summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeImpl.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeImpl.cpp')
-rw-r--r--thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeImpl.cpp1028
1 files changed, 1028 insertions, 0 deletions
diff --git a/thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeImpl.cpp b/thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeImpl.cpp
new file mode 100644
index 0000000000..b35c55df61
--- /dev/null
+++ b/thirdparty/bullet/BulletInverseDynamics/details/MultiBodyTreeImpl.cpp
@@ -0,0 +1,1028 @@
+#include "MultiBodyTreeImpl.hpp"
+
+namespace btInverseDynamics {
+
+MultiBodyTree::MultiBodyImpl::MultiBodyImpl(int num_bodies_, int num_dofs_)
+ : m_num_bodies(num_bodies_), m_num_dofs(num_dofs_)
+#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS)
+ ,m_m3x(3,m_num_dofs)
+#endif
+{
+
+#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS)
+ resize(m_m3x,m_num_dofs);
+#endif
+ m_body_list.resize(num_bodies_);
+ m_parent_index.resize(num_bodies_);
+ m_child_indices.resize(num_bodies_);
+ m_user_int.resize(num_bodies_);
+ m_user_ptr.resize(num_bodies_);
+
+ m_world_gravity(0) = 0.0;
+ m_world_gravity(1) = 0.0;
+ m_world_gravity(2) = -9.8;
+}
+
+const char *MultiBodyTree::MultiBodyImpl::jointTypeToString(const JointType &type) const {
+ switch (type) {
+ case FIXED:
+ return "fixed";
+ case REVOLUTE:
+ return "revolute";
+ case PRISMATIC:
+ return "prismatic";
+ case FLOATING:
+ return "floating";
+ }
+ return "error: invalid";
+}
+
+inline void indent(const int &level) {
+ for (int j = 0; j < level; j++)
+ id_printf(" "); // indent
+}
+
+void MultiBodyTree::MultiBodyImpl::printTree() {
+ id_printf("body %.2d[%s]: root\n", 0, jointTypeToString(m_body_list[0].m_joint_type));
+ printTree(0, 0);
+}
+
+void MultiBodyTree::MultiBodyImpl::printTreeData() {
+ for (idArrayIdx i = 0; i < m_body_list.size(); i++) {
+ RigidBody &body = m_body_list[i];
+ id_printf("body: %d\n", static_cast<int>(i));
+ id_printf("type: %s\n", jointTypeToString(body.m_joint_type));
+ id_printf("q_index= %d\n", body.m_q_index);
+ id_printf("Jac_JR= [%f;%f;%f]\n", body.m_Jac_JR(0), body.m_Jac_JR(1), body.m_Jac_JR(2));
+ id_printf("Jac_JT= [%f;%f;%f]\n", body.m_Jac_JT(0), body.m_Jac_JT(1), body.m_Jac_JT(2));
+
+ id_printf("mass = %f\n", body.m_mass);
+ id_printf("mass * com = [%f %f %f]\n", body.m_body_mass_com(0), body.m_body_mass_com(1),
+ body.m_body_mass_com(2));
+ id_printf("I_o= [%f %f %f;\n"
+ " %f %f %f;\n"
+ " %f %f %f]\n",
+ body.m_body_I_body(0, 0), body.m_body_I_body(0, 1), body.m_body_I_body(0, 2),
+ body.m_body_I_body(1, 0), body.m_body_I_body(1, 1), body.m_body_I_body(1, 2),
+ body.m_body_I_body(2, 0), body.m_body_I_body(2, 1), body.m_body_I_body(2, 2));
+
+ id_printf("parent_pos_parent_body_ref= [%f %f %f]\n", body.m_parent_pos_parent_body_ref(0),
+ body.m_parent_pos_parent_body_ref(1), body.m_parent_pos_parent_body_ref(2));
+ }
+}
+int MultiBodyTree::MultiBodyImpl::bodyNumDoFs(const JointType &type) const {
+ switch (type) {
+ case FIXED:
+ return 0;
+ case REVOLUTE:
+ case PRISMATIC:
+ return 1;
+ case FLOATING:
+ return 6;
+ }
+ error_message("unknown joint type %d\n", type);
+ return 0;
+}
+
+void MultiBodyTree::MultiBodyImpl::printTree(int index, int indentation) {
+ // this is adapted from URDF2Bullet.
