summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletInverseDynamics
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/bullet/BulletInverseDynamics')
-rw-r--r--thirdparty/bullet/BulletInverseDynamics/IDConfig.hpp107
-rw-r--r--thirdparty/bullet/BulletInverseDynamics/IDConfigBuiltin.hpp37
-rw-r--r--thirdparty/bullet/BulletInverseDynamics/IDConfigEigen.hpp31
-rw-r--r--thirdparty/bullet/BulletInverseDynamics/IDErrorMessages.hpp29
-rw-r--r--thirdparty/bullet/BulletInverseDynamics/IDMath.cpp437
-rw-r--r--thirdparty/bullet/BulletInverseDynamics/IDMath.hpp99
-rw-r--r--thirdparty/bullet/BulletInverseDynamics/MultiBodyTree.cpp445
-rw-r--r--thirdparty/bullet/BulletInverseDynamics/MultiBodyTree.hpp363
-rw-r--r--thirdparty/bullet/BulletInverseDynamics/details/IDEigenInterface.hpp36
-rw-r--r--thirdparty/bullet/BulletInverseDynamics/details/IDLinearMathInterface.hpp172
-rw-r--r--thirdparty/bullet/BulletInverseDynamics/details/IDMatVec.hpp415
-rw-r--r--thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeImpl.cpp1028
-rw-r--r--thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeImpl.hpp283
-rw-r--r--thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeInitCache.cpp113
-rw-r--r--thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeInitCache.hpp109
15 files changed, 3704 insertions, 0 deletions
diff --git a/thirdparty/bullet/BulletInverseDynamics/IDConfig.hpp b/thirdparty/bullet/BulletInverseDynamics/IDConfig.hpp
new file mode 100644
index 0000000000..ebb10e7a16
--- /dev/null
+++ b/thirdparty/bullet/BulletInverseDynamics/IDConfig.hpp
@@ -0,0 +1,107 @@
+///@file Configuration for Inverse Dynamics Library,
+/// such as choice of linear algebra library and underlying scalar type
+#ifndef IDCONFIG_HPP_
+#define IDCONFIG_HPP_
+
+// If true, enable jacobian calculations.
+// This adds a 3xN matrix to every body, + 2 3-Vectors.
+// so it is not advised for large systems if it is not absolutely necessary.
+// Also, this is not required for standard inverse dynamics calculations.
+// Will only work with vector math libraries that support 3xN matrices.
+#define BT_ID_WITH_JACOBIANS
+
+// If we have a custom configuration, compile without using other parts of bullet.
+#ifdef BT_CUSTOM_INVERSE_DYNAMICS_CONFIG_H
+#include <cmath>
+#define BT_ID_WO_BULLET
+#define BT_ID_SQRT(x) std::sqrt(x)
+#define BT_ID_FABS(x) std::fabs(x)
+#define BT_ID_COS(x) std::cos(x)
+#define BT_ID_SIN(x) std::sin(x)
+#define BT_ID_ATAN2(x, y) std::atan2(x, y)
+#define BT_ID_POW(x, y) std::pow(x, y)
+#define BT_ID_SNPRINTF snprintf
+#define BT_ID_PI M_PI
+#define BT_ID_USE_DOUBLE_PRECISION
+#else
+#define BT_ID_SQRT(x) btSqrt(x)
+#define BT_ID_FABS(x) btFabs(x)
+#define BT_ID_COS(x) btCos(x)
+#define BT_ID_SIN(x) btSin(x)
+#define BT_ID_ATAN2(x, y) btAtan2(x, y)
+#define BT_ID_POW(x, y) btPow(x, y)
+#define BT_ID_PI SIMD_PI
+#ifdef _WIN32
+ #define BT_ID_SNPRINTF _snprintf
+#else
+ #define BT_ID_SNPRINTF snprintf
+#endif //
+#endif
+// error messages
+#include "IDErrorMessages.hpp"
+
+#ifdef BT_CUSTOM_INVERSE_DYNAMICS_CONFIG_H
+/*
+#include "IDConfigEigen.hpp"
+#include "IDConfigBuiltin.hpp"
+*/
+#define INVDYN_INCLUDE_HELPER_2(x) #x
+#define INVDYN_INCLUDE_HELPER(x) INVDYN_INCLUDE_HELPER_2(x)
+#include INVDYN_INCLUDE_HELPER(BT_CUSTOM_INVERSE_DYNAMICS_CONFIG_H)
+#ifndef btInverseDynamics
+#error "custom inverse dynamics config, but no custom namespace defined"
+#endif
+
+#define BT_ID_MAX(a,b) std::max(a,b)
+#define BT_ID_MIN(a,b) std::min(a,b)
+
+#else
+#define btInverseDynamics btInverseDynamicsBullet3
+// Use default configuration with bullet's types
+// Use the same scalar type as rest of bullet library
+#include "LinearMath/btScalar.h"
+typedef btScalar idScalar;
+#include "LinearMath/btMinMax.h"
+#define BT_ID_MAX(a,b) btMax(a,b)
+#define BT_ID_MIN(a,b) btMin(a,b)
+
+#ifdef BT_USE_DOUBLE_PRECISION
+#define BT_ID_USE_DOUBLE_PRECISION
+#endif
+
+#ifndef BT_USE_INVERSE_DYNAMICS_WITH_BULLET2
+
+
+// use bullet types for arrays and array indices
+#include "Bullet3Common/b3AlignedObjectArray.h"
+// this is to make it work with C++2003, otherwise we could do this:
+// template <typename T>
+// using idArray = b3AlignedObjectArray<T>;
+template <typename T>
+struct idArray {
+ typedef b3AlignedObjectArray<T> type;
+};
+typedef int idArrayIdx;
+#define ID_DECLARE_ALIGNED_ALLOCATOR() B3_DECLARE_ALIGNED_ALLOCATOR()
+
+#else // BT_USE_INVERSE_DYNAMICS_WITH_BULLET2
+
+#include "LinearMath/btAlignedObjectArray.h"
+template <typename T>
+struct idArray {
+ typedef btAlignedObjectArray<T> type;
+};
+typedef int idArrayIdx;
+#define ID_DECLARE_ALIGNED_ALLOCATOR() BT_DECLARE_ALIGNED_ALLOCATOR()
+
+#endif // BT_USE_INVERSE_DYNAMICS_WITH_BULLET2
+
+
+// use bullet's allocator functions
+#define idMalloc btAllocFunc
+#define idFree btFreeFunc
+
+#define ID_LINEAR_MATH_USE_BULLET
+#include "details/IDLinearMathInterface.hpp"
+#endif
+#endif
diff --git a/thirdparty/bullet/BulletInverseDynamics/IDConfigBuiltin.hpp b/thirdparty/bullet/BulletInverseDynamics/IDConfigBuiltin.hpp
new file mode 100644
index 0000000000..130c19c6d6
--- /dev/null
+++ b/thirdparty/bullet/BulletInverseDynamics/IDConfigBuiltin.hpp
@@ -0,0 +1,37 @@
+///@file Configuration for Inverse Dynamics Library without external dependencies
+#ifndef INVDYNCONFIG_BUILTIN_HPP_
+#define INVDYNCONFIG_BUILTIN_HPP_
+#define btInverseDynamics btInverseDynamicsBuiltin
+#ifdef BT_USE_DOUBLE_PRECISION
+// choose double/single precision version
+typedef double idScalar;
+#else
+typedef float idScalar;
+#endif
+// use std::vector for arrays
+#include <vector>
+// this is to make it work with C++2003, otherwise we could do this
+// template <typename T>
+// using idArray = std::vector<T>;
+template <typename T>
+struct idArray {
+ typedef std::vector<T> type;
+};
+typedef std::vector<int>::size_type idArrayIdx;
+// default to standard malloc/free
+#include <cstdlib>
+#define idMalloc ::malloc
+#define idFree ::free
+// currently not aligned at all...
+#define ID_DECLARE_ALIGNED_ALLOCATOR() \
+ inline void* operator new(std::size_t sizeInBytes) { return idMalloc(sizeInBytes); } \
+ inline void operator delete(void* ptr) { idFree(ptr); } \
+ inline void* operator new(std::size_t, void* ptr) { return ptr; } \
+ inline void operator delete(void*, void*) {} \
+ inline void* operator new[](std::size_t sizeInBytes) { return idMalloc(sizeInBytes); } \
+ inline void operator delete[](void* ptr) { idFree(ptr); } \
+ inline void* operator new[](std::size_t, void* ptr) { return ptr; } \
+ inline void operator delete[](void*, void*) {}
+
+#include "details/IDMatVec.hpp"
+#endif
diff --git a/thirdparty/bullet/BulletInverseDynamics/IDConfigEigen.hpp b/thirdparty/bullet/BulletInverseDynamics/IDConfigEigen.hpp
new file mode 100644
index 0000000000..cbd7e8a9c4
--- /dev/null
+++ b/thirdparty/bullet/BulletInverseDynamics/IDConfigEigen.hpp
@@ -0,0 +1,31 @@
+///@file Configuration for Inverse Dynamics Library with Eigen
+#ifndef INVDYNCONFIG_EIGEN_HPP_
+#define INVDYNCONFIG_EIGEN_HPP_
+#define btInverseDynamics btInverseDynamicsEigen
+#ifdef BT_USE_DOUBLE_PRECISION
+// choose double/single precision version
+typedef double idScalar;
+#else
+typedef float idScalar;
+#endif
+
+// use std::vector for arrays
+#include <vector>
+// this is to make it work with C++2003, otherwise we could do this
+// template <typename T>
+// using idArray = std::vector<T>;
+template <typename T>
+struct idArray {
+ typedef std::vector<T> type;
+};
+typedef std::vector<int>::size_type idArrayIdx;
+// default to standard malloc/free
+#include <cstdlib>
+#define ID_DECLARE_ALIGNED_ALLOCATOR() EIGEN_MAKE_ALIGNED_OPERATOR_NEW
+// Note on interfaces:
+// Eigen::Matrix has data(), to get c-array storage
+// HOWEVER: default storage is column-major!
+#define ID_LINEAR_MATH_USE_EIGEN
+#include "Eigen/Eigen"
+#include "details/IDEigenInterface.hpp"
+#endif
diff --git a/thirdparty/bullet/BulletInverseDynamics/IDErrorMessages.hpp b/thirdparty/bullet/BulletInverseDynamics/IDErrorMessages.hpp
new file mode 100644
index 0000000000..1dc22f860a
--- /dev/null
+++ b/thirdparty/bullet/BulletInverseDynamics/IDErrorMessages.hpp
@@ -0,0 +1,29 @@
+///@file error message utility functions
+#ifndef IDUTILS_HPP_
+#define IDUTILS_HPP_
+#include <cstring>
+/// name of file being compiled, without leading path components
+#define __INVDYN_FILE_WO_DIR__ (strrchr(__FILE__, '/') ? strrchr(__FILE__, '/') + 1 : __FILE__)
+
+#if !defined(BT_ID_WO_BULLET) && !defined(BT_USE_INVERSE_DYNAMICS_WITH_BULLET2)
+#include "Bullet3Common/b3Logging.h"
+#define error_message(...) b3Error(__VA_ARGS__)
+#define warning_message(...) b3Warning(__VA_ARGS__)
+#define id_printf(...) b3Printf(__VA_ARGS__)
+#else // BT_ID_WO_BULLET
+#include <cstdio>
+/// print error message with file/line information
+#define error_message(...) \
+ do { \
+ fprintf(stderr, "[Error:%s:%d] ", __INVDYN_FILE_WO_DIR__, __LINE__); \
+ fprintf(stderr, __VA_ARGS__); \
+ } while (0)
+/// print warning message with file/line information
+#define warning_message(...) \
+ do { \
+ fprintf(stderr, "[Warning:%s:%d] ", __INVDYN_FILE_WO_DIR__, __LINE__); \
+ fprintf(stderr, __VA_ARGS__); \
+ } while (0)
+#define id_printf(...) printf(__VA_ARGS__)
+#endif // BT_ID_WO_BULLET
+#endif
diff --git a/thirdparty/bullet/BulletInverseDynamics/IDMath.cpp b/thirdparty/bullet/BulletInverseDynamics/IDMath.cpp
new file mode 100644
index 0000000000..99fe20e492
--- /dev/null
+++ b/thirdparty/bullet/BulletInverseDynamics/IDMath.cpp
@@ -0,0 +1,437 @@
+#include "IDMath.hpp"
+
+#include <cmath>
+#include <limits>
+
+namespace btInverseDynamics {
+static const idScalar kIsZero = 5 * std::numeric_limits<idScalar>::epsilon();
+// requirements for axis length deviation from 1.0
+// experimentally set from random euler angle rotation matrices
+static const idScalar kAxisLengthEpsilon = 10 * kIsZero;
+
+void setZero(vec3 &v) {
+ v(0) = 0;
+ v(1) = 0;
+ v(2) = 0;
+}
+
+void setZero(vecx &v) {
+ for (int i = 0; i < v.size(); i++) {
+ v(i) = 0;
+ }
+}
+
+void setZero(mat33 &m) {
+ m(0, 0) = 0;
+ m(0, 1) = 0;
+ m(0, 2) = 0;
+ m(1, 0) = 0;
+ m(1, 1) = 0;
+ m(1, 2) = 0;
+ m(2, 0) = 0;
+ m(2, 1) = 0;
+ m(2, 2) = 0;
+}
+
+void skew(vec3& v, mat33* result) {
+ (*result)(0, 0) = 0.0;
+ (*result)(0, 1) = -v(2);
+ (*result)(0, 2) = v(1);
+ (*result)(1, 0) = v(2);
+ (*result)(1, 1) = 0.0;
+ (*result)(1, 2) = -v(0);
+ (*result)(2, 0) = -v(1);
+ (*result)(2, 1) = v(0);
+ (*result)(2, 2) = 0.0;
+}
+
+idScalar maxAbs(const vecx &v) {
+ idScalar result = 0.0;
+ for (int i = 0; i < v.size(); i++) {
+ const idScalar tmp = BT_ID_FABS(v(i));
+ if (tmp > result) {
+ result = tmp;
+ }
+ }
+ return result;
+}
+
+idScalar maxAbs(const vec3 &v) {
+ idScalar result = 0.0;
+ for (int i = 0; i < 3; i++) {
+ const idScalar tmp = BT_ID_FABS(v(i));
+ if (tmp > result) {
+ result = tmp;
+ }
+ }
+ return result;
+}
+
+#if (defined BT_ID_HAVE_MAT3X)
+idScalar maxAbsMat3x(const mat3x &m) {
+ // only used for tests -- so just loop here for portability
+ idScalar result = 0.0;
+ for (idArrayIdx col = 0; col < m.cols(); col++) {
+ for (idArrayIdx row = 0; row < 3; row++) {
+ result = BT_ID_MAX(result, std::fabs(m(row, col)));
+ }
+ }
+ return result;
+}
+
+void mul(const mat33 &a, const mat3x &b, mat3x *result) {
+ if (b.cols() != result->cols()) {
+ error_message("size missmatch. b.cols()= %d, result->cols()= %d\n",
+ static_cast<int>(b.cols()), static_cast<int>(result->cols()));
+ abort();
+ }
+
+ for (idArrayIdx col = 0; col < b.cols(); col++) {
+ const idScalar x = a(0,0)*b(0,col)+a(0,1)*b(1,col)+a(0,2)*b(2,col);
+ const idScalar y = a(1,0)*b(0,col)+a(1,1)*b(1,col)+a(1,2)*b(2,col);
+ const idScalar z = a(2,0)*b(0,col)+a(2,1)*b(1,col)+a(2,2)*b(2,col);
+ setMat3xElem(0, col, x, result);
+ setMat3xElem(1, col, y, result);
+ setMat3xElem(2, col, z, result);
+ }
+}
+void add(const mat3x &a, const mat3x &b, mat3x *result) {
+ if (a.cols() != b.cols()) {
+ error_message("size missmatch. a.cols()= %d, b.cols()= %d\n",
+ static_cast<int>(a.cols()), static_cast<int>(b.cols()));
+ abort();
+ }
+ for (idArrayIdx col = 0; col < b.cols(); col++) {
+ for (idArrayIdx row = 0; row < 3; row++) {
+ setMat3xElem(row, col, a(row, col) + b(row, col), result);
+ }
+ }
+}
+void sub(const mat3x &a, const mat3x &b, mat3x *result) {
+ if (a.cols() != b.cols()) {
+ error_message("size missmatch. a.cols()= %d, b.cols()= %d\n",
+ static_cast<int>(a.cols()), static_cast<int>(b.cols()));
+ abort();
+ }
+ for (idArrayIdx col = 0; col < b.cols(); col++) {
+ for (idArrayIdx row = 0; row < 3; row++) {
+ setMat3xElem(row, col, a(row, col) - b(row, col), result);
+ }
+ }
+}
+#endif
+
+mat33 transformX(const idScalar &alpha) {
+ mat33 T;
+ const idScalar cos_alpha = BT_ID_COS(alpha);
+ const idScalar sin_alpha = BT_ID_SIN(alpha);
+ // [1 0 0]
+ // [0 c s]
+ // [0 -s c]
+ T(0, 0) = 1.0;
+ T(0, 1) = 0.0;
+ T(0, 2) = 0.0;
+
+ T(1, 0) = 0.0;
+ T(1, 1) = cos_alpha;
+ T(1, 2) = sin_alpha;
+
+ T(2, 0) = 0.0;
+ T(2, 1) = -sin_alpha;
+ T(2, 2) = cos_alpha;
+
+ return T;
+}
+
+mat33 transformY(const idScalar &beta) {
+ mat33 T;
+ const idScalar cos_beta = BT_ID_COS(beta);
+ const idScalar sin_beta = BT_ID_SIN(beta);
+ // [c 0 -s]
+ // [0 1 0]
+ // [s 0 c]
+ T(0, 0) = cos_beta;
+ T(0, 1) = 0.0;
+ T(0, 2) = -sin_beta;
+
+ T(1, 0) = 0.0;
+ T(1, 1) = 1.0;
+ T(1, 2) = 0.0;
+
+ T(2, 0) = sin_beta;
+ T(2, 1) = 0.0;
+ T(2, 2) = cos_beta;
+
+ return T;
+}
+
+mat33 transformZ(const idScalar &gamma) {
+ mat33 T;
+ const idScalar cos_gamma = BT_ID_COS(gamma);
+ const idScalar sin_gamma = BT_ID_SIN(gamma);
+ // [ c s 0]
+ // [-s c 0]
+ // [ 0 0 1]
+ T(0, 0) = cos_gamma;
+ T(0, 1) = sin_gamma;
+ T(0, 2) = 0.0;
+
+ T(1, 0) = -sin_gamma;
+ T(1, 1) = cos_gamma;
+ T(1, 2) = 0.0;
+
+ T(2, 0) = 0.0;
+ T(2, 1) = 0.0;
+ T(2, 2) = 1.0;
+
+ return T;
+}
+
+mat33 tildeOperator(const vec3 &v) {
+ mat33 m;
+ m(0, 0) = 0.0;
+ m(0, 1) = -v(2);
+ m(0, 2) = v(1);
+ m(1, 0) = v(2);
+ m(1, 1) = 0.0;
+ m(1, 2) = -v(0);
+ m(2, 0) = -v(1);
+ m(2, 1) = v(0);
+ m(2, 2) = 0.0;
+ return m;
+}
+
+void getVecMatFromDH(idScalar theta, idScalar d, idScalar a, idScalar alpha, vec3 *r, mat33 *T) {
+ const idScalar sa = BT_ID_SIN(alpha);
+ const idScalar ca = BT_ID_COS(alpha);
+ const idScalar st = BT_ID_SIN(theta);
+ const idScalar ct = BT_ID_COS(theta);
+
+ (*r)(0) = a;
+ (*r)(1) = -sa * d;
+ (*r)(2) = ca * d;
+
+ (*T)(0, 0) = ct;
+ (*T)(0, 1) = -st;
+ (*T)(0, 2) = 0.0;
+
+ (*T)(1, 0) = st * ca;
+ (*T)(1, 1) = ct * ca;
+ (*T)(1, 2) = -sa;
+
+ (*T)(2, 0) = st * sa;
+ (*T)(2, 1) = ct * sa;
+ (*T)(2, 2) = ca;
+}
+
+void bodyTParentFromAxisAngle(const vec3 &axis, const idScalar &angle, mat33 *T) {
+ const idScalar c = BT_ID_COS(angle);
+ const idScalar s = -BT_ID_SIN(angle);
+ const idScalar one_m_c = 1.0 - c;
+
+ const idScalar &x = axis(0);
+ const idScalar &y = axis(1);
+ const idScalar &z = axis(2);
+
+ (*T)(0, 0) = x * x * one_m_c + c;
+ (*T)(0, 1) = x * y * one_m_c - z * s;
+ (*T)(0, 2) = x * z * one_m_c + y * s;
+
+ (*T)(1, 0) = x * y * one_m_c + z * s;
+ (*T)(1, 1) = y * y * one_m_c + c;
+ (*T)(1, 2) = y * z * one_m_c - x * s;
+
+ (*T)(2, 0) = x * z * one_m_c - y * s;
+ (*T)(2, 1) = y * z * one_m_c + x * s;
+ (*T)(2, 2) = z * z * one_m_c + c;
+}
+
+bool isPositiveDefinite(const mat33 &m) {
+ // test if all upper left determinants are positive
+ if (m(0, 0) <= 0) { // upper 1x1
+ return false;
+ }
+ if (m(0, 0) * m(1, 1) - m(0, 1) * m(1, 0) <= 0) { // upper 2x2
+ return false;
+ }
+ if ((m(0, 0) * (m(1, 1) * m(2, 2) - m(1, 2) * m(2, 1)) -
+ m(0, 1) * (m(1, 0) * m(2, 2) - m(1, 2) * m(2, 0)) +
+ m(0, 2) * (m(1, 0) * m(2, 1) - m(1, 1) * m(2, 0))) < 0) {
+ return false;
+ }
+ return true;
+}
+
+bool isPositiveSemiDefinite(const mat33 &m) {
+ // test if all upper left determinants are positive
+ if (m(0, 0) < 0) { // upper 1x1
+ return false;
+ }
+ if (m(0, 0) * m(1, 1) - m(0, 1) * m(1, 0) < 0) { // upper 2x2
+ return false;
+ }
+ if ((m(0, 0) * (m(1, 1) * m(2, 2) - m(1, 2) * m(2, 1)) -
+ m(0, 1) * (m(1, 0) * m(2, 2) - m(1, 2) * m(2, 0)) +
+ m(0, 2) * (m(1, 0) * m(2, 1) - m(1, 1) * m(2, 0))) < 0) {
+ return false;
+ }
+ return true;
+}
+
+bool isPositiveSemiDefiniteFuzzy(const mat33 &m) {
+ // test if all upper left determinants are positive
+ if (m(0, 0) < -kIsZero) { // upper 1x1
+ return false;
+ }
+ if (m(0, 0) * m(1, 1) - m(0, 1) * m(1, 0) < -kIsZero) { // upper 2x2
+ return false;
+ }
+ if ((m(0, 0) * (m(1, 1) * m(2, 2) - m(1, 2) * m(2, 1)) -
+ m(0, 1) * (m(1, 0) * m(2, 2) - m(1, 2) * m(2, 0)) +
+ m(0, 2) * (m(1, 0) * m(2, 1) - m(1, 1) * m(2, 0))) < -kIsZero) {
+ return false;
+ }
+ return true;
+}
+
+idScalar determinant(const mat33 &m) {
+ return m(0, 0) * m(1, 1) * m(2, 2) + m(0, 1) * m(1, 2) * m(2, 0) + m(0, 2) * m(1, 0) * m(2, 1) -
+ m(0, 2) * m(1, 1) * m(2, 0) - m(0, 0) * m(1, 2) * m(2, 1) - m(0, 1) * m(1, 0) * m(2, 2);
+}
+
+bool isValidInertiaMatrix(const mat33 &I, const int index, bool has_fixed_joint) {
+ // TODO(Thomas) do we really want this?
+ // in cases where the inertia tensor about the center of mass is zero,
+ // the determinant of the inertia tensor about the joint axis is almost
+ // zero and can have a very small negative value.
+ if (!isPositiveSemiDefiniteFuzzy(I)) {
+ error_message("invalid inertia matrix for body %d, not positive definite "
+ "(fixed joint)\n",
+ index);
+ error_message("matrix is:\n"
+ "[%.20e %.20e %.20e;\n"
+ "%.20e %.20e %.20e;\n"
+ "%.20e %.20e %.20e]\n",
+ I(0, 0), I(0, 1), I(0, 2), I(1, 0), I(1, 1), I(1, 2), I(2, 0), I(2, 1),
+ I(2, 2));
+
+ return false;
+ }
+
+ // check triangle inequality, must have I(i,i)+I(j,j)>=I(k,k)
+ if (!has_fixed_joint) {
+ if (I(0, 0) + I(1, 1) < I(2, 2)) {
+ error_message("invalid inertia tensor for body %d, I(0,0) + I(1,1) < I(2,2)\n", index);
+ error_message("matrix is:\n"
+ "[%.20e %.20e %.20e;\n"
+ "%.20e %.20e %.20e;\n"
+ "%.20e %.20e %.20e]\n",
+ I(0, 0), I(0, 1), I(0, 2), I(1, 0), I(1, 1), I(1, 2), I(2, 0), I(2, 1),
+ I(2, 2));
+ return false;
+ }
+ if (I(0, 0) + I(1, 1) < I(2, 2)) {
+ error_message("invalid inertia tensor for body %d, I(0,0) + I(1,1) < I(2,2)\n", index);
+ error_message("matrix is:\n"
+ "[%.20e %.20e %.20e;\n"
+ "%.20e %.20e %.20e;\n"
+ "%.20e %.20e %.20e]\n",
+ I(0, 0), I(0, 1), I(0, 2), I(1, 0), I(1, 1), I(1, 2), I(2, 0), I(2, 1),
+ I(2, 2));
+ return false;
+ }
+ if (I(1, 1) + I(2, 2) < I(0, 0)) {
+ error_message("invalid inertia tensor for body %d, I(1,1) + I(2,2) < I(0,0)\n", index);
+ error_message("matrix is:\n"
+ "[%.20e %.20e %.20e;\n"
+ "%.20e %.20e %.20e;\n"
+ "%.20e %.20e %.20e]\n",
+ I(0, 0), I(0, 1), I(0, 2), I(1, 0), I(1, 1), I(1, 2), I(2, 0), I(2, 1),
+ I(2, 2));
+ return false;
+ }
+ }
+ // check positive/zero diagonal elements
+ for (int i = 0; i < 3; i++) {
+ if (I(i, i) < 0) { // accept zero
+ error_message("invalid inertia tensor, I(%d,%d)= %e <0\n", i, i, I(i, i));
+ return false;
+ }
+ }
+ // check symmetry
+ if (BT_ID_FABS(I(1, 0) - I(0, 1)) > kIsZero) {
+ error_message("invalid inertia tensor for body %d I(1,0)!=I(0,1). I(1,0)-I(0,1)= "
+ "%e\n",
+ index, I(1, 0) - I(0, 1));
+ return false;
+ }
+ if (BT_ID_FABS(I(2, 0) - I(0, 2)) > kIsZero) {
+ error_message("invalid inertia tensor for body %d I(2,0)!=I(0,2). I(2,0)-I(0,2)= "
+ "%e\n",
+ index, I(2, 0) - I(0, 2));
+ return false;
+ }
+ if (BT_ID_FABS(I(1, 2) - I(2, 1)) > kIsZero) {
+ error_message("invalid inertia tensor body %d I(1,2)!=I(2,1). I(1,2)-I(2,1)= %e\n", index,
+ I(1, 2) - I(2, 1));
+ return false;
+ }
+ return true;
+}
+
+bool isValidTransformMatrix(const mat33 &m) {
+#define print_mat(x) \
+ error_message("matrix is [%e, %e, %e; %e, %e, %e; %e, %e, %e]\n", x(0, 0), x(0, 1), x(0, 2), \
+ x(1, 0), x(1, 1), x(1, 2), x(2, 0), x(2, 1), x(2, 2))
+
+ // check for unit length column vectors
+ for (int i = 0; i < 3; i++) {
+ const idScalar length_minus_1 =
+ BT_ID_FABS(m(0, i) * m(0, i) + m(1, i) * m(1, i) + m(2, i) * m(2, i) - 1.0);
+ if (length_minus_1 > kAxisLengthEpsilon) {
+ error_message("Not a valid rotation matrix (column %d not unit length)\n"
+ "column = [%.18e %.18e %.18e]\n"
+ "length-1.0= %.18e\n",
+ i, m(0, i), m(1, i), m(2, i), length_minus_1);
+ print_mat(m);
+ return false;
+ }
+ }
+ // check for orthogonal column vectors
+ if (BT_ID_FABS(m(0, 0) * m(0, 1) + m(1, 0) * m(1, 1) + m(2, 0) * m(2, 1)) > kAxisLengthEpsilon) {
+ error_message("Not a valid rotation matrix (columns 0 and 1 not orthogonal)\n");
+ print_mat(m);
+ return false;
+ }
+ if (BT_ID_FABS(m(0, 0) * m(0, 2) + m(1, 0) * m(1, 2) + m(2, 0) * m(2, 2)) > kAxisLengthEpsilon) {
+ error_message("Not a valid rotation matrix (columns 0 and 2 not orthogonal)\n");
+ print_mat(m);
+ return false;
+ }
+ if (BT_ID_FABS(m(0, 1) * m(0, 2) + m(1, 1) * m(1, 2) + m(2, 1) * m(2, 2)) > kAxisLengthEpsilon) {
+ error_message("Not a valid rotation matrix (columns 0 and 2 not orthogonal)\n");
+ print_mat(m);
+ return false;
+ }
+ // check determinant (rotation not reflection)
+ if (determinant(m) <= 0) {
+ error_message("Not a valid rotation matrix (determinant <=0)\n");
+ print_mat(m);
+ return false;
+ }
+ return true;
+}
+
+bool isUnitVector(const vec3 &vector) {
+ return BT_ID_FABS(vector(0) * vector(0) + vector(1) * vector(1) + vector(2) * vector(2) - 1.0) <
+ kIsZero;
+}
+
+vec3 rpyFromMatrix(const mat33 &rot) {
+ vec3 rpy;
+ rpy(2) = BT_ID_ATAN2(-rot(1, 0), rot(0, 0));
+ rpy(1) = BT_ID_ATAN2(rot(2, 0), BT_ID_COS(rpy(2)) * rot(0, 0) - BT_ID_SIN(rpy(0)) * rot(1, 0));
+ rpy(0) = BT_ID_ATAN2(-rot(2, 0), rot(2, 2));
+ return rpy;
+}
+}
diff --git a/thirdparty/bullet/BulletInverseDynamics/IDMath.hpp b/thirdparty/bullet/BulletInverseDynamics/IDMath.hpp
new file mode 100644
index 0000000000..b355474d44
--- /dev/null
+++ b/thirdparty/bullet/BulletInverseDynamics/IDMath.hpp
@@ -0,0 +1,99 @@
+/// @file Math utility functions used in inverse dynamics library.
+/// Defined here as they may not be provided by the math library.
+
+#ifndef IDMATH_HPP_
+#define IDMATH_HPP_
+#include "IDConfig.hpp"
+
+namespace btInverseDynamics {
+/// set all elements to zero
+void setZero(vec3& v);
+/// set all elements to zero
+void setZero(vecx& v);
+/// set all elements to zero
+void setZero(mat33& m);
+/// create a skew symmetric matrix from a vector (useful for cross product abstraction, e.g. v x a = V * a)
+void skew(vec3& v, mat33* result);
+/// return maximum absolute value
+idScalar maxAbs(const vecx& v);
+#ifndef ID_LINEAR_MATH_USE_EIGEN
+/// return maximum absolute value
+idScalar maxAbs(const vec3& v);
+#endif //ID_LINEAR_MATH_USE_EIGEN
+
+#if (defined BT_ID_HAVE_MAT3X)
+idScalar maxAbsMat3x(const mat3x& m);
+void setZero(mat3x&m);
+// define math functions on mat3x here to avoid allocations in operators.
+void mul(const mat33&a, const mat3x&b, mat3x* result);
+void add(const mat3x&a, const mat3x&b, mat3x* result);
+void sub(const mat3x&a, const mat3x&b, mat3x* result);
+#endif
+
+/// get offset vector & transform matrix from DH parameters
+/// TODO: add documentation
+void getVecMatFromDH(idScalar theta, idScalar d, idScalar a, idScalar alpha, vec3* r, mat33* T);
+
+/// Check if a 3x3 matrix is positive definite
+/// @param m a 3x3 matrix
+/// @return true if m>0, false otherwise
+bool isPositiveDefinite(const mat33& m);
+
+/// Check if a 3x3 matrix is positive semi definite
+/// @param m a 3x3 matrix
+/// @return true if m>=0, false otherwise
+bool isPositiveSemiDefinite(const mat33& m);
+/// Check if a 3x3 matrix is positive semi definite within numeric limits
+/// @param m a 3x3 matrix
+/// @return true if m>=-eps, false otherwise
+bool isPositiveSemiDefiniteFuzzy(const mat33& m);
+
+/// Determinant of 3x3 matrix
+/// NOTE: implemented here for portability, as determinant operation
+/// will be implemented differently for various matrix/vector libraries
+/// @param m a 3x3 matrix
+/// @return det(m)
+idScalar determinant(const mat33& m);
+
+/// Test if a 3x3 matrix satisfies some properties of inertia matrices
+/// @param I a 3x3 matrix
+/// @param index body index (for error messages)
+/// @param has_fixed_joint: if true, positive semi-definite matrices are accepted
+/// @return true if I satisfies inertia matrix properties, false otherwise.
+bool isValidInertiaMatrix(const mat33& I, int index, bool has_fixed_joint);
+
+/// Check if a 3x3 matrix is a valid transform (rotation) matrix
+/// @param m a 3x3 matrix
+/// @return true if m is a rotation matrix, false otherwise
+bool isValidTransformMatrix(const mat33& m);
+/// Transform matrix from parent to child frame,
+/// when the child frame is rotated about @param axis by @angle
+/// (mathematically positive)
+/// @param axis the axis of rotation
+/// @param angle rotation angle
+/// @param T pointer to transform matrix
+void bodyTParentFromAxisAngle(const vec3& axis, const idScalar& angle, mat33* T);
+
+/// Check if this is a unit vector
+/// @param vector
+/// @return true if |vector|=1 within numeric limits
+bool isUnitVector(const vec3& vector);
+
+/// @input a vector in R^3
+/// @returns corresponding spin tensor
+mat33 tildeOperator(const vec3& v);
+/// @param alpha angle in radians
+/// @returns transform matrix for ratation with @param alpha about x-axis
+mat33 transformX(const idScalar& alpha);
+/// @param beta angle in radians
+/// @returns transform matrix for ratation with @param beta about y-axis
+mat33 transformY(const idScalar& beta);
+/// @param gamma angle in radians
+/// @returns transform matrix for ratation with @param gamma about z-axis
+mat33 transformZ(const idScalar& gamma);
+///calculate rpy angles (x-y-z Euler angles) from a given rotation matrix
+/// @param rot rotation matrix
+/// @returns x-y-z Euler angles
+vec3 rpyFromMatrix(const mat33&rot);
+}
+#endif // IDMATH_HPP_
diff --git a/thirdparty/bullet/BulletInverseDynamics/MultiBodyTree.cpp b/thirdparty/bullet/BulletInverseDynamics/MultiBodyTree.cpp
new file mode 100644
index 0000000000..c67588d49f
--- /dev/null
+++ b/thirdparty/bullet/BulletInverseDynamics/MultiBodyTree.cpp
@@ -0,0 +1,445 @@
+#include "MultiBodyTree.hpp"
+
+#include <cmath>
+#include <limits>
+#include <vector>
+
+#include "IDMath.hpp"
+#include "details/MultiBodyTreeImpl.hpp"
+#include "details/MultiBodyTreeInitCache.hpp"
+
+namespace btInverseDynamics {
+
+MultiBodyTree::MultiBodyTree()
+ : m_is_finalized(false),
+ m_mass_parameters_are_valid(true),
+ m_accept_invalid_mass_parameters(false),
+ m_impl(0x0),
+ m_init_cache(0x0) {
+ m_init_cache = new InitCache();
+}
+
+MultiBodyTree::~MultiBodyTree() {
+ delete m_impl;
+ delete m_init_cache;
+}
+
+void MultiBodyTree::setAcceptInvalidMassParameters(bool flag) {
+ m_accept_invalid_mass_parameters = flag;
+}
+
+bool MultiBodyTree::getAcceptInvalidMassProperties() const {
+ return m_accept_invalid_mass_parameters;
+}
+
+int MultiBodyTree::getBodyOrigin(const int body_index, vec3 *world_origin) const {
+ return m_impl->getBodyOrigin(body_index, world_origin);
+}
+
+int MultiBodyTree::getBodyCoM(const int body_index, vec3 *world_com) const {
+ return m_impl->getBodyCoM(body_index, world_com);
+}
+
+int MultiBodyTree::getBodyTransform(const int body_index, mat33 *world_T_body) const {
+ return m_impl->getBodyTransform(body_index, world_T_body);
+}
+int MultiBodyTree::getBodyAngularVelocity(const int body_index, vec3 *world_omega) const {
+ return m_impl->getBodyAngularVelocity(body_index, world_omega);
+}
+int MultiBodyTree::getBodyLinearVelocity(const int body_index, vec3 *world_velocity) const {
+ return m_impl->getBodyLinearVelocity(body_index, world_velocity);
+}
+
+int MultiBodyTree::getBodyLinearVelocityCoM(const int body_index, vec3 *world_velocity) const {
+ return m_impl->getBodyLinearVelocityCoM(body_index, world_velocity);
+}
+
+int MultiBodyTree::getBodyAngularAcceleration(const int body_index, vec3 *world_dot_omega) const {
+ return m_impl->getBodyAngularAcceleration(body_index, world_dot_omega);
+}
+int MultiBodyTree::getBodyLinearAcceleration(const int body_index, vec3 *world_acceleration) const {
+ return m_impl->getBodyLinearAcceleration(body_index, world_acceleration);
+}
+
+int MultiBodyTree::getParentRParentBodyRef(const int body_index, vec3* r) const {
+ return m_impl->getParentRParentBodyRef(body_index, r);
+}
+
+int MultiBodyTree::getBodyTParentRef(const int body_index, mat33* T) const {
+ return m_impl->getBodyTParentRef(body_index, T);
+}
+
+int MultiBodyTree::getBodyAxisOfMotion(const int body_index, vec3* axis) const {
+ return m_impl->getBodyAxisOfMotion(body_index, axis);
+}
+
+void MultiBodyTree::printTree() { m_impl->printTree(); }
+void MultiBodyTree::printTreeData() { m_impl->printTreeData(); }
+
+int MultiBodyTree::numBodies() const { return m_impl->m_num_bodies; }
+
+int MultiBodyTree::numDoFs() const { return m_impl->m_num_dofs; }
+
+int MultiBodyTree::calculateInverseDynamics(const vecx &q, const vecx &u, const vecx &dot_u,
+ vecx *joint_forces) {
+ if (false == m_is_finalized) {
+ error_message("system has not been initialized\n");
+ return -1;
+ }
+ if (-1 == m_impl->calculateInverseDynamics(q, u, dot_u, joint_forces)) {
+ error_message("error in inverse dynamics calculation\n");
+ return -1;
+ }
+ return 0;
+}
+
+int MultiBodyTree::calculateMassMatrix(const vecx &q, const bool update_kinematics,
+ const bool initialize_matrix,
+ const bool set_lower_triangular_matrix, matxx *mass_matrix) {
+ if (false == m_is_finalized) {
+ error_message("system has not been initialized\n");
+ return -1;
+ }
+ if (-1 ==
+ m_impl->calculateMassMatrix(q, update_kinematics, initialize_matrix,
+ set_lower_triangular_matrix, mass_matrix)) {
+ error_message("error in mass matrix calculation\n");
+ return -1;
+ }
+ return 0;
+}
+
+int MultiBodyTree::calculateMassMatrix(const vecx &q, matxx *mass_matrix) {
+ return calculateMassMatrix(q, true, true, true, mass_matrix);
+}
+
+
+
+int MultiBodyTree::calculateKinematics(const vecx& q, const vecx& u, const vecx& dot_u) {
+ vec3 world_gravity(m_impl->m_world_gravity);
+ // temporarily set gravity to zero, to ensure we get the actual accelerations
+ setZero(m_impl->m_world_gravity);
+
+ if (false == m_is_finalized) {
+ error_message("system has not been initialized\n");
+ return -1;
+ }
+ if (-1 == m_impl->calculateKinematics(q, u, dot_u,
+ MultiBodyTree::MultiBodyImpl::POSITION_VELOCITY_ACCELERATION)) {
+ error_message("error in kinematics calculation\n");
+ return -1;
+ }
+
+ m_impl->m_world_gravity=world_gravity;
+ return 0;
+}
+
+
+int MultiBodyTree::calculatePositionKinematics(const vecx& q) {
+ if (false == m_is_finalized) {
+ error_message("system has not been initialized\n");
+ return -1;
+ }
+ if (-1 == m_impl->calculateKinematics(q, q, q,
+ MultiBodyTree::MultiBodyImpl::POSITION_VELOCITY)) {
+ error_message("error in kinematics calculation\n");
+ return -1;
+ }
+ return 0;
+}
+
+int MultiBodyTree::calculatePositionAndVelocityKinematics(const vecx& q, const vecx& u) {
+ if (false == m_is_finalized) {
+ error_message("system has not been initialized\n");
+ return -1;
+ }
+ if (-1 == m_impl->calculateKinematics(q, u, u,
+ MultiBodyTree::MultiBodyImpl::POSITION_VELOCITY)) {
+ error_message("error in kinematics calculation\n");
+ return -1;
+ }
+ return 0;
+}
+
+
+#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS)
+int MultiBodyTree::calculateJacobians(const vecx& q, const vecx& u) {
+ if (false == m_is_finalized) {
+ error_message("system has not been initialized\n");
+ return -1;
+ }
+ if (-1 == m_impl->calculateJacobians(q, u,
+ MultiBodyTree::MultiBodyImpl::POSITION_VELOCITY)) {
+ error_message("error in jacobian calculation\n");
+ return -1;
+ }
+ return 0;
+}
+
+int MultiBodyTree::calculateJacobians(const vecx& q){
+ if (false == m_is_finalized) {
+ error_message("system has not been initialized\n");
+ return -1;
+ }
+ if (-1 == m_impl->calculateJacobians(q, q,
+ MultiBodyTree::MultiBodyImpl::POSITION_ONLY)) {
+ error_message("error in jacobian calculation\n");
+ return -1;
+ }
+ return 0;
+}
+
+int MultiBodyTree::getBodyDotJacobianTransU(const int body_index, vec3* world_dot_jac_trans_u) const {
+ return m_impl->getBodyDotJacobianTransU(body_index,world_dot_jac_trans_u);
+}
+
+int MultiBodyTree::getBodyDotJacobianRotU(const int body_index, vec3* world_dot_jac_rot_u) const {
+ return m_impl->getBodyDotJacobianRotU(body_index,world_dot_jac_rot_u);
+}
+
+int MultiBodyTree::getBodyJacobianTrans(const int body_index, mat3x* world_jac_trans) const {
+ return m_impl->getBodyJacobianTrans(body_index,world_jac_trans);
+}
+
+int MultiBodyTree::getBodyJacobianRot(const int body_index, mat3x* world_jac_rot) const {
+ return m_impl->getBodyJacobianRot(body_index,world_jac_rot);
+}
+
+
+#endif
+
+int MultiBodyTree::addBody(int body_index, int parent_index, JointType joint_type,
+ const vec3 &parent_r_parent_body_ref, const mat33 &body_T_parent_ref,
+ const vec3 &body_axis_of_motion_, idScalar mass,
+ const vec3 &body_r_body_com, const mat33 &body_I_body,
+ const int user_int, void *user_ptr) {
+ if (body_index < 0) {
+ error_message("body index must be positive (got %d)\n", body_index);
+ return -1;
+ }
+ vec3 body_axis_of_motion(body_axis_of_motion_);
+ switch (joint_type) {
+ case REVOLUTE:
+ case PRISMATIC:
+ // check if axis is unit vector
+ if (!isUnitVector(body_axis_of_motion)) {
+ warning_message(
+ "axis of motion not a unit axis ([%f %f %f]), will use normalized vector\n",
+ body_axis_of_motion(0), body_axis_of_motion(1), body_axis_of_motion(2));
+ idScalar length = BT_ID_SQRT(BT_ID_POW(body_axis_of_motion(0), 2) +
+ BT_ID_POW(body_axis_of_motion(1), 2) +
+ BT_ID_POW(body_axis_of_motion(2), 2));
+ if (length < BT_ID_SQRT(std::numeric_limits<idScalar>::min())) {
+ error_message("axis of motion vector too short (%e)\n", length);
+ return -1;
+ }
+ body_axis_of_motion = (1.0 / length) * body_axis_of_motion;
+ }
+ break;
+ case FIXED:
+ break;
+ case FLOATING:
+ break;
+ default:
+ error_message("unknown joint type %d\n", joint_type);
+ return -1;
+ }
+
+ // sanity check for mass properties. Zero mass is OK.
+ if (mass < 0) {
+ m_mass_parameters_are_valid = false;
+ error_message("Body %d has invalid mass %e\n", body_index, mass);
+ if (!m_accept_invalid_mass_parameters) {
+ return -1;
+ }
+ }
+
+ if (!isValidInertiaMatrix(body_I_body, body_index, FIXED == joint_type)) {
+ m_mass_parameters_are_valid = false;
+ // error message printed in function call
+ if (!m_accept_invalid_mass_parameters) {
+ return -1;
+ }
+ }
+
+ if (!isValidTransformMatrix(body_T_parent_ref)) {
+ return -1;
+ }
+
+ return m_init_cache->addBody(body_index, parent_index, joint_type, parent_r_parent_body_ref,
+ body_T_parent_ref, body_axis_of_motion, mass, body_r_body_com,
+ body_I_body, user_int, user_ptr);
+}
+
+int MultiBodyTree::getParentIndex(const int body_index, int *parent_index) const {
+ return m_impl->getParentIndex(body_index, parent_index);
+}
+
+int MultiBodyTree::getUserInt(const int body_index, int *user_int) const {
+ return m_impl->getUserInt(body_index, user_int);
+}
+
+int MultiBodyTree::getUserPtr(const int body_index, void **user_ptr) const {
+ return m_impl->getUserPtr(body_index, user_ptr);
+}
+
+int MultiBodyTree::setUserInt(const int body_index, const int user_int) {
+ return m_impl->setUserInt(body_index, user_int);
+}
+
+int MultiBodyTree::setUserPtr(const int body_index, void *const user_ptr) {
+ return m_impl->setUserPtr(body_index, user_ptr);
+}
+
+int MultiBodyTree::finalize() {
+ const int &num_bodies = m_init_cache->numBodies();
+ const int &num_dofs = m_init_cache->numDoFs();
+
+ if(num_dofs<=0) {
+ error_message("Need num_dofs>=1, but num_dofs= %d\n", num_dofs);
+ //return -1;
+ }
+
+ // 1 allocate internal MultiBody structure
+ m_impl = new MultiBodyImpl(num_bodies, num_dofs);
+
+ // 2 build new index set assuring index(parent) < index(child)
+ if (-1 == m_init_cache->buildIndexSets()) {
+ return -1;
+ }
+ m_init_cache->getParentIndexArray(&m_impl->m_parent_index);
+
+ // 3 setup internal kinematic and dynamic data
+ for (int index = 0; index < num_bodies; index++) {
+ InertiaData inertia;
+ JointData joint;
+ if (-1 == m_init_cache->getInertiaData(index, &inertia)) {
+ return -1;
+ }
+ if (-1 == m_init_cache->getJointData(index, &joint)) {
+ return -1;
+ }
+
+ RigidBody &rigid_body = m_impl->m_body_list[index];
+
+ rigid_body.m_mass = inertia.m_mass;
+ rigid_body.m_body_mass_com = inertia.m_mass * inertia.m_body_pos_body_com;
+ rigid_body.m_body_I_body = inertia.m_body_I_body;
+ rigid_body.m_joint_type = joint.m_type;
+ rigid_body.m_parent_pos_parent_body_ref = joint.m_parent_pos_parent_child_ref;
+ rigid_body.m_body_T_parent_ref = joint.m_child_T_parent_ref;
+ rigid_body.m_parent_pos_parent_body_ref = joint.m_parent_pos_parent_child_ref;
+ rigid_body.m_joint_type = joint.m_type;
+
+ // Set joint Jacobians. Note that the dimension is always 3x1 here to avoid variable sized
+ // matrices.
+ switch (rigid_body.m_joint_type) {
+ case REVOLUTE:
+ rigid_body.m_Jac_JR(0) = joint.m_child_axis_of_motion(0);
+ rigid_body.m_Jac_JR(1) = joint.m_child_axis_of_motion(1);
+ rigid_body.m_Jac_JR(2) = joint.m_child_axis_of_motion(2);
+ rigid_body.m_Jac_JT(0) = 0.0;
+ rigid_body.m_Jac_JT(1) = 0.0;
+ rigid_body.m_Jac_JT(2) = 0.0;
+ break;
+ case PRISMATIC:
+ rigid_body.m_Jac_JR(0) = 0.0;
+ rigid_body.m_Jac_JR(1) = 0.0;
+ rigid_body.m_Jac_JR(2) = 0.0;
+ rigid_body.m_Jac_JT(0) = joint.m_child_axis_of_motion(0);
+ rigid_body.m_Jac_JT(1) = joint.m_child_axis_of_motion(1);
+ rigid_body.m_Jac_JT(2) = joint.m_child_axis_of_motion(2);
+ break;
+ case FIXED:
+ // NOTE/TODO: dimension really should be zero ..
+ rigid_body.m_Jac_JR(0) = 0.0;
+ rigid_body.m_Jac_JR(1) = 0.0;
+ rigid_body.m_Jac_JR(2) = 0.0;
+ rigid_body.m_Jac_JT(0) = 0.0;
+ rigid_body.m_Jac_JT(1) = 0.0;
+ rigid_body.m_Jac_JT(2) = 0.0;
+ break;
+ case FLOATING:
+ // NOTE/TODO: this is not really correct.
+ // the Jacobians should be 3x3 matrices here !
+ rigid_body.m_Jac_JR(0) = 0.0;
+ rigid_body.m_Jac_JR(1) = 0.0;
+ rigid_body.m_Jac_JR(2) = 0.0;
+ rigid_body.m_Jac_JT(0) = 0.0;
+ rigid_body.m_Jac_JT(1) = 0.0;
+ rigid_body.m_Jac_JT(2) = 0.0;
+ break;
+ default:
+ error_message("unsupported joint type %d\n", rigid_body.m_joint_type);
+ return -1;
+ }
+ }
+
+ // 4 assign degree of freedom indices & build per-joint-type index arrays
+ if (-1 == m_impl->generateIndexSets()) {
+ error_message("generating index sets\n");
+ return -1;
+ }
+
+ // 5 do some pre-computations ..
+ m_impl->calculateStaticData();
+
+ // 6. make sure all user forces are set to zero, as this might not happen
+ // in the vector ctors.
+ m_impl->clearAllUserForcesAndMoments();
+
+ m_is_finalized = true;
+ return 0;
+}
+
+int MultiBodyTree::setGravityInWorldFrame(const vec3 &gravity) {
+ return m_impl->setGravityInWorldFrame(gravity);
+}
+
+int MultiBodyTree::getJointType(const int body_index, JointType *joint_type) const {
+ return m_impl->getJointType(body_index, joint_type);
+}
+
+int MultiBodyTree::getJointTypeStr(const int body_index, const char **joint_type) const {
+ return m_impl->getJointTypeStr(body_index, joint_type);
+}
+
+int MultiBodyTree::getDoFOffset(const int body_index, int *q_offset) const {
+ return m_impl->getDoFOffset(body_index, q_offset);
+}
+
+int MultiBodyTree::setBodyMass(const int body_index, idScalar mass) {
+ return m_impl->setBodyMass(body_index, mass);
+}
+
+int MultiBodyTree::setBodyFirstMassMoment(const int body_index, const vec3& first_mass_moment) {
+ return m_impl->setBodyFirstMassMoment(body_index, first_mass_moment);
+}
+
+int MultiBodyTree::setBodySecondMassMoment(const int body_index, const mat33& second_mass_moment) {
+ return m_impl->setBodySecondMassMoment(body_index, second_mass_moment);
+}
+
+int MultiBodyTree::getBodyMass(const int body_index, idScalar *mass) const {
+ return m_impl->getBodyMass(body_index, mass);
+}
+
+int MultiBodyTree::getBodyFirstMassMoment(const int body_index, vec3 *first_mass_moment) const {
+ return m_impl->getBodyFirstMassMoment(body_index, first_mass_moment);
+}
+
+int MultiBodyTree::getBodySecondMassMoment(const int body_index, mat33 *second_mass_moment) const {
+ return m_impl->getBodySecondMassMoment(body_index, second_mass_moment);
+}
+
+void MultiBodyTree::clearAllUserForcesAndMoments() { m_impl->clearAllUserForcesAndMoments(); }
+
+int MultiBodyTree::addUserForce(const int body_index, const vec3 &body_force) {
+ return m_impl->addUserForce(body_index, body_force);
+}
+
+int MultiBodyTree::addUserMoment(const int body_index, const vec3 &body_moment) {
+ return m_impl->addUserMoment(body_index, body_moment);
+}
+
+}
diff --git a/thirdparty/bullet/BulletInverseDynamics/MultiBodyTree.hpp b/thirdparty/bullet/BulletInverseDynamics/MultiBodyTree.hpp
new file mode 100644
index 0000000000..d235aa6e76
--- /dev/null
+++ b/thirdparty/bullet/BulletInverseDynamics/MultiBodyTree.hpp
@@ -0,0 +1,363 @@
+#ifndef MULTIBODYTREE_HPP_
+#define MULTIBODYTREE_HPP_
+
+#include "IDConfig.hpp"
+#include "IDMath.hpp"
+
+namespace btInverseDynamics {
+
+/// Enumeration of supported joint types
+enum JointType {
+ /// no degree of freedom, moves with parent
+ FIXED = 0,
+ /// one rotational degree of freedom relative to parent
+ REVOLUTE,
+ /// one translational degree of freedom relative to parent
+ PRISMATIC,
+ /// six degrees of freedom relative to parent
+ FLOATING
+};
+
+/// Interface class for calculating inverse dynamics for tree structured
+/// multibody systems
+///
+/// Note on degrees of freedom
+/// The q vector contains the generalized coordinate set defining the tree's configuration.
+/// Every joint adds elements that define the corresponding link's frame pose relative to
+/// its parent. For the joint types that is:
+/// - FIXED: none
+/// - REVOLUTE: angle of rotation [rad]
+/// - PRISMATIC: displacement [m]
+/// - FLOATING: Euler x-y-z angles [rad] and displacement in body-fixed frame of parent [m]
+/// (in that order)
+/// The u vector contains the generalized speeds, which are
+/// - FIXED: none
+/// - REVOLUTE: time derivative of angle of rotation [rad/s]
+/// - PRISMATIC: time derivative of displacement [m/s]
+/// - FLOATING: angular velocity [rad/s] (*not* time derivative of rpy angles)
+/// and time derivative of displacement in parent frame [m/s]
+///
+/// The q and u vectors are obtained by stacking contributions of all bodies in one
+/// vector in the order of body indices.
+///
+/// Note on generalized forces: analogous to u, i.e.,
+/// - FIXED: none
+/// - REVOLUTE: moment [Nm], about joint axis
+/// - PRISMATIC: force [N], along joint axis
+/// - FLOATING: moment vector [Nm] and force vector [N], both in body-fixed frame
+/// (in that order)
+///
+/// TODO - force element interface (friction, springs, dampers, etc)
+/// - gears and motor inertia
+class MultiBodyTree {
+public:
+ ID_DECLARE_ALIGNED_ALLOCATOR();
+ /// The contructor.
+ /// Initialization & allocation is via addBody and buildSystem calls.
+ MultiBodyTree();
+ /// the destructor. This also deallocates all memory
+ ~MultiBodyTree();
+
+ /// Add body to the system. this allocates memory and not real-time safe.
+ /// This only adds the data to an initial cache. After all bodies have been
+ /// added,
+ /// the system is setup using the buildSystem call
+ /// @param body_index index of the body to be added. Must >=0, <number of bodies,
+ /// and index of parent must be < index of body
+ /// @param parent_index index of the parent body
+ /// The root of the tree has index 0 and its parent (the world frame)
+ /// is assigned index -1
+ /// the rotation and translation relative to the parent are taken as
+ /// pose of the root body relative to the world frame. Other parameters
+ /// are ignored
+ /// @param JointType type of joint connecting the body to the parent
+ /// @param mass the mass of the body
+ /// @param body_r_body_com the center of mass of the body relative to and
+ /// described in
+ /// the body fixed frame, which is located in the joint axis connecting
+ /// the body to its parent
+ /// @param body_I_body the moment of inertia of the body w.r.t the body-fixed
+ /// frame
+ /// (ie, the reference point is the origin of the body-fixed frame and
+ /// the matrix is written
+ /// w.r.t. those unit vectors)
+ /// @param parent_r_parent_body_ref position of joint relative to the parent
+ /// body's reference frame
+ /// for q=0, written in the parent bodies reference frame
+ /// @param body_axis_of_motion translation/rotation axis in body-fixed frame.
+ /// Ignored for joints that are not revolute or prismatic.
+ /// must be a unit vector.
+ /// @param body_T_parent_ref transform matrix from parent to body reference
+ /// frame for q=0.
+ /// This is the matrix transforming a vector represented in the
+ /// parent's reference frame into one represented
+ /// in this body's reference frame.
+ /// ie, if parent_vec is a vector in R^3 whose components are w.r.t to
+ /// the parent's reference frame,
+ /// then the same vector written w.r.t. this body's frame (for q=0) is
+ /// given by
+ /// body_vec = parent_R_body_ref * parent_vec
+ /// @param user_ptr pointer to user data
+ /// @param user_int pointer to user integer
+ /// @return 0 on success, -1 on error
+ int addBody(int body_index, int parent_index, JointType joint_type,
+ const vec3& parent_r_parent_body_ref, const mat33& body_T_parent_ref,
+ const vec3& body_axis_of_motion, idScalar mass, const vec3& body_r_body_com,
+ const mat33& body_I_body, const int user_int, void* user_ptr);
+ /// set policy for invalid mass properties
+ /// @param flag if true, invalid mass properties are accepted,
+ /// the default is false
+ void setAcceptInvalidMassParameters(bool flag);
+ /// @return the mass properties policy flag
+ bool getAcceptInvalidMassProperties() const;
+ /// build internal data structures
+ /// call this after all bodies have been added via addBody
+ /// @return 0 on success, -1 on error
+ int finalize();
+ /// pretty print ascii description of tree to stdout
+ void printTree();
+ /// print tree data to stdout
+ void printTreeData();
+ /// Calculate joint forces for given generalized state & derivatives.
+ /// This also updates kinematic terms computed in calculateKinematics.
+ /// If gravity is not set to zero, acceleration terms will contain
+ /// gravitational acceleration.
+ /// @param q generalized coordinates
+ /// @param u generalized velocities. In the general case, u=T(q)*dot(q) and dim(q)>=dim(u)
+ /// @param dot_u time derivative of u
+ /// @param joint_forces this is where the resulting joint forces will be
+ /// stored. dim(joint_forces) = dim(u)
+ /// @return 0 on success, -1 on error
+ int calculateInverseDynamics(const vecx& q, const vecx& u, const vecx& dot_u,
+ vecx* joint_forces);
+ /// Calculate joint space mass matrix
+ /// @param q generalized coordinates
+ /// @param initialize_matrix if true, initialize mass matrix with zero.
+ /// If mass_matrix is initialized to zero externally and only used
+ /// for mass matrix computations for the same system, it is safe to
+ /// set this to false.
+ /// @param set_lower_triangular_matrix if true, the lower triangular section of mass_matrix
+ /// is also populated, otherwise not.
+ /// @param mass_matrix matrix for storing the output (should be dim(q)xdim(q))
+ /// @return -1 on error, 0 on success
+ int calculateMassMatrix(const vecx& q, const bool update_kinematics,
+ const bool initialize_matrix, const bool set_lower_triangular_matrix,
+ matxx* mass_matrix);
+
+ /// Calculate joint space mass matrix.
+ /// This version will update kinematics, initialize all mass_matrix elements to zero and
+ /// populate all mass matrix entries.
+ /// @param q generalized coordinates
+ /// @param mass_matrix matrix for storing the output (should be dim(q)xdim(q))
+ /// @return -1 on error, 0 on success
+ int calculateMassMatrix(const vecx& q, matxx* mass_matrix);
+
+
+ /// Calculates kinematics also calculated in calculateInverseDynamics,
+ /// but not dynamics.
+ /// This function ensures that correct accelerations are computed that do not
+ /// contain gravitational acceleration terms.
+ /// Does not calculate Jacobians, but only vector quantities (positions, velocities & accelerations)
+ int calculateKinematics(const vecx& q, const vecx& u, const vecx& dot_u);
+ /// Calculate position kinematics
+ int calculatePositionKinematics(const vecx& q);
+ /// Calculate position and velocity kinematics
+ int calculatePositionAndVelocityKinematics(const vecx& q, const vecx& u);
+
+#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS)
+ /// Calculate Jacobians (dvel/du), as well as velocity-dependent accelearation components
+ /// d(Jacobian)/dt*u
+ /// This function assumes that calculateInverseDynamics was called, or calculateKinematics,
+ /// or calculatePositionAndVelocityKinematics
+ int calculateJacobians(const vecx& q, const vecx& u);
+ /// Calculate Jacobians (dvel/du)
+ /// This function assumes that calculateInverseDynamics was called, or
+ /// one of the calculateKineamtics functions
+ int calculateJacobians(const vecx& q);
+#endif // BT_ID_HAVE_MAT3X
+
+
+ /// set gravitational acceleration
+ /// the default is [0;0;-9.8] in the world frame
+ /// @param gravity the gravitational acceleration in world frame
+ /// @return 0 on success, -1 on error
+ int setGravityInWorldFrame(const vec3& gravity);
+ /// returns number of bodies in tree
+ int numBodies() const;
+ /// returns number of mechanical degrees of freedom (dimension of q-vector)
+ int numDoFs() const;
+ /// get origin of a body-fixed frame, represented in world frame
+ /// @param body_index index for frame/body
+ /// @param world_origin pointer for return data
+ /// @return 0 on success, -1 on error
+ int getBodyOrigin(const int body_index, vec3* world_origin) const;
+ /// get center of mass of a body, represented in world frame
+ /// @param body_index index for frame/body
+ /// @param world_com pointer for return data
+ /// @return 0 on success, -1 on error
+ int getBodyCoM(const int body_index, vec3* world_com) const;
+ /// get transform from of a body-fixed frame to the world frame
+ /// @param body_index index for frame/body
+ /// @param world_T_body pointer for return data
+ /// @return 0 on success, -1 on error
+ int getBodyTransform(const int body_index, mat33* world_T_body) const;
+ /// get absolute angular velocity for a body, represented in the world frame
+ /// @param body_index index for frame/body
+ /// @param world_omega pointer for return data
+ /// @return 0 on success, -1 on error
+ int getBodyAngularVelocity(const int body_index, vec3* world_omega) const;
+ /// get linear velocity of a body, represented in world frame
+ /// @param body_index index for frame/body
+ /// @param world_velocity pointer for return data
+ /// @return 0 on success, -1 on error
+ int getBodyLinearVelocity(const int body_index, vec3* world_velocity) const;
+ /// get linear velocity of a body's CoM, represented in world frame
+ /// (not required for inverse dynamics, provided for convenience)
+ /// @param body_index index for frame/body
+ /// @param world_vel_com pointer for return data
+ /// @return 0 on success, -1 on error
+ int getBodyLinearVelocityCoM(const int body_index, vec3* world_velocity) const;
+ /// get origin of a body-fixed frame, represented in world frame
+ /// @param body_index index for frame/body
+ /// @param world_origin pointer for return data
+ /// @return 0 on success, -1 on error
+ int getBodyAngularAcceleration(const int body_index, vec3* world_dot_omega) const;
+ /// get origin of a body-fixed frame, represented in world frame
+ /// NOTE: this will include the gravitational acceleration, so the actual acceleration is
+ /// obtainened by setting gravitational acceleration to zero, or subtracting it.
+ /// @param body_index index for frame/body
+ /// @param world_origin pointer for return data
+ /// @return 0 on success, -1 on error
+ int getBodyLinearAcceleration(const int body_index, vec3* world_acceleration) const;
+
+#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS)
+ // get translational jacobian, in world frame (dworld_velocity/du)
+ int getBodyJacobianTrans(const int body_index, mat3x* world_jac_trans) const;
+ // get rotational jacobian, in world frame (dworld_omega/du)
+ int getBodyJacobianRot(const int body_index, mat3x* world_jac_rot) const;
+ // get product of translational jacobian derivative * generatlized velocities
+ int getBodyDotJacobianTransU(const int body_index, vec3* world_dot_jac_trans_u) const;
+ // get product of rotational jacobian derivative * generatlized velocities
+ int getBodyDotJacobianRotU(const int body_index, vec3* world_dot_jac_rot_u) const;
+#endif // BT_ID_HAVE_MAT3X
+
+ /// returns the (internal) index of body
+ /// @param body_index is the index of a body
+ /// @param parent_index pointer to where parent index will be stored
+ /// @return 0 on success, -1 on error
+ int getParentIndex(const int body_index, int* parent_index) const;
+ /// get joint type
+ /// @param body_index index of the body
+ /// @param joint_type the corresponding joint type
+ /// @return 0 on success, -1 on failure
+ int getJointType(const int body_index, JointType* joint_type) const;
+ /// get joint type as string
+ /// @param body_index index of the body
+ /// @param joint_type string naming the corresponding joint type
+ /// @return 0 on success, -1 on failure
+ int getJointTypeStr(const int body_index, const char** joint_type) const;
+ /// get offset translation to parent body (see addBody)
+ /// @param body_index index of the body
+ /// @param r the offset translation (see above)
+ /// @return 0 on success, -1 on failure
+ int getParentRParentBodyRef(const int body_index, vec3* r) const;
+ /// get offset rotation to parent body (see addBody)
+ /// @param body_index index of the body
+ /// @param T the transform (see above)
+ /// @return 0 on success, -1 on failure
+ int getBodyTParentRef(const int body_index, mat33* T) const;
+ /// get axis of motion (see addBody)
+ /// @param body_index index of the body
+ /// @param axis the axis (see above)
+ /// @return 0 on success, -1 on failure
+ int getBodyAxisOfMotion(const int body_index, vec3* axis) const;
+ /// get offset for degrees of freedom of this body into the q-vector
+ /// @param body_index index of the body
+ /// @param q_offset offset the q vector
+ /// @return -1 on error, 0 on success
+ int getDoFOffset(const int body_index, int* q_offset) const;
+ /// get user integer. not used by the library.
+ /// @param body_index index of the body
+ /// @param user_int the user integer
+ /// @return 0 on success, -1 on error
+ int getUserInt(const int body_index, int* user_int) const;
+ /// get user pointer. not used by the library.
+ /// @param body_index index of the body
+ /// @param user_ptr the user pointer
+ /// @return 0 on success, -1 on error
+ int getUserPtr(const int body_index, void** user_ptr) const;
+ /// set user integer. not used by the library.
+ /// @param body_index index of the body
+ /// @param user_int the user integer
+ /// @return 0 on success, -1 on error
+ int setUserInt(const int body_index, const int user_int);
+ /// set user pointer. not used by the library.
+ /// @param body_index index of the body
+ /// @param user_ptr the user pointer
+ /// @return 0 on success, -1 on error
+ int setUserPtr(const int body_index, void* const user_ptr);
+ /// set mass for a body
+ /// @param body_index index of the body
+ /// @param mass the mass to set
+ /// @return 0 on success, -1 on failure
+ int setBodyMass(const int body_index, const idScalar mass);
+ /// set first moment of mass for a body
+ /// (mass * center of mass, in body fixed frame, relative to joint)
+ /// @param body_index index of the body
+ /// @param first_mass_moment the vector to set
+ /// @return 0 on success, -1 on failure
+ int setBodyFirstMassMoment(const int body_index, const vec3& first_mass_moment);
+ /// set second moment of mass for a body
+ /// (moment of inertia, in body fixed frame, relative to joint)
+ /// @param body_index index of the body
+ /// @param second_mass_moment the inertia matrix
+ /// @return 0 on success, -1 on failure
+ int setBodySecondMassMoment(const int body_index, const mat33& second_mass_moment);
+ /// get mass for a body
+ /// @param body_index index of the body
+ /// @param mass the mass
+ /// @return 0 on success, -1 on failure
+ int getBodyMass(const int body_index, idScalar* mass) const;
+ /// get first moment of mass for a body
+ /// (mass * center of mass, in body fixed frame, relative to joint)
+ /// @param body_index index of the body
+ /// @param first_moment the vector
+ /// @return 0 on success, -1 on failure
+ int getBodyFirstMassMoment(const int body_index, vec3* first_mass_moment) const;
+ /// get second moment of mass for a body
+ /// (moment of inertia, in body fixed frame, relative to joint)
+ /// @param body_index index of the body
+ /// @param second_mass_moment the inertia matrix
+ /// @return 0 on success, -1 on failure
+ int getBodySecondMassMoment(const int body_index, mat33* second_mass_moment) const;
+ /// set all user forces and moments to zero
+ void clearAllUserForcesAndMoments();
+ /// Add an external force to a body, acting at the origin of the body-fixed frame.
+ /// Calls to addUserForce are cumulative. Set the user force and moment to zero
+ /// via clearAllUserForcesAndMoments()
+ /// @param body_force the force represented in the body-fixed frame of reference
+ /// @return 0 on success, -1 on error
+ int addUserForce(const int body_index, const vec3& body_force);
+ /// Add an external moment to a body.
+ /// Calls to addUserMoment are cumulative. Set the user force and moment to zero
+ /// via clearAllUserForcesAndMoments()
+ /// @param body_moment the moment represented in the body-fixed frame of reference
+ /// @return 0 on success, -1 on error
+ int addUserMoment(const int body_index, const vec3& body_moment);
+
+private:
+ // flag indicating if system has been initialized
+ bool m_is_finalized;
+ // flag indicating if mass properties are physically valid
+ bool m_mass_parameters_are_valid;
+ // flag defining if unphysical mass parameters are accepted
+ bool m_accept_invalid_mass_parameters;
+ // This struct implements the inverse dynamics calculations
+ class MultiBodyImpl;
+ MultiBodyImpl* m_impl;
+ // cache data structure for initialization
+ class InitCache;
+ InitCache* m_init_cache;
+};
+} // namespace btInverseDynamics
+#endif // MULTIBODYTREE_HPP_
diff --git a/thirdparty/bullet/BulletInverseDynamics/details/IDEigenInterface.hpp b/thirdparty/bullet/BulletInverseDynamics/details/IDEigenInterface.hpp
new file mode 100644
index 0000000000..836395cea2
--- /dev/null
+++ b/thirdparty/bullet/BulletInverseDynamics/details/IDEigenInterface.hpp
@@ -0,0 +1,36 @@
+#ifndef INVDYNEIGENINTERFACE_HPP_
+#define INVDYNEIGENINTERFACE_HPP_
+#include "../IDConfig.hpp"
+namespace btInverseDynamics {
+
+#define BT_ID_HAVE_MAT3X
+
+#ifdef BT_USE_DOUBLE_PRECISION
+typedef Eigen::Matrix<double, Eigen::Dynamic, 1, Eigen::DontAlign> vecx;
+typedef Eigen::Matrix<double, 3, 1, Eigen::DontAlign> vec3;
+typedef Eigen::Matrix<double, 3, 3, Eigen::DontAlign> mat33;
+typedef Eigen::Matrix<double, Eigen::Dynamic, Eigen::Dynamic, Eigen::DontAlign> matxx;
+typedef Eigen::Matrix<double, 3, Eigen::Dynamic, Eigen::DontAlign> mat3x;
+#else
+typedef Eigen::Matrix<float, Eigen::Dynamic, 1, Eigen::DontAlign> vecx;
+typedef Eigen::Matrix<float, 3, 1, Eigen::DontAlign> vec3;
+typedef Eigen::Matrix<float, 3, 3, Eigen::DontAlign> mat33;
+typedef Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::DontAlign> matxx;
+typedef Eigen::Matrix<float, 3, Eigen::Dynamic, Eigen::DontAlign> mat3x;
+#endif
+
+inline void resize(mat3x &m, Eigen::Index size) {
+ m.resize(3, size);
+ m.setZero();
+}
+
+inline void setMatxxElem(const idArrayIdx row, const idArrayIdx col, const idScalar val, matxx*m){
+ (*m)(row, col) = val;
+}
+
+inline void setMat3xElem(const idArrayIdx row, const idArrayIdx col, const idScalar val, mat3x*m){
+ (*m)(row, col) = val;
+}
+
+}
+#endif // INVDYNEIGENINTERFACE_HPP_
diff --git a/thirdparty/bullet/BulletInverseDynamics/details/IDLinearMathInterface.hpp b/thirdparty/bullet/BulletInverseDynamics/details/IDLinearMathInterface.hpp
new file mode 100644
index 0000000000..5bb4a33bdd
--- /dev/null
+++ b/thirdparty/bullet/BulletInverseDynamics/details/IDLinearMathInterface.hpp
@@ -0,0 +1,172 @@
+#ifndef IDLINEARMATHINTERFACE_HPP_
+#define IDLINEARMATHINTERFACE_HPP_
+
+#include <cstdlib>
+
+#include "../IDConfig.hpp"
+
+#include "../../LinearMath/btMatrix3x3.h"
+#include "../../LinearMath/btVector3.h"
+#include "../../LinearMath/btMatrixX.h"
+#define BT_ID_HAVE_MAT3X
+
+namespace btInverseDynamics {
+class vec3;
+class vecx;
+class mat33;
+typedef btMatrixX<idScalar> matxx;
+
+class vec3 : public btVector3 {
+public:
+ vec3() : btVector3() {}
+ vec3(const btVector3& btv) { *this = btv; }
+ idScalar& operator()(int i) { return (*this)[i]; }
+ const idScalar& operator()(int i) const { return (*this)[i]; }
+ int size() const { return 3; }
+ const vec3& operator=(const btVector3& rhs) {
+ *static_cast<btVector3*>(this) = rhs;
+ return *this;
+ }
+};
+
+class mat33 : public btMatrix3x3 {
+public:
+ mat33() : btMatrix3x3() {}
+ mat33(const btMatrix3x3& btm) { *this = btm; }
+ idScalar& operator()(int i, int j) { return (*this)[i][j]; }
+ const idScalar& operator()(int i, int j) const { return (*this)[i][j]; }
+ const mat33& operator=(const btMatrix3x3& rhs) {
+ *static_cast<btMatrix3x3*>(this) = rhs;
+ return *this;
+ }
+ friend mat33 operator*(const idScalar& s, const mat33& a);
+ friend mat33 operator/(const mat33& a, const idScalar& s);
+};
+
+inline mat33 operator/(const mat33& a, const idScalar& s) { return a * (1.0 / s); }
+
+inline mat33 operator*(const idScalar& s, const mat33& a) { return a * s; }
+
+class vecx : public btVectorX<idScalar> {
+public:
+ vecx(int size) : btVectorX(size) {}
+ const vecx& operator=(const btVectorX<idScalar>& rhs) {
+ *static_cast<btVectorX*>(this) = rhs;
+ return *this;
+ }
+
+ idScalar& operator()(int i) { return (*this)[i]; }
+ const idScalar& operator()(int i) const { return (*this)[i]; }
+
+ friend vecx operator*(const vecx& a, const idScalar& s);
+ friend vecx operator*(const idScalar& s, const vecx& a);
+
+ friend vecx operator+(const vecx& a, const vecx& b);
+ friend vecx operator-(const vecx& a, const vecx& b);
+ friend vecx operator/(const vecx& a, const idScalar& s);
+};
+
+inline vecx operator*(const vecx& a, const idScalar& s) {
+ vecx result(a.size());
+ for (int i = 0; i < result.size(); i++) {
+ result(i) = a(i) * s;
+ }
+ return result;
+}
+inline vecx operator*(const idScalar& s, const vecx& a) { return a * s; }
+inline vecx operator+(const vecx& a, const vecx& b) {
+ vecx result(a.size());
+ // TODO: error handling for a.size() != b.size()??
+ if (a.size() != b.size()) {
+ error_message("size missmatch. a.size()= %d, b.size()= %d\n", a.size(), b.size());
+ abort();
+ }
+ for (int i = 0; i < a.size(); i++) {
+ result(i) = a(i) + b(i);
+ }
+
+ return result;
+}
+
+inline vecx operator-(const vecx& a, const vecx& b) {
+ vecx result(a.size());
+ // TODO: error handling for a.size() != b.size()??
+ if (a.size() != b.size()) {
+ error_message("size missmatch. a.size()= %d, b.size()= %d\n", a.size(), b.size());
+ abort();
+ }
+ for (int i = 0; i < a.size(); i++) {
+ result(i) = a(i) - b(i);
+ }
+ return result;
+}
+inline vecx operator/(const vecx& a, const idScalar& s) {
+ vecx result(a.size());
+ for (int i = 0; i < result.size(); i++) {
+ result(i) = a(i) / s;
+ }
+
+ return result;
+}
+
+// use btMatrixX to implement 3xX matrix
+class mat3x : public matxx {
+public:
+ mat3x(){}
+ mat3x(const mat3x&rhs) {
+ matxx::resize(rhs.rows(), rhs.cols());
+ *this = rhs;
+ }
+ mat3x(int rows, int cols): matxx(3,cols) {
+ }
+ void operator=(const mat3x& rhs) {
+ if (m_cols != rhs.m_cols) {
+ error_message("size missmatch, cols= %d but rhs.cols= %d\n", cols(), rhs.cols());
+ abort();
+ }
+ for(int i=0;i<rows();i++) {
+ for(int k=0;k<cols();k++) {
+ setElem(i,k,rhs(i,k));
+ }
+ }
+ }
+ void setZero() {
+ matxx::setZero();
+ }
+};
+
+
+inline vec3 operator*(const mat3x& a, const vecx& b) {
+ vec3 result;
+ if (a.cols() != b.size()) {
+ error_message("size missmatch. a.cols()= %d, b.size()= %d\n", a.cols(), b.size());
+ abort();
+ }
+ result(0)=0.0;
+ result(1)=0.0;
+ result(2)=0.0;
+ for(int i=0;i<b.size();i++) {
+ for(int k=0;k<3;k++) {
+ result(k)+=a(k,i)*b(i);
+ }
+ }
+ return result;
+}
+
+
+inline void resize(mat3x &m, idArrayIdx size) {
+ m.resize(3, size);
+ m.setZero();
+}
+
+inline void setMatxxElem(const idArrayIdx row, const idArrayIdx col, const idScalar val, matxx*m){
+ m->setElem(row, col, val);
+}
+
+inline void setMat3xElem(const idArrayIdx row, const idArrayIdx col, const idScalar val, mat3x*m){
+ m->setElem(row, col, val);
+}
+
+}
+
+#endif // IDLINEARMATHINTERFACE_HPP_
diff --git a/thirdparty/bullet/BulletInverseDynamics/details/IDMatVec.hpp b/thirdparty/bullet/BulletInverseDynamics/details/IDMatVec.hpp
new file mode 100644
index 0000000000..4d3f6c87e9
--- /dev/null
+++ b/thirdparty/bullet/BulletInverseDynamics/details/IDMatVec.hpp
@@ -0,0 +1,415 @@
+/// @file Built-In Matrix-Vector functions
+#ifndef IDMATVEC_HPP_
+#define IDMATVEC_HPP_
+
+#include <cstdlib>
+
+#include "../IDConfig.hpp"
+#define BT_ID_HAVE_MAT3X
+
+namespace btInverseDynamics {
+class vec3;
+class vecx;
+class mat33;
+class matxx;
+class mat3x;
+
+/// This is a very basic implementation to enable stand-alone use of the library.
+/// The implementation is not really optimized and misses many features that you would
+/// want from a "fully featured" linear math library.
+class vec3 {
+public:
+ idScalar& operator()(int i) { return m_data[i]; }
+ const idScalar& operator()(int i) const { return m_data[i]; }
+ const int size() const { return 3; }
+ const vec3& operator=(const vec3& rhs);
+ const vec3& operator+=(const vec3& b);
+ const vec3& operator-=(const vec3& b);
+ vec3 cross(const vec3& b) const;
+ idScalar dot(const vec3& b) const;
+
+ friend vec3 operator*(const mat33& a, const vec3& b);
+ friend vec3 operator*(const vec3& a, const idScalar& s);
+ friend vec3 operator*(const idScalar& s, const vec3& a);
+
+ friend vec3 operator+(const vec3& a, const vec3& b);
+ friend vec3 operator-(const vec3& a, const vec3& b);
+ friend vec3 operator/(const vec3& a, const idScalar& s);
+
+private:
+ idScalar m_data[3];
+};
+
+class mat33 {
+public:
+ idScalar& operator()(int i, int j) { return m_data[3 * i + j]; }
+ const idScalar& operator()(int i, int j) const { return m_data[3 * i + j]; }
+ const mat33& operator=(const mat33& rhs);
+ mat33 transpose() const;
+ const mat33& operator+=(const mat33& b);
+ const mat33& operator-=(const mat33& b);
+
+ friend mat33 operator*(const mat33& a, const mat33& b);
+ friend vec3 operator*(const mat33& a, const vec3& b);
+ friend mat33 operator*(const mat33& a, const idScalar& s);
+ friend mat33 operator*(const idScalar& s, const mat33& a);
+ friend mat33 operator+(const mat33& a, const mat33& b);
+ friend mat33 operator-(const mat33& a, const mat33& b);
+ friend mat33 operator/(const mat33& a, const idScalar& s);
+
+private:
+ // layout is [0,1,2;3,4,5;6,7,8]
+ idScalar m_data[9];
+};
+
+class vecx {
+public:
+ vecx(int size) : m_size(size) {
+ m_data = static_cast<idScalar*>(idMalloc(sizeof(idScalar) * size));
+ }
+ ~vecx() { idFree(m_data); }
+ const vecx& operator=(const vecx& rhs);
+ idScalar& operator()(int i) { return m_data[i]; }
+ const idScalar& operator()(int i) const { return m_data[i]; }
+ const int& size() const { return m_size; }
+
+ friend vecx operator*(const vecx& a, const idScalar& s);
+ friend vecx operator*(const idScalar& s, const vecx& a);
+
+ friend vecx operator+(const vecx& a, const vecx& b);
+ friend vecx operator-(const vecx& a, const vecx& b);
+ friend vecx operator/(const vecx& a, const idScalar& s);
+
+private:
+ int m_size;
+ idScalar* m_data;
+};
+
+class matxx {
+public:
+ matxx() {
+ m_data = 0x0;
+ m_cols=0;
+ m_rows=0;
+ }
+ matxx(int rows, int cols) : m_rows(rows), m_cols(cols) {
+ m_data = static_cast<idScalar*>(idMalloc(sizeof(idScalar) * rows * cols));
+ }
+ ~matxx() { idFree(m_data); }
+ idScalar& operator()(int row, int col) { return m_data[row * m_cols + col]; }
+ const idScalar& operator()(int row, int col) const { return m_data[row * m_cols + col]; }
+ const int& rows() const { return m_rows; }
+ const int& cols() const { return m_cols; }
+
+private:
+ int m_rows;
+ int m_cols;
+ idScalar* m_data;
+};
+
+class mat3x {
+public:
+ mat3x() {
+ m_data = 0x0;
+ m_cols=0;
+ }
+ mat3x(const mat3x&rhs) {
+ m_cols=rhs.m_cols;
+ allocate();
+ *this = rhs;
+ }
+ mat3x(int rows, int cols): m_cols(cols) {
+ allocate();
+ };
+ void operator=(const mat3x& rhs) {
+ if (m_cols != rhs.m_cols) {
+ error_message("size missmatch, cols= %d but rhs.cols= %d\n", cols(), rhs.cols());
+ abort();
+ }
+ for(int i=0;i<3*m_cols;i++) {
+ m_data[i] = rhs.m_data[i];
+ }
+ }
+
+ ~mat3x() {
+ free();
+ }
+ idScalar& operator()(int row, int col) { return m_data[row * m_cols + col]; }
+ const idScalar& operator()(int row, int col) const { return m_data[row * m_cols + col]; }
+ int rows() const { return m_rows; }
+ const int& cols() const { return m_cols; }
+ void resize(int rows, int cols) {
+ m_cols=cols;
+ free();
+ allocate();
+ }
+ void setZero() {
+ memset(m_data,0x0,sizeof(idScalar)*m_rows*m_cols);
+ }
+ // avoid operators that would allocate -- use functions sub/add/mul in IDMath.hpp instead
+private:
+ void allocate(){m_data = static_cast<idScalar*>(idMalloc(sizeof(idScalar) * m_rows * m_cols));}
+ void free() { idFree(m_data);}
+ enum {m_rows=3};
+ int m_cols;
+ idScalar* m_data;
+};
+
+inline void resize(mat3x &m, idArrayIdx size) {
+ m.resize(3, size);
+ m.setZero();
+}
+
+//////////////////////////////////////////////////
+// Implementations
+inline const vec3& vec3::operator=(const vec3& rhs) {
+ if (&rhs != this) {
+ memcpy(m_data, rhs.m_data, 3 * sizeof(idScalar));
+ }
+ return *this;
+}
+
+inline vec3 vec3::cross(const vec3& b) const {
+ vec3 result;
+ result.m_data[0] = m_data[1] * b.m_data[2] - m_data[2] * b.m_data[1];
+ result.m_data[1] = m_data[2] * b.m_data[0] - m_data[0] * b.m_data[2];
+ result.m_data[2] = m_data[0] * b.m_data[1] - m_data[1] * b.m_data[0];
+
+ return result;
+}
+
+inline idScalar vec3::dot(const vec3& b) const {
+ return m_data[0] * b.m_data[0] + m_data[1] * b.m_data[1] + m_data[2] * b.m_data[2];
+}
+
+inline const mat33& mat33::operator=(const mat33& rhs) {
+ if (&rhs != this) {
+ memcpy(m_data, rhs.m_data, 9 * sizeof(idScalar));
+ }
+ return *this;
+}
+inline mat33 mat33::transpose() const {
+ mat33 result;
+ result.m_data[0] = m_data[0];
+ result.m_data[1] = m_data[3];
+ result.m_data[2] = m_data[6];
+ result.m_data[3] = m_data[1];
+ result.m_data[4] = m_data[4];
+ result.m_data[5] = m_data[7];
+ result.m_data[6] = m_data[2];
+ result.m_data[7] = m_data[5];
+ result.m_data[8] = m_data[8];
+
+ return result;
+}
+
+inline mat33 operator*(const mat33& a, const mat33& b) {
+ mat33 result;
+ result.m_data[0] =
+ a.m_data[0] * b.m_data[0] + a.m_data[1] * b.m_data[3] + a.m_data[2] * b.m_data[6];
+ result.m_data[1] =
+ a.m_data[0] * b.m_data[1] + a.m_data[1] * b.m_data[4] + a.m_data[2] * b.m_data[7];
+ result.m_data[2] =
+ a.m_data[0] * b.m_data[2] + a.m_data[1] * b.m_data[5] + a.m_data[2] * b.m_data[8];
+ result.m_data[3] =
+ a.m_data[3] * b.m_data[0] + a.m_data[4] * b.m_data[3] + a.m_data[5] * b.m_data[6];
+ result.m_data[4] =
+ a.m_data[3] * b.m_data[1] + a.m_data[4] * b.m_data[4] + a.m_data[5] * b.m_data[7];
+ result.m_data[5] =
+ a.m_data[3] * b.m_data[2] + a.m_data[4] * b.m_data[5] + a.m_data[5] * b.m_data[8];
+ result.m_data[6] =
+ a.m_data[6] * b.m_data[0] + a.m_data[7] * b.m_data[3] + a.m_data[8] * b.m_data[6];
+ result.m_data[7] =
+ a.m_data[6] * b.m_data[1] + a.m_data[7] * b.m_data[4] + a.m_data[8] * b.m_data[7];
+ result.m_data[8] =
+ a.m_data[6] * b.m_data[2] + a.m_data[7] * b.m_data[5] + a.m_data[8] * b.m_data[8];
+
+ return result;
+}
+
+inline const mat33& mat33::operator+=(const mat33& b) {
+ for (int i = 0; i < 9; i++) {
+ m_data[i] += b.m_data[i];
+ }
+
+ return *this;
+}
+
+inline const mat33& mat33::operator-=(const mat33& b) {
+ for (int i = 0; i < 9; i++) {
+ m_data[i] -= b.m_data[i];
+ }
+ return *this;
+}
+
+inline vec3 operator*(const mat33& a, const vec3& b) {
+ vec3 result;
+
+ result.m_data[0] =
+ a.m_data[0] * b.m_data[0] + a.m_data[1] * b.m_data[1] + a.m_data[2] * b.m_data[2];
+ result.m_data[1] =
+ a.m_data[3] * b.m_data[0] + a.m_data[4] * b.m_data[1] + a.m_data[5] * b.m_data[2];
+ result.m_data[2] =
+ a.m_data[6] * b.m_data[0] + a.m_data[7] * b.m_data[1] + a.m_data[8] * b.m_data[2];
+
+ return result;
+}
+
+inline const vec3& vec3::operator+=(const vec3& b) {
+ for (int i = 0; i < 3; i++) {
+ m_data[i] += b.m_data[i];
+ }
+ return *this;
+}
+
+inline const vec3& vec3::operator-=(const vec3& b) {
+ for (int i = 0; i < 3; i++) {
+ m_data[i] -= b.m_data[i];
+ }
+ return *this;
+}
+
+inline mat33 operator*(const mat33& a, const idScalar& s) {
+ mat33 result;
+ for (int i = 0; i < 9; i++) {
+ result.m_data[i] = a.m_data[i] * s;
+ }
+ return result;
+}
+
+inline mat33 operator*(const idScalar& s, const mat33& a) { return a * s; }
+
+inline vec3 operator*(const vec3& a, const idScalar& s) {
+ vec3 result;
+ for (int i = 0; i < 3; i++) {
+ result.m_data[i] = a.m_data[i] * s;
+ }
+ return result;
+}
+inline vec3 operator*(const idScalar& s, const vec3& a) { return a * s; }
+
+inline mat33 operator+(const mat33& a, const mat33& b) {
+ mat33 result;
+ for (int i = 0; i < 9; i++) {
+ result.m_data[i] = a.m_data[i] + b.m_data[i];
+ }
+ return result;
+}
+inline vec3 operator+(const vec3& a, const vec3& b) {
+ vec3 result;
+ for (int i = 0; i < 3; i++) {
+ result.m_data[i] = a.m_data[i] + b.m_data[i];
+ }
+ return result;
+}
+
+inline mat33 operator-(const mat33& a, const mat33& b) {
+ mat33 result;
+ for (int i = 0; i < 9; i++) {
+ result.m_data[i] = a.m_data[i] - b.m_data[i];
+ }
+ return result;
+}
+inline vec3 operator-(const vec3& a, const vec3& b) {
+ vec3 result;
+ for (int i = 0; i < 3; i++) {
+ result.m_data[i] = a.m_data[i] - b.m_data[i];
+ }
+ return result;
+}
+
+inline mat33 operator/(const mat33& a, const idScalar& s) {
+ mat33 result;
+ for (int i = 0; i < 9; i++) {
+ result.m_data[i] = a.m_data[i] / s;
+ }
+ return result;
+}
+
+inline vec3 operator/(const vec3& a, const idScalar& s) {
+ vec3 result;
+ for (int i = 0; i < 3; i++) {
+ result.m_data[i] = a.m_data[i] / s;
+ }
+ return result;
+}
+
+inline const vecx& vecx::operator=(const vecx& rhs) {
+ if (size() != rhs.size()) {
+ error_message("size missmatch, size()= %d but rhs.size()= %d\n", size(), rhs.size());
+ abort();
+ }
+ if (&rhs != this) {
+ memcpy(m_data, rhs.m_data, rhs.size() * sizeof(idScalar));
+ }
+ return *this;
+}
+inline vecx operator*(const vecx& a, const idScalar& s) {
+ vecx result(a.size());
+ for (int i = 0; i < result.size(); i++) {
+ result.m_data[i] = a.m_data[i] * s;
+ }
+ return result;
+}
+inline vecx operator*(const idScalar& s, const vecx& a) { return a * s; }
+inline vecx operator+(const vecx& a, const vecx& b) {
+ vecx result(a.size());
+ // TODO: error handling for a.size() != b.size()??
+ if (a.size() != b.size()) {
+ error_message("size missmatch. a.size()= %d, b.size()= %d\n", a.size(), b.size());
+ abort();
+ }
+ for (int i = 0; i < a.size(); i++) {
+ result.m_data[i] = a.m_data[i] + b.m_data[i];
+ }
+
+ return result;
+}
+inline vecx operator-(const vecx& a, const vecx& b) {
+ vecx result(a.size());
+ // TODO: error handling for a.size() != b.size()??
+ if (a.size() != b.size()) {
+ error_message("size missmatch. a.size()= %d, b.size()= %d\n", a.size(), b.size());
+ abort();
+ }
+ for (int i = 0; i < a.size(); i++) {
+ result.m_data[i] = a.m_data[i] - b.m_data[i];
+ }
+ return result;
+}
+inline vecx operator/(const vecx& a, const idScalar& s) {
+ vecx result(a.size());
+ for (int i = 0; i < result.size(); i++) {
+ result.m_data[i] = a.m_data[i] / s;
+ }
+
+ return result;
+}
+
+inline vec3 operator*(const mat3x& a, const vecx& b) {
+ vec3 result;
+ if (a.cols() != b.size()) {
+ error_message("size missmatch. a.cols()= %d, b.size()= %d\n", a.cols(), b.size());
+ abort();
+ }
+ result(0)=0.0;
+ result(1)=0.0;
+ result(2)=0.0;
+ for(int i=0;i<b.size();i++) {
+ for(int k=0;k<3;k++) {
+ result(k)+=a(k,i)*b(i);
+ }
+ }
+ return result;
+}
+
+inline void setMatxxElem(const idArrayIdx row, const idArrayIdx col, const idScalar val, matxx*m){
+ (*m)(row, col) = val;
+}
+
+inline void setMat3xElem(const idArrayIdx row, const idArrayIdx col, const idScalar val, mat3x*m){
+ (*m)(row, col) = val;
+}
+
+} // namespace btInverseDynamcis
+#endif
diff --git a/thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeImpl.cpp b/thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeImpl.cpp
new file mode 100644
index 0000000000..b35c55df61
--- /dev/null
+++ b/thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeImpl.cpp
@@ -0,0 +1,1028 @@
+#include "MultiBodyTreeImpl.hpp"
+
+namespace btInverseDynamics {
+
+MultiBodyTree::MultiBodyImpl::MultiBodyImpl(int num_bodies_, int num_dofs_)
+ : m_num_bodies(num_bodies_), m_num_dofs(num_dofs_)
+#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS)
+ ,m_m3x(3,m_num_dofs)
+#endif
+{
+
+#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS)
+ resize(m_m3x,m_num_dofs);
+#endif
+ m_body_list.resize(num_bodies_);
+ m_parent_index.resize(num_bodies_);
+ m_child_indices.resize(num_bodies_);
+ m_user_int.resize(num_bodies_);
+ m_user_ptr.resize(num_bodies_);
+
+ m_world_gravity(0) = 0.0;
+ m_world_gravity(1) = 0.0;
+ m_world_gravity(2) = -9.8;
+}
+
+const char *MultiBodyTree::MultiBodyImpl::jointTypeToString(const JointType &type) const {
+ switch (type) {
+ case FIXED:
+ return "fixed";
+ case REVOLUTE:
+ return "revolute";
+ case PRISMATIC:
+ return "prismatic";
+ case FLOATING:
+ return "floating";
+ }
+ return "error: invalid";
+}
+
+inline void indent(const int &level) {
+ for (int j = 0; j < level; j++)
+ id_printf(" "); // indent
+}
+
+void MultiBodyTree::MultiBodyImpl::printTree() {
+ id_printf("body %.2d[%s]: root\n", 0, jointTypeToString(m_body_list[0].m_joint_type));
+ printTree(0, 0);
+}
+
+void MultiBodyTree::MultiBodyImpl::printTreeData() {
+ for (idArrayIdx i = 0; i < m_body_list.size(); i++) {
+ RigidBody &body = m_body_list[i];
+ id_printf("body: %d\n", static_cast<int>(i));
+ id_printf("type: %s\n", jointTypeToString(body.m_joint_type));
+ id_printf("q_index= %d\n", body.m_q_index);
+ id_printf("Jac_JR= [%f;%f;%f]\n", body.m_Jac_JR(0), body.m_Jac_JR(1), body.m_Jac_JR(2));
+ id_printf("Jac_JT= [%f;%f;%f]\n", body.m_Jac_JT(0), body.m_Jac_JT(1), body.m_Jac_JT(2));
+
+ id_printf("mass = %f\n", body.m_mass);
+ id_printf("mass * com = [%f %f %f]\n", body.m_body_mass_com(0), body.m_body_mass_com(1),
+ body.m_body_mass_com(2));
+ id_printf("I_o= [%f %f %f;\n"
+ " %f %f %f;\n"
+ " %f %f %f]\n",
+ body.m_body_I_body(0, 0), body.m_body_I_body(0, 1), body.m_body_I_body(0, 2),
+ body.m_body_I_body(1, 0), body.m_body_I_body(1, 1), body.m_body_I_body(1, 2),
+ body.m_body_I_body(2, 0), body.m_body_I_body(2, 1), body.m_body_I_body(2, 2));
+
+ id_printf("parent_pos_parent_body_ref= [%f %f %f]\n", body.m_parent_pos_parent_body_ref(0),
+ body.m_parent_pos_parent_body_ref(1), body.m_parent_pos_parent_body_ref(2));
+ }
+}
+int MultiBodyTree::MultiBodyImpl::bodyNumDoFs(const JointType &type) const {
+ switch (type) {
+ case FIXED:
+ return 0;
+ case REVOLUTE:
+ case PRISMATIC:
+ return 1;
+ case FLOATING:
+ return 6;
+ }
+ error_message("unknown joint type %d\n", type);
+ return 0;
+}
+
+void MultiBodyTree::MultiBodyImpl::printTree(int index, int indentation) {
+ // this is adapted from URDF2Bullet.
+ // TODO: fix this and print proper graph (similar to git --log --graph)
+ int num_children = m_child_indices[index].size();
+
+ indentation += 2;
+ int count = 0;
+
+ for (int i = 0; i < num_children; i++) {
+ int child_index = m_child_indices[index][i];
+ indent(indentation);
+ id_printf("body %.2d[%s]: %.2d is child no. %d (qi= %d .. %d) \n", index,
+ jointTypeToString(m_body_list[index].m_joint_type), child_index, (count++) + 1,
+ m_body_list[index].m_q_index,
+ m_body_list[index].m_q_index + bodyNumDoFs(m_body_list[index].m_joint_type));
+ // first grandchild
+ printTree(child_index, indentation);
+ }
+}
+
+int MultiBodyTree::MultiBodyImpl::setGravityInWorldFrame(const vec3 &gravity) {
+ m_world_gravity = gravity;
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::generateIndexSets() {
+ m_body_revolute_list.resize(0);
+ m_body_prismatic_list.resize(0);
+ int q_index = 0;
+ for (idArrayIdx i = 0; i < m_body_list.size(); i++) {
+ RigidBody &body = m_body_list[i];
+ body.m_q_index = -1;
+ switch (body.m_joint_type) {
+ case REVOLUTE:
+ m_body_revolute_list.push_back(i);
+ body.m_q_index = q_index;
+ q_index++;
+ break;
+ case PRISMATIC:
+ m_body_prismatic_list.push_back(i);
+ body.m_q_index = q_index;
+ q_index++;
+ break;
+ case FIXED:
+ // do nothing
+ break;
+ case FLOATING:
+ m_body_floating_list.push_back(i);
+ body.m_q_index = q_index;
+ q_index += 6;
+ break;
+ default:
+ error_message("unsupported joint type %d\n", body.m_joint_type);
+ return -1;
+ }
+ }
+ // sanity check
+ if (q_index != m_num_dofs) {
+ error_message("internal error, q_index= %d but num_dofs %d\n", q_index, m_num_dofs);
+ return -1;
+ }
+
+ m_child_indices.resize(m_body_list.size());
+
+ for (idArrayIdx child = 1; child < m_parent_index.size(); child++) {
+ const int &parent = m_parent_index[child];
+ if (parent >= 0 && parent < (static_cast<int>(m_parent_index.size()) - 1)) {
+ m_child_indices[parent].push_back(child);
+ } else {
+ if (-1 == parent) {
+ // multiple bodies are directly linked to the environment, ie, not a single root
+ error_message("building index sets parent(%zu)= -1 (multiple roots)\n", child);
+ } else {
+ // should never happen
+ error_message(
+ "building index sets. parent_index[%zu]= %d, but m_parent_index.size()= %d\n",
+ child, parent, static_cast<int>(m_parent_index.size()));
+ }
+ return -1;
+ }
+ }
+
+ return 0;
+}
+
+void MultiBodyTree::MultiBodyImpl::calculateStaticData() {
+ // relative kinematics that are not a function of q, u, dot_u
+ for (idArrayIdx i = 0; i < m_body_list.size(); i++) {
+ RigidBody &body = m_body_list[i];
+ switch (body.m_joint_type) {
+ case REVOLUTE:
+ body.m_parent_vel_rel(0) = 0;
+ body.m_parent_vel_rel(1) = 0;
+ body.m_parent_vel_rel(2) = 0;
+ body.m_parent_acc_rel(0) = 0;
+ body.m_parent_acc_rel(1) = 0;
+ body.m_parent_acc_rel(2) = 0;
+ body.m_parent_pos_parent_body = body.m_parent_pos_parent_body_ref;
+ break;
+ case PRISMATIC:
+ body.m_body_T_parent = body.m_body_T_parent_ref;
+ body.m_parent_Jac_JT = body.m_body_T_parent_ref.transpose() * body.m_Jac_JT;
+ body.m_body_ang_vel_rel(0) = 0;
+ body.m_body_ang_vel_rel(1) = 0;
+ body.m_body_ang_vel_rel(2) = 0;
+ body.m_body_ang_acc_rel(0) = 0;
+ body.m_body_ang_acc_rel(1) = 0;
+ body.m_body_ang_acc_rel(2) = 0;
+ break;
+ case FIXED:
+ body.m_parent_pos_parent_body = body.m_parent_pos_parent_body_ref;
+ body.m_body_T_parent = body.m_body_T_parent_ref;
+ body.m_body_ang_vel_rel(0) = 0;
+ body.m_body_ang_vel_rel(1) = 0;
+ body.m_body_ang_vel_rel(2) = 0;
+ body.m_parent_vel_rel(0) = 0;
+ body.m_parent_vel_rel(1) = 0;
+ body.m_parent_vel_rel(2) = 0;
+ body.m_body_ang_acc_rel(0) = 0;
+ body.m_body_ang_acc_rel(1) = 0;
+ body.m_body_ang_acc_rel(2) = 0;
+ body.m_parent_acc_rel(0) = 0;
+ body.m_parent_acc_rel(1) = 0;
+ body.m_parent_acc_rel(2) = 0;
+ break;
+ case FLOATING:
+ // no static data
+ break;
+ }
+
+ // resize & initialize jacobians to zero.
+#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS)
+ body.m_body_dot_Jac_T_u(0) = 0.0;
+ body.m_body_dot_Jac_T_u(1) = 0.0;
+ body.m_body_dot_Jac_T_u(2) = 0.0;
+ body.m_body_dot_Jac_R_u(0) = 0.0;
+ body.m_body_dot_Jac_R_u(1) = 0.0;
+ body.m_body_dot_Jac_R_u(2) = 0.0;
+ resize(body.m_body_Jac_T,m_num_dofs);
+ resize(body.m_body_Jac_R,m_num_dofs);
+ body.m_body_Jac_T.setZero();
+ body.m_body_Jac_R.setZero();
+#endif //
+ }
+}
+
+int MultiBodyTree::MultiBodyImpl::calculateInverseDynamics(const vecx &q, const vecx &u,
+ const vecx &dot_u, vecx *joint_forces) {
+ if (q.size() != m_num_dofs || u.size() != m_num_dofs || dot_u.size() != m_num_dofs ||
+ joint_forces->size() != m_num_dofs) {
+ error_message("wrong vector dimension. system has %d DOFs,\n"
+ "but dim(q)= %d, dim(u)= %d, dim(dot_u)= %d, dim(joint_forces)= %d\n",
+ m_num_dofs, static_cast<int>(q.size()), static_cast<int>(u.size()),
+ static_cast<int>(dot_u.size()), static_cast<int>(joint_forces->size()));
+ return -1;
+ }
+ // 1. relative kinematics
+ if(-1 == calculateKinematics(q,u,dot_u, POSITION_VELOCITY_ACCELERATION)) {
+ error_message("error in calculateKinematics\n");
+ return -1;
+ }
+ // 2. update contributions to equations of motion for every body.
+ for (idArrayIdx i = 0; i < m_body_list.size(); i++) {
+ RigidBody &body = m_body_list[i];
+ // 3.4 update dynamic terms (rate of change of angular & linear momentum)
+ body.m_eom_lhs_rotational =
+ body.m_body_I_body * body.m_body_ang_acc + body.m_body_mass_com.cross(body.m_body_acc) +
+ body.m_body_ang_vel.cross(body.m_body_I_body * body.m_body_ang_vel) -
+ body.m_body_moment_user;
+ body.m_eom_lhs_translational =
+ body.m_body_ang_acc.cross(body.m_body_mass_com) + body.m_mass * body.m_body_acc +
+ body.m_body_ang_vel.cross(body.m_body_ang_vel.cross(body.m_body_mass_com)) -
+ body.m_body_force_user;
+ }
+
+ // 3. calculate full set of forces at parent joint
+ // (not directly calculating the joint force along the free direction
+ // simplifies inclusion of fixed joints.
+ // An alternative would be to fuse bodies in a pre-processing step,
+ // but that would make changing masses online harder (eg, payload masses
+ // added with fixed joints to a gripper)
+ // Also, this enables adding zero weight bodies as a way to calculate frame poses
+ // for force elements, etc.
+
+ for (int body_idx = m_body_list.size() - 1; body_idx >= 0; body_idx--) {
+ // sum of forces and moments acting on this body from its children
+ vec3 sum_f_children;
+ vec3 sum_m_children;
+ setZero(sum_f_children);
+ setZero(sum_m_children);
+ for (idArrayIdx child_list_idx = 0; child_list_idx < m_child_indices[body_idx].size();
+ child_list_idx++) {
+ const RigidBody &child = m_body_list[m_child_indices[body_idx][child_list_idx]];
+ vec3 child_joint_force_in_this_frame =
+ child.m_body_T_parent.transpose() * child.m_force_at_joint;
+ sum_f_children -= child_joint_force_in_this_frame;
+ sum_m_children -= child.m_body_T_parent.transpose() * child.m_moment_at_joint +
+ child.m_parent_pos_parent_body.cross(child_joint_force_in_this_frame);
+ }
+ RigidBody &body = m_body_list[body_idx];
+
+ body.m_force_at_joint = body.m_eom_lhs_translational - sum_f_children;
+ body.m_moment_at_joint = body.m_eom_lhs_rotational - sum_m_children;
+ }
+
+ // 4. Calculate Joint forces.
+ // These are the components of force_at_joint/moment_at_joint
+ // in the free directions given by Jac_JT/Jac_JR
+ // 4.1 revolute joints
+ for (idArrayIdx i = 0; i < m_body_revolute_list.size(); i++) {
+ RigidBody &body = m_body_list[m_body_revolute_list[i]];
+ // (*joint_forces)(body.m_q_index) = body.m_Jac_JR.transpose() * body.m_moment_at_joint;
+ (*joint_forces)(body.m_q_index) = body.m_Jac_JR.dot(body.m_moment_at_joint);
+ }
+ // 4.2 for prismatic joints
+ for (idArrayIdx i = 0; i < m_body_prismatic_list.size(); i++) {
+ RigidBody &body = m_body_list[m_body_prismatic_list[i]];
+ // (*joint_forces)(body.m_q_index) = body.m_Jac_JT.transpose() * body.m_force_at_joint;
+ (*joint_forces)(body.m_q_index) = body.m_Jac_JT.dot(body.m_force_at_joint);
+ }
+ // 4.3 floating bodies (6-DoF joints)
+ for (idArrayIdx i = 0; i < m_body_floating_list.size(); i++) {
+ RigidBody &body = m_body_list[m_body_floating_list[i]];
+ (*joint_forces)(body.m_q_index + 0) = body.m_moment_at_joint(0);
+ (*joint_forces)(body.m_q_index + 1) = body.m_moment_at_joint(1);
+ (*joint_forces)(body.m_q_index + 2) = body.m_moment_at_joint(2);
+
+ (*joint_forces)(body.m_q_index + 3) = body.m_force_at_joint(0);
+ (*joint_forces)(body.m_q_index + 4) = body.m_force_at_joint(1);
+ (*joint_forces)(body.m_q_index + 5) = body.m_force_at_joint(2);
+ }
+
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::calculateKinematics(const vecx &q, const vecx &u, const vecx& dot_u,
+ const KinUpdateType type) {
+ if (q.size() != m_num_dofs || u.size() != m_num_dofs || dot_u.size() != m_num_dofs ) {
+ error_message("wrong vector dimension. system has %d DOFs,\n"
+ "but dim(q)= %d, dim(u)= %d, dim(dot_u)= %d\n",
+ m_num_dofs, static_cast<int>(q.size()), static_cast<int>(u.size()),
+ static_cast<int>(dot_u.size()));
+ return -1;
+ }
+ if(type != POSITION_ONLY && type != POSITION_VELOCITY && type != POSITION_VELOCITY_ACCELERATION) {
+ error_message("invalid type %d\n", type);
+ return -1;
+ }
+
+ // 1. update relative kinematics
+ // 1.1 for revolute
+ for (idArrayIdx i = 0; i < m_body_revolute_list.size(); i++) {
+ RigidBody &body = m_body_list[m_body_revolute_list[i]];
+ mat33 T;
+ bodyTParentFromAxisAngle(body.m_Jac_JR, q(body.m_q_index), &T);
+ body.m_body_T_parent = T * body.m_body_T_parent_ref;
+ if(type >= POSITION_VELOCITY) {
+ body.m_body_ang_vel_rel = body.m_Jac_JR * u(body.m_q_index);
+ }
+ if(type >= POSITION_VELOCITY_ACCELERATION) {
+ body.m_body_ang_acc_rel = body.m_Jac_JR * dot_u(body.m_q_index);
+ }
+ }
+ // 1.2 for prismatic
+ for (idArrayIdx i = 0; i < m_body_prismatic_list.size(); i++) {
+ RigidBody &body = m_body_list[m_body_prismatic_list[i]];
+ body.m_parent_pos_parent_body =
+ body.m_parent_pos_parent_body_ref + body.m_parent_Jac_JT * q(body.m_q_index);
+ if(type >= POSITION_VELOCITY) {
+ body.m_parent_vel_rel =
+ body.m_body_T_parent_ref.transpose() * body.m_Jac_JT * u(body.m_q_index);
+ }
+ if(type >= POSITION_VELOCITY_ACCELERATION) {
+ body.m_parent_acc_rel = body.m_parent_Jac_JT * dot_u(body.m_q_index);
+ }
+ }
+ // 1.3 fixed joints: nothing to do
+ // 1.4 6dof joints:
+ for (idArrayIdx i = 0; i < m_body_floating_list.size(); i++) {
+ RigidBody &body = m_body_list[m_body_floating_list[i]];
+
+ body.m_body_T_parent = transformZ(q(body.m_q_index + 2)) *
+ transformY(q(body.m_q_index + 1)) * transformX(q(body.m_q_index));
+ body.m_parent_pos_parent_body(0) = q(body.m_q_index + 3);
+ body.m_parent_pos_parent_body(1) = q(body.m_q_index + 4);
+ body.m_parent_pos_parent_body(2) = q(body.m_q_index + 5);
+ body.m_parent_pos_parent_body = body.m_body_T_parent * body.m_parent_pos_parent_body;
+
+ if(type >= POSITION_VELOCITY) {
+ body.m_body_ang_vel_rel(0) = u(body.m_q_index + 0);
+ body.m_body_ang_vel_rel(1) = u(body.m_q_index + 1);
+ body.m_body_ang_vel_rel(2) = u(body.m_q_index + 2);
+
+ body.m_parent_vel_rel(0) = u(body.m_q_index + 3);
+ body.m_parent_vel_rel(1) = u(body.m_q_index + 4);
+ body.m_parent_vel_rel(2) = u(body.m_q_index + 5);
+
+ body.m_parent_vel_rel = body.m_body_T_parent.transpose() * body.m_parent_vel_rel;
+ }
+ if(type >= POSITION_VELOCITY_ACCELERATION) {
+ body.m_body_ang_acc_rel(0) = dot_u(body.m_q_index + 0);
+ body.m_body_ang_acc_rel(1) = dot_u(body.m_q_index + 1);
+ body.m_body_ang_acc_rel(2) = dot_u(body.m_q_index + 2);
+
+ body.m_parent_acc_rel(0) = dot_u(body.m_q_index + 3);
+ body.m_parent_acc_rel(1) = dot_u(body.m_q_index + 4);
+ body.m_parent_acc_rel(2) = dot_u(body.m_q_index + 5);
+
+ body.m_parent_acc_rel = body.m_body_T_parent.transpose() * body.m_parent_acc_rel;
+ }
+ }
+
+ // 2. absolute kinematic quantities (vector valued)
+ // NOTE: this should be optimized by specializing for different body types
+ // (e.g., relative rotation is always zero for prismatic joints, etc.)
+
+ // calculations for root body
+ {
+ RigidBody &body = m_body_list[0];
+ // 3.1 update absolute positions and orientations:
+ // will be required if we add force elements (eg springs between bodies,
+ // or contacts)
+ // not required right now, added here for debugging purposes
+ body.m_body_pos = body.m_body_T_parent * body.m_parent_pos_parent_body;
+ body.m_body_T_world = body.m_body_T_parent;
+
+ if(type >= POSITION_VELOCITY) {
+ // 3.2 update absolute velocities
+ body.m_body_ang_vel = body.m_body_ang_vel_rel;
+ body.m_body_vel = body.m_parent_vel_rel;
+ }
+ if(type >= POSITION_VELOCITY_ACCELERATION) {
+ // 3.3 update absolute accelerations
+ // NOTE: assumption: dot(J_JR) = 0; true here, but not for general joints
+ body.m_body_ang_acc = body.m_body_ang_acc_rel;
+ body.m_body_acc = body.m_body_T_parent * body.m_parent_acc_rel;
+ // add gravitational acceleration to root body
+ // this is an efficient way to add gravitational terms,
+ // but it does mean that the kinematics are no longer
+ // correct at the acceleration level
+ // NOTE: To get correct acceleration kinematics, just set world_gravity to zero
+ body.m_body_acc = body.m_body_acc - body.m_body_T_parent * m_world_gravity;
+ }
+ }
+
+ for (idArrayIdx i = 1; i < m_body_list.size(); i++) {
+ RigidBody &body = m_body_list[i];
+ RigidBody &parent = m_body_list[m_parent_index[i]];
+ // 2.1 update absolute positions and orientations:
+ // will be required if we add force elements (eg springs between bodies,
+ // or contacts) not required right now added here for debugging purposes
+ body.m_body_pos =
+ body.m_body_T_parent * (parent.m_body_pos + body.m_parent_pos_parent_body);
+ body.m_body_T_world = body.m_body_T_parent * parent.m_body_T_world;
+
+ if(type >= POSITION_VELOCITY) {
+ // 2.2 update absolute velocities
+ body.m_body_ang_vel =
+ body.m_body_T_parent * parent.m_body_ang_vel + body.m_body_ang_vel_rel;
+
+ body.m_body_vel =
+ body.m_body_T_parent *
+ (parent.m_body_vel + parent.m_body_ang_vel.cross(body.m_parent_pos_parent_body) +
+ body.m_parent_vel_rel);
+ }
+ if(type >= POSITION_VELOCITY_ACCELERATION) {
+ // 2.3 update absolute accelerations
+ // NOTE: assumption: dot(J_JR) = 0; true here, but not for general joints
+ body.m_body_ang_acc =
+ body.m_body_T_parent * parent.m_body_ang_acc -
+ body.m_body_ang_vel_rel.cross(body.m_body_T_parent * parent.m_body_ang_vel) +
+ body.m_body_ang_acc_rel;
+ body.m_body_acc =
+ body.m_body_T_parent *
+ (parent.m_body_acc + parent.m_body_ang_acc.cross(body.m_parent_pos_parent_body) +
+ parent.m_body_ang_vel.cross(parent.m_body_ang_vel.cross(body.m_parent_pos_parent_body)) +
+ 2.0 * parent.m_body_ang_vel.cross(body.m_parent_vel_rel) + body.m_parent_acc_rel);
+ }
+ }
+
+ return 0;
+}
+
+#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS)
+
+void MultiBodyTree::MultiBodyImpl::addRelativeJacobianComponent(RigidBody&body) {
+ const int& idx=body.m_q_index;
+ switch(body.m_joint_type) {
+ case FIXED:
+ break;
+ case REVOLUTE:
+ setMat3xElem(0,idx, body.m_Jac_JR(0), &body.m_body_Jac_R);
+ setMat3xElem(1,idx, body.m_Jac_JR(1), &body.m_body_Jac_R);
+ setMat3xElem(2,idx, body.m_Jac_JR(2), &body.m_body_Jac_R);
+ break;
+ case PRISMATIC:
+ setMat3xElem(0,idx, body.m_body_T_parent_ref(0,0)*body.m_Jac_JT(0)
+ +body.m_body_T_parent_ref(1,0)*body.m_Jac_JT(1)
+ +body.m_body_T_parent_ref(2,0)*body.m_Jac_JT(2),
+ &body.m_body_Jac_T);
+ setMat3xElem(1,idx,body.m_body_T_parent_ref(0,1)*body.m_Jac_JT(0)
+ +body.m_body_T_parent_ref(1,1)*body.m_Jac_JT(1)
+ +body.m_body_T_parent_ref(2,1)*body.m_Jac_JT(2),
+ &body.m_body_Jac_T);
+ setMat3xElem(2,idx, body.m_body_T_parent_ref(0,2)*body.m_Jac_JT(0)
+ +body.m_body_T_parent_ref(1,2)*body.m_Jac_JT(1)
+ +body.m_body_T_parent_ref(2,2)*body.m_Jac_JT(2),
+ &body.m_body_Jac_T);
+ break;
+ case FLOATING:
+ setMat3xElem(0,idx+0, 1.0, &body.m_body_Jac_R);
+ setMat3xElem(1,idx+1, 1.0, &body.m_body_Jac_R);
+ setMat3xElem(2,idx+2, 1.0, &body.m_body_Jac_R);
+ // body_Jac_T = body_T_parent.transpose();
+ setMat3xElem(0,idx+3, body.m_body_T_parent(0,0), &body.m_body_Jac_T);
+ setMat3xElem(0,idx+4, body.m_body_T_parent(1,0), &body.m_body_Jac_T);
+ setMat3xElem(0,idx+5, body.m_body_T_parent(2,0), &body.m_body_Jac_T);
+
+ setMat3xElem(1,idx+3, body.m_body_T_parent(0,1), &body.m_body_Jac_T);
+ setMat3xElem(1,idx+4, body.m_body_T_parent(1,1), &body.m_body_Jac_T);
+ setMat3xElem(1,idx+5, body.m_body_T_parent(2,1), &body.m_body_Jac_T);
+
+ setMat3xElem(2,idx+3, body.m_body_T_parent(0,2), &body.m_body_Jac_T);
+ setMat3xElem(2,idx+4, body.m_body_T_parent(1,2), &body.m_body_Jac_T);
+ setMat3xElem(2,idx+5, body.m_body_T_parent(2,2), &body.m_body_Jac_T);
+
+ break;
+ }
+}
+
+int MultiBodyTree::MultiBodyImpl::calculateJacobians(const vecx& q, const vecx& u, const KinUpdateType type) {
+ if (q.size() != m_num_dofs || u.size() != m_num_dofs) {
+ error_message("wrong vector dimension. system has %d DOFs,\n"
+ "but dim(q)= %d, dim(u)= %d\n",
+ m_num_dofs, static_cast<int>(q.size()), static_cast<int>(u.size()));
+ return -1;
+ }
+ if(type != POSITION_ONLY && type != POSITION_VELOCITY) {
+ error_message("invalid type %d\n", type);
+ return -1;
+ }
+
+ addRelativeJacobianComponent(m_body_list[0]);
+ for (idArrayIdx i = 1; i < m_body_list.size(); i++) {
+ RigidBody &body = m_body_list[i];
+ RigidBody &parent = m_body_list[m_parent_index[i]];
+
+ mul(body.m_body_T_parent, parent.m_body_Jac_R,& body.m_body_Jac_R);
+ body.m_body_Jac_T = parent.m_body_Jac_T;
+ mul(tildeOperator(body.m_parent_pos_parent_body),parent.m_body_Jac_R,&m_m3x);
+ sub(body.m_body_Jac_T,m_m3x, &body.m_body_Jac_T);
+
+ addRelativeJacobianComponent(body);
+ mul(body.m_body_T_parent, body.m_body_Jac_T,&body.m_body_Jac_T);
+
+ if(type >= POSITION_VELOCITY) {
+ body.m_body_dot_Jac_R_u = body.m_body_T_parent * parent.m_body_dot_Jac_R_u -
+ body.m_body_ang_vel_rel.cross(body.m_body_T_parent * parent.m_body_ang_vel);
+ body.m_body_dot_Jac_T_u = body.m_body_T_parent *
+ (parent.m_body_dot_Jac_T_u + parent.m_body_dot_Jac_R_u.cross(body.m_parent_pos_parent_body) +
+ parent.m_body_ang_vel.cross(parent.m_body_ang_vel.cross(body.m_parent_pos_parent_body)) +
+ 2.0 * parent.m_body_ang_vel.cross(body.m_parent_vel_rel));
+ }
+ }
+ return 0;
+}
+#endif
+
+static inline void setSixDoFJacobians(const int dof, vec3 &Jac_JR, vec3 &Jac_JT) {
+ switch (dof) {
+ // rotational part
+ case 0:
+ Jac_JR(0) = 1;
+ Jac_JR(1) = 0;
+ Jac_JR(2) = 0;
+ setZero(Jac_JT);
+ break;
+ case 1:
+ Jac_JR(0) = 0;
+ Jac_JR(1) = 1;
+ Jac_JR(2) = 0;
+ setZero(Jac_JT);
+ break;
+ case 2:
+ Jac_JR(0) = 0;
+ Jac_JR(1) = 0;
+ Jac_JR(2) = 1;
+ setZero(Jac_JT);
+ break;
+ // translational part
+ case 3:
+ setZero(Jac_JR);
+ Jac_JT(0) = 1;
+ Jac_JT(1) = 0;
+ Jac_JT(2) = 0;
+ break;
+ case 4:
+ setZero(Jac_JR);
+ Jac_JT(0) = 0;
+ Jac_JT(1) = 1;
+ Jac_JT(2) = 0;
+ break;
+ case 5:
+ setZero(Jac_JR);
+ Jac_JT(0) = 0;
+ Jac_JT(1) = 0;
+ Jac_JT(2) = 1;
+ break;
+ }
+}
+
+static inline int jointNumDoFs(const JointType &type) {
+ switch (type) {
+ case FIXED:
+ return 0;
+ case REVOLUTE:
+ case PRISMATIC:
+ return 1;
+ case FLOATING:
+ return 6;
+ }
+ // this should never happen
+ error_message("invalid joint type\n");
+ // TODO add configurable abort/crash function
+ abort();
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::calculateMassMatrix(const vecx &q, const bool update_kinematics,
+ const bool initialize_matrix,
+ const bool set_lower_triangular_matrix,
+ matxx *mass_matrix) {
+// This calculates the joint space mass matrix for the multibody system.
+// The algorithm is essentially an implementation of "method 3"
+// in "Efficient Dynamic Simulation of Robotic Mechanisms" (Walker and Orin, 1982)
+// (Later named "Composite Rigid Body Algorithm" by Featherstone).
+//
+// This implementation, however, handles branched systems and uses a formulation centered
+// on the origin of the body-fixed frame to avoid re-computing various quantities at the com.
+
+ if (q.size() != m_num_dofs || mass_matrix->rows() != m_num_dofs ||
+ mass_matrix->cols() != m_num_dofs) {
+ error_message("Dimension error. System has %d DOFs,\n"
+ "but dim(q)= %d, dim(mass_matrix)= %d x %d\n",
+ m_num_dofs, static_cast<int>(q.size()), static_cast<int>(mass_matrix->rows()),
+ static_cast<int>(mass_matrix->cols()));
+ return -1;
+ }
+
+ // TODO add optimized zeroing function?
+ if (initialize_matrix) {
+ for (int i = 0; i < m_num_dofs; i++) {
+ for (int j = 0; j < m_num_dofs; j++) {
+ setMatxxElem(i, j, 0.0, mass_matrix);
+ }
+ }
+ }
+
+ if (update_kinematics) {
+ // 1. update relative kinematics
+ // 1.1 for revolute joints
+ for (idArrayIdx i = 0; i < m_body_revolute_list.size(); i++) {
+ RigidBody &body = m_body_list[m_body_revolute_list[i]];
+ // from reference orientation (q=0) of body-fixed frame to current orientation
+ mat33 body_T_body_ref;
+ bodyTParentFromAxisAngle(body.m_Jac_JR, q(body.m_q_index), &body_T_body_ref);
+ body.m_body_T_parent = body_T_body_ref * body.m_body_T_parent_ref;
+ }
+ // 1.2 for prismatic joints
+ for (idArrayIdx i = 0; i < m_body_prismatic_list.size(); i++) {
+ RigidBody &body = m_body_list[m_body_prismatic_list[i]];
+ // body.m_body_T_parent= fixed
+ body.m_parent_pos_parent_body =
+ body.m_parent_pos_parent_body_ref + body.m_parent_Jac_JT * q(body.m_q_index);
+ }
+ // 1.3 fixed joints: nothing to do
+ // 1.4 6dof joints:
+ for (idArrayIdx i = 0; i < m_body_floating_list.size(); i++) {
+ RigidBody &body = m_body_list[m_body_floating_list[i]];
+
+ body.m_body_T_parent = transformZ(q(body.m_q_index + 2)) *
+ transformY(q(body.m_q_index + 1)) *
+ transformX(q(body.m_q_index));
+ body.m_parent_pos_parent_body(0) = q(body.m_q_index + 3);
+ body.m_parent_pos_parent_body(1) = q(body.m_q_index + 4);
+ body.m_parent_pos_parent_body(2) = q(body.m_q_index + 5);
+
+ body.m_parent_pos_parent_body = body.m_body_T_parent * body.m_parent_pos_parent_body;
+ }
+ }
+ for (int i = m_body_list.size() - 1; i >= 0; i--) {
+ RigidBody &body = m_body_list[i];
+ // calculate mass, center of mass and inertia of "composite rigid body",
+ // ie, sub-tree starting at current body
+ body.m_subtree_mass = body.m_mass;
+ body.m_body_subtree_mass_com = body.m_body_mass_com;
+ body.m_body_subtree_I_body = body.m_body_I_body;
+
+ for (idArrayIdx c = 0; c < m_child_indices[i].size(); c++) {
+ RigidBody &child = m_body_list[m_child_indices[i][c]];
+ mat33 body_T_child = child.m_body_T_parent.transpose();
+
+ body.m_subtree_mass += child.m_subtree_mass;
+ body.m_body_subtree_mass_com += body_T_child * child.m_body_subtree_mass_com +
+ child.m_parent_pos_parent_body * child.m_subtree_mass;
+ body.m_body_subtree_I_body +=
+ body_T_child * child.m_body_subtree_I_body * child.m_body_T_parent;
+
+ if (child.m_subtree_mass > 0) {
+ // Shift the reference point for the child subtree inertia using the
+ // Huygens-Steiner ("parallel axis") theorem.
+ // (First shift from child origin to child com, then from there to this body's
+ // origin)
+ vec3 r_com = body_T_child * child.m_body_subtree_mass_com / child.m_subtree_mass;
+ mat33 tilde_r_child_com = tildeOperator(r_com);
+ mat33 tilde_r_body_com = tildeOperator(child.m_parent_pos_parent_body + r_com);
+ body.m_body_subtree_I_body +=
+ child.m_subtree_mass *
+ (tilde_r_child_com * tilde_r_child_com - tilde_r_body_com * tilde_r_body_com);
+ }
+ }
+ }
+
+ for (int i = m_body_list.size() - 1; i >= 0; i--) {
+ const RigidBody &body = m_body_list[i];
+
+ // determine DoF-range for body
+ const int q_index_min = body.m_q_index;
+ const int q_index_max = q_index_min + jointNumDoFs(body.m_joint_type) - 1;
+ // loop over the DoFs used by this body
+ // local joint jacobians (ok as is for 1-DoF joints)
+ vec3 Jac_JR = body.m_Jac_JR;
+ vec3 Jac_JT = body.m_Jac_JT;
+ for (int col = q_index_max; col >= q_index_min; col--) {
+ // set jacobians for 6-DoF joints
+ if (FLOATING == body.m_joint_type) {
+ setSixDoFJacobians(col - q_index_min, Jac_JR, Jac_JT);
+ }
+
+ vec3 body_eom_rot =
+ body.m_body_subtree_I_body * Jac_JR + body.m_body_subtree_mass_com.cross(Jac_JT);
+ vec3 body_eom_trans =
+ body.m_subtree_mass * Jac_JT - body.m_body_subtree_mass_com.cross(Jac_JR);
+ setMatxxElem(col, col, Jac_JR.dot(body_eom_rot) + Jac_JT.dot(body_eom_trans), mass_matrix);
+
+ // rest of the mass matrix column upwards
+ {
+ // 1. for multi-dof joints, rest of the dofs of this body
+ for (int row = col - 1; row >= q_index_min; row--) {
+ if (FLOATING != body.m_joint_type) {
+ error_message("??\n");
+ return -1;
+ }
+ setSixDoFJacobians(row - q_index_min, Jac_JR, Jac_JT);
+ const double Mrc = Jac_JR.dot(body_eom_rot) + Jac_JT.dot(body_eom_trans);
+ setMatxxElem(col, row, Mrc, mass_matrix);
+ }
+ // 2. ancestor dofs
+ int child_idx = i;
+ int parent_idx = m_parent_index[i];
+ while (parent_idx >= 0) {
+ const RigidBody &child_body = m_body_list[child_idx];
+ const RigidBody &parent_body = m_body_list[parent_idx];
+
+ const mat33 parent_T_child = child_body.m_body_T_parent.transpose();
+ body_eom_rot = parent_T_child * body_eom_rot;
+ body_eom_trans = parent_T_child * body_eom_trans;
+ body_eom_rot += child_body.m_parent_pos_parent_body.cross(body_eom_trans);
+
+ const int parent_body_q_index_min = parent_body.m_q_index;
+ const int parent_body_q_index_max =
+ parent_body_q_index_min + jointNumDoFs(parent_body.m_joint_type) - 1;
+ vec3 Jac_JR = parent_body.m_Jac_JR;
+ vec3 Jac_JT = parent_body.m_Jac_JT;
+ for (int row = parent_body_q_index_max; row >= parent_body_q_index_min; row--) {
+ // set jacobians for 6-DoF joints
+ if (FLOATING == parent_body.m_joint_type) {
+ setSixDoFJacobians(row - parent_body_q_index_min, Jac_JR, Jac_JT);
+ }
+ const double Mrc = Jac_JR.dot(body_eom_rot) + Jac_JT.dot(body_eom_trans);
+ setMatxxElem(col, row, Mrc, mass_matrix);
+ }
+
+ child_idx = parent_idx;
+ parent_idx = m_parent_index[child_idx];
+ }
+ }
+ }
+ }
+
+ if (set_lower_triangular_matrix) {
+ for (int col = 0; col < m_num_dofs; col++) {
+ for (int row = 0; row < col; row++) {
+ setMatxxElem(row, col, (*mass_matrix)(col, row), mass_matrix);
+ }
+ }
+ }
+ return 0;
+}
+
+// utility macro
+#define CHECK_IF_BODY_INDEX_IS_VALID(index) \
+ do { \
+ if (index < 0 || index >= m_num_bodies) { \
+ error_message("invalid index %d (num_bodies= %d)\n", index, m_num_bodies); \
+ return -1; \
+ } \
+ } while (0)
+
+int MultiBodyTree::MultiBodyImpl::getParentIndex(const int body_index, int *p) {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ *p = m_parent_index[body_index];
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::getUserInt(const int body_index, int *user_int) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ *user_int = m_user_int[body_index];
+ return 0;
+}
+int MultiBodyTree::MultiBodyImpl::getUserPtr(const int body_index, void **user_ptr) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ *user_ptr = m_user_ptr[body_index];
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::setUserInt(const int body_index, const int user_int) {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ m_user_int[body_index] = user_int;
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::setUserPtr(const int body_index, void *const user_ptr) {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ m_user_ptr[body_index] = user_ptr;
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::getBodyOrigin(int body_index, vec3 *world_origin) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ const RigidBody &body = m_body_list[body_index];
+ *world_origin = body.m_body_T_world.transpose() * body.m_body_pos;
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::getBodyCoM(int body_index, vec3 *world_com) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ const RigidBody &body = m_body_list[body_index];
+ if (body.m_mass > 0) {
+ *world_com = body.m_body_T_world.transpose() *
+ (body.m_body_pos + body.m_body_mass_com / body.m_mass);
+ } else {
+ *world_com = body.m_body_T_world.transpose() * (body.m_body_pos);
+ }
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::getBodyTransform(int body_index, mat33 *world_T_body) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ const RigidBody &body = m_body_list[body_index];
+ *world_T_body = body.m_body_T_world.transpose();
+ return 0;
+}
+int MultiBodyTree::MultiBodyImpl::getBodyAngularVelocity(int body_index, vec3 *world_omega) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ const RigidBody &body = m_body_list[body_index];
+ *world_omega = body.m_body_T_world.transpose() * body.m_body_ang_vel;
+ return 0;
+}
+int MultiBodyTree::MultiBodyImpl::getBodyLinearVelocity(int body_index,
+ vec3 *world_velocity) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ const RigidBody &body = m_body_list[body_index];
+ *world_velocity = body.m_body_T_world.transpose() * body.m_body_vel;
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::getBodyLinearVelocityCoM(int body_index,
+ vec3 *world_velocity) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ const RigidBody &body = m_body_list[body_index];
+ vec3 com;
+ if (body.m_mass > 0) {
+ com = body.m_body_mass_com / body.m_mass;
+ } else {
+ com(0) = 0;
+ com(1) = 0;
+ com(2) = 0;
+ }
+
+ *world_velocity =
+ body.m_body_T_world.transpose() * (body.m_body_vel + body.m_body_ang_vel.cross(com));
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::getBodyAngularAcceleration(int body_index,
+ vec3 *world_dot_omega) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ const RigidBody &body = m_body_list[body_index];
+ *world_dot_omega = body.m_body_T_world.transpose() * body.m_body_ang_acc;
+ return 0;
+}
+int MultiBodyTree::MultiBodyImpl::getBodyLinearAcceleration(int body_index,
+ vec3 *world_acceleration) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ const RigidBody &body = m_body_list[body_index];
+ *world_acceleration = body.m_body_T_world.transpose() * body.m_body_acc;
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::getJointType(const int body_index, JointType *joint_type) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ *joint_type = m_body_list[body_index].m_joint_type;
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::getJointTypeStr(const int body_index,
+ const char **joint_type) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ *joint_type = jointTypeToString(m_body_list[body_index].m_joint_type);
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::getParentRParentBodyRef(const int body_index, vec3* r) const{
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ *r=m_body_list[body_index].m_parent_pos_parent_body_ref;
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::getBodyTParentRef(const int body_index, mat33* T) const{
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ *T=m_body_list[body_index].m_body_T_parent_ref;
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::getBodyAxisOfMotion(const int body_index, vec3* axis) const{
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ if(m_body_list[body_index].m_joint_type == REVOLUTE) {
+ *axis = m_body_list[body_index].m_Jac_JR;
+ return 0;
+ }
+ if(m_body_list[body_index].m_joint_type == PRISMATIC) {
+ *axis = m_body_list[body_index].m_Jac_JT;
+ return 0;
+ }
+ setZero(*axis);
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::getDoFOffset(const int body_index, int *q_index) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ *q_index = m_body_list[body_index].m_q_index;
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::setBodyMass(const int body_index, const idScalar mass) {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ m_body_list[body_index].m_mass = mass;
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::setBodyFirstMassMoment(const int body_index,
+ const vec3& first_mass_moment) {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ m_body_list[body_index].m_body_mass_com = first_mass_moment;
+ return 0;
+}
+int MultiBodyTree::MultiBodyImpl::setBodySecondMassMoment(const int body_index,
+ const mat33& second_mass_moment) {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ m_body_list[body_index].m_body_I_body = second_mass_moment;
+ return 0;
+}
+int MultiBodyTree::MultiBodyImpl::getBodyMass(const int body_index, idScalar *mass) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ *mass = m_body_list[body_index].m_mass;
+ return 0;
+}
+int MultiBodyTree::MultiBodyImpl::getBodyFirstMassMoment(const int body_index,
+ vec3 *first_mass_moment) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ *first_mass_moment = m_body_list[body_index].m_body_mass_com;
+ return 0;
+}
+int MultiBodyTree::MultiBodyImpl::getBodySecondMassMoment(const int body_index,
+ mat33 *second_mass_moment) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ *second_mass_moment = m_body_list[body_index].m_body_I_body;
+ return 0;
+}
+
+void MultiBodyTree::MultiBodyImpl::clearAllUserForcesAndMoments() {
+ for (int index = 0; index < m_num_bodies; index++) {
+ RigidBody &body = m_body_list[index];
+ setZero(body.m_body_force_user);
+ setZero(body.m_body_moment_user);
+ }
+}
+
+int MultiBodyTree::MultiBodyImpl::addUserForce(const int body_index, const vec3 &body_force) {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ m_body_list[body_index].m_body_force_user += body_force;
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::addUserMoment(const int body_index, const vec3 &body_moment) {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ m_body_list[body_index].m_body_moment_user += body_moment;
+ return 0;
+}
+
+#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS)
+int MultiBodyTree::MultiBodyImpl::getBodyDotJacobianTransU(const int body_index, vec3* world_dot_jac_trans_u) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ const RigidBody &body = m_body_list[body_index];
+ *world_dot_jac_trans_u = body.m_body_T_world.transpose() * body.m_body_dot_Jac_T_u;
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::getBodyDotJacobianRotU(const int body_index, vec3* world_dot_jac_rot_u) const{
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ const RigidBody &body = m_body_list[body_index];
+ *world_dot_jac_rot_u = body.m_body_T_world.transpose() * body.m_body_dot_Jac_R_u;
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::getBodyJacobianTrans(const int body_index, mat3x* world_jac_trans) const{
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ const RigidBody &body = m_body_list[body_index];
+ mul(body.m_body_T_world.transpose(), body.m_body_Jac_T, world_jac_trans);
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::getBodyJacobianRot(const int body_index, mat3x* world_jac_rot) const{
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ const RigidBody &body = m_body_list[body_index];
+ mul(body.m_body_T_world.transpose(), body.m_body_Jac_R,world_jac_rot);
+ return 0;
+}
+
+#endif
+}
diff --git a/thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeImpl.hpp b/thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeImpl.hpp
new file mode 100644
index 0000000000..3efe9d0492
--- /dev/null
+++ b/thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeImpl.hpp
@@ -0,0 +1,283 @@
+// The structs and classes defined here provide a basic inverse fynamics implementation used
+// by MultiBodyTree
+// User interaction should be through MultiBodyTree
+
+#ifndef MULTI_BODY_REFERENCE_IMPL_HPP_
+#define MULTI_BODY_REFERENCE_IMPL_HPP_
+
+#include "../IDConfig.hpp"
+#include "../MultiBodyTree.hpp"
+
+namespace btInverseDynamics {
+
+/// Structure for for rigid body mass properties, connectivity and kinematic state
+/// all vectors and matrices are in body-fixed frame, if not indicated otherwise.
+/// The body-fixed frame is located in the joint connecting the body to its parent.
+struct RigidBody {
+ ID_DECLARE_ALIGNED_ALLOCATOR();
+ // 1 Inertial properties
+ /// Mass
+ idScalar m_mass;
+ /// Mass times center of gravity in body-fixed frame
+ vec3 m_body_mass_com;
+ /// Moment of inertia w.r.t. body-fixed frame
+ mat33 m_body_I_body;
+
+ // 2 dynamic properties
+ /// Left-hand side of the body equation of motion, translational part
+ vec3 m_eom_lhs_translational;
+ /// Left-hand side of the body equation of motion, rotational part
+ vec3 m_eom_lhs_rotational;
+ /// Force acting at the joint when the body is cut from its parent;
+ /// includes impressed joint force in J_JT direction,
+ /// as well as constraint force,
+ /// in body-fixed frame
+ vec3 m_force_at_joint;
+ /// Moment acting at the joint when the body is cut from its parent;
+ /// includes impressed joint moment in J_JR direction, and constraint moment
+ /// in body-fixed frame
+ vec3 m_moment_at_joint;
+ /// external (user provided) force acting at the body-fixed frame's origin, written in that
+ /// frame
+ vec3 m_body_force_user;
+ /// external (user provided) moment acting at the body-fixed frame's origin, written in that
+ /// frame
+ vec3 m_body_moment_user;
+ // 3 absolute kinematic properties
+ /// Position of body-fixed frame relative to world frame
+ /// this is currently only for debugging purposes
+ vec3 m_body_pos;
+ /// Absolute velocity of body-fixed frame
+ vec3 m_body_vel;
+ /// Absolute acceleration of body-fixed frame
+ /// NOTE: if gravitational acceleration is not zero, this is the accelation PLUS gravitational
+ /// acceleration!
+ vec3 m_body_acc;
+ /// Absolute angular velocity
+ vec3 m_body_ang_vel;
+ /// Absolute angular acceleration
+ /// NOTE: if gravitational acceleration is not zero, this is the accelation PLUS gravitational
+ /// acceleration!
+ vec3 m_body_ang_acc;
+
+ // 4 relative kinematic properties.
+ // these are in the parent body frame
+ /// Transform from world to body-fixed frame;
+ /// this is currently only for debugging purposes
+ mat33 m_body_T_world;
+ /// Transform from parent to body-fixed frame
+ mat33 m_body_T_parent;
+ /// Vector from parent to child frame in parent frame
+ vec3 m_parent_pos_parent_body;
+ /// Relative angular velocity
+ vec3 m_body_ang_vel_rel;
+ /// Relative linear velocity
+ vec3 m_parent_vel_rel;
+ /// Relative angular acceleration
+ vec3 m_body_ang_acc_rel;
+ /// Relative linear acceleration
+ vec3 m_parent_acc_rel;
+
+ // 5 Data describing the joint type and geometry
+ /// Type of joint
+ JointType m_joint_type;
+ /// Position of joint frame (body-fixed frame at q=0) relative to the parent frame
+ /// Components are in body-fixed frame of the parent
+ vec3 m_parent_pos_parent_body_ref;
+ /// Orientation of joint frame (body-fixed frame at q=0) relative to the parent frame
+ mat33 m_body_T_parent_ref;
+ /// Joint rotational Jacobian, ie, the partial derivative of the body-fixed frames absolute
+ /// angular velocity w.r.t. the generalized velocity of this body's relative degree of freedom.
+ /// For revolute joints this is the joint axis, for prismatic joints it is a null matrix.
+ /// (NOTE: dimensions will have to be dynamic for additional joint types!)
+ vec3 m_Jac_JR;
+ /// Joint translational Jacobian, ie, the partial derivative of the body-fixed frames absolute
+ /// linear velocity w.r.t. the generalized velocity of this body's relative degree of freedom.
+ /// For prismatic joints this is the joint axis, for revolute joints it is a null matrix.
+ /// (NOTE: dimensions might have to be dynamic for additional joint types!)
+ vec3 m_Jac_JT;
+ /// m_Jac_JT in the parent frame, it, m_body_T_parent_ref.transpose()*m_Jac_JT
+ vec3 m_parent_Jac_JT;
+ /// Start of index range for the position degree(s) of freedom describing this body's motion
+ /// relative to
+ /// its parent. The indices are wrt the multibody system's q-vector of generalized coordinates.
+ int m_q_index;
+
+ // 6 Scratch data for mass matrix computation using "composite rigid body algorithm"
+ /// mass of the subtree rooted in this body
+ idScalar m_subtree_mass;
+ /// center of mass * mass for subtree rooted in this body, in body-fixed frame
+ vec3 m_body_subtree_mass_com;
+ /// moment of inertia of subtree rooted in this body, w.r.t. body origin, in body-fixed frame
+ mat33 m_body_subtree_I_body;
+
+#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS)
+ /// translational jacobian in body-fixed frame d(m_body_vel)/du
+ mat3x m_body_Jac_T;
+ /// rotationsl jacobian in body-fixed frame d(m_body_ang_vel)/du
+ mat3x m_body_Jac_R;
+ /// components of linear acceleration depending on u
+ /// (same as is d(m_Jac_T)/dt*u)
+ vec3 m_body_dot_Jac_T_u;
+ /// components of angular acceleration depending on u
+ /// (same as is d(m_Jac_T)/dt*u)
+ vec3 m_body_dot_Jac_R_u;
+#endif
+};
+
+/// The MBS implements a tree structured multibody system
+class MultiBodyTree::MultiBodyImpl {
+ friend class MultiBodyTree;
+
+public:
+ ID_DECLARE_ALIGNED_ALLOCATOR();
+
+ enum KinUpdateType {
+ POSITION_ONLY,
+ POSITION_VELOCITY,
+ POSITION_VELOCITY_ACCELERATION
+ };
+
+ /// constructor
+ /// @param num_bodies the number of bodies in the system
+ /// @param num_dofs number of degrees of freedom in the system
+ MultiBodyImpl(int num_bodies_, int num_dofs_);
+
+ /// \copydoc MultiBodyTree::calculateInverseDynamics
+ int calculateInverseDynamics(const vecx& q, const vecx& u, const vecx& dot_u,
+ vecx* joint_forces);
+ ///\copydoc MultiBodyTree::calculateMassMatrix
+ int calculateMassMatrix(const vecx& q, const bool update_kinematics,
+ const bool initialize_matrix, const bool set_lower_triangular_matrix,
+ matxx* mass_matrix);
+ /// calculate kinematics (vector quantities)
+ /// Depending on type, update positions only, positions & velocities, or positions, velocities
+ /// and accelerations.
+ int calculateKinematics(const vecx& q, const vecx& u, const vecx& dot_u, const KinUpdateType type);
+#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS)
+ /// calculate jacobians and (if type == POSITION_VELOCITY), also velocity-dependent accelration terms.
+ int calculateJacobians(const vecx& q, const vecx& u, const KinUpdateType type);
+ /// \copydoc MultiBodyTree::getBodyDotJacobianTransU
+ int getBodyDotJacobianTransU(const int body_index, vec3* world_dot_jac_trans_u) const ;
+ /// \copydoc MultiBodyTree::getBodyDotJacobianRotU
+ int getBodyDotJacobianRotU(const int body_index, vec3* world_dot_jac_rot_u) const;
+ /// \copydoc MultiBodyTree::getBodyJacobianTrans
+ int getBodyJacobianTrans(const int body_index, mat3x* world_jac_trans) const ;
+ /// \copydoc MultiBodyTree::getBodyJacobianRot
+ int getBodyJacobianRot(const int body_index, mat3x* world_jac_rot) const;
+ /// Add relative Jacobian component from motion relative to parent body
+ /// @param body the body to add the Jacobian component for
+ void addRelativeJacobianComponent(RigidBody&body);
+#endif
+ /// generate additional index sets from the parent_index array
+ /// @return -1 on error, 0 on success
+ int generateIndexSets();
+ /// set gravity acceleration in world frame
+ /// @param gravity gravity vector in the world frame
+ /// @return 0 on success, -1 on error
+ int setGravityInWorldFrame(const vec3& gravity);
+ /// pretty print tree
+ void printTree();
+ /// print tree data
+ void printTreeData();
+ /// initialize fixed data
+ void calculateStaticData();
+ /// \copydoc MultiBodyTree::getBodyFrame
+ int getBodyFrame(const int index, vec3* world_origin, mat33* body_T_world) const;
+ /// \copydoc MultiBodyTree::getParentIndex
+ int getParentIndex(const int body_index, int* m_parent_index);
+ /// \copydoc MultiBodyTree::getJointType
+ int getJointType(const int body_index, JointType* joint_type) const;
+ /// \copydoc MultiBodyTree::getJointTypeStr
+ int getJointTypeStr(const int body_index, const char** joint_type) const;
+ /// \copydoc MultiBodyTree::getParentRParentBodyRef
+ int getParentRParentBodyRef(const int body_index, vec3* r) const;
+ /// \copydoc MultiBodyTree::getBodyTParentRef
+ int getBodyTParentRef(const int body_index, mat33* T) const;
+ /// \copydoc MultiBodyTree::getBodyAxisOfMotion
+ int getBodyAxisOfMotion(const int body_index, vec3* axis) const;
+ /// \copydoc MultiBodyTree:getDoFOffset
+ int getDoFOffset(const int body_index, int* q_index) const;
+ /// \copydoc MultiBodyTree::getBodyOrigin
+ int getBodyOrigin(const int body_index, vec3* world_origin) const;
+ /// \copydoc MultiBodyTree::getBodyCoM
+ int getBodyCoM(const int body_index, vec3* world_com) const;
+ /// \copydoc MultiBodyTree::getBodyTransform
+ int getBodyTransform(const int body_index, mat33* world_T_body) const;
+ /// \copydoc MultiBodyTree::getBodyAngularVelocity
+ int getBodyAngularVelocity(const int body_index, vec3* world_omega) const;
+ /// \copydoc MultiBodyTree::getBodyLinearVelocity
+ int getBodyLinearVelocity(const int body_index, vec3* world_velocity) const;
+ /// \copydoc MultiBodyTree::getBodyLinearVelocityCoM
+ int getBodyLinearVelocityCoM(const int body_index, vec3* world_velocity) const;
+ /// \copydoc MultiBodyTree::getBodyAngularAcceleration
+ int getBodyAngularAcceleration(const int body_index, vec3* world_dot_omega) const;
+ /// \copydoc MultiBodyTree::getBodyLinearAcceleration
+ int getBodyLinearAcceleration(const int body_index, vec3* world_acceleration) const;
+ /// \copydoc MultiBodyTree::getUserInt
+ int getUserInt(const int body_index, int* user_int) const;
+ /// \copydoc MultiBodyTree::getUserPtr
+ int getUserPtr(const int body_index, void** user_ptr) const;
+ /// \copydoc MultiBodyTree::setUserInt
+ int setUserInt(const int body_index, const int user_int);
+ /// \copydoc MultiBodyTree::setUserPtr
+ int setUserPtr(const int body_index, void* const user_ptr);
+ ///\copydoc MultiBodytTree::setBodyMass
+ int setBodyMass(const int body_index, const idScalar mass);
+ ///\copydoc MultiBodytTree::setBodyFirstMassMoment
+ int setBodyFirstMassMoment(const int body_index, const vec3& first_mass_moment);
+ ///\copydoc MultiBodytTree::setBodySecondMassMoment
+ int setBodySecondMassMoment(const int body_index, const mat33& second_mass_moment);
+ ///\copydoc MultiBodytTree::getBodyMass
+ int getBodyMass(const int body_index, idScalar* mass) const;
+ ///\copydoc MultiBodytTree::getBodyFirstMassMoment
+ int getBodyFirstMassMoment(const int body_index, vec3* first_mass_moment) const;
+ ///\copydoc MultiBodytTree::getBodySecondMassMoment
+ int getBodySecondMassMoment(const int body_index, mat33* second_mass_moment) const;
+ /// \copydoc MultiBodyTree::clearAllUserForcesAndMoments
+ void clearAllUserForcesAndMoments();
+ /// \copydoc MultiBodyTree::addUserForce
+ int addUserForce(const int body_index, const vec3& body_force);
+ /// \copydoc MultiBodyTree::addUserMoment
+ int addUserMoment(const int body_index, const vec3& body_moment);
+
+private:
+ // debug function. print tree structure to stdout
+ void printTree(int index, int indentation);
+ // get string representation of JointType (for debugging)
+ const char* jointTypeToString(const JointType& type) const;
+ // get number of degrees of freedom from joint type
+ int bodyNumDoFs(const JointType& type) const;
+ // number of bodies in the system
+ int m_num_bodies;
+ // number of degrees of freedom
+ int m_num_dofs;
+ // Gravitational acceleration (in world frame)
+ vec3 m_world_gravity;
+ // vector of bodies in the system
+ // body 0 is used as an environment body and is allways fixed.
+ // The bodies are ordered such that a parent body always has an index
+ // smaller than its child.
+ idArray<RigidBody>::type m_body_list;
+ // Parent_index[i] is the index for i's parent body in body_list.
+ // This fully describes the tree.
+ idArray<int>::type m_parent_index;
+ // child_indices[i] contains a vector of indices of
+ // all children of the i-th body
+ idArray<idArray<int>::type>::type m_child_indices;
+ // Indices of rotary joints
+ idArray<int>::type m_body_revolute_list;
+ // Indices of prismatic joints
+ idArray<int>::type m_body_prismatic_list;
+ // Indices of floating joints
+ idArray<int>::type m_body_floating_list;
+ // a user-provided integer
+ idArray<int>::type m_user_int;
+ // a user-provided pointer
+ idArray<void*>::type m_user_ptr;
+#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS)
+ mat3x m_m3x;
+#endif
+};
+}
+#endif
diff --git a/thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeInitCache.cpp b/thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeInitCache.cpp
new file mode 100644
index 0000000000..47b4ab3890
--- /dev/null
+++ b/thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeInitCache.cpp
@@ -0,0 +1,113 @@
+#include "MultiBodyTreeInitCache.hpp"
+
+namespace btInverseDynamics {
+
+MultiBodyTree::InitCache::InitCache() {
+ m_inertias.resize(0);
+ m_joints.resize(0);
+ m_num_dofs = 0;
+ m_root_index=-1;
+}
+
+int MultiBodyTree::InitCache::addBody(const int body_index, const int parent_index,
+ const JointType joint_type,
+ const vec3& parent_r_parent_body_ref,
+ const mat33& body_T_parent_ref,
+ const vec3& body_axis_of_motion, const idScalar mass,
+ const vec3& body_r_body_com, const mat33& body_I_body,
+ const int user_int, void* user_ptr) {
+ switch (joint_type) {
+ case REVOLUTE:
+ case PRISMATIC:
+ m_num_dofs += 1;
+ break;
+ case FIXED:
+ // does not add a degree of freedom
+ // m_num_dofs+=0;
+ break;
+ case FLOATING:
+ m_num_dofs += 6;
+ break;
+ default:
+ error_message("unknown joint type %d\n", joint_type);
+ return -1;
+ }
+
+ if(-1 == parent_index) {
+ if(m_root_index>=0) {
+ error_message("trying to add body %d as root, but already added %d as root body\n",
+ body_index, m_root_index);
+ return -1;
+ }
+ m_root_index=body_index;
+ }
+
+ JointData joint;
+ joint.m_child = body_index;
+ joint.m_parent = parent_index;
+ joint.m_type = joint_type;
+ joint.m_parent_pos_parent_child_ref = parent_r_parent_body_ref;
+ joint.m_child_T_parent_ref = body_T_parent_ref;
+ joint.m_child_axis_of_motion = body_axis_of_motion;
+
+ InertiaData body;
+ body.m_mass = mass;
+ body.m_body_pos_body_com = body_r_body_com;
+ body.m_body_I_body = body_I_body;
+
+ m_inertias.push_back(body);
+ m_joints.push_back(joint);
+ m_user_int.push_back(user_int);
+ m_user_ptr.push_back(user_ptr);
+ return 0;
+}
+int MultiBodyTree::InitCache::getInertiaData(const int index, InertiaData* inertia) const {
+ if (index < 0 || index > static_cast<int>(m_inertias.size())) {
+ error_message("index out of range\n");
+ return -1;
+ }
+
+ *inertia = m_inertias[index];
+ return 0;
+}
+
+int MultiBodyTree::InitCache::getUserInt(const int index, int* user_int) const {
+ if (index < 0 || index > static_cast<int>(m_user_int.size())) {
+ error_message("index out of range\n");
+ return -1;
+ }
+ *user_int = m_user_int[index];
+ return 0;
+}
+
+int MultiBodyTree::InitCache::getUserPtr(const int index, void** user_ptr) const {
+ if (index < 0 || index > static_cast<int>(m_user_ptr.size())) {
+ error_message("index out of range\n");
+ return -1;
+ }
+ *user_ptr = m_user_ptr[index];
+ return 0;
+}
+
+int MultiBodyTree::InitCache::getJointData(const int index, JointData* joint) const {
+ if (index < 0 || index > static_cast<int>(m_joints.size())) {
+ error_message("index out of range\n");
+ return -1;
+ }
+ *joint = m_joints[index];
+ return 0;
+}
+
+int MultiBodyTree::InitCache::buildIndexSets() {
+ // NOTE: This function assumes that proper indices were provided
+ // User2InternalIndex from utils can be used to facilitate this.
+
+ m_parent_index.resize(numBodies());
+ for (idArrayIdx j = 0; j < m_joints.size(); j++) {
+ const JointData& joint = m_joints[j];
+ m_parent_index[joint.m_child] = joint.m_parent;
+ }
+
+ return 0;
+}
+}
diff --git a/thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeInitCache.hpp b/thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeInitCache.hpp
new file mode 100644
index 0000000000..0d2aa4a071
--- /dev/null
+++ b/thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeInitCache.hpp
@@ -0,0 +1,109 @@
+#ifndef MULTIBODYTREEINITCACHE_HPP_
+#define MULTIBODYTREEINITCACHE_HPP_
+
+#include "../IDConfig.hpp"
+#include "../IDMath.hpp"
+#include "../MultiBodyTree.hpp"
+
+namespace btInverseDynamics {
+/// Mass properties of a rigid body
+struct InertiaData {
+ ID_DECLARE_ALIGNED_ALLOCATOR();
+
+ /// mass
+ idScalar m_mass;
+ /// vector from body-fixed frame to center of mass,
+ /// in body-fixed frame, multiplied by the mass
+ vec3 m_body_pos_body_com;
+ /// moment of inertia w.r.t. the origin of the body-fixed
+ /// frame, represented in that frame
+ mat33 m_body_I_body;
+};
+
+/// Joint properties
+struct JointData {
+ ID_DECLARE_ALIGNED_ALLOCATOR();
+
+ /// type of joint
+ JointType m_type;
+ /// index of parent body
+ int m_parent;
+ /// index of child body
+ int m_child;
+ /// vector from parent's body-fixed frame to child's body-fixed
+ /// frame for q=0, written in the parent's body fixed frame
+ vec3 m_parent_pos_parent_child_ref;
+ /// Transform matrix converting vectors written in the parent's frame
+ /// into vectors written in the child's frame for q=0
+ /// ie, child_vector = child_T_parent_ref * parent_vector;
+ mat33 m_child_T_parent_ref;
+ /// Axis of motion for 1 degree-of-freedom joints,
+ /// written in the child's frame
+ /// For revolute joints, the q-value is positive for a positive
+ /// rotation about this axis.
+ /// For prismatic joints, the q-value is positive for a positive
+ /// translation is this direction.
+ vec3 m_child_axis_of_motion;
+};
+
+/// Data structure to store data passed by the user.
+/// This is used in MultiBodyTree::finalize to build internal data structures.
+class MultiBodyTree::InitCache {
+public:
+ ID_DECLARE_ALIGNED_ALLOCATOR();
+ /// constructor
+ InitCache();
+ ///\copydoc MultiBodyTree::addBody
+ int addBody(const int body_index, const int parent_index, const JointType joint_type,
+ const vec3 &parent_r_parent_body_ref, const mat33 &body_T_parent_ref,
+ const vec3 &body_axis_of_motion, idScalar mass, const vec3 &body_r_body_com,
+ const mat33 &body_I_body, const int user_int, void *user_ptr);
+ /// build index arrays
+ /// @return 0 on success, -1 on failure
+ int buildIndexSets();
+ /// @return number of degrees of freedom
+ int numDoFs() const { return m_num_dofs; }
+ /// @return number of bodies
+ int numBodies() const { return m_inertias.size(); }
+ /// get inertia data for index
+ /// @param index of the body
+ /// @param inertia pointer for return data
+ /// @return 0 on success, -1 on failure
+ int getInertiaData(const int index, InertiaData *inertia) const;
+ /// get joint data for index
+ /// @param index of the body
+ /// @param joint pointer for return data
+ /// @return 0 on success, -1 on failure
+ int getJointData(const int index, JointData *joint) const;
+ /// get parent index array (paren_index[i] is the index of the parent of i)
+ /// @param parent_index pointer for return data
+ void getParentIndexArray(idArray<int>::type *parent_index) { *parent_index = m_parent_index; }
+ /// get user integer
+ /// @param index body index
+ /// @param user_int user integer
+ /// @return 0 on success, -1 on failure
+ int getUserInt(const int index, int *user_int) const;
+ /// get user pointer
+ /// @param index body index
+ /// @param user_int user pointer
+ /// @return 0 on success, -1 on failure
+ int getUserPtr(const int index, void **user_ptr) const;
+
+private:
+ // vector of bodies
+ idArray<InertiaData>::type m_inertias;
+ // vector of joints
+ idArray<JointData>::type m_joints;
+ // number of mechanical degrees of freedom
+ int m_num_dofs;
+ // parent index array
+ idArray<int>::type m_parent_index;
+ // user integers
+ idArray<int>::type m_user_int;
+ // user pointers
+ idArray<void *>::type m_user_ptr;
+ // index of root body (or -1 if not set)
+ int m_root_index;
+};
+}
+#endif // MULTIBODYTREEINITCACHE_HPP_