_impl->setUserPtr(body_index, user_ptr);
}
-int MultiBodyTree::finalize() {
+int MultiBodyTree::finalize()
+{
const int &num_bodies = m_init_cache->numBodies();
const int &num_dofs = m_init_cache->numDoFs();
- if(num_dofs<=0) {
- bt_id_error_message("Need num_dofs>=1, but num_dofs= %d\n", num_dofs);
- //return -1;
- }
+ if (num_dofs <= 0)
+ {
+ bt_id_error_message("Need num_dofs>=1, but num_dofs= %d\n", num_dofs);
+ //return -1;
+ }
// 1 allocate internal MultiBody structure
m_impl = new MultiBodyImpl(num_bodies, num_dofs);
// 2 build new index set assuring index(parent) < index(child)
- if (-1 == m_init_cache->buildIndexSets()) {
+ if (-1 == m_init_cache->buildIndexSets())
+ {
return -1;
}
m_init_cache->getParentIndexArray(&m_impl->m_parent_index);
// 3 setup internal kinematic and dynamic data
- for (int index = 0; index < num_bodies; index++) {
+ for (int index = 0; index < num_bodies; index++)
+ {
InertiaData inertia;
JointData joint;
- if (-1 == m_init_cache->getInertiaData(index, &inertia)) {
+ if (-1 == m_init_cache->getInertiaData(index, &inertia))
+ {
return -1;
}
- if (-1 == m_init_cache->getJointData(index, &joint)) {
+ if (-1 == m_init_cache->getJointData(index, &joint))
+ {
return -1;
}
@@ -332,24 +391,29 @@ int MultiBodyTree::finalize() {
rigid_body.m_joint_type = joint.m_type;
int user_int;
- if (-1 == m_init_cache->getUserInt(index, &user_int)) {
+ if (-1 == m_init_cache->getUserInt(index, &user_int))
+ {
return -1;
}
- if (-1 == m_impl->setUserInt(index, user_int)) {
+ if (-1 == m_impl->setUserInt(index, user_int))
+ {
return -1;
}
- void* user_ptr;
- if (-1 == m_init_cache->getUserPtr(index, &user_ptr)) {
+ void *user_ptr;
+ if (-1 == m_init_cache->getUserPtr(index, &user_ptr))
+ {
return -1;
}
- if (-1 == m_impl->setUserPtr(index, user_ptr)) {
+ if (-1 == m_impl->setUserPtr(index, user_ptr))
+ {
return -1;
}
// Set joint Jacobians. Note that the dimension is always 3x1 here to avoid variable sized
// matrices.
- switch (rigid_body.m_joint_type) {
+ switch (rigid_body.m_joint_type)
+ {
case REVOLUTE:
rigid_body.m_Jac_JR(0) = joint.m_child_axis_of_motion(0);
rigid_body.m_Jac_JR(1) = joint.m_child_axis_of_motion(1);
@@ -375,6 +439,16 @@ int MultiBodyTree::finalize() {
rigid_body.m_Jac_JT(1) = 0.0;
rigid_body.m_Jac_JT(2) = 0.0;
break;
+ case SPHERICAL:
+ // NOTE/TODO: this is not really correct.
+ // the Jacobians should be 3x3 matrices here !
+ rigid_body.m_Jac_JR(0) = 0.0;
+ rigid_body.m_Jac_JR(1) = 0.0;
+ rigid_body.m_Jac_JR(2) = 0.0;
+ rigid_body.m_Jac_JT(0) = 0.0;
+ rigid_body.m_Jac_JT(1) = 0.0;
+ rigid_body.m_Jac_JT(2) = 0.0;
+ break;
case FLOATING:
// NOTE/TODO: this is not really correct.
// the Jacobians should be 3x3 matrices here !
@@ -392,7 +466,8 @@ int MultiBodyTree::finalize() {
}
// 4 assign degree of freedom indices & build per-joint-type index arrays
- if (-1 == m_impl->generateIndexSets()) {
+ if (-1 == m_impl->generateIndexSets())
+ {
bt_id_error_message("generating index sets\n");
return -1;
}
@@ -408,54 +483,66 @@ int MultiBodyTree::finalize() {
return 0;
}
-int MultiBodyTree::setGravityInWorldFrame(const vec3 &gravity) {
+int MultiBodyTree::setGravityInWorldFrame(const vec3 &gravity)
+{
return m_impl->setGravityInWorldFrame(gravity);
}
-int MultiBodyTree::getJointType(const int body_index, JointType *joint_type) const {
+int MultiBodyTree::getJointType(const int body_index, JointType *joint_type) const
+{
return m_impl->getJointType(body_index, joint_type);
}
-int MultiBodyTree::getJointTypeStr(const int body_index, const char **joint_type) const {
+int MultiBodyTree::getJointTypeStr(const int body_index, const char **joint_type) const
+{
return m_impl->getJointTypeStr(body_index, joint_type);
}
-int MultiBodyTree::getDoFOffset(const int body_index, int *q_offset) const {
+int MultiBodyTree::getDoFOffset(const int body_index, int *q_offset) const
+{
return m_impl->getDoFOffset(body_index, q_offset);
}
-int MultiBodyTree::setBodyMass(const int body_index, idScalar mass) {
+int MultiBodyTree::setBodyMass(const int body_index, idScalar mass)
+{
return m_impl->setBodyMass(body_index, mass);
}
-int MultiBodyTree::setBodyFirstMassMoment(const int body_index, const vec3& first_mass_moment) {
+int MultiBodyTree::setBodyFirstMassMoment(const int body_index, const vec3 &first_mass_moment)
+{
return m_impl->setBodyFirstMassMoment(body_index, first_mass_moment);
}
-int MultiBodyTree::setBodySecondMassMoment(const int body_index, const mat33& second_mass_moment) {
+int MultiBodyTree::setBodySecondMassMoment(const int body_index, const mat33 &second_mass_moment)
+{
return m_impl->setBodySecondMassMoment(body_index, second_mass_moment);
}
-int MultiBodyTree::getBodyMass(const int body_index, idScalar *mass) const {
+int MultiBodyTree::getBodyMass(const int body_index, idScalar *mass) const
+{
return m_impl->getBodyMass(body_index, mass);
}
-int MultiBodyTree::getBodyFirstMassMoment(const int body_index, vec3 *first_mass_moment) const {
+int MultiBodyTree::getBodyFirstMassMoment(const int body_index, vec3 *first_mass_moment) const
+{
return m_impl->getBodyFirstMassMoment(body_index, first_mass_moment);
}
-int MultiBodyTree::getBodySecondMassMoment(const int body_index, mat33 *second_mass_moment) const {
+int MultiBodyTree::getBodySecondMassMoment(const int body_index, mat33 *second_mass_moment) const
+{
return m_impl->getBodySecondMassMoment(body_index, second_mass_moment);
}
void MultiBodyTree::clearAllUserForcesAndMoments() { m_impl->clearAllUserForcesAndMoments(); }
-int MultiBodyTree::addUserForce(const int body_index, const vec3 &body_force) {
+int MultiBodyTree::addUserForce(const int body_index, const vec3 &body_force)
+{
return m_impl->addUserForce(body_index, body_force);
}
-int MultiBodyTree::addUserMoment(const int body_index, const vec3 &body_moment) {
+int MultiBodyTree::addUserMoment(const int body_index, const vec3 &body_moment)
+{
return m_impl->addUserMoment(body_index, body_moment);
}
-}
+} // namespace btInverseDynamics
diff --git a/thirdparty/bullet/BulletInverseDynamics/MultiBodyTree.hpp b/thirdparty/bullet/BulletInverseDynamics/MultiBodyTree.hpp
index d235aa6e76..7b852f976c 100644
--- a/thirdparty/bullet/BulletInverseDynamics/MultiBodyTree.hpp
+++ b/thirdparty/bullet/BulletInverseDynamics/MultiBodyTree.hpp
@@ -4,10 +4,11 @@
#include "IDConfig.hpp"
#include "IDMath.hpp"
-namespace btInverseDynamics {
-
+namespace btInverseDynamics
+{
/// Enumeration of supported joint types
-enum JointType {
+enum JointType
+{
/// no degree of freedom, moves with parent
FIXED = 0,
/// one rotational degree of freedom relative to parent
@@ -15,7 +16,9 @@ enum JointType {
/// one translational degree of freedom relative to parent
PRISMATIC,
/// six degrees of freedom relative to parent
- FLOATING
+ FLOATING,
+ /// three degrees of freedom, relative to parent
+ SPHERICAL
};
/// Interface class for calculating inverse dynamics for tree structured
@@ -30,12 +33,14 @@ enum JointType {
/// - PRISMATIC: displacement [m]
/// - FLOATING: Euler x-y-z angles [rad] and displacement in body-fixed frame of parent [m]
/// (in that order)
+/// - SPHERICAL: Euler x-y-z angles [rad]
/// The u vector contains the generalized speeds, which are
/// - FIXED: none
/// - REVOLUTE: time derivative of angle of rotation [rad/s]
/// - PRISMATIC: time derivative of displacement [m/s]
/// - FLOATING: angular velocity [rad/s] (*not* time derivative of rpy angles)
/// and time derivative of displacement in parent frame [m/s]
+// - SPHERICAL: angular velocity [rad/s]
///
/// The q and u vectors are obtained by stacking contributions of all bodies in one
/// vector in the order of body indices.
@@ -46,12 +51,13 @@ enum JointType {
/// - PRISMATIC: force [N], along joint axis
/// - FLOATING: moment vector [Nm] and force vector [N], both in body-fixed frame
/// (in that order)
-///
+/// - SPHERICAL: moment vector [Nm]
/// TODO - force element interface (friction, springs, dampers, etc)
/// - gears and motor inertia
-class MultiBodyTree {
+class MultiBodyTree
+{
public:
- ID_DECLARE_ALIGNED_ALLOCATOR();
+ ID_DECLARE_ALIGNED_ALLOCATOR();
/// The contructor.
/// Initialization & allocation is via addBody and buildSystem calls.
MultiBodyTree();
@@ -119,9 +125,9 @@ public:
/// print tree data to stdout
void printTreeData();
/// Calculate joint forces for given generalized state & derivatives.
- /// This also updates kinematic terms computed in calculateKinematics.
- /// If gravity is not set to zero, acceleration terms will contain
- /// gravitational acceleration.
+ /// This also updates kinematic terms computed in calculateKinematics.
+ /// If gravity is not set to zero, acceleration terms will contain
+ /// gravitational acceleration.
/// @param q generalized coordinates
/// @param u generalized velocities. In the general case, u=T(q)*dot(q) and dim(q)>=dim(u)
/// @param dot_u time derivative of u
@@ -152,30 +158,28 @@ public:
/// @return -1 on error, 0 on success
int calculateMassMatrix(const vecx& q, matxx* mass_matrix);
-
- /// Calculates kinematics also calculated in calculateInverseDynamics,
- /// but not dynamics.
- /// This function ensures that correct accelerations are computed that do not
- /// contain gravitational acceleration terms.
- /// Does not calculate Jacobians, but only vector quantities (positions, velocities & accelerations)
- int calculateKinematics(const vecx& q, const vecx& u, const vecx& dot_u);
- /// Calculate position kinematics
- int calculatePositionKinematics(const vecx& q);
- /// Calculate position and velocity kinematics
- int calculatePositionAndVelocityKinematics(const vecx& q, const vecx& u);
+ /// Calculates kinematics also calculated in calculateInverseDynamics,
+ /// but not dynamics.
+ /// This function ensures that correct accelerations are computed that do not
+ /// contain gravitational acceleration terms.
+ /// Does not calculate Jacobians, but only vector quantities (positions, velocities & accelerations)
+ int calculateKinematics(const vecx& q, const vecx& u, const vecx& dot_u);
+ /// Calculate position kinematics
+ int calculatePositionKinematics(const vecx& q);
+ /// Calculate position and velocity kinematics
+ int calculatePositionAndVelocityKinematics(const vecx& q, const vecx& u);
#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS)
- /// Calculate Jacobians (dvel/du), as well as velocity-dependent accelearation components
- /// d(Jacobian)/dt*u
- /// This function assumes that calculateInverseDynamics was called, or calculateKinematics,
- /// or calculatePositionAndVelocityKinematics
- int calculateJacobians(const vecx& q, const vecx& u);
- /// Calculate Jacobians (dvel/du)
- /// This function assumes that calculateInverseDynamics was called, or
- /// one of the calculateKineamtics functions
- int calculateJacobians(const vecx& q);
-#endif // BT_ID_HAVE_MAT3X
-
+ /// Calculate Jacobians (dvel/du), as well as velocity-dependent accelearation components
+ /// d(Jacobian)/dt*u
+ /// This function assumes that calculateInverseDynamics was called, or calculateKinematics,
+ /// or calculatePositionAndVelocityKinematics
+ int calculateJacobians(const vecx& q, const vecx& u);
+ /// Calculate Jacobians (dvel/du)
+ /// This function assumes that calculateInverseDynamics was called, or
+ /// one of the calculateKineamtics functions
+ int calculateJacobians(const vecx& q);
+#endif // BT_ID_HAVE_MAT3X
/// set gravitational acceleration
/// the default is [0;0;-9.8] in the world frame
@@ -231,15 +235,15 @@ public:
int getBodyLinearAcceleration(const int body_index, vec3* world_acceleration) const;
#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS)
- // get translational jacobian, in world frame (dworld_velocity/du)
- int getBodyJacobianTrans(const int body_index, mat3x* world_jac_trans) const;
- // get rotational jacobian, in world frame (dworld_omega/du)
- int getBodyJacobianRot(const int body_index, mat3x* world_jac_rot) const;
- // get product of translational jacobian derivative * generatlized velocities
- int getBodyDotJacobianTransU(const int body_index, vec3* world_dot_jac_trans_u) const;
- // get product of rotational jacobian derivative * generatlized velocities
- int getBodyDotJacobianRotU(const int body_index, vec3* world_dot_jac_rot_u) const;
-#endif // BT_ID_HAVE_MAT3X
+ // get translational jacobian, in world frame (dworld_velocity/du)
+ int getBodyJacobianTrans(const int body_index, mat3x* world_jac_trans) const;
+ // get rotational jacobian, in world frame (dworld_omega/du)
+ int getBodyJacobianRot(const int body_index, mat3x* world_jac_rot) const;
+ // get product of translational jacobian derivative * generatlized velocities
+ int getBodyDotJacobianTransU(const int body_index, vec3* world_dot_jac_trans_u) const;
+ // get product of rotational jacobian derivative * generatlized velocities
+ int getBodyDotJacobianRotU(const int body_index, vec3* world_dot_jac_rot_u) const;
+#endif // BT_ID_HAVE_MAT3X
/// returns the (internal) index of body
/// @param body_index is the index of a body
@@ -256,21 +260,21 @@ public:
/// @param joint_type string naming the corresponding joint type
/// @return 0 on success, -1 on failure
int getJointTypeStr(const int body_index, const char** joint_type) const;
- /// get offset translation to parent body (see addBody)
+ /// get offset translation to parent body (see addBody)
/// @param body_index index of the body
/// @param r the offset translation (see above)
/// @return 0 on success, -1 on failure
- int getParentRParentBodyRef(const int body_index, vec3* r) const;
+ int getParentRParentBodyRef(const int body_index, vec3* r) const;
/// get offset rotation to parent body (see addBody)
/// @param body_index index of the body
/// @param T the transform (see above)
/// @return 0 on success, -1 on failure
- int getBodyTParentRef(const int body_index, mat33* T) const;
+ int getBodyTParentRef(const int body_index, mat33* T) const;
/// get axis of motion (see addBody)
/// @param body_index index of the body
/// @param axis the axis (see above)
/// @return 0 on success, -1 on failure
- int getBodyAxisOfMotion(const int body_index, vec3* axis) const;
+ int getBodyAxisOfMotion(const int body_index, vec3* axis) const;
/// get offset for degrees of freedom of this body into the q-vector
/// @param body_index index of the body
/// @param q_offset offset the q vector
diff --git a/thirdparty/bullet/BulletInverseDynamics/details/IDEigenInterface.hpp b/thirdparty/bullet/BulletInverseDynamics/details/IDEigenInterface.hpp
index 836395cea2..fe4f102513 100644
--- a/thirdparty/bullet/BulletInverseDynamics/details/IDEigenInterface.hpp
+++ b/thirdparty/bullet/BulletInverseDynamics/details/IDEigenInterface.hpp
@@ -1,8 +1,8 @@
#ifndef INVDYNEIGENINTERFACE_HPP_
#define INVDYNEIGENINTERFACE_HPP_
#include "../IDConfig.hpp"
-namespace btInverseDynamics {
-
+namespace btInverseDynamics
+{
#define BT_ID_HAVE_MAT3X
#ifdef BT_USE_DOUBLE_PRECISION
@@ -19,18 +19,21 @@ typedef Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::DontAlign> m
typedef Eigen::Matrix<float, 3, Eigen::Dynamic, Eigen::DontAlign> mat3x;
#endif
-inline void resize(mat3x &m, Eigen::Index size) {
- m.resize(3, size);
- m.setZero();
+inline void resize(mat3x &m, Eigen::Index size)
+{
+ m.resize(3, size);
+ m.setZero();
}
-inline void setMatxxElem(const idArrayIdx row, const idArrayIdx col, const idScalar val, matxx*m){
- (*m)(row, col) = val;
+inline void setMatxxElem(const idArrayIdx row, const idArrayIdx col, const idScalar val, matxx *m)
+{
+ (*m)(row, col) = val;
}
-inline void setMat3xElem(const idArrayIdx row, const idArrayIdx col, const idScalar val, mat3x*m){
- (*m)(row, col) = val;
+inline void setMat3xElem(const idArrayIdx row, const idArrayIdx col, const idScalar val, mat3x *m)
+{
+ (*m)(row, col) = val;
}
-}
+} // namespace btInverseDynamics
#endif // INVDYNEIGENINTERFACE_HPP_
diff --git a/thirdparty/bullet/BulletInverseDynamics/details/IDLinearMathInterface.hpp b/thirdparty/bullet/BulletInverseDynamics/details/IDLinearMathInterface.hpp
index c179daeec6..0c398a3727 100644
--- a/thirdparty/bullet/BulletInverseDynamics/details/IDLinearMathInterface.hpp
+++ b/thirdparty/bullet/BulletInverseDynamics/details/IDLinearMathInterface.hpp
@@ -10,32 +10,37 @@
#include "../../LinearMath/btMatrixX.h"
#define BT_ID_HAVE_MAT3X
-namespace btInverseDynamics {
+namespace btInverseDynamics
+{
class vec3;
class vecx;
class mat33;
typedef btMatrixX<idScalar> matxx;
-class vec3 : public btVector3 {
+class vec3 : public btVector3
+{
public:
vec3() : btVector3() {}
vec3(const btVector3& btv) { *this = btv; }
idScalar& operator()(int i) { return (*this)[i]; }
const idScalar& operator()(int i) const { return (*this)[i]; }
int size() const { return 3; }
- const vec3& operator=(const btVector3& rhs) {
+ const vec3& operator=(const btVector3& rhs)
+ {
*static_cast<btVector3*>(this) = rhs;
return *this;
}
};
-class mat33 : public btMatrix3x3 {
+class mat33 : public btMatrix3x3
+{
public:
mat33() : btMatrix3x3() {}
mat33(const btMatrix3x3& btm) { *this = btm; }
idScalar& operator()(int i, int j) { return (*this)[i][j]; }
const idScalar& operator()(int i, int j) const { return (*this)[i][j]; }
- const mat33& operator=(const btMatrix3x3& rhs) {
+ const mat33& operator=(const btMatrix3x3& rhs)
+ {
*static_cast<btMatrix3x3*>(this) = rhs;
return *this;
}
@@ -47,10 +52,12 @@ inline mat33 operator/(const mat33& a, const idScalar& s) { return a * (1.0 / s)
inline mat33 operator*(const idScalar& s, const mat33& a) { return a * s; }
-class vecx : public btVectorX<idScalar> {
+class vecx : public btVectorX<idScalar>
+{
public:
vecx(int size) : btVectorX<idScalar>(size) {}
- const vecx& operator=(const btVectorX<idScalar>& rhs) {
+ const vecx& operator=(const btVectorX<idScalar>& rhs)
+ {
*static_cast<btVectorX<idScalar>*>(this) = rhs;
return *this;
}
@@ -66,43 +73,53 @@ public:
friend vecx operator/(const vecx& a, const idScalar& s);
};
-inline vecx operator*(const vecx& a, const idScalar& s) {
+inline vecx operator*(const vecx& a, const idScalar& s)
+{
vecx result(a.size());
- for (int i = 0; i < result.size(); i++) {
+ for (int i = 0; i < result.size(); i++)
+ {
result(i) = a(i) * s;
}
return result;
}
inline vecx operator*(const idScalar& s, const vecx& a) { return a * s; }
-inline vecx operator+(const vecx& a, const vecx& b) {
+inline vecx operator+(const vecx& a, const vecx& b)
+{
vecx result(a.size());
// TODO: error handling for a.size() != b.size()??
- if (a.size() != b.size()) {
+ if (a.size() != b.size())
+ {
bt_id_error_message("size missmatch. a.size()= %d, b.size()= %d\n", a.size(), b.size());
abort();
}
- for (int i = 0; i < a.size(); i++) {
+ for (int i = 0; i < a.size(); i++)
+ {
result(i) = a(i) + b(i);
}
return result;
}
-inline vecx operator-(const vecx& a, const vecx& b) {
+inline vecx operator-(const vecx& a, const vecx& b)
+{
vecx result(a.size());
// TODO: error handling for a.size() != b.size()??
- if (a.size() != b.size()) {
+ if (a.size() != b.size())
+ {
bt_id_error_message("size missmatch. a.size()= %d, b.size()= %d\n", a.size(), b.size());
abort();
}
- for (int i = 0; i < a.size(); i++) {
+ for (int i = 0; i < a.size(); i++)
+ {
result(i) = a(i) - b(i);
}
return result;
}
-inline vecx operator/(const vecx& a, const idScalar& s) {
+inline vecx operator/(const vecx& a, const idScalar& s)
+{
vecx result(a.size());
- for (int i = 0; i < result.size(); i++) {
+ for (int i = 0; i < result.size(); i++)
+ {
result(i) = a(i) / s;
}
@@ -110,63 +127,76 @@ inline vecx operator/(const vecx& a, const idScalar& s) {
}
// use btMatrixX to implement 3xX matrix
-class mat3x : public matxx {
+class mat3x : public matxx
+{
public:
- mat3x(){}
- mat3x(const mat3x&rhs) {
- matxx::resize(rhs.rows(), rhs.cols());
- *this = rhs;
- }
- mat3x(int rows, int cols): matxx(3,cols) {
- }
- void operator=(const mat3x& rhs) {
- if (m_cols != rhs.m_cols) {
- bt_id_error_message("size missmatch, cols= %d but rhs.cols= %d\n", cols(), rhs.cols());
- abort();
+ mat3x() {}
+ mat3x(const mat3x& rhs)
+ {
+ matxx::resize(rhs.rows(), rhs.cols());
+ *this = rhs;
+ }
+ mat3x(int rows, int cols) : matxx(3, cols)
+ {
+ }
+ void operator=(const mat3x& rhs)
+ {
+ if (m_cols != rhs.m_cols)
+ {
+ bt_id_error_message("size missmatch, cols= %d but rhs.cols= %d\n", cols(), rhs.cols());
+ abort();
+ }
+ for (int i = 0; i < rows(); i++)
+ {
+ for (int k = 0; k < cols(); k++)
+ {
+ setElem(i, k, rhs(i, k));
+ }
+ }
+ }
+ void setZero()
+ {
+ matxx::setZero();
}
- for(int i=0;i<rows();i++) {
- for(int k=0;k<cols();k++) {
- setElem(i,k,rhs(i,k));
- }
- }
- }
- void setZero() {
- matxx::setZero();
- }
};
-
-inline vec3 operator*(const mat3x& a, const vecx& b) {
- vec3 result;
- if (a.cols() != b.size()) {
- bt_id_error_message("size missmatch. a.cols()= %d, b.size()= %d\n", a.cols(), b.size());
- abort();
- }
- result(0)=0.0;
- result(1)=0.0;
- result(2)=0.0;
- for(int i=0;i<b.size();i++) {
- for(int k=0;k<3;k++) {
- result(k)+=a(k,i)*b(i);
- }
- }
- return result;
+inline vec3 operator*(const mat3x& a, const vecx& b)
+{
+ vec3 result;
+ if (a.cols() != b.size())
+ {
+ bt_id_error_message("size missmatch. a.cols()= %d, b.size()= %d\n", a.cols(), b.size());
+ abort();
+ }
+ result(0) = 0.0;
+ result(1) = 0.0;
+ result(2) = 0.0;
+ for (int i = 0; i < b.size(); i++)
+ {
+ for (int k = 0; k < 3; k++)
+ {
+ result(k) += a(k, i) * b(i);
+ }
+ }
+ return result;
}
-
-inline void resize(mat3x &m, idArrayIdx size) {
- m.resize(3, size);
- m.setZero();
+inline void resize(mat3x& m, idArrayIdx size)
+{
+ m.resize(3, size);
+ m.setZero();
}
-inline void setMatxxElem(const idArrayIdx row, const idArrayIdx col, const idScalar val, matxx*m){
- m->setElem(row, col, val);
+inline void setMatxxElem(const idArrayIdx row, const idArrayIdx col, const idScalar val, matxx* m)
+{
+ m->setElem(row, col, val);
}
-inline void setMat3xElem(const idArrayIdx row, const idArrayIdx col, const idScalar val, mat3x*m){
- m->setElem(row, col, val);
+inline void setMat3xElem(const idArrayIdx row, const idArrayIdx col, const idScalar val, mat3x* m)
+{
+ m->setElem(row, col, val);
}
-}
+} // namespace btInverseDynamics
#endif // IDLINEARMATHINTERFACE_HPP_
diff --git a/thirdparty/bullet/BulletInverseDynamics/details/IDMatVec.hpp b/thirdparty/bullet/BulletInverseDynamics/details/IDMatVec.hpp
index c89db5e123..1c786095e7 100644
--- a/thirdparty/bullet/BulletInverseDynamics/details/IDMatVec.hpp
+++ b/thirdparty/bullet/BulletInverseDynamics/details/IDMatVec.hpp
@@ -7,7 +7,8 @@
#include "../IDConfig.hpp"
#define BT_ID_HAVE_MAT3X
-namespace btInverseDynamics {
+namespace btInverseDynamics
+{
class vec3;
class vecx;
class mat33;
@@ -17,7 +18,8 @@ class mat3x;
/// This is a very basic implementation to enable stand-alone use of the library.
/// The implementation is not really optimized and misses many features that you would
/// want from a "fully featured" linear math library.
-class vec3 {
+class vec3
+{
public:
idScalar& operator()(int i) { return m_data[i]; }
const idScalar& operator()(int i) const { return m_data[i]; }
@@ -40,7 +42,8 @@ private:
idScalar m_data[3];
};
-class mat33 {
+class mat33
+{
public:
idScalar& operator()(int i, int j) { return m_data[3 * i + j]; }
const idScalar& operator()(int i, int j) const { return m_data[3 * i + j]; }
@@ -62,9 +65,11 @@ private:
idScalar m_data[9];
};
-class vecx {
+class vecx
+{
public:
- vecx(int size) : m_size(size) {
+ vecx(int size) : m_size(size)
+ {
m_data = static_cast<idScalar*>(idMalloc(sizeof(idScalar) * size));
}
~vecx() { idFree(m_data); }
@@ -85,14 +90,17 @@ private:
idScalar* m_data;
};
-class matxx {
+class matxx
+{
public:
- matxx() {
- m_data = 0x0;
- m_cols=0;
- m_rows=0;
- }
- matxx(int rows, int cols) : m_rows(rows), m_cols(cols) {
+ matxx()
+ {
+ m_data = 0x0;
+ m_cols = 0;
+ m_rows = 0;
+ }
+ matxx(int rows, int cols) : m_rows(rows), m_cols(cols)
+ {
m_data = static_cast<idScalar*>(idMalloc(sizeof(idScalar) * rows * cols));
}
~matxx() { idFree(m_data); }
@@ -107,69 +115,86 @@ private:
idScalar* m_data;
};
-class mat3x {
+class mat3x
+{
public:
- mat3x() {
- m_data = 0x0;
- m_cols=0;
- }
- mat3x(const mat3x&rhs) {
- m_cols=rhs.m_cols;
- allocate();
- *this = rhs;
- }
- mat3x(int rows, int cols): m_cols(cols) {
- allocate();
- };
- void operator=(const mat3x& rhs) {
- if (m_cols != rhs.m_cols) {
- bt_id_error_message("size missmatch, cols= %d but rhs.cols= %d\n", cols(), rhs.cols());
- abort();
- }
- for(int i=0;i<3*m_cols;i++) {
- m_data[i] = rhs.m_data[i];
- }
- }
-
- ~mat3x() {
- free();
- }
- idScalar& operator()(int row, int col) { return m_data[row * m_cols + col]; }
- const idScalar& operator()(int row, int col) const { return m_data[row * m_cols + col]; }
- int rows() const { return m_rows; }
- const int& cols() const { return m_cols; }
- void resize(int rows, int cols) {
- m_cols=cols;
- free();
- allocate();
- }
- void setZero() {
- memset(m_data,0x0,sizeof(idScalar)*m_rows*m_cols);
- }
- // avoid operators that would allocate -- use functions sub/add/mul in IDMath.hpp instead
+ mat3x()
+ {
+ m_data = 0x0;
+ m_cols = 0;
+ }
+ mat3x(const mat3x& rhs)
+ {
+ m_cols = rhs.m_cols;
+ allocate();
+ *this = rhs;
+ }
+ mat3x(int rows, int cols) : m_cols(cols)
+ {
+ allocate();
+ };
+ void operator=(const mat3x& rhs)
+ {
+ if (m_cols != rhs.m_cols)
+ {
+ bt_id_error_message("size missmatch, cols= %d but rhs.cols= %d\n", cols(), rhs.cols());
+ abort();
+ }
+ for (int i = 0; i < 3 * m_cols; i++)
+ {
+ m_data[i] = rhs.m_data[i];
+ }
+ }
+
+ ~mat3x()
+ {
+ free();
+ }
+ idScalar& operator()(int row, int col) { return m_data[row * m_cols + col]; }
+ const idScalar& operator()(int row, int col) const { return m_data[row * m_cols + col]; }
+ int rows() const { return m_rows; }
+ const int& cols() const { return m_cols; }
+ void resize(int rows, int cols)
+ {
+ m_cols = cols;
+ free();
+ allocate();
+ }
+ void setZero()
+ {
+ memset(m_data, 0x0, sizeof(idScalar) * m_rows * m_cols);
+ }
+ // avoid operators that would allocate -- use functions sub/add/mul in IDMath.hpp instead
private:
- void allocate(){m_data = static_cast<idScalar*>(idMalloc(sizeof(idScalar) * m_rows * m_cols));}
- void free() { idFree(m_data);}
- enum {m_rows=3};
- int m_cols;
- idScalar* m_data;
+ void allocate() { m_data = static_cast<idScalar*>(idMalloc(sizeof(idScalar) * m_rows * m_cols)); }
+ void free() { idFree(m_data); }
+ enum
+ {
+ m_rows = 3
+ };
+ int m_cols;
+ idScalar* m_data;
};
-inline void resize(mat3x &m, idArrayIdx size) {
- m.resize(3, size);
- m.setZero();
+inline void resize(mat3x& m, idArrayIdx size)
+{
+ m.resize(3, size);
+ m.setZero();
}
//////////////////////////////////////////////////
// Implementations
-inline const vec3& vec3::operator=(const vec3& rhs) {
- if (&rhs != this) {
+inline const vec3& vec3::operator=(const vec3& rhs)
+{
+ if (&rhs != this)
+ {
memcpy(m_data, rhs.m_data, 3 * sizeof(idScalar));
}
return *this;
}
-inline vec3 vec3::cross(const vec3& b) const {
+inline vec3 vec3::cross(const vec3& b) const
+{
vec3 result;
result.m_data[0] = m_data[1] * b.m_data[2] - m_data[2] * b.m_data[1];
result.m_data[1] = m_data[2] * b.m_data[0] - m_data[0] * b.m_data[2];
@@ -178,17 +203,21 @@ inline vec3 vec3::cross(const vec3& b) const {
return result;
}
-inline idScalar vec3::dot(const vec3& b) const {
+inline idScalar vec3::dot(const vec3& b) const
+{
return m_data[0] * b.m_data[0] + m_data[1] * b.m_data[1] + m_data[2] * b.m_data[2];
}
-inline const mat33& mat33::operator=(const mat33& rhs) {
- if (&rhs != this) {
+inline const mat33& mat33::operator=(const mat33& rhs)
+{
+ if (&rhs != this)
+ {
memcpy(m_data, rhs.m_data, 9 * sizeof(idScalar));
}
return *this;
}
-inline mat33 mat33::transpose() const {
+inline mat33 mat33::transpose() const
+{
mat33 result;
result.m_data[0] = m_data[0];
result.m_data[1] = m_data[3];
@@ -203,7 +232,8 @@ inline mat33 mat33::transpose() const {
return result;
}
-inline mat33 operator*(const mat33& a, const mat33& b) {
+inline mat33 operator*(const mat33& a, const mat33& b)
+{
mat33 result;
result.m_data[0] =
a.m_data[0] * b.m_data[0] + a.m_data[1] * b.m_data[3] + a.m_data[2] * b.m_data[6];
@@ -227,22 +257,27 @@ inline mat33 operator*(const mat33& a, const mat33& b) {
return result;
}
-inline const mat33& mat33::operator+=(const mat33& b) {
- for (int i = 0; i < 9; i++) {
+inline const mat33& mat33::operator+=(const mat33& b)
+{
+ for (int i = 0; i < 9; i++)
+ {
m_data[i] += b.m_data[i];
}
return *this;
}
-inline const mat33& mat33::operator-=(const mat33& b) {
- for (int i = 0; i < 9; i++) {
+inline const mat33& mat33::operator-=(const mat33& b)
+{
+ for (int i = 0; i < 9; i++)
+ {
m_data[i] -= b.m_data[i];
}
return *this;
}
-inline vec3 operator*(const mat33& a, const vec3& b) {
+inline vec3 operator*(const mat33& a, const vec3& b)
+{
vec3 result;
result.m_data[0] =
@@ -255,23 +290,29 @@ inline vec3 operator*(const mat33& a, const vec3& b) {
return result;
}
-inline const vec3& vec3::operator+=(const vec3& b) {
- for (int i = 0; i < 3; i++) {
+inline const vec3& vec3::operator+=(const vec3& b)
+{
+ for (int i = 0; i < 3; i++)
+ {
m_data[i] += b.m_data[i];
}
return *this;
}
-inline const vec3& vec3::operator-=(const vec3& b) {
- for (int i = 0; i < 3; i++) {
+inline const vec3& vec3::operator-=(const vec3& b)
+{
+ for (int i = 0; i < 3; i++)
+ {
m_data[i] -= b.m_data[i];
}
return *this;
}
-inline mat33 operator*(const mat33& a, const idScalar& s) {
+inline mat33 operator*(const mat33& a, const idScalar& s)
+{
mat33 result;
- for (int i = 0; i < 9; i++) {
+ for (int i = 0; i < 9; i++)
+ {
result.m_data[i] = a.m_data[i] * s;
}
return result;
@@ -279,137 +320,170 @@ inline mat33 operator*(const mat33& a, const idScalar& s) {
inline mat33 operator*(const idScalar& s, const mat33& a) { return a * s; }
-inline vec3 operator*(const vec3& a, const idScalar& s) {
+inline vec3 operator*(const vec3& a, const idScalar& s)
+{
vec3 result;
- for (int i = 0; i < 3; i++) {
+ for (int i = 0; i < 3; i++)
+ {
result.m_data[i] = a.m_data[i] * s;
}
return result;
}
inline vec3 operator*(const idScalar& s, const vec3& a) { return a * s; }
-inline mat33 operator+(const mat33& a, const mat33& b) {
+inline mat33 operator+(const mat33& a, const mat33& b)
+{
mat33 result;
- for (int i = 0; i < 9; i++) {
+ for (int i = 0; i < 9; i++)
+ {
result.m_data[i] = a.m_data[i] + b.m_data[i];
}
return result;
}
-inline vec3 operator+(const vec3& a, const vec3& b) {
+inline vec3 operator+(const vec3& a, const vec3& b)
+{
vec3 result;
- for (int i = 0; i < 3; i++) {
+ for (int i = 0; i < 3; i++)
+ {
result.m_data[i] = a.m_data[i] + b.m_data[i];
}
return result;
}
-inline mat33 operator-(const mat33& a, const mat33& b) {
+inline mat33 operator-(const mat33& a, const mat33& b)
+{
mat33 result;
- for (int i = 0; i < 9; i++) {
+ for (int i = 0; i < 9; i++)
+ {
result.m_data[i] = a.m_data[i] - b.m_data[i];
}
return result;
}
-inline vec3 operator-(const vec3& a, const vec3& b) {
+inline vec3 operator-(const vec3& a, const vec3& b)
+{
vec3 result;
- for (int i = 0; i < 3; i++) {
+ for (int i = 0; i < 3; i++)
+ {
result.m_data[i] = a.m_data[i] - b.m_data[i];
}
return result;
}
-inline mat33 operator/(const mat33& a, const idScalar& s) {
+inline mat33 operator/(const mat33& a, const idScalar& s)
+{
mat33 result;
- for (int i = 0; i < 9; i++) {
+ for (int i = 0; i < 9; i++)
+ {
result.m_data[i] = a.m_data[i] / s;
}
return result;
}
-inline vec3 operator/(const vec3& a, const idScalar& s) {
+inline vec3 operator/(const vec3& a, const idScalar& s)
+{
vec3 result;
- for (int i = 0; i < 3; i++) {
+ for (int i = 0; i < 3; i++)
+ {
result.m_data[i] = a.m_data[i] / s;
}
return result;
}
-inline const vecx& vecx::operator=(const vecx& rhs) {
- if (size() != rhs.size()) {
+inline const vecx& vecx::operator=(const vecx& rhs)
+{
+ if (size() != rhs.size())
+ {
bt_id_error_message("size missmatch, size()= %d but rhs.size()= %d\n", size(), rhs.size());
abort();
}
- if (&rhs != this) {
+ if (&rhs != this)
+ {
memcpy(m_data, rhs.m_data, rhs.size() * sizeof(idScalar));
}
return *this;
}
-inline vecx operator*(const vecx& a, const idScalar& s) {
+inline vecx operator*(const vecx& a, const idScalar& s)
+{
vecx result(a.size());
- for (int i = 0; i < result.size(); i++) {
+ for (int i = 0; i < result.size(); i++)
+ {
result.m_data[i] = a.m_data[i] * s;
}
return result;
}
inline vecx operator*(const idScalar& s, const vecx& a) { return a * s; }
-inline vecx operator+(const vecx& a, const vecx& b) {
+inline vecx operator+(const vecx& a, const vecx& b)
+{
vecx result(a.size());
// TODO: error handling for a.size() != b.size()??
- if (a.size() != b.size()) {
+ if (a.size() != b.size())
+ {
bt_id_error_message("size missmatch. a.size()= %d, b.size()= %d\n", a.size(), b.size());
abort();
}
- for (int i = 0; i < a.size(); i++) {
+ for (int i = 0; i < a.size(); i++)
+ {
result.m_data[i] = a.m_data[i] + b.m_data[i];
}
return result;
}
-inline vecx operator-(const vecx& a, const vecx& b) {
+inline vecx operator-(const vecx& a, const vecx& b)
+{
vecx result(a.size());
// TODO: error handling for a.size() != b.size()??
- if (a.size() != b.size()) {
+ if (a.size() != b.size())
+ {
bt_id_error_message("size missmatch. a.size()= %d, b.size()= %d\n", a.size(), b.size());
abort();
}
- for (int i = 0; i < a.size(); i++) {
+ for (int i = 0; i < a.size(); i++)
+ {
result.m_data[i] = a.m_data[i] - b.m_data[i];
}
return result;
}
-inline vecx operator/(const vecx& a, const idScalar& s) {
+inline vecx operator/(const vecx& a, const idScalar& s)
+{
vecx result(a.size());
- for (int i = 0; i < result.size(); i++) {
+ for (int i = 0; i < result.size(); i++)
+ {
result.m_data[i] = a.m_data[i] / s;
}
return result;
}
-inline vec3 operator*(const mat3x& a, const vecx& b) {
- vec3 result;
- if (a.cols() != b.size()) {
- bt_id_error_message("size missmatch. a.cols()= %d, b.size()= %d\n", a.cols(), b.size());
- abort();
- }
- result(0)=0.0;
- result(1)=0.0;
- result(2)=0.0;
- for(int i=0;i<b.size();i++) {
- for(int k=0;k<3;k++) {
- result(k)+=a(k,i)*b(i);
- }
- }
- return result;
+inline vec3 operator*(const mat3x& a, const vecx& b)
+{
+ vec3 result;
+ if (a.cols() != b.size())
+ {
+ bt_id_error_message("size missmatch. a.cols()= %d, b.size()= %d\n", a.cols(), b.size());
+ abort();
+ }
+ result(0) = 0.0;
+ result(1) = 0.0;
+ result(2) = 0.0;
+ for (int i = 0; i < b.size(); i++)
+ {
+ for (int k = 0; k < 3; k++)
+ {
+ result(k) += a(k, i) * b(i);
+ }
+ }
+ return result;
}
-inline void setMatxxElem(const idArrayIdx row, const idArrayIdx col, const idScalar val, matxx*m){
- (*m)(row, col) = val;
+inline void setMatxxElem(const idArrayIdx row, const idArrayIdx col, const idScalar val, matxx* m)
+{
+ (*m)(row, col) = val;
}
-inline void setMat3xElem(const idArrayIdx row, const idArrayIdx col, const idScalar val, mat3x*m){
- (*m)(row, col) = val;
+inline void setMat3xElem(const idArrayIdx row, const idArrayIdx col, const idScalar val, mat3x* m)
+{
+ (*m)(row, col) = val;
}
-} // namespace btInverseDynamcis
+} // namespace btInverseDynamics
#endif
diff --git a/thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeImpl.cpp b/thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeImpl.cpp
index e8563238c3..befbc2e2a4 100644
--- a/thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeImpl.cpp
+++ b/thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeImpl.cpp
@@ -1,16 +1,16 @@
#include "MultiBodyTreeImpl.hpp"
-namespace btInverseDynamics {
-
+namespace btInverseDynamics
+{
MultiBodyTree::MultiBodyImpl::MultiBodyImpl(int num_bodies_, int num_dofs_)
: m_num_bodies(num_bodies_), m_num_dofs(num_dofs_)
#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS)
- ,m_m3x(3,m_num_dofs)
+ ,
+ m_m3x(3, m_num_dofs)
#endif
{
-
#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS)
- resize(m_m3x,m_num_dofs);
+ resize(m_m3x, m_num_dofs);
#endif
m_body_list.resize(num_bodies_);
m_parent_index.resize(num_bodies_);
@@ -23,8 +23,10 @@ MultiBodyTree::MultiBodyImpl::MultiBodyImpl(int num_bodies_, int num_dofs_)
m_world_gravity(2) = -9.8;
}
-const char *MultiBodyTree::MultiBodyImpl::jointTypeToString(const JointType &type) const {
- switch (type) {
+const char *MultiBodyTree::MultiBodyImpl::jointTypeToString(const JointType &type) const
+{
+ switch (type)
+ {
case FIXED:
return "fixed";
case REVOLUTE:
@@ -33,22 +35,28 @@ const char *MultiBodyTree::MultiBodyImpl::jointTypeToString(const JointType &typ
return "prismatic";
case FLOATING:
return "floating";
+ case SPHERICAL:
+ return "spherical";
}
return "error: invalid";
}
-inline void indent(const int &level) {
+inline void indent(const int &level)
+{
for (int j = 0; j < level; j++)
id_printf(" "); // indent
}
-void MultiBodyTree::MultiBodyImpl::printTree() {
+void MultiBodyTree::MultiBodyImpl::printTree()
+{
id_printf("body %.2d[%s]: root\n", 0, jointTypeToString(m_body_list[0].m_joint_type));
printTree(0, 0);
}
-void MultiBodyTree::MultiBodyImpl::printTreeData() {
- for (idArrayIdx i = 0; i < m_body_list.size(); i++) {
+void MultiBodyTree::MultiBodyImpl::printTreeData()
+{
+ for (idArrayIdx i = 0; i < m_body_list.size(); i++)
+ {
RigidBody &body = m_body_list[i];
id_printf("body: %d\n", static_cast<int>(i));
id_printf("type: %s\n", jointTypeToString(body.m_joint_type));
@@ -59,19 +67,22 @@ void MultiBodyTree::MultiBodyImpl::printTreeData() {
id_printf("mass = %f\n", body.m_mass);
id_printf("mass * com = [%f %f %f]\n", body.m_body_mass_com(0), body.m_body_mass_com(1),
body.m_body_mass_com(2));
- id_printf("I_o= [%f %f %f;\n"
- " %f %f %f;\n"
- " %f %f %f]\n",
- body.m_body_I_body(0, 0), body.m_body_I_body(0, 1), body.m_body_I_body(0, 2),
- body.m_body_I_body(1, 0), body.m_body_I_body(1, 1), body.m_body_I_body(1, 2),
- body.m_body_I_body(2, 0), body.m_body_I_body(2, 1), body.m_body_I_body(2, 2));
+ id_printf(
+ "I_o= [%f %f %f;\n"
+ " %f %f %f;\n"
+ " %f %f %f]\n",
+ body.m_body_I_body(0, 0), body.m_body_I_body(0, 1), body.m_body_I_body(0, 2),
+ body.m_body_I_body(1, 0), body.m_body_I_body(1, 1), body.m_body_I_body(1, 2),
+ body.m_body_I_body(2, 0), body.m_body_I_body(2, 1), body.m_body_I_body(2, 2));
id_printf("parent_pos_parent_body_ref= [%f %f %f]\n", body.m_parent_pos_parent_body_ref(0),
body.m_parent_pos_parent_body_ref(1), body.m_parent_pos_parent_body_ref(2));
}
}
-int MultiBodyTree::MultiBodyImpl::bodyNumDoFs(const JointType &type) const {
- switch (type) {
+int MultiBodyTree::MultiBodyImpl::bodyNumDoFs(const JointType &type) const
+{
+ switch (type)
+ {
case FIXED:
return 0;
case REVOLUTE:
@@ -79,12 +90,15 @@ int MultiBodyTree::MultiBodyImpl::bodyNumDoFs(const JointType &type) const {
return 1;
case FLOATING:
return 6;
+ case SPHERICAL:
+ return 3;
}
bt_id_error_message("unknown joint type %d\n", type);
return 0;
}
-void MultiBodyTree::MultiBodyImpl::printTree(int index, int indentation) {
+void MultiBodyTree::MultiBodyImpl::printTree(int index, int indentation)
+{
// this is adapted from URDF2Bullet.
// TODO: fix this and print proper graph (similar to git --log --graph)
int num_children = m_child_indices[index].size();
@@ -92,7 +106,8 @@ void MultiBodyTree::MultiBodyImpl::printTree(int index, int indentation) {
indentation += 2;
int count = 0;
- for (int i = 0; i < num_children; i++) {
+ for (int i = 0; i < num_children; i++)
+ {
int child_index = m_child_indices[index][i];
indent(indentation);
id_printf("body %.2d[%s]: %.2d is child no. %d (qi= %d .. %d) \n", index,
@@ -104,19 +119,23 @@ void MultiBodyTree::MultiBodyImpl::printTree(int index, int indentation) {
}
}
-int MultiBodyTree::MultiBodyImpl::setGravityInWorldFrame(const vec3 &gravity) {
+int MultiBodyTree::MultiBodyImpl::setGravityInWorldFrame(const vec3 &gravity)
+{
m_world_gravity = gravity;
return 0;
}
-int MultiBodyTree::MultiBodyImpl::generateIndexSets() {
+int MultiBodyTree::MultiBodyImpl::generateIndexSets()
+{
m_body_revolute_list.resize(0);
m_body_prismatic_list.resize(0);
int q_index = 0;
- for (idArrayIdx i = 0; i < m_body_list.size(); i++) {
+ for (idArrayIdx i = 0; i < m_body_list.size(); i++)
+ {
RigidBody &body = m_body_list[i];
body.m_q_index = -1;
- switch (body.m_joint_type) {
+ switch (body.m_joint_type)
+ {
case REVOLUTE:
m_body_revolute_list.push_back(i);
body.m_q_index = q_index;
@@ -135,28 +154,41 @@ int MultiBodyTree::MultiBodyImpl::generateIndexSets() {
body.m_q_index = q_index;
q_index += 6;
break;
+ case SPHERICAL:
+ m_body_spherical_list.push_back(i);
+ body.m_q_index = q_index;
+ q_index += 3;
+ break;
default:
bt_id_error_message("unsupported joint type %d\n", body.m_joint_type);
return -1;
}
}
// sanity check
- if (q_index != m_num_dofs) {
+ if (q_index != m_num_dofs)
+ {
bt_id_error_message("internal error, q_index= %d but num_dofs %d\n", q_index, m_num_dofs);
return -1;
}
m_child_indices.resize(m_body_list.size());
- for (idArrayIdx child = 1; child < m_parent_index.size(); child++) {
+ for (idArrayIdx child = 1; child < m_parent_index.size(); child++)
+ {
const int &parent = m_parent_index[child];
- if (parent >= 0 && parent < (static_cast<int>(m_parent_index.size()) - 1)) {
+ if (parent >= 0 && parent < (static_cast<int>(m_parent_index.size()) - 1))
+ {
m_child_indices[parent].push_back(child);
- } else {
- if (-1 == parent) {
+ }
+ else
+ {
+ if (-1 == parent)
+ {
// multiple bodies are directly linked to the environment, ie, not a single root
bt_id_error_message("building index sets parent(%zu)= -1 (multiple roots)\n", child);
- } else {
+ }
+ else
+ {
// should never happen
bt_id_error_message(
"building index sets. parent_index[%zu]= %d, but m_parent_index.size()= %d\n",
@@ -169,11 +201,14 @@ int MultiBodyTree::MultiBodyImpl::generateIndexSets() {
return 0;
}
-void MultiBodyTree::MultiBodyImpl::calculateStaticData() {
+void MultiBodyTree::MultiBodyImpl::calculateStaticData()
+{
// relative kinematics that are not a function of q, u, dot_u
- for (idArrayIdx i = 0; i < m_body_list.size(); i++) {
+ for (idArrayIdx i = 0; i < m_body_list.size(); i++)
+ {
RigidBody &body = m_body_list[i];
- switch (body.m_joint_type) {
+ switch (body.m_joint_type)
+ {
case REVOLUTE:
body.m_parent_vel_rel(0) = 0;
body.m_parent_vel_rel(1) = 0;
@@ -212,41 +247,56 @@ void MultiBodyTree::MultiBodyImpl::calculateStaticData() {
case FLOATING:
// no static data
break;
+ case SPHERICAL:
+ //todo: review
+ body.m_parent_pos_parent_body = body.m_parent_pos_parent_body_ref;
+ body.m_parent_vel_rel(0) = 0;
+ body.m_parent_vel_rel(1) = 0;
+ body.m_parent_vel_rel(2) = 0;
+ body.m_parent_acc_rel(0) = 0;
+ body.m_parent_acc_rel(1) = 0;
+ body.m_parent_acc_rel(2) = 0;
+ break;
}
- // resize & initialize jacobians to zero.
+ // resize & initialize jacobians to zero.
#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS)
- body.m_body_dot_Jac_T_u(0) = 0.0;
- body.m_body_dot_Jac_T_u(1) = 0.0;
- body.m_body_dot_Jac_T_u(2) = 0.0;
- body.m_body_dot_Jac_R_u(0) = 0.0;
- body.m_body_dot_Jac_R_u(1) = 0.0;
- body.m_body_dot_Jac_R_u(2) = 0.0;
- resize(body.m_body_Jac_T,m_num_dofs);
- resize(body.m_body_Jac_R,m_num_dofs);
- body.m_body_Jac_T.setZero();
- body.m_body_Jac_R.setZero();
-#endif //
+ body.m_body_dot_Jac_T_u(0) = 0.0;
+ body.m_body_dot_Jac_T_u(1) = 0.0;
+ body.m_body_dot_Jac_T_u(2) = 0.0;
+ body.m_body_dot_Jac_R_u(0) = 0.0;
+ body.m_body_dot_Jac_R_u(1) = 0.0;
+ body.m_body_dot_Jac_R_u(2) = 0.0;
+ resize(body.m_body_Jac_T, m_num_dofs);
+ resize(body.m_body_Jac_R, m_num_dofs);
+ body.m_body_Jac_T.setZero();
+ body.m_body_Jac_R.setZero();
+#endif //
}
}
int MultiBodyTree::MultiBodyImpl::calculateInverseDynamics(const vecx &q, const vecx &u,
- const vecx &dot_u, vecx *joint_forces) {
+ const vecx &dot_u, vecx *joint_forces)
+{
if (q.size() != m_num_dofs || u.size() != m_num_dofs || dot_u.size() != m_num_dofs ||
- joint_forces->size() != m_num_dofs) {
- bt_id_error_message("wrong vector dimension. system has %d DOFs,\n"
- "but dim(q)= %d, dim(u)= %d, dim(dot_u)= %d, dim(joint_forces)= %d\n",
- m_num_dofs, static_cast<int>(q.size()), static_cast<int>(u.size()),
- static_cast<int>(dot_u.size()), static_cast<int>(joint_forces->size()));
+ joint_forces->size() != m_num_dofs)
+ {
+ bt_id_error_message(
+ "wrong vector dimension. system has %d DOFs,\n"
+ "but dim(q)= %d, dim(u)= %d, dim(dot_u)= %d, dim(joint_forces)= %d\n",
+ m_num_dofs, static_cast<int>(q.size()), static_cast<int>(u.size()),
+ static_cast<int>(dot_u.size()), static_cast<int>(joint_forces->size()));
return -1;
}
// 1. relative kinematics
- if(-1 == calculateKinematics(q,u,dot_u, POSITION_VELOCITY_ACCELERATION)) {
- bt_id_error_message("error in calculateKinematics\n");
- return -1;
- }
- // 2. update contributions to equations of motion for every body.
- for (idArrayIdx i = 0; i < m_body_list.size(); i++) {
+ if (-1 == calculateKinematics(q, u, dot_u, POSITION_VELOCITY_ACCELERATION))
+ {
+ bt_id_error_message("error in calculateKinematics\n");
+ return -1;
+ }
+ // 2. update contributions to equations of motion for every body.
+ for (idArrayIdx i = 0; i < m_body_list.size(); i++)
+ {
RigidBody &body = m_body_list[i];
// 3.4 update dynamic terms (rate of change of angular & linear momentum)
body.m_eom_lhs_rotational =
@@ -268,14 +318,16 @@ int MultiBodyTree::MultiBodyImpl::calculateInverseDynamics(const vecx &q, const
// Also, this enables adding zero weight bodies as a way to calculate frame poses
// for force elements, etc.
- for (int body_idx = m_body_list.size() - 1; body_idx >= 0; body_idx--) {
+ for (int body_idx = m_body_list.size() - 1; body_idx >= 0; body_idx--)
+ {
// sum of forces and moments acting on this body from its children
vec3 sum_f_children;
vec3 sum_m_children;
setZero(sum_f_children);
setZero(sum_m_children);
for (idArrayIdx child_list_idx = 0; child_list_idx < m_child_indices[body_idx].size();
- child_list_idx++) {
+ child_list_idx++)
+ {
const RigidBody &child = m_body_list[m_child_indices[body_idx][child_list_idx]];
vec3 child_joint_force_in_this_frame =
child.m_body_T_parent.transpose() * child.m_force_at_joint;
@@ -293,19 +345,22 @@ int MultiBodyTree::MultiBodyImpl::calculateInverseDynamics(const vecx &q, const
// These are the components of force_at_joint/moment_at_joint
// in the free directions given by Jac_JT/Jac_JR
// 4.1 revolute joints
- for (idArrayIdx i = 0; i < m_body_revolute_list.size(); i++) {
+ for (idArrayIdx i = 0; i < m_body_revolute_list.size(); i++)
+ {
RigidBody &body = m_body_list[m_body_revolute_list[i]];
// (*joint_forces)(body.m_q_index) = body.m_Jac_JR.transpose() * body.m_moment_at_joint;
(*joint_forces)(body.m_q_index) = body.m_Jac_JR.dot(body.m_moment_at_joint);
}
// 4.2 for prismatic joints
- for (idArrayIdx i = 0; i < m_body_prismatic_list.size(); i++) {
+ for (idArrayIdx i = 0; i < m_body_prismatic_list.size(); i++)
+ {
RigidBody &body = m_body_list[m_body_prismatic_list[i]];
// (*joint_forces)(body.m_q_index) = body.m_Jac_JT.transpose() * body.m_force_at_joint;
(*joint_forces)(body.m_q_index) = body.m_Jac_JT.dot(body.m_force_at_joint);
}
// 4.3 floating bodies (6-DoF joints)
- for (idArrayIdx i = 0; i < m_body_floating_list.size(); i++) {
+ for (idArrayIdx i = 0; i < m_body_floating_list.size(); i++)
+ {
RigidBody &body = m_body_list[m_body_floating_list[i]];
(*joint_forces)(body.m_q_index + 0) = body.m_moment_at_joint(0);
(*joint_forces)(body.m_q_index + 1) = body.m_moment_at_joint(1);
@@ -316,84 +371,133 @@ int MultiBodyTree::MultiBodyImpl::calculateInverseDynamics(const vecx &q, const
(*joint_forces)(body.m_q_index + 5) = body.m_force_at_joint(2);
}
+ // 4.4 spherical bodies (3-DoF joints)
+ for (idArrayIdx i = 0; i < m_body_spherical_list.size(); i++)
+ {
+ //todo: review
+ RigidBody &body = m_body_list[m_body_spherical_list[i]];
+ (*joint_forces)(body.m_q_index + 0) = body.m_moment_at_joint(0);
+ (*joint_forces)(body.m_q_index + 1) = body.m_moment_at_joint(1);
+ (*joint_forces)(body.m_q_index + 2) = body.m_moment_at_joint(2);
+ }
return 0;
}
-int MultiBodyTree::MultiBodyImpl::calculateKinematics(const vecx &q, const vecx &u, const vecx& dot_u,
- const KinUpdateType type) {
- if (q.size() != m_num_dofs || u.size() != m_num_dofs || dot_u.size() != m_num_dofs ) {
- bt_id_error_message("wrong vector dimension. system has %d DOFs,\n"
- "but dim(q)= %d, dim(u)= %d, dim(dot_u)= %d\n",
- m_num_dofs, static_cast<int>(q.size()), static_cast<int>(u.size()),
- static_cast<int>(dot_u.size()));
+int MultiBodyTree::MultiBodyImpl::calculateKinematics(const vecx &q, const vecx &u, const vecx &dot_u,
+ const KinUpdateType type)
+{
+ if (q.size() != m_num_dofs || u.size() != m_num_dofs || dot_u.size() != m_num_dofs)
+ {
+ bt_id_error_message(
+ "wrong vector dimension. system has %d DOFs,\n"
+ "but dim(q)= %d, dim(u)= %d, dim(dot_u)= %d\n",
+ m_num_dofs, static_cast<int>(q.size()), static_cast<int>(u.size()),
+ static_cast<int>(dot_u.size()));
+ return -1;
+ }
+ if (type != POSITION_ONLY && type != POSITION_VELOCITY && type != POSITION_VELOCITY_ACCELERATION)
+ {
+ bt_id_error_message("invalid type %d\n", type);
return -1;
}
- if(type != POSITION_ONLY && type != POSITION_VELOCITY && type != POSITION_VELOCITY_ACCELERATION) {
- bt_id_error_message("invalid type %d\n", type);
- return -1;
- }
// 1. update relative kinematics
// 1.1 for revolute
- for (idArrayIdx i = 0; i < m_body_revolute_list.size(); i++) {
+ for (idArrayIdx i = 0; i < m_body_revolute_list.size(); i++)
+ {
RigidBody &body = m_body_list[m_body_revolute_list[i]];
mat33 T;
bodyTParentFromAxisAngle(body.m_Jac_JR, q(body.m_q_index), &T);
body.m_body_T_parent = T * body.m_body_T_parent_ref;
- if(type >= POSITION_VELOCITY) {
- body.m_body_ang_vel_rel = body.m_Jac_JR * u(body.m_q_index);
- }
- if(type >= POSITION_VELOCITY_ACCELERATION) {
- body.m_body_ang_acc_rel = body.m_Jac_JR * dot_u(body.m_q_index);
- }
+ if (type >= POSITION_VELOCITY)
+ {
+ body.m_body_ang_vel_rel = body.m_Jac_JR * u(body.m_q_index);
+ }
+ if (type >= POSITION_VELOCITY_ACCELERATION)
+ {
+ body.m_body_ang_acc_rel = body.m_Jac_JR * dot_u(body.m_q_index);
+ }
}
// 1.2 for prismatic
- for (idArrayIdx i = 0; i < m_body_prismatic_list.size(); i++) {
+ for (idArrayIdx i = 0; i < m_body_prismatic_list.size(); i++)
+ {
RigidBody &body = m_body_list[m_body_prismatic_list[i]];
body.m_parent_pos_parent_body =
body.m_parent_pos_parent_body_ref + body.m_parent_Jac_JT * q(body.m_q_index);
- if(type >= POSITION_VELOCITY) {
- body.m_parent_vel_rel =
- body.m_body_T_parent_ref.transpose() * body.m_Jac_JT * u(body.m_q_index);
- }
- if(type >= POSITION_VELOCITY_ACCELERATION) {
- body.m_parent_acc_rel = body.m_parent_Jac_JT * dot_u(body.m_q_index);
- }
+ if (type >= POSITION_VELOCITY)
+ {
+ body.m_parent_vel_rel =
+ body.m_body_T_parent_ref.transpose() * body.m_Jac_JT * u(body.m_q_index);
+ }
+ if (type >= POSITION_VELOCITY_ACCELERATION)
+ {
+ body.m_parent_acc_rel = body.m_parent_Jac_JT * dot_u(body.m_q_index);
+ }
}
// 1.3 fixed joints: nothing to do
// 1.4 6dof joints:
- for (idArrayIdx i = 0; i < m_body_floating_list.size(); i++) {
+ for (idArrayIdx i = 0; i < m_body_floating_list.size(); i++)
+ {
RigidBody &body = m_body_list[m_body_floating_list[i]];
body.m_body_T_parent = transformZ(q(body.m_q_index + 2)) *
- transformY(q(body.m_q_index + 1)) * transformX(q(body.m_q_index));
+ transformY(q(body.m_q_index + 1)) *
+ transformX(q(body.m_q_index));
body.m_parent_pos_parent_body(0) = q(body.m_q_index + 3);
body.m_parent_pos_parent_body(1) = q(body.m_q_index + 4);
body.m_parent_pos_parent_body(2) = q(body.m_q_index + 5);
body.m_parent_pos_parent_body = body.m_body_T_parent * body.m_parent_pos_parent_body;
- if(type >= POSITION_VELOCITY) {
- body.m_body_ang_vel_rel(0) = u(body.m_q_index + 0);
- body.m_body_ang_vel_rel(1) = u(body.m_q_index + 1);
- body.m_body_ang_vel_rel(2) = u(body.m_q_index + 2);
+ if (type >= POSITION_VELOCITY)
+ {
+ body.m_body_ang_vel_rel(0) = u(body.m_q_index + 0);
+ body.m_body_ang_vel_rel(1) = u(body.m_q_index + 1);
+ body.m_body_ang_vel_rel(2) = u(body.m_q_index + 2);
- body.m_parent_vel_rel(0) = u(body.m_q_index + 3);
- body.m_parent_vel_rel(1) = u(body.m_q_index + 4);
- body.m_parent_vel_rel(2) = u(body.m_q_index + 5);
+ body.m_parent_vel_rel(0) = u(body.m_q_index + 3);
+ body.m_parent_vel_rel(1) = u(body.m_q_index + 4);
+ body.m_parent_vel_rel(2) = u(body.m_q_index + 5);
- body.m_parent_vel_rel = body.m_body_T_parent.transpose() * body.m_parent_vel_rel;
- }
- if(type >= POSITION_VELOCITY_ACCELERATION) {
- body.m_body_ang_acc_rel(0) = dot_u(body.m_q_index + 0);
- body.m_body_ang_acc_rel(1) = dot_u(body.m_q_index + 1);
- body.m_body_ang_acc_rel(2) = dot_u(body.m_q_index + 2);
+ body.m_parent_vel_rel = body.m_body_T_parent.transpose() * body.m_parent_vel_rel;
+ }
+ if (type >= POSITION_VELOCITY_ACCELERATION)
+ {
+ body.m_body_ang_acc_rel(0) = dot_u(body.m_q_index + 0);
+ body.m_body_ang_acc_rel(1) = dot_u(body.m_q_index + 1);
+ body.m_body_ang_acc_rel(2) = dot_u(body.m_q_index + 2);
- body.m_parent_acc_rel(0) = dot_u(body.m_q_index + 3);
- body.m_parent_acc_rel(1) = dot_u(body.m_q_index + 4);
- body.m_parent_acc_rel(2) = dot_u(body.m_q_index + 5);
+ body.m_parent_acc_rel(0) = dot_u(body.m_q_index + 3);
+ body.m_parent_acc_rel(1) = dot_u(body.m_q_index + 4);
+ body.m_parent_acc_rel(2) = dot_u(body.m_q_index + 5);
- body.m_parent_acc_rel = body.m_body_T_parent.transpose() * body.m_parent_acc_rel;
- }
+ body.m_parent_acc_rel = body.m_body_T_parent.transpose() * body.m_parent_acc_rel;
+ }
+ }
+
+ for (idArrayIdx i = 0; i < m_body_spherical_list.size(); i++)
+ {
+ //todo: review
+ RigidBody &body = m_body_list[m_body_spherical_list[i]];
+
+ body.m_body_T_parent = transformZ(q(body.m_q_index + 2)) *
+ transformY(q(body.m_q_index + 1)) *
+ transformX(q(body.m_q_index));
+ body.m_parent_pos_parent_body = body.m_body_T_parent * body.m_parent_pos_parent_body;
+
+ if (type >= POSITION_VELOCITY)
+ {
+ body.m_body_ang_vel_rel(0) = u(body.m_q_index + 0);
+ body.m_body_ang_vel_rel(1) = u(body.m_q_index + 1);
+ body.m_body_ang_vel_rel(2) = u(body.m_q_index + 2);
+ body.m_parent_vel_rel = body.m_body_T_parent.transpose() * body.m_parent_vel_rel;
+ }
+ if (type >= POSITION_VELOCITY_ACCELERATION)
+ {
+ body.m_body_ang_acc_rel(0) = dot_u(body.m_q_index + 0);
+ body.m_body_ang_acc_rel(1) = dot_u(body.m_q_index + 1);
+ body.m_body_ang_acc_rel(2) = dot_u(body.m_q_index + 2);
+ body.m_parent_acc_rel = body.m_body_T_parent.transpose() * body.m_parent_acc_rel;
+ }
}
// 2. absolute kinematic quantities (vector valued)
@@ -410,26 +514,29 @@ int MultiBodyTree::MultiBodyImpl::calculateKinematics(const vecx &q, const vecx
body.m_body_pos = body.m_body_T_parent * body.m_parent_pos_parent_body;
body.m_body_T_world = body.m_body_T_parent;
- if(type >= POSITION_VELOCITY) {
- // 3.2 update absolute velocities
- body.m_body_ang_vel = body.m_body_ang_vel_rel;
- body.m_body_vel = body.m_parent_vel_rel;
- }
- if(type >= POSITION_VELOCITY_ACCELERATION) {
- // 3.3 update absolute accelerations
- // NOTE: assumption: dot(J_JR) = 0; true here, but not for general joints
- body.m_body_ang_acc = body.m_body_ang_acc_rel;
- body.m_body_acc = body.m_body_T_parent * body.m_parent_acc_rel;
- // add gravitational acceleration to root body
- // this is an efficient way to add gravitational terms,
- // but it does mean that the kinematics are no longer
- // correct at the acceleration level
- // NOTE: To get correct acceleration kinematics, just set world_gravity to zero
- body.m_body_acc = body.m_body_acc - body.m_body_T_parent * m_world_gravity;
- }
+ if (type >= POSITION_VELOCITY)
+ {
+ // 3.2 update absolute velocities
+ body.m_body_ang_vel = body.m_body_ang_vel_rel;
+ body.m_body_vel = body.m_parent_vel_rel;
+ }
+ if (type >= POSITION_VELOCITY_ACCELERATION)
+ {
+ // 3.3 update absolute accelerations
+ // NOTE: assumption: dot(J_JR) = 0; true here, but not for general joints
+ body.m_body_ang_acc = body.m_body_ang_acc_rel;
+ body.m_body_acc = body.m_body_T_parent * body.m_parent_acc_rel;
+ // add gravitational acceleration to root body
+ // this is an efficient way to add gravitational terms,
+ // but it does mean that the kinematics are no longer
+ // correct at the acceleration level
+ // NOTE: To get correct acceleration kinematics, just set world_gravity to zero
+ body.m_body_acc = body.m_body_acc - body.m_body_T_parent * m_world_gravity;
+ }
}
- for (idArrayIdx i = 1; i < m_body_list.size(); i++) {
+ for (idArrayIdx i = 1; i < m_body_list.size(); i++)
+ {
RigidBody &body = m_body_list[i];
RigidBody &parent = m_body_list[m_parent_index[i]];
// 2.1 update absolute positions and orientations:
@@ -439,121 +546,159 @@ int MultiBodyTree::MultiBodyImpl::calculateKinematics(const vecx &q, const vecx
body.m_body_T_parent * (parent.m_body_pos + body.m_parent_pos_parent_body);
body.m_body_T_world = body.m_body_T_parent * parent.m_body_T_world;
- if(type >= POSITION_VELOCITY) {
- // 2.2 update absolute velocities
- body.m_body_ang_vel =
- body.m_body_T_parent * parent.m_body_ang_vel + body.m_body_ang_vel_rel;
-
- body.m_body_vel =
- body.m_body_T_parent *
- (parent.m_body_vel + parent.m_body_ang_vel.cross(body.m_parent_pos_parent_body) +
- body.m_parent_vel_rel);
- }
- if(type >= POSITION_VELOCITY_ACCELERATION) {
- // 2.3 update absolute accelerations
- // NOTE: assumption: dot(J_JR) = 0; true here, but not for general joints
- body.m_body_ang_acc =
- body.m_body_T_parent * parent.m_body_ang_acc -
- body.m_body_ang_vel_rel.cross(body.m_body_T_parent * parent.m_body_ang_vel) +
- body.m_body_ang_acc_rel;
- body.m_body_acc =
- body.m_body_T_parent *
- (parent.m_body_acc + parent.m_body_ang_acc.cross(body.m_parent_pos_parent_body) +
- parent.m_body_ang_vel.cross(parent.m_body_ang_vel.cross(body.m_parent_pos_parent_body)) +
- 2.0 * parent.m_body_ang_vel.cross(body.m_parent_vel_rel) + body.m_parent_acc_rel);
- }
+ if (type >= POSITION_VELOCITY)
+ {
+ // 2.2 update absolute velocities
+ body.m_body_ang_vel =
+ body.m_body_T_parent * parent.m_body_ang_vel + body.m_body_ang_vel_rel;
+
+ body.m_body_vel =
+ body.m_body_T_parent *
+ (parent.m_body_vel + parent.m_body_ang_vel.cross(body.m_parent_pos_parent_body) +
+ body.m_parent_vel_rel);
+ }
+ if (type >= POSITION_VELOCITY_ACCELERATION)
+ {
+ // 2.3 update absolute accelerations
+ // NOTE: assumption: dot(J_JR) = 0; true here, but not for general joints
+ body.m_body_ang_acc =
+ body.m_body_T_parent * parent.m_body_ang_acc -
+ body.m_body_ang_vel_rel.cross(body.m_body_T_parent * parent.m_body_ang_vel) +
+ body.m_body_ang_acc_rel;
+ body.m_body_acc =
+ body.m_body_T_parent *
+ (parent.m_body_acc + parent.m_body_ang_acc.cross(body.m_parent_pos_parent_body) +
+ parent.m_body_ang_vel.cross(parent.m_body_ang_vel.cross(body.m_parent_pos_parent_body)) +
+ 2.0 * parent.m_body_ang_vel.cross(body.m_parent_vel_rel) + body.m_parent_acc_rel);
+ }
}
- return 0;
+ return 0;
}
#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS)
-void MultiBodyTree::MultiBodyImpl::addRelativeJacobianComponent(RigidBody&body) {
- const int& idx=body.m_q_index;
- switch(body.m_joint_type) {
- case FIXED:
- break;
- case REVOLUTE:
- setMat3xElem(0,idx, body.m_Jac_JR(0), &body.m_body_Jac_R);
- setMat3xElem(1,idx, body.m_Jac_JR(1), &body.m_body_Jac_R);
- setMat3xElem(2,idx, body.m_Jac_JR(2), &body.m_body_Jac_R);
- break;
- case PRISMATIC:
- setMat3xElem(0,idx, body.m_body_T_parent_ref(0,0)*body.m_Jac_JT(0)
- +body.m_body_T_parent_ref(1,0)*body.m_Jac_JT(1)
- +body.m_body_T_parent_ref(2,0)*body.m_Jac_JT(2),
- &body.m_body_Jac_T);
- setMat3xElem(1,idx,body.m_body_T_parent_ref(0,1)*body.m_Jac_JT(0)
- +body.m_body_T_parent_ref(1,1)*body.m_Jac_JT(1)
- +body.m_body_T_parent_ref(2,1)*body.m_Jac_JT(2),
- &body.m_body_Jac_T);
- setMat3xElem(2,idx, body.m_body_T_parent_ref(0,2)*body.m_Jac_JT(0)
- +body.m_body_T_parent_ref(1,2)*body.m_Jac_JT(1)
- +body.m_body_T_parent_ref(2,2)*body.m_Jac_JT(2),
- &body.m_body_Jac_T);
- break;
- case FLOATING:
- setMat3xElem(0,idx+0, 1.0, &body.m_body_Jac_R);
- setMat3xElem(1,idx+1, 1.0, &body.m_body_Jac_R);
- setMat3xElem(2,idx+2, 1.0, &body.m_body_Jac_R);
- // body_Jac_T = body_T_parent.transpose();
- setMat3xElem(0,idx+3, body.m_body_T_parent(0,0), &body.m_body_Jac_T);
- setMat3xElem(0,idx+4, body.m_body_T_parent(1,0), &body.m_body_Jac_T);
- setMat3xElem(0,idx+5, body.m_body_T_parent(2,0), &body.m_body_Jac_T);
-
- setMat3xElem(1,idx+3, body.m_body_T_parent(0,1), &body.m_body_Jac_T);
- setMat3xElem(1,idx+4, body.m_body_T_parent(1,1), &body.m_body_Jac_T);
- setMat3xElem(1,idx+5, body.m_body_T_parent(2,1), &body.m_body_Jac_T);
-
- setMat3xElem(2,idx+3, body.m_body_T_parent(0,2), &body.m_body_Jac_T);
- setMat3xElem(2,idx+4, body.m_body_T_parent(1,2), &body.m_body_Jac_T);
- setMat3xElem(2,idx+5, body.m_body_T_parent(2,2), &body.m_body_Jac_T);
-
- break;
- }
+void MultiBodyTree::MultiBodyImpl::addRelativeJacobianComponent(RigidBody &body)
+{
+ const int &idx = body.m_q_index;
+ switch (body.m_joint_type)
+ {
+ case FIXED:
+ break;
+ case REVOLUTE:
+ setMat3xElem(0, idx, body.m_Jac_JR(0), &body.m_body_Jac_R);
+ setMat3xElem(1, idx, body.m_Jac_JR(1), &body.m_body_Jac_R);
+ setMat3xElem(2, idx, body.m_Jac_JR(2), &body.m_body_Jac_R);
+ break;
+ case PRISMATIC:
+ setMat3xElem(0, idx, body.m_body_T_parent_ref(0, 0) * body.m_Jac_JT(0) + body.m_body_T_parent_ref(1, 0) * body.m_Jac_JT(1) + body.m_body_T_parent_ref(2, 0) * body.m_Jac_JT(2),
+ &body.m_body_Jac_T);
+ setMat3xElem(1, idx, body.m_body_T_parent_ref(0, 1) * body.m_Jac_JT(0) + body.m_body_T_parent_ref(1, 1) * body.m_Jac_JT(1) + body.m_body_T_parent_ref(2, 1) * body.m_Jac_JT(2),
+ &body.m_body_Jac_T);
+ setMat3xElem(2, idx, body.m_body_T_parent_ref(0, 2) * body.m_Jac_JT(0) + body.m_body_T_parent_ref(1, 2) * body.m_Jac_JT(1) + body.m_body_T_parent_ref(2, 2) * body.m_Jac_JT(2),
+ &body.m_body_Jac_T);
+ break;
+ case FLOATING:
+ setMat3xElem(0, idx + 0, 1.0, &body.m_body_Jac_R);
+ setMat3xElem(1, idx + 1, 1.0, &body.m_body_Jac_R);
+ setMat3xElem(2, idx + 2, 1.0, &body.m_body_Jac_R);
+ // body_Jac_T = body_T_parent.transpose();
+ setMat3xElem(0, idx + 3, body.m_body_T_parent(0, 0), &body.m_body_Jac_T);
+ setMat3xElem(0, idx + 4, body.m_body_T_parent(1, 0), &body.m_body_Jac_T);
+ setMat3xElem(0, idx + 5, body.m_body_T_parent(2, 0), &body.m_body_Jac_T);
+
+ setMat3xElem(1, idx + 3, body.m_body_T_parent(0, 1), &body.m_body_Jac_T);
+ setMat3xElem(1, idx + 4, body.m_body_T_parent(1, 1), &body.m_body_Jac_T);
+ setMat3xElem(1, idx + 5, body.m_body_T_parent(2, 1), &body.m_body_Jac_T);
+
+ setMat3xElem(2, idx + 3, body.m_body_T_parent(0, 2), &body.m_body_Jac_T);
+ setMat3xElem(2, idx + 4, body.m_body_T_parent(1, 2), &body.m_body_Jac_T);
+ setMat3xElem(2, idx + 5, body.m_body_T_parent(2, 2), &body.m_body_Jac_T);
+
+ break;
+ case SPHERICAL:
+ //todo: review
+ setMat3xElem(0, idx + 0, 1.0, &body.m_body_Jac_R);
+ setMat3xElem(1, idx + 1, 1.0, &body.m_body_Jac_R);
+ setMat3xElem(2, idx + 2, 1.0, &body.m_body_Jac_R);
+ break;
+ }
}
-int MultiBodyTree::MultiBodyImpl::calculateJacobians(const vecx& q, const vecx& u, const KinUpdateType type) {
- if (q.size() != m_num_dofs || u.size() != m_num_dofs) {
- bt_id_error_message("wrong vector dimension. system has %d DOFs,\n"
- "but dim(q)= %d, dim(u)= %d\n",
- m_num_dofs, static_cast<int>(q.size()), static_cast<int>(u.size()));
- return -1;
- }
- if(type != POSITION_ONLY && type != POSITION_VELOCITY) {
- bt_id_error_message("invalid type %d\n", type);
- return -1;
- }
-
- addRelativeJacobianComponent(m_body_list[0]);
- for (idArrayIdx i = 1; i < m_body_list.size(); i++) {
- RigidBody &body = m_body_list[i];
- RigidBody &parent = m_body_list[m_parent_index[i]];
-
- mul(body.m_body_T_parent, parent.m_body_Jac_R,& body.m_body_Jac_R);
- body.m_body_Jac_T = parent.m_body_Jac_T;
- mul(tildeOperator(body.m_parent_pos_parent_body),parent.m_body_Jac_R,&m_m3x);
- sub(body.m_body_Jac_T,m_m3x, &body.m_body_Jac_T);
-
- addRelativeJacobianComponent(body);
- mul(body.m_body_T_parent, body.m_body_Jac_T,&body.m_body_Jac_T);
-
- if(type >= POSITION_VELOCITY) {
- body.m_body_dot_Jac_R_u = body.m_body_T_parent * parent.m_body_dot_Jac_R_u -
- body.m_body_ang_vel_rel.cross(body.m_body_T_parent * parent.m_body_ang_vel);
- body.m_body_dot_Jac_T_u = body.m_body_T_parent *
- (parent.m_body_dot_Jac_T_u + parent.m_body_dot_Jac_R_u.cross(body.m_parent_pos_parent_body) +
- parent.m_body_ang_vel.cross(parent.m_body_ang_vel.cross(body.m_parent_pos_parent_body)) +
- 2.0 * parent.m_body_ang_vel.cross(body.m_parent_vel_rel));
- }
- }
- return 0;
+int MultiBodyTree::MultiBodyImpl::calculateJacobians(const vecx &q, const vecx &u, const KinUpdateType type)
+{
+ if (q.size() != m_num_dofs || u.size() != m_num_dofs)
+ {
+ bt_id_error_message(
+ "wrong vector dimension. system has %d DOFs,\n"
+ "but dim(q)= %d, dim(u)= %d\n",
+ m_num_dofs, static_cast<int>(q.size()), static_cast<int>(u.size()));
+ return -1;
+ }
+ if (type != POSITION_ONLY && type != POSITION_VELOCITY)
+ {
+ bt_id_error_message("invalid type %d\n", type);
+ return -1;
+ }
+
+ addRelativeJacobianComponent(m_body_list[0]);
+ for (idArrayIdx i = 1; i < m_body_list.size(); i++)
+ {
+ RigidBody &body = m_body_list[i];
+ RigidBody &parent = m_body_list[m_parent_index[i]];
+
+ mul(body.m_body_T_parent, parent.m_body_Jac_R, &body.m_body_Jac_R);
+ body.m_body_Jac_T = parent.m_body_Jac_T;
+ mul(tildeOperator(body.m_parent_pos_parent_body), parent.m_body_Jac_R, &m_m3x);
+ sub(body.m_body_Jac_T, m_m3x, &body.m_body_Jac_T);
+
+ addRelativeJacobianComponent(body);
+ mul(body.m_body_T_parent, body.m_body_Jac_T, &body.m_body_Jac_T);
+
+ if (type >= POSITION_VELOCITY)
+ {
+ body.m_body_dot_Jac_R_u = body.m_body_T_parent * parent.m_body_dot_Jac_R_u -
+ body.m_body_ang_vel_rel.cross(body.m_body_T_parent * parent.m_body_ang_vel);
+ body.m_body_dot_Jac_T_u = body.m_body_T_parent *
+ (parent.m_body_dot_Jac_T_u + parent.m_body_dot_Jac_R_u.cross(body.m_parent_pos_parent_body) +
+ parent.m_body_ang_vel.cross(parent.m_body_ang_vel.cross(body.m_parent_pos_parent_body)) +
+ 2.0 * parent.m_body_ang_vel.cross(body.m_parent_vel_rel));
+ }
+ }
+ return 0;
}
#endif
-static inline void setSixDoFJacobians(const int dof, vec3 &Jac_JR, vec3 &Jac_JT) {
- switch (dof) {
+static inline void setThreeDoFJacobians(const int dof, vec3 &Jac_JR, vec3 &Jac_JT)
+{
+ switch (dof)
+ {
+ // rotational part
+ case 0:
+ Jac_JR(0) = 1;
+ Jac_JR(1) = 0;
+ Jac_JR(2) = 0;
+ setZero(Jac_JT);
+ break;
+ case 1:
+ Jac_JR(0) = 0;
+ Jac_JR(1) = 1;
+ Jac_JR(2) = 0;
+ setZero(Jac_JT);
+ break;
+ case 2:
+ Jac_JR(0) = 0;
+ Jac_JR(1) = 0;
+ Jac_JR(2) = 1;
+ setZero(Jac_JT);
+ break;
+ }
+}
+
+static inline void setSixDoFJacobians(const int dof, vec3 &Jac_JR, vec3 &Jac_JT)
+{
+ switch (dof)
+ {
// rotational part
case 0:
Jac_JR(0) = 1;
@@ -595,8 +740,10 @@ static inline void setSixDoFJacobians(const int dof, vec3 &Jac_JR, vec3 &Jac_JT)
}
}
-static inline int jointNumDoFs(const JointType &type) {
- switch (type) {
+static inline int jointNumDoFs(const JointType &type)
+{
+ switch (type)
+ {
case FIXED:
return 0;
case REVOLUTE:
@@ -604,6 +751,8 @@ static inline int jointNumDoFs(const JointType &type) {
return 1;
case FLOATING:
return 6;
+ case SPHERICAL:
+ return 3;
}
// this should never happen
bt_id_error_message("invalid joint type\n");
@@ -615,37 +764,45 @@ static inline int jointNumDoFs(const JointType &type) {
int MultiBodyTree::MultiBodyImpl::calculateMassMatrix(const vecx &q, const bool update_kinematics,
const bool initialize_matrix,
const bool set_lower_triangular_matrix,
- matxx *mass_matrix) {
-// This calculates the joint space mass matrix for the multibody system.
-// The algorithm is essentially an implementation of "method 3"
-// in "Efficient Dynamic Simulation of Robotic Mechanisms" (Walker and Orin, 1982)
-// (Later named "Composite Rigid Body Algorithm" by Featherstone).
-//
-// This implementation, however, handles branched systems and uses a formulation centered
-// on the origin of the body-fixed frame to avoid re-computing various quantities at the com.
+ matxx *mass_matrix)
+{
+ // This calculates the joint space mass matrix for the multibody system.
+ // The algorithm is essentially an implementation of "method 3"
+ // in "Efficient Dynamic Simulation of Robotic Mechanisms" (Walker and Orin, 1982)
+ // (Later named "Composite Rigid Body Algorithm" by Featherstone).
+ //
+ // This implementation, however, handles branched systems and uses a formulation centered
+ // on the origin of the body-fixed frame to avoid re-computing various quantities at the com.
if (q.size() != m_num_dofs || mass_matrix->rows() != m_num_dofs ||
- mass_matrix->cols() != m_num_dofs) {
- bt_id_error_message("Dimension error. System has %d DOFs,\n"
- "but dim(q)= %d, dim(mass_matrix)= %d x %d\n",
- m_num_dofs, static_cast<int>(q.size()), static_cast<int>(mass_matrix->rows()),
- static_cast<int>(mass_matrix->cols()));
+ mass_matrix->cols() != m_num_dofs)
+ {
+ bt_id_error_message(
+ "Dimension error. System has %d DOFs,\n"
+ "but dim(q)= %d, dim(mass_matrix)= %d x %d\n",
+ m_num_dofs, static_cast<int>(q.size()), static_cast<int>(mass_matrix->rows()),
+ static_cast<int>(mass_matrix->cols()));
return -1;
}
// TODO add optimized zeroing function?
- if (initialize_matrix) {
- for (int i = 0; i < m_num_dofs; i++) {
- for (int j = 0; j < m_num_dofs; j++) {
- setMatxxElem(i, j, 0.0, mass_matrix);
+ if (initialize_matrix)
+ {
+ for (int i = 0; i < m_num_dofs; i++)
+ {
+ for (int j = 0; j < m_num_dofs; j++)
+ {
+ setMatxxElem(i, j, 0.0, mass_matrix);
}
}
}
- if (update_kinematics) {
+ if (update_kinematics)
+ {
// 1. update relative kinematics
// 1.1 for revolute joints
- for (idArrayIdx i = 0; i < m_body_revolute_list.size(); i++) {
+ for (idArrayIdx i = 0; i < m_body_revolute_list.size(); i++)
+ {
RigidBody &body = m_body_list[m_body_revolute_list[i]];
// from reference orientation (q=0) of body-fixed frame to current orientation
mat33 body_T_body_ref;
@@ -653,7 +810,8 @@ int MultiBodyTree::MultiBodyImpl::calculateMassMatrix(const vecx &q, const bool
body.m_body_T_parent = body_T_body_ref * body.m_body_T_parent_ref;
}
// 1.2 for prismatic joints
- for (idArrayIdx i = 0; i < m_body_prismatic_list.size(); i++) {
+ for (idArrayIdx i = 0; i < m_body_prismatic_list.size(); i++)
+ {
RigidBody &body = m_body_list[m_body_prismatic_list[i]];
// body.m_body_T_parent= fixed
body.m_parent_pos_parent_body =
@@ -661,7 +819,8 @@ int MultiBodyTree::MultiBodyImpl::calculateMassMatrix(const vecx &q, const bool
}
// 1.3 fixed joints: nothing to do
// 1.4 6dof joints:
- for (idArrayIdx i = 0; i < m_body_floating_list.size(); i++) {
+ for (idArrayIdx i = 0; i < m_body_floating_list.size(); i++)
+ {
RigidBody &body = m_body_list[m_body_floating_list[i]];
body.m_body_T_parent = transformZ(q(body.m_q_index + 2)) *
@@ -674,7 +833,8 @@ int MultiBodyTree::MultiBodyImpl::calculateMassMatrix(const vecx &q, const bool
body.m_parent_pos_parent_body = body.m_body_T_parent * body.m_parent_pos_parent_body;
}
}
- for (int i = m_body_list.size() - 1; i >= 0; i--) {
+ for (int i = m_body_list.size() - 1; i >= 0; i--)
+ {
RigidBody &body = m_body_list[i];
// calculate mass, center of mass and inertia of "composite rigid body",
// ie, sub-tree starting at current body
@@ -682,7 +842,8 @@ int MultiBodyTree::MultiBodyImpl::calculateMassMatrix(const vecx &q, const bool
body.m_body_subtree_mass_com = body.m_body_mass_com;
body.m_body_subtree_I_body = body.m_body_I_body;
- for (idArrayIdx c = 0; c < m_child_indices[i].size(); c++) {
+ for (idArrayIdx c = 0; c < m_child_indices[i].size(); c++)
+ {
RigidBody &child = m_body_list[m_child_indices[i][c]];
mat33 body_T_child = child.m_body_T_parent.transpose();
@@ -692,7 +853,8 @@ int MultiBodyTree::MultiBodyImpl::calculateMassMatrix(const vecx &q, const bool
body.m_body_subtree_I_body +=
body_T_child * child.m_body_subtree_I_body * child.m_body_T_parent;
- if (child.m_subtree_mass > 0) {
+ if (child.m_subtree_mass > 0)
+ {
// Shift the reference point for the child subtree inertia using the
// Huygens-Steiner ("parallel axis") theorem.
// (First shift from child origin to child com, then from there to this body's
@@ -707,7 +869,8 @@ int MultiBodyTree::MultiBodyImpl::calculateMassMatrix(const vecx &q, const bool
}
}
- for (int i = m_body_list.size() - 1; i >= 0; i--) {
+ for (int i = m_body_list.size() - 1; i >= 0; i--)
+ {
const RigidBody &body = m_body_list[i];
// determine DoF-range for body
@@ -717,11 +880,18 @@ int MultiBodyTree::MultiBodyImpl::calculateMassMatrix(const vecx &q, const bool
// local joint jacobians (ok as is for 1-DoF joints)
vec3 Jac_JR = body.m_Jac_JR;
vec3 Jac_JT = body.m_Jac_JT;
- for (int col = q_index_max; col >= q_index_min; col--) {
+ for (int col = q_index_max; col >= q_index_min; col--)
+ {
// set jacobians for 6-DoF joints
- if (FLOATING == body.m_joint_type) {
+ if (FLOATING == body.m_joint_type)
+ {
setSixDoFJacobians(col - q_index_min, Jac_JR, Jac_JT);
}
+ if (SPHERICAL == body.m_joint_type)
+ {
+ //todo: review
+ setThreeDoFJacobians(col - q_index_min, Jac_JR, Jac_JT);
+ }
vec3 body_eom_rot =
body.m_body_subtree_I_body * Jac_JR + body.m_body_subtree_mass_com.cross(Jac_JT);
@@ -732,19 +902,27 @@ int MultiBodyTree::MultiBodyImpl::calculateMassMatrix(const vecx &q, const bool
// rest of the mass matrix column upwards
{
// 1. for multi-dof joints, rest of the dofs of this body
- for (int row = col - 1; row >= q_index_min; row--) {
- if (FLOATING != body.m_joint_type) {
- bt_id_error_message("??\n");
- return -1;
+ for (int row = col - 1; row >= q_index_min; row--)
+ {
+ if (SPHERICAL == body.m_joint_type)
+ {
+ //todo: review
+ setThreeDoFJacobians(row - q_index_min, Jac_JR, Jac_JT);
+ const double Mrc = Jac_JR.dot(body_eom_rot) + Jac_JT.dot(body_eom_trans);
+ setMatxxElem(col, row, Mrc, mass_matrix);
+ }
+ if (FLOATING == body.m_joint_type)
+ {
+ setSixDoFJacobians(row - q_index_min, Jac_JR, Jac_JT);
+ const double Mrc = Jac_JR.dot(body_eom_rot) + Jac_JT.dot(body_eom_trans);
+ setMatxxElem(col, row, Mrc, mass_matrix);
}
- setSixDoFJacobians(row - q_index_min, Jac_JR, Jac_JT);
- const double Mrc = Jac_JR.dot(body_eom_rot) + Jac_JT.dot(body_eom_trans);
- setMatxxElem(col, row, Mrc, mass_matrix);
}
// 2. ancestor dofs
int child_idx = i;
int parent_idx = m_parent_index[i];
- while (parent_idx >= 0) {
+ while (parent_idx >= 0)
+ {
const RigidBody &child_body = m_body_list[child_idx];
const RigidBody &parent_body = m_body_list[parent_idx];
@@ -758,9 +936,16 @@ int MultiBodyTree::MultiBodyImpl::calculateMassMatrix(const vecx &q, const bool
parent_body_q_index_min + jointNumDoFs(parent_body.m_joint_type) - 1;
vec3 Jac_JR = parent_body.m_Jac_JR;
vec3 Jac_JT = parent_body.m_Jac_JT;
- for (int row = parent_body_q_index_max; row >= parent_body_q_index_min; row--) {
+ for (int row = parent_body_q_index_max; row >= parent_body_q_index_min; row--)
+ {
+ if (SPHERICAL == parent_body.m_joint_type)
+ {
+ //todo: review
+ setThreeDoFJacobians(row - parent_body_q_index_min, Jac_JR, Jac_JT);
+ }
// set jacobians for 6-DoF joints
- if (FLOATING == parent_body.m_joint_type) {
+ if (FLOATING == parent_body.m_joint_type)
+ {
setSixDoFJacobians(row - parent_body_q_index_min, Jac_JR, Jac_JT);
}
const double Mrc = Jac_JR.dot(body_eom_rot) + Jac_JT.dot(body_eom_trans);
@@ -774,10 +959,13 @@ int MultiBodyTree::MultiBodyImpl::calculateMassMatrix(const vecx &q, const bool
}
}
- if (set_lower_triangular_matrix) {
- for (int col = 0; col < m_num_dofs; col++) {
- for (int row = 0; row < col; row++) {
- setMatxxElem(row, col, (*mass_matrix)(col, row), mass_matrix);
+ if (set_lower_triangular_matrix)
+ {
+ for (int col = 0; col < m_num_dofs; col++)
+ {
+ for (int row = 0; row < col; row++)
+ {
+ setMatxxElem(row, col, (*mass_matrix)(col, row), mass_matrix);
}
}
}
@@ -785,76 +973,91 @@ int MultiBodyTree::MultiBodyImpl::calculateMassMatrix(const vecx &q, const bool
}
// utility macro
-#define CHECK_IF_BODY_INDEX_IS_VALID(index) \
- do { \
- if (index < 0 || index >= m_num_bodies) { \
- bt_id_error_message("invalid index %d (num_bodies= %d)\n", index, m_num_bodies); \
- return -1; \
- } \
+#define CHECK_IF_BODY_INDEX_IS_VALID(index) \
+ do \
+ { \
+ if (index < 0 || index >= m_num_bodies) \
+ { \
+ bt_id_error_message("invalid index %d (num_bodies= %d)\n", index, m_num_bodies); \
+ return -1; \
+ } \
} while (0)
-int MultiBodyTree::MultiBodyImpl::getParentIndex(const int body_index, int *p) {
+int MultiBodyTree::MultiBodyImpl::getParentIndex(const int body_index, int *p)
+{
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
*p = m_parent_index[body_index];
return 0;
}
-int MultiBodyTree::MultiBodyImpl::getUserInt(const int body_index, int *user_int) const {
+int MultiBodyTree::MultiBodyImpl::getUserInt(const int body_index, int *user_int) const
+{
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
*user_int = m_user_int[body_index];
return 0;
}
-int MultiBodyTree::MultiBodyImpl::getUserPtr(const int body_index, void **user_ptr) const {
+int MultiBodyTree::MultiBodyImpl::getUserPtr(const int body_index, void **user_ptr) const
+{
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
*user_ptr = m_user_ptr[body_index];
return 0;
}
-int MultiBodyTree::MultiBodyImpl::setUserInt(const int body_index, const int user_int) {
+int MultiBodyTree::MultiBodyImpl::setUserInt(const int body_index, const int user_int)
+{
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
m_user_int[body_index] = user_int;
return 0;
}
-int MultiBodyTree::MultiBodyImpl::setUserPtr(const int body_index, void *const user_ptr) {
+int MultiBodyTree::MultiBodyImpl::setUserPtr(const int body_index, void *const user_ptr)
+{
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
m_user_ptr[body_index] = user_ptr;
return 0;
}
-int MultiBodyTree::MultiBodyImpl::getBodyOrigin(int body_index, vec3 *world_origin) const {
+int MultiBodyTree::MultiBodyImpl::getBodyOrigin(int body_index, vec3 *world_origin) const
+{
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
const RigidBody &body = m_body_list[body_index];
*world_origin = body.m_body_T_world.transpose() * body.m_body_pos;
return 0;
}
-int MultiBodyTree::MultiBodyImpl::getBodyCoM(int body_index, vec3 *world_com) const {
+int MultiBodyTree::MultiBodyImpl::getBodyCoM(int body_index, vec3 *world_com) const
+{
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
const RigidBody &body = m_body_list[body_index];
- if (body.m_mass > 0) {
+ if (body.m_mass > 0)
+ {
*world_com = body.m_body_T_world.transpose() *
(body.m_body_pos + body.m_body_mass_com / body.m_mass);
- } else {
+ }
+ else
+ {
*world_com = body.m_body_T_world.transpose() * (body.m_body_pos);
}
return 0;
}
-int MultiBodyTree::MultiBodyImpl::getBodyTransform(int body_index, mat33 *world_T_body) const {
+int MultiBodyTree::MultiBodyImpl::getBodyTransform(int body_index, mat33 *world_T_body) const
+{
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
const RigidBody &body = m_body_list[body_index];
*world_T_body = body.m_body_T_world.transpose();
return 0;
}
-int MultiBodyTree::MultiBodyImpl::getBodyAngularVelocity(int body_index, vec3 *world_omega) const {
+int MultiBodyTree::MultiBodyImpl::getBodyAngularVelocity(int body_index, vec3 *world_omega) const
+{
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
const RigidBody &body = m_body_list[body_index];
*world_omega = body.m_body_T_world.transpose() * body.m_body_ang_vel;
return 0;
}
int MultiBodyTree::MultiBodyImpl::getBodyLinearVelocity(int body_index,
- vec3 *world_velocity) const {
+ vec3 *world_velocity) const
+{
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
const RigidBody &body = m_body_list[body_index];
*world_velocity = body.m_body_T_world.transpose() * body.m_body_vel;
@@ -862,13 +1065,17 @@ int MultiBodyTree::MultiBodyImpl::getBodyLinearVelocity(int body_index,
}
int MultiBodyTree::MultiBodyImpl::getBodyLinearVelocityCoM(int body_index,
- vec3 *world_velocity) const {
+ vec3 *world_velocity) const
+{
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
const RigidBody &body = m_body_list[body_index];
vec3 com;
- if (body.m_mass > 0) {
+ if (body.m_mass > 0)
+ {
com = body.m_body_mass_com / body.m_mass;
- } else {
+ }
+ else
+ {
com(0) = 0;
com(1) = 0;
com(2) = 0;
@@ -880,149 +1087,173 @@ int MultiBodyTree::MultiBodyImpl::getBodyLinearVelocityCoM(int body_index,
}
int MultiBodyTree::MultiBodyImpl::getBodyAngularAcceleration(int body_index,
- vec3 *world_dot_omega) const {
+ vec3 *world_dot_omega) const
+{
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
const RigidBody &body = m_body_list[body_index];
*world_dot_omega = body.m_body_T_world.transpose() * body.m_body_ang_acc;
return 0;
}
int MultiBodyTree::MultiBodyImpl::getBodyLinearAcceleration(int body_index,
- vec3 *world_acceleration) const {
+ vec3 *world_acceleration) const
+{
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
const RigidBody &body = m_body_list[body_index];
*world_acceleration = body.m_body_T_world.transpose() * body.m_body_acc;
return 0;
}
-int MultiBodyTree::MultiBodyImpl::getJointType(const int body_index, JointType *joint_type) const {
+int MultiBodyTree::MultiBodyImpl::getJointType(const int body_index, JointType *joint_type) const
+{
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
*joint_type = m_body_list[body_index].m_joint_type;
return 0;
}
int MultiBodyTree::MultiBodyImpl::getJointTypeStr(const int body_index,
- const char **joint_type) const {
+ const char **joint_type) const
+{
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
*joint_type = jointTypeToString(m_body_list[body_index].m_joint_type);
return 0;
}
-int MultiBodyTree::MultiBodyImpl::getParentRParentBodyRef(const int body_index, vec3* r) const{
- CHECK_IF_BODY_INDEX_IS_VALID(body_index);
- *r=m_body_list[body_index].m_parent_pos_parent_body_ref;
- return 0;
+int MultiBodyTree::MultiBodyImpl::getParentRParentBodyRef(const int body_index, vec3 *r) const
+{
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ *r = m_body_list[body_index].m_parent_pos_parent_body_ref;
+ return 0;
}
-int MultiBodyTree::MultiBodyImpl::getBodyTParentRef(const int body_index, mat33* T) const{
- CHECK_IF_BODY_INDEX_IS_VALID(body_index);
- *T=m_body_list[body_index].m_body_T_parent_ref;
- return 0;
+int MultiBodyTree::MultiBodyImpl::getBodyTParentRef(const int body_index, mat33 *T) const
+{
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ *T = m_body_list[body_index].m_body_T_parent_ref;
+ return 0;
}
-int MultiBodyTree::MultiBodyImpl::getBodyAxisOfMotion(const int body_index, vec3* axis) const{
- CHECK_IF_BODY_INDEX_IS_VALID(body_index);
- if(m_body_list[body_index].m_joint_type == REVOLUTE) {
- *axis = m_body_list[body_index].m_Jac_JR;
- return 0;
- }
- if(m_body_list[body_index].m_joint_type == PRISMATIC) {
- *axis = m_body_list[body_index].m_Jac_JT;
- return 0;
- }
- setZero(*axis);
- return 0;
+int MultiBodyTree::MultiBodyImpl::getBodyAxisOfMotion(const int body_index, vec3 *axis) const
+{
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ if (m_body_list[body_index].m_joint_type == REVOLUTE)
+ {
+ *axis = m_body_list[body_index].m_Jac_JR;
+ return 0;
+ }
+ if (m_body_list[body_index].m_joint_type == PRISMATIC)
+ {
+ *axis = m_body_list[body_index].m_Jac_JT;
+ return 0;
+ }
+ setZero(*axis);
+ return 0;
}
-int MultiBodyTree::MultiBodyImpl::getDoFOffset(const int body_index, int *q_index) const {
+int MultiBodyTree::MultiBodyImpl::getDoFOffset(const int body_index, int *q_index) const
+{
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
*q_index = m_body_list[body_index].m_q_index;
return 0;
}
-int MultiBodyTree::MultiBodyImpl::setBodyMass(const int body_index, const idScalar mass) {
+int MultiBodyTree::MultiBodyImpl::setBodyMass(const int body_index, const idScalar mass)
+{
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
m_body_list[body_index].m_mass = mass;
return 0;
}
int MultiBodyTree::MultiBodyImpl::setBodyFirstMassMoment(const int body_index,
- const vec3& first_mass_moment) {
+ const vec3 &first_mass_moment)
+{
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
m_body_list[body_index].m_body_mass_com = first_mass_moment;
return 0;
}
int MultiBodyTree::MultiBodyImpl::setBodySecondMassMoment(const int body_index,
- const mat33& second_mass_moment) {
+ const mat33 &second_mass_moment)
+{
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
m_body_list[body_index].m_body_I_body = second_mass_moment;
return 0;
}
-int MultiBodyTree::MultiBodyImpl::getBodyMass(const int body_index, idScalar *mass) const {
+int MultiBodyTree::MultiBodyImpl::getBodyMass(const int body_index, idScalar *mass) const
+{
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
*mass = m_body_list[body_index].m_mass;
return 0;
}
int MultiBodyTree::MultiBodyImpl::getBodyFirstMassMoment(const int body_index,
- vec3 *first_mass_moment) const {
+ vec3 *first_mass_moment) const
+{
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
*first_mass_moment = m_body_list[body_index].m_body_mass_com;
return 0;
}
int MultiBodyTree::MultiBodyImpl::getBodySecondMassMoment(const int body_index,
- mat33 *second_mass_moment) const {
+ mat33 *second_mass_moment) const
+{
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
*second_mass_moment = m_body_list[body_index].m_body_I_body;
return 0;
}
-void MultiBodyTree::MultiBodyImpl::clearAllUserForcesAndMoments() {
- for (int index = 0; index < m_num_bodies; index++) {
+void MultiBodyTree::MultiBodyImpl::clearAllUserForcesAndMoments()
+{
+ for (int index = 0; index < m_num_bodies; index++)
+ {
RigidBody &body = m_body_list[index];
setZero(body.m_body_force_user);
setZero(body.m_body_moment_user);
}
}
-int MultiBodyTree::MultiBodyImpl::addUserForce(const int body_index, const vec3 &body_force) {
+int MultiBodyTree::MultiBodyImpl::addUserForce(const int body_index, const vec3 &body_force)
+{
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
m_body_list[body_index].m_body_force_user += body_force;
return 0;
}
-int MultiBodyTree::MultiBodyImpl::addUserMoment(const int body_index, const vec3 &body_moment) {
+int MultiBodyTree::MultiBodyImpl::addUserMoment(const int body_index, const vec3 &body_moment)
+{
CHECK_IF_BODY_INDEX_IS_VALID(body_index);
m_body_list[body_index].m_body_moment_user += body_moment;
return 0;
}
#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS)
-int MultiBodyTree::MultiBodyImpl::getBodyDotJacobianTransU(const int body_index, vec3* world_dot_jac_trans_u) const {
- CHECK_IF_BODY_INDEX_IS_VALID(body_index);
- const RigidBody &body = m_body_list[body_index];
- *world_dot_jac_trans_u = body.m_body_T_world.transpose() * body.m_body_dot_Jac_T_u;
- return 0;
+int MultiBodyTree::MultiBodyImpl::getBodyDotJacobianTransU(const int body_index, vec3 *world_dot_jac_trans_u) const
+{
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ const RigidBody &body = m_body_list[body_index];
+ *world_dot_jac_trans_u = body.m_body_T_world.transpose() * body.m_body_dot_Jac_T_u;
+ return 0;
}
-int MultiBodyTree::MultiBodyImpl::getBodyDotJacobianRotU(const int body_index, vec3* world_dot_jac_rot_u) const{
- CHECK_IF_BODY_INDEX_IS_VALID(body_index);
- const RigidBody &body = m_body_list[body_index];
- *world_dot_jac_rot_u = body.m_body_T_world.transpose() * body.m_body_dot_Jac_R_u;
- return 0;
+int MultiBodyTree::MultiBodyImpl::getBodyDotJacobianRotU(const int body_index, vec3 *world_dot_jac_rot_u) const
+{
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ const RigidBody &body = m_body_list[body_index];
+ *world_dot_jac_rot_u = body.m_body_T_world.transpose() * body.m_body_dot_Jac_R_u;
+ return 0;
}
-int MultiBodyTree::MultiBodyImpl::getBodyJacobianTrans(const int body_index, mat3x* world_jac_trans) const{
- CHECK_IF_BODY_INDEX_IS_VALID(body_index);
- const RigidBody &body = m_body_list[body_index];
- mul(body.m_body_T_world.transpose(), body.m_body_Jac_T, world_jac_trans);
- return 0;
+int MultiBodyTree::MultiBodyImpl::getBodyJacobianTrans(const int body_index, mat3x *world_jac_trans) const
+{
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ const RigidBody &body = m_body_list[body_index];
+ mul(body.m_body_T_world.transpose(), body.m_body_Jac_T, world_jac_trans);
+ return 0;
}
-int MultiBodyTree::MultiBodyImpl::getBodyJacobianRot(const int body_index, mat3x* world_jac_rot) const{
- CHECK_IF_BODY_INDEX_IS_VALID(body_index);
- const RigidBody &body = m_body_list[body_index];
- mul(body.m_body_T_world.transpose(), body.m_body_Jac_R,world_jac_rot);
- return 0;
+int MultiBodyTree::MultiBodyImpl::getBodyJacobianRot(const int body_index, mat3x *world_jac_rot) const
+{
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ const RigidBody &body = m_body_list[body_index];
+ mul(body.m_body_T_world.transpose(), body.m_body_Jac_R, world_jac_rot);
+ return 0;
}
#endif
-}
+} // namespace btInverseDynamics
diff --git a/thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeImpl.hpp b/thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeImpl.hpp
index 3efe9d0492..eabdbe161b 100644
--- a/thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeImpl.hpp
+++ b/thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeImpl.hpp
@@ -8,12 +8,13 @@
#include "../IDConfig.hpp"
#include "../MultiBodyTree.hpp"
-namespace btInverseDynamics {
-
+namespace btInverseDynamics
+{
/// Structure for for rigid body mass properties, connectivity and kinematic state
/// all vectors and matrices are in body-fixed frame, if not indicated otherwise.
/// The body-fixed frame is located in the joint connecting the body to its parent.
-struct RigidBody {
+struct RigidBody
+{
ID_DECLARE_ALIGNED_ALLOCATOR();
// 1 Inertial properties
/// Mass
@@ -112,31 +113,33 @@ struct RigidBody {
mat33 m_body_subtree_I_body;
#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS)
- /// translational jacobian in body-fixed frame d(m_body_vel)/du
- mat3x m_body_Jac_T;
- /// rotationsl jacobian in body-fixed frame d(m_body_ang_vel)/du
- mat3x m_body_Jac_R;
- /// components of linear acceleration depending on u
- /// (same as is d(m_Jac_T)/dt*u)
- vec3 m_body_dot_Jac_T_u;
- /// components of angular acceleration depending on u
- /// (same as is d(m_Jac_T)/dt*u)
- vec3 m_body_dot_Jac_R_u;
+ /// translational jacobian in body-fixed frame d(m_body_vel)/du
+ mat3x m_body_Jac_T;
+ /// rotationsl jacobian in body-fixed frame d(m_body_ang_vel)/du
+ mat3x m_body_Jac_R;
+ /// components of linear acceleration depending on u
+ /// (same as is d(m_Jac_T)/dt*u)
+ vec3 m_body_dot_Jac_T_u;
+ /// components of angular acceleration depending on u
+ /// (same as is d(m_Jac_T)/dt*u)
+ vec3 m_body_dot_Jac_R_u;
#endif
};
/// The MBS implements a tree structured multibody system
-class MultiBodyTree::MultiBodyImpl {
+class MultiBodyTree::MultiBodyImpl
+{
friend class MultiBodyTree;
public:
ID_DECLARE_ALIGNED_ALLOCATOR();
- enum KinUpdateType {
- POSITION_ONLY,
- POSITION_VELOCITY,
- POSITION_VELOCITY_ACCELERATION
- };
+ enum KinUpdateType
+ {
+ POSITION_ONLY,
+ POSITION_VELOCITY,
+ POSITION_VELOCITY_ACCELERATION
+ };
/// constructor
/// @param num_bodies the number of bodies in the system
@@ -150,24 +153,24 @@ public:
int calculateMassMatrix(const vecx& q, const bool update_kinematics,
const bool initialize_matrix, const bool set_lower_triangular_matrix,
matxx* mass_matrix);
- /// calculate kinematics (vector quantities)
- /// Depending on type, update positions only, positions & velocities, or positions, velocities
- /// and accelerations.
- int calculateKinematics(const vecx& q, const vecx& u, const vecx& dot_u, const KinUpdateType type);
+ /// calculate kinematics (vector quantities)
+ /// Depending on type, update positions only, positions & velocities, or positions, velocities
+ /// and accelerations.
+ int calculateKinematics(const vecx& q, const vecx& u, const vecx& dot_u, const KinUpdateType type);
#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS)
- /// calculate jacobians and (if type == POSITION_VELOCITY), also velocity-dependent accelration terms.
- int calculateJacobians(const vecx& q, const vecx& u, const KinUpdateType type);
- /// \copydoc MultiBodyTree::getBodyDotJacobianTransU
- int getBodyDotJacobianTransU(const int body_index, vec3* world_dot_jac_trans_u) const ;
- /// \copydoc MultiBodyTree::getBodyDotJacobianRotU
- int getBodyDotJacobianRotU(const int body_index, vec3* world_dot_jac_rot_u) const;
- /// \copydoc MultiBodyTree::getBodyJacobianTrans
- int getBodyJacobianTrans(const int body_index, mat3x* world_jac_trans) const ;
- /// \copydoc MultiBodyTree::getBodyJacobianRot
- int getBodyJacobianRot(const int body_index, mat3x* world_jac_rot) const;
- /// Add relative Jacobian component from motion relative to parent body
- /// @param body the body to add the Jacobian component for
- void addRelativeJacobianComponent(RigidBody&body);
+ /// calculate jacobians and (if type == POSITION_VELOCITY), also velocity-dependent accelration terms.
+ int calculateJacobians(const vecx& q, const vecx& u, const KinUpdateType type);
+ /// \copydoc MultiBodyTree::getBodyDotJacobianTransU
+ int getBodyDotJacobianTransU(const int body_index, vec3* world_dot_jac_trans_u) const;
+ /// \copydoc MultiBodyTree::getBodyDotJacobianRotU
+ int getBodyDotJacobianRotU(const int body_index, vec3* world_dot_jac_rot_u) const;
+ /// \copydoc MultiBodyTree::getBodyJacobianTrans
+ int getBodyJacobianTrans(const int body_index, mat3x* world_jac_trans) const;
+ /// \copydoc MultiBodyTree::getBodyJacobianRot
+ int getBodyJacobianRot(const int body_index, mat3x* world_jac_rot) const;
+ /// Add relative Jacobian component from motion relative to parent body
+ /// @param body the body to add the Jacobian component for
+ void addRelativeJacobianComponent(RigidBody& body);
#endif
/// generate additional index sets from the parent_index array
/// @return -1 on error, 0 on success
@@ -190,12 +193,12 @@ public:
int getJointType(const int body_index, JointType* joint_type) const;
/// \copydoc MultiBodyTree::getJointTypeStr
int getJointTypeStr(const int body_index, const char** joint_type) const;
- /// \copydoc MultiBodyTree::getParentRParentBodyRef
- int getParentRParentBodyRef(const int body_index, vec3* r) const;
- /// \copydoc MultiBodyTree::getBodyTParentRef
- int getBodyTParentRef(const int body_index, mat33* T) const;
- /// \copydoc MultiBodyTree::getBodyAxisOfMotion
- int getBodyAxisOfMotion(const int body_index, vec3* axis) const;
+ /// \copydoc MultiBodyTree::getParentRParentBodyRef
+ int getParentRParentBodyRef(const int body_index, vec3* r) const;
+ /// \copydoc MultiBodyTree::getBodyTParentRef
+ int getBodyTParentRef(const int body_index, mat33* T) const;
+ /// \copydoc MultiBodyTree::getBodyAxisOfMotion
+ int getBodyAxisOfMotion(const int body_index, vec3* axis) const;
/// \copydoc MultiBodyTree:getDoFOffset
int getDoFOffset(const int body_index, int* q_index) const;
/// \copydoc MultiBodyTree::getBodyOrigin
@@ -271,13 +274,15 @@ private:
idArray<int>::type m_body_prismatic_list;
// Indices of floating joints
idArray<int>::type m_body_floating_list;
+ // Indices of spherical joints
+ idArray<int>::type m_body_spherical_list;
// a user-provided integer
idArray<int>::type m_user_int;
// a user-provided pointer
idArray<void*>::type m_user_ptr;
#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS)
- mat3x m_m3x;
+ mat3x m_m3x;
#endif
};
-}
+} // namespace btInverseDynamics
#endif
diff --git a/thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeInitCache.cpp b/thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeInitCache.cpp
index e9511b7076..a718db051e 100644
--- a/thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeInitCache.cpp
+++ b/thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeInitCache.cpp
@@ -1,12 +1,13 @@
#include "MultiBodyTreeInitCache.hpp"
-namespace btInverseDynamics {
-
-MultiBodyTree::InitCache::InitCache() {
+namespace btInverseDynamics
+{
+MultiBodyTree::InitCache::InitCache()
+{
m_inertias.resize(0);
m_joints.resize(0);
m_num_dofs = 0;
- m_root_index=-1;
+ m_root_index = -1;
}
int MultiBodyTree::InitCache::addBody(const int body_index, const int parent_index,
@@ -15,8 +16,10 @@ int MultiBodyTree::InitCache::addBody(const int body_index, const int parent_ind
const mat33& body_T_parent_ref,
const vec3& body_axis_of_motion, const idScalar mass,
const vec3& body_r_body_com, const mat33& body_I_body,
- const int user_int, void* user_ptr) {
- switch (joint_type) {
+ const int user_int, void* user_ptr)
+{
+ switch (joint_type)
+ {
case REVOLUTE:
case PRISMATIC:
m_num_dofs += 1;
@@ -25,6 +28,9 @@ int MultiBodyTree::InitCache::addBody(const int body_index, const int parent_ind
// does not add a degree of freedom
// m_num_dofs+=0;
break;
+ case SPHERICAL:
+ m_num_dofs += 3;
+ break;
case FLOATING:
m_num_dofs += 6;
break;
@@ -33,13 +39,15 @@ int MultiBodyTree::InitCache::addBody(const int body_index, const int parent_ind
return -1;
}
- if(-1 == parent_index) {
- if(m_root_index>=0) {
+ if (-1 == parent_index)
+ {
+ if (m_root_index >= 0)
+ {
bt_id_error_message("trying to add body %d as root, but already added %d as root body\n",
- body_index, m_root_index);
+ body_index, m_root_index);
return -1;
}
- m_root_index=body_index;
+ m_root_index = body_index;
}
JointData joint;
@@ -61,8 +69,10 @@ int MultiBodyTree::InitCache::addBody(const int body_index, const int parent_ind
m_user_ptr.push_back(user_ptr);
return 0;
}
-int MultiBodyTree::InitCache::getInertiaData(const int index, InertiaData* inertia) const {
- if (index < 0 || index > static_cast<int>(m_inertias.size())) {
+int MultiBodyTree::InitCache::getInertiaData(const int index, InertiaData* inertia) const
+{
+ if (index < 0 || index > static_cast<int>(m_inertias.size()))
+ {
bt_id_error_message("index out of range\n");
return -1;
}
@@ -71,8 +81,10 @@ int MultiBodyTree::InitCache::getInertiaData(const int index, InertiaData* inert
return 0;
}
-int MultiBodyTree::InitCache::getUserInt(const int index, int* user_int) const {
- if (index < 0 || index > static_cast<int>(m_user_int.size())) {
+int MultiBodyTree::InitCache::getUserInt(const int index, int* user_int) const
+{
+ if (index < 0 || index > static_cast<int>(m_user_int.size()))
+ {
bt_id_error_message("index out of range\n");
return -1;
}
@@ -80,8 +92,10 @@ int MultiBodyTree::InitCache::getUserInt(const int index, int* user_int) const {
return 0;
}
-int MultiBodyTree::InitCache::getUserPtr(const int index, void** user_ptr) const {
- if (index < 0 || index > static_cast<int>(m_user_ptr.size())) {
+int MultiBodyTree::InitCache::getUserPtr(const int index, void** user_ptr) const
+{
+ if (index < 0 || index > static_cast<int>(m_user_ptr.size()))
+ {
bt_id_error_message("index out of range\n");
return -1;
}
@@ -89,8 +103,10 @@ int MultiBodyTree::InitCache::getUserPtr(const int index, void** user_ptr) const
return 0;
}
-int MultiBodyTree::InitCache::getJointData(const int index, JointData* joint) const {
- if (index < 0 || index > static_cast<int>(m_joints.size())) {
+int MultiBodyTree::InitCache::getJointData(const int index, JointData* joint) const
+{
+ if (index < 0 || index > static_cast<int>(m_joints.size()))
+ {
bt_id_error_message("index out of range\n");
return -1;
}
@@ -98,16 +114,18 @@ int MultiBodyTree::InitCache::getJointData(const int index, JointData* joint) co
return 0;
}
-int MultiBodyTree::InitCache::buildIndexSets() {
+int MultiBodyTree::InitCache::buildIndexSets()
+{
// NOTE: This function assumes that proper indices were provided
// User2InternalIndex from utils can be used to facilitate this.
m_parent_index.resize(numBodies());
- for (idArrayIdx j = 0; j < m_joints.size(); j++) {
+ for (idArrayIdx j = 0; j < m_joints.size(); j++)
+ {
const JointData& joint = m_joints[j];
m_parent_index[joint.m_child] = joint.m_parent;
}
return 0;
}
-}
+} // namespace btInverseDynamics
diff --git a/thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeInitCache.hpp b/thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeInitCache.hpp
index 0d2aa4a071..dbdb3ff604 100644
--- a/thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeInitCache.hpp
+++ b/thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeInitCache.hpp
@@ -5,9 +5,11 @@
#include "../IDMath.hpp"
#include "../MultiBodyTree.hpp"
-namespace btInverseDynamics {
+namespace btInverseDynamics
+{
/// Mass properties of a rigid body
-struct InertiaData {
+struct InertiaData
+{
ID_DECLARE_ALIGNED_ALLOCATOR();
/// mass
@@ -21,7 +23,8 @@ struct InertiaData {
};
/// Joint properties
-struct JointData {
+struct JointData
+{
ID_DECLARE_ALIGNED_ALLOCATOR();
/// type of joint
@@ -48,7 +51,8 @@ struct JointData {
/// Data structure to store data passed by the user.
/// This is used in MultiBodyTree::finalize to build internal data structures.
-class MultiBodyTree::InitCache {
+class MultiBodyTree::InitCache
+{
public:
ID_DECLARE_ALIGNED_ALLOCATOR();
/// constructor
@@ -105,5 +109,5 @@ private:
// index of root body (or -1 if not set)
int m_root_index;
};
-}
+} // namespace btInverseDynamics
#endif // MULTIBODYTREEINITCACHE_HPP_