+ // TODO: fix this and print proper graph (similar to git --log --graph)
+ int num_children = m_child_indices[index].size();
+
+ indentation += 2;
+ int count = 0;
+
+ for (int i = 0; i < num_children; i++) {
+ int child_index = m_child_indices[index][i];
+ indent(indentation);
+ id_printf("body %.2d[%s]: %.2d is child no. %d (qi= %d .. %d) \n", index,
+ jointTypeToString(m_body_list[index].m_joint_type), child_index, (count++) + 1,
+ m_body_list[index].m_q_index,
+ m_body_list[index].m_q_index + bodyNumDoFs(m_body_list[index].m_joint_type));
+ // first grandchild
+ printTree(child_index, indentation);
+ }
+}
+
+int MultiBodyTree::MultiBodyImpl::setGravityInWorldFrame(const vec3 &gravity) {
+ m_world_gravity = gravity;
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::generateIndexSets() {
+ m_body_revolute_list.resize(0);
+ m_body_prismatic_list.resize(0);
+ int q_index = 0;
+ for (idArrayIdx i = 0; i < m_body_list.size(); i++) {
+ RigidBody &body = m_body_list[i];
+ body.m_q_index = -1;
+ switch (body.m_joint_type) {
+ case REVOLUTE:
+ m_body_revolute_list.push_back(i);
+ body.m_q_index = q_index;
+ q_index++;
+ break;
+ case PRISMATIC:
+ m_body_prismatic_list.push_back(i);
+ body.m_q_index = q_index;
+ q_index++;
+ break;
+ case FIXED:
+ // do nothing
+ break;
+ case FLOATING:
+ m_body_floating_list.push_back(i);
+ body.m_q_index = q_index;
+ q_index += 6;
+ break;
+ default:
+ error_message("unsupported joint type %d\n", body.m_joint_type);
+ return -1;
+ }
+ }
+ // sanity check
+ if (q_index != m_num_dofs) {
+ error_message("internal error, q_index= %d but num_dofs %d\n", q_index, m_num_dofs);
+ return -1;
+ }
+
+ m_child_indices.resize(m_body_list.size());
+
+ for (idArrayIdx child = 1; child < m_parent_index.size(); child++) {
+ const int &parent = m_parent_index[child];
+ if (parent >= 0 && parent < (static_cast<int>(m_parent_index.size()) - 1)) {
+ m_child_indices[parent].push_back(child);
+ } else {
+ if (-1 == parent) {
+ // multiple bodies are directly linked to the environment, ie, not a single root
+ error_message("building index sets parent(%zu)= -1 (multiple roots)\n", child);
+ } else {
+ // should never happen
+ error_message(
+ "building index sets. parent_index[%zu]= %d, but m_parent_index.size()= %d\n",
+ child, parent, static_cast<int>(m_parent_index.size()));
+ }
+ return -1;
+ }
+ }
+
+ return 0;
+}
+
+void MultiBodyTree::MultiBodyImpl::calculateStaticData() {
+ // relative kinematics that are not a function of q, u, dot_u
+ for (idArrayIdx i = 0; i < m_body_list.size(); i++) {
+ RigidBody &body = m_body_list[i];
+ switch (body.m_joint_type) {
+ case REVOLUTE:
+ body.m_parent_vel_rel(0) = 0;
+ body.m_parent_vel_rel(1) = 0;
+ body.m_parent_vel_rel(2) = 0;
+ body.m_parent_acc_rel(0) = 0;
+ body.m_parent_acc_rel(1) = 0;
+ body.m_parent_acc_rel(2) = 0;
+ body.m_parent_pos_parent_body = body.m_parent_pos_parent_body_ref;
+ break;
+ case PRISMATIC:
+ body.m_body_T_parent = body.m_body_T_parent_ref;
+ body.m_parent_Jac_JT = body.m_body_T_parent_ref.transpose() * body.m_Jac_JT;
+ body.m_body_ang_vel_rel(0) = 0;
+ body.m_body_ang_vel_rel(1) = 0;
+ body.m_body_ang_vel_rel(2) = 0;
+ body.m_body_ang_acc_rel(0) = 0;
+ body.m_body_ang_acc_rel(1) = 0;
+ body.m_body_ang_acc_rel(2) = 0;
+ break;
+ case FIXED:
+ body.m_parent_pos_parent_body = body.m_parent_pos_parent_body_ref;
+ body.m_body_T_parent = body.m_body_T_parent_ref;
+ body.m_body_ang_vel_rel(0) = 0;
+ body.m_body_ang_vel_rel(1) = 0;
+ body.m_body_ang_vel_rel(2) = 0;
+ body.m_parent_vel_rel(0) = 0;
+ body.m_parent_vel_rel(1) = 0;
+ body.m_parent_vel_rel(2) = 0;
+ body.m_body_ang_acc_rel(0) = 0;
+ body.m_body_ang_acc_rel(1) = 0;
+ body.m_body_ang_acc_rel(2) = 0;
+ body.m_parent_acc_rel(0) = 0;
+ body.m_parent_acc_rel(1) = 0;
+ body.m_parent_acc_rel(2) = 0;
+ break;
+ case FLOATING:
+ // no static data
+ break;
+ }
+
+ // resize & initialize jacobians to zero.
+#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS)
+ body.m_body_dot_Jac_T_u(0) = 0.0;
+ body.m_body_dot_Jac_T_u(1) = 0.0;
+ body.m_body_dot_Jac_T_u(2) = 0.0;
+ body.m_body_dot_Jac_R_u(0) = 0.0;
+ body.m_body_dot_Jac_R_u(1) = 0.0;
+ body.m_body_dot_Jac_R_u(2) = 0.0;
+ resize(body.m_body_Jac_T,m_num_dofs);
+ resize(body.m_body_Jac_R,m_num_dofs);
+ body.m_body_Jac_T.setZero();
+ body.m_body_Jac_R.setZero();
+#endif //
+ }
+}
+
+int MultiBodyTree::MultiBodyImpl::calculateInverseDynamics(const vecx &q, const vecx &u,
+ const vecx &dot_u, vecx *joint_forces) {
+ if (q.size() != m_num_dofs || u.size() != m_num_dofs || dot_u.size() != m_num_dofs ||
+ joint_forces->size() != m_num_dofs) {
+ error_message("wrong vector dimension. system has %d DOFs,\n"
+ "but dim(q)= %d, dim(u)= %d, dim(dot_u)= %d, dim(joint_forces)= %d\n",
+ m_num_dofs, static_cast<int>(q.size()), static_cast<int>(u.size()),
+ static_cast<int>(dot_u.size()), static_cast<int>(joint_forces->size()));
+ return -1;
+ }
+ // 1. relative kinematics
+ if(-1 == calculateKinematics(q,u,dot_u, POSITION_VELOCITY_ACCELERATION)) {
+ error_message("error in calculateKinematics\n");
+ return -1;
+ }
+ // 2. update contributions to equations of motion for every body.
+ for (idArrayIdx i = 0; i < m_body_list.size(); i++) {
+ RigidBody &body = m_body_list[i];
+ // 3.4 update dynamic terms (rate of change of angular & linear momentum)
+ body.m_eom_lhs_rotational =
+ body.m_body_I_body * body.m_body_ang_acc + body.m_body_mass_com.cross(body.m_body_acc) +
+ body.m_body_ang_vel.cross(body.m_body_I_body * body.m_body_ang_vel) -
+ body.m_body_moment_user;
+ body.m_eom_lhs_translational =
+ body.m_body_ang_acc.cross(body.m_body_mass_com) + body.m_mass * body.m_body_acc +
+ body.m_body_ang_vel.cross(body.m_body_ang_vel.cross(body.m_body_mass_com)) -
+ body.m_body_force_user;
+ }
+
+ // 3. calculate full set of forces at parent joint
+ // (not directly calculating the joint force along the free direction
+ // simplifies inclusion of fixed joints.
+ // An alternative would be to fuse bodies in a pre-processing step,
+ // but that would make changing masses online harder (eg, payload masses
+ // added with fixed joints to a gripper)
+ // Also, this enables adding zero weight bodies as a way to calculate frame poses
+ // for force elements, etc.
+
+ for (int body_idx = m_body_list.size() - 1; body_idx >= 0; body_idx--) {
+ // sum of forces and moments acting on this body from its children
+ vec3 sum_f_children;
+ vec3 sum_m_children;
+ setZero(sum_f_children);
+ setZero(sum_m_children);
+ for (idArrayIdx child_list_idx = 0; child_list_idx < m_child_indices[body_idx].size();
+ child_list_idx++) {
+ const RigidBody &child = m_body_list[m_child_indices[body_idx][child_list_idx]];
+ vec3 child_joint_force_in_this_frame =
+ child.m_body_T_parent.transpose() * child.m_force_at_joint;
+ sum_f_children -= child_joint_force_in_this_frame;
+ sum_m_children -= child.m_body_T_parent.transpose() * child.m_moment_at_joint +
+ child.m_parent_pos_parent_body.cross(child_joint_force_in_this_frame);
+ }
+ RigidBody &body = m_body_list[body_idx];
+
+ body.m_force_at_joint = body.m_eom_lhs_translational - sum_f_children;
+ body.m_moment_at_joint = body.m_eom_lhs_rotational - sum_m_children;
+ }
+
+ // 4. Calculate Joint forces.
+ // These are the components of force_at_joint/moment_at_joint
+ // in the free directions given by Jac_JT/Jac_JR
+ // 4.1 revolute joints
+ for (idArrayIdx i = 0; i < m_body_revolute_list.size(); i++) {
+ RigidBody &body = m_body_list[m_body_revolute_list[i]];
+ // (*joint_forces)(body.m_q_index) = body.m_Jac_JR.transpose() * body.m_moment_at_joint;
+ (*joint_forces)(body.m_q_index) = body.m_Jac_JR.dot(body.m_moment_at_joint);
+ }
+ // 4.2 for prismatic joints
+ for (idArrayIdx i = 0; i < m_body_prismatic_list.size(); i++) {
+ RigidBody &body = m_body_list[m_body_prismatic_list[i]];
+ // (*joint_forces)(body.m_q_index) = body.m_Jac_JT.transpose() * body.m_force_at_joint;
+ (*joint_forces)(body.m_q_index) = body.m_Jac_JT.dot(body.m_force_at_joint);
+ }
+ // 4.3 floating bodies (6-DoF joints)
+ for (idArrayIdx i = 0; i < m_body_floating_list.size(); i++) {
+ RigidBody &body = m_body_list[m_body_floating_list[i]];
+ (*joint_forces)(body.m_q_index + 0) = body.m_moment_at_joint(0);
+ (*joint_forces)(body.m_q_index + 1) = body.m_moment_at_joint(1);
+ (*joint_forces)(body.m_q_index + 2) = body.m_moment_at_joint(2);
+
+ (*joint_forces)(body.m_q_index + 3) = body.m_force_at_joint(0);
+ (*joint_forces)(body.m_q_index + 4) = body.m_force_at_joint(1);
+ (*joint_forces)(body.m_q_index + 5) = body.m_force_at_joint(2);
+ }
+
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::calculateKinematics(const vecx &q, const vecx &u, const vecx& dot_u,
+ const KinUpdateType type) {
+ if (q.size() != m_num_dofs || u.size() != m_num_dofs || dot_u.size() != m_num_dofs ) {
+ error_message("wrong vector dimension. system has %d DOFs,\n"
+ "but dim(q)= %d, dim(u)= %d, dim(dot_u)= %d\n",
+ m_num_dofs, static_cast<int>(q.size()), static_cast<int>(u.size()),
+ static_cast<int>(dot_u.size()));
+ return -1;
+ }
+ if(type != POSITION_ONLY && type != POSITION_VELOCITY && type != POSITION_VELOCITY_ACCELERATION) {
+ error_message("invalid type %d\n", type);
+ return -1;
+ }
+
+ // 1. update relative kinematics
+ // 1.1 for revolute
+ for (idArrayIdx i = 0; i < m_body_revolute_list.size(); i++) {
+ RigidBody &body = m_body_list[m_body_revolute_list[i]];
+ mat33 T;
+ bodyTParentFromAxisAngle(body.m_Jac_JR, q(body.m_q_index), &T);
+ body.m_body_T_parent = T * body.m_body_T_parent_ref;
+ if(type >= POSITION_VELOCITY) {
+ body.m_body_ang_vel_rel = body.m_Jac_JR * u(body.m_q_index);
+ }
+ if(type >= POSITION_VELOCITY_ACCELERATION) {
+ body.m_body_ang_acc_rel = body.m_Jac_JR * dot_u(body.m_q_index);
+ }
+ }
+ // 1.2 for prismatic
+ for (idArrayIdx i = 0; i < m_body_prismatic_list.size(); i++) {
+ RigidBody &body = m_body_list[m_body_prismatic_list[i]];
+ body.m_parent_pos_parent_body =
+ body.m_parent_pos_parent_body_ref + body.m_parent_Jac_JT * q(body.m_q_index);
+ if(type >= POSITION_VELOCITY) {
+ body.m_parent_vel_rel =
+ body.m_body_T_parent_ref.transpose() * body.m_Jac_JT * u(body.m_q_index);
+ }
+ if(type >= POSITION_VELOCITY_ACCELERATION) {
+ body.m_parent_acc_rel = body.m_parent_Jac_JT * dot_u(body.m_q_index);
+ }
+ }
+ // 1.3 fixed joints: nothing to do
+ // 1.4 6dof joints:
+ for (idArrayIdx i = 0; i < m_body_floating_list.size(); i++) {
+ RigidBody &body = m_body_list[m_body_floating_list[i]];
+
+ body.m_body_T_parent = transformZ(q(body.m_q_index + 2)) *
+ transformY(q(body.m_q_index + 1)) * transformX(q(body.m_q_index));
+ body.m_parent_pos_parent_body(0) = q(body.m_q_index + 3);
+ body.m_parent_pos_parent_body(1) = q(body.m_q_index + 4);
+ body.m_parent_pos_parent_body(2) = q(body.m_q_index + 5);
+ body.m_parent_pos_parent_body = body.m_body_T_parent * body.m_parent_pos_parent_body;
+
+ if(type >= POSITION_VELOCITY) {
+ body.m_body_ang_vel_rel(0) = u(body.m_q_index + 0);
+ body.m_body_ang_vel_rel(1) = u(body.m_q_index + 1);
+ body.m_body_ang_vel_rel(2) = u(body.m_q_index + 2);
+
+ body.m_parent_vel_rel(0) = u(body.m_q_index + 3);
+ body.m_parent_vel_rel(1) = u(body.m_q_index + 4);
+ body.m_parent_vel_rel(2) = u(body.m_q_index + 5);
+
+ body.m_parent_vel_rel = body.m_body_T_parent.transpose() * body.m_parent_vel_rel;
+ }
+ if(type >= POSITION_VELOCITY_ACCELERATION) {
+ body.m_body_ang_acc_rel(0) = dot_u(body.m_q_index + 0);
+ body.m_body_ang_acc_rel(1) = dot_u(body.m_q_index + 1);
+ body.m_body_ang_acc_rel(2) = dot_u(body.m_q_index + 2);
+
+ body.m_parent_acc_rel(0) = dot_u(body.m_q_index + 3);
+ body.m_parent_acc_rel(1) = dot_u(body.m_q_index + 4);
+ body.m_parent_acc_rel(2) = dot_u(body.m_q_index + 5);
+
+ body.m_parent_acc_rel = body.m_body_T_parent.transpose() * body.m_parent_acc_rel;
+ }
+ }
+
+ // 2. absolute kinematic quantities (vector valued)
+ // NOTE: this should be optimized by specializing for different body types
+ // (e.g., relative rotation is always zero for prismatic joints, etc.)
+
+ // calculations for root body
+ {
+ RigidBody &body = m_body_list[0];
+ // 3.1 update absolute positions and orientations:
+ // will be required if we add force elements (eg springs between bodies,
+ // or contacts)
+ // not required right now, added here for debugging purposes
+ body.m_body_pos = body.m_body_T_parent * body.m_parent_pos_parent_body;
+ body.m_body_T_world = body.m_body_T_parent;
+
+ if(type >= POSITION_VELOCITY) {
+ // 3.2 update absolute velocities
+ body.m_body_ang_vel = body.m_body_ang_vel_rel;
+ body.m_body_vel = body.m_parent_vel_rel;
+ }
+ if(type >= POSITION_VELOCITY_ACCELERATION) {
+ // 3.3 update absolute accelerations
+ // NOTE: assumption: dot(J_JR) = 0; true here, but not for general joints
+ body.m_body_ang_acc = body.m_body_ang_acc_rel;
+ body.m_body_acc = body.m_body_T_parent * body.m_parent_acc_rel;
+ // add gravitational acceleration to root body
+ // this is an efficient way to add gravitational terms,
+ // but it does mean that the kinematics are no longer
+ // correct at the acceleration level
+ // NOTE: To get correct acceleration kinematics, just set world_gravity to zero
+ body.m_body_acc = body.m_body_acc - body.m_body_T_parent * m_world_gravity;
+ }
+ }
+
+ for (idArrayIdx i = 1; i < m_body_list.size(); i++) {
+ RigidBody &body = m_body_list[i];
+ RigidBody &parent = m_body_list[m_parent_index[i]];
+ // 2.1 update absolute positions and orientations:
+ // will be required if we add force elements (eg springs between bodies,
+ // or contacts) not required right now added here for debugging purposes
+ body.m_body_pos =
+ body.m_body_T_parent * (parent.m_body_pos + body.m_parent_pos_parent_body);
+ body.m_body_T_world = body.m_body_T_parent * parent.m_body_T_world;
+
+ if(type >= POSITION_VELOCITY) {
+ // 2.2 update absolute velocities
+ body.m_body_ang_vel =
+ body.m_body_T_parent * parent.m_body_ang_vel + body.m_body_ang_vel_rel;
+
+ body.m_body_vel =
+ body.m_body_T_parent *
+ (parent.m_body_vel + parent.m_body_ang_vel.cross(body.m_parent_pos_parent_body) +
+ body.m_parent_vel_rel);
+ }
+ if(type >= POSITION_VELOCITY_ACCELERATION) {
+ // 2.3 update absolute accelerations
+ // NOTE: assumption: dot(J_JR) = 0; true here, but not for general joints
+ body.m_body_ang_acc =
+ body.m_body_T_parent * parent.m_body_ang_acc -
+ body.m_body_ang_vel_rel.cross(body.m_body_T_parent * parent.m_body_ang_vel) +
+ body.m_body_ang_acc_rel;
+ body.m_body_acc =
+ body.m_body_T_parent *
+ (parent.m_body_acc + parent.m_body_ang_acc.cross(body.m_parent_pos_parent_body) +
+ parent.m_body_ang_vel.cross(parent.m_body_ang_vel.cross(body.m_parent_pos_parent_body)) +
+ 2.0 * parent.m_body_ang_vel.cross(body.m_parent_vel_rel) + body.m_parent_acc_rel);
+ }
+ }
+
+ return 0;
+}
+
+#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS)
+
+void MultiBodyTree::MultiBodyImpl::addRelativeJacobianComponent(RigidBody&body) {
+ const int& idx=body.m_q_index;
+ switch(body.m_joint_type) {
+ case FIXED:
+ break;
+ case REVOLUTE:
+ setMat3xElem(0,idx, body.m_Jac_JR(0), &body.m_body_Jac_R);
+ setMat3xElem(1,idx, body.m_Jac_JR(1), &body.m_body_Jac_R);
+ setMat3xElem(2,idx, body.m_Jac_JR(2), &body.m_body_Jac_R);
+ break;
+ case PRISMATIC:
+ setMat3xElem(0,idx, body.m_body_T_parent_ref(0,0)*body.m_Jac_JT(0)
+ +body.m_body_T_parent_ref(1,0)*body.m_Jac_JT(1)
+ +body.m_body_T_parent_ref(2,0)*body.m_Jac_JT(2),
+ &body.m_body_Jac_T);
+ setMat3xElem(1,idx,body.m_body_T_parent_ref(0,1)*body.m_Jac_JT(0)
+ +body.m_body_T_parent_ref(1,1)*body.m_Jac_JT(1)
+ +body.m_body_T_parent_ref(2,1)*body.m_Jac_JT(2),
+ &body.m_body_Jac_T);
+ setMat3xElem(2,idx, body.m_body_T_parent_ref(0,2)*body.m_Jac_JT(0)
+ +body.m_body_T_parent_ref(1,2)*body.m_Jac_JT(1)
+ +body.m_body_T_parent_ref(2,2)*body.m_Jac_JT(2),
+ &body.m_body_Jac_T);
+ break;
+ case FLOATING:
+ setMat3xElem(0,idx+0, 1.0, &body.m_body_Jac_R);
+ setMat3xElem(1,idx+1, 1.0, &body.m_body_Jac_R);
+ setMat3xElem(2,idx+2, 1.0, &body.m_body_Jac_R);
+ // body_Jac_T = body_T_parent.transpose();
+ setMat3xElem(0,idx+3, body.m_body_T_parent(0,0), &body.m_body_Jac_T);
+ setMat3xElem(0,idx+4, body.m_body_T_parent(1,0), &body.m_body_Jac_T);
+ setMat3xElem(0,idx+5, body.m_body_T_parent(2,0), &body.m_body_Jac_T);
+
+ setMat3xElem(1,idx+3, body.m_body_T_parent(0,1), &body.m_body_Jac_T);
+ setMat3xElem(1,idx+4, body.m_body_T_parent(1,1), &body.m_body_Jac_T);
+ setMat3xElem(1,idx+5, body.m_body_T_parent(2,1), &body.m_body_Jac_T);
+
+ setMat3xElem(2,idx+3, body.m_body_T_parent(0,2), &body.m_body_Jac_T);
+ setMat3xElem(2,idx+4, body.m_body_T_parent(1,2), &body.m_body_Jac_T);
+ setMat3xElem(2,idx+5, body.m_body_T_parent(2,2), &body.m_body_Jac_T);
+
+ break;
+ }
+}
+
+int MultiBodyTree::MultiBodyImpl::calculateJacobians(const vecx& q, const vecx& u, const KinUpdateType type) {
+ if (q.size() != m_num_dofs || u.size() != m_num_dofs) {
+ error_message("wrong vector dimension. system has %d DOFs,\n"
+ "but dim(q)= %d, dim(u)= %d\n",
+ m_num_dofs, static_cast<int>(q.size()), static_cast<int>(u.size()));
+ return -1;
+ }
+ if(type != POSITION_ONLY && type != POSITION_VELOCITY) {
+ error_message("invalid type %d\n", type);
+ return -1;
+ }
+
+ addRelativeJacobianComponent(m_body_list[0]);
+ for (idArrayIdx i = 1; i < m_body_list.size(); i++) {
+ RigidBody &body = m_body_list[i];
+ RigidBody &parent = m_body_list[m_parent_index[i]];
+
+ mul(body.m_body_T_parent, parent.m_body_Jac_R,& body.m_body_Jac_R);
+ body.m_body_Jac_T = parent.m_body_Jac_T;
+ mul(tildeOperator(body.m_parent_pos_parent_body),parent.m_body_Jac_R,&m_m3x);
+ sub(body.m_body_Jac_T,m_m3x, &body.m_body_Jac_T);
+
+ addRelativeJacobianComponent(body);
+ mul(body.m_body_T_parent, body.m_body_Jac_T,&body.m_body_Jac_T);
+
+ if(type >= POSITION_VELOCITY) {
+ body.m_body_dot_Jac_R_u = body.m_body_T_parent * parent.m_body_dot_Jac_R_u -
+ body.m_body_ang_vel_rel.cross(body.m_body_T_parent * parent.m_body_ang_vel);
+ body.m_body_dot_Jac_T_u = body.m_body_T_parent *
+ (parent.m_body_dot_Jac_T_u + parent.m_body_dot_Jac_R_u.cross(body.m_parent_pos_parent_body) +
+ parent.m_body_ang_vel.cross(parent.m_body_ang_vel.cross(body.m_parent_pos_parent_body)) +
+ 2.0 * parent.m_body_ang_vel.cross(body.m_parent_vel_rel));
+ }
+ }
+ return 0;
+}
+#endif
+
+static inline void setSixDoFJacobians(const int dof, vec3 &Jac_JR, vec3 &Jac_JT) {
+ switch (dof) {
+ // rotational part
+ case 0:
+ Jac_JR(0) = 1;
+ Jac_JR(1) = 0;
+ Jac_JR(2) = 0;
+ setZero(Jac_JT);
+ break;
+ case 1:
+ Jac_JR(0) = 0;
+ Jac_JR(1) = 1;
+ Jac_JR(2) = 0;
+ setZero(Jac_JT);
+ break;
+ case 2:
+ Jac_JR(0) = 0;
+ Jac_JR(1) = 0;
+ Jac_JR(2) = 1;
+ setZero(Jac_JT);
+ break;
+ // translational part
+ case 3:
+ setZero(Jac_JR);
+ Jac_JT(0) = 1;
+ Jac_JT(1) = 0;
+ Jac_JT(2) = 0;
+ break;
+ case 4:
+ setZero(Jac_JR);
+ Jac_JT(0) = 0;
+ Jac_JT(1) = 1;
+ Jac_JT(2) = 0;
+ break;
+ case 5:
+ setZero(Jac_JR);
+ Jac_JT(0) = 0;
+ Jac_JT(1) = 0;
+ Jac_JT(2) = 1;
+ break;
+ }
+}
+
+static inline int jointNumDoFs(const JointType &type) {
+ switch (type) {
+ case FIXED:
+ return 0;
+ case REVOLUTE:
+ case PRISMATIC:
+ return 1;
+ case FLOATING:
+ return 6;
+ }
+ // this should never happen
+ error_message("invalid joint type\n");
+ // TODO add configurable abort/crash function
+ abort();
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::calculateMassMatrix(const vecx &q, const bool update_kinematics,
+ const bool initialize_matrix,
+ const bool set_lower_triangular_matrix,
+ matxx *mass_matrix) {
+// This calculates the joint space mass matrix for the multibody system.
+// The algorithm is essentially an implementation of "method 3"
+// in "Efficient Dynamic Simulation of Robotic Mechanisms" (Walker and Orin, 1982)
+// (Later named "Composite Rigid Body Algorithm" by Featherstone).
+//
+// This implementation, however, handles branched systems and uses a formulation centered
+// on the origin of the body-fixed frame to avoid re-computing various quantities at the com.
+
+ if (q.size() != m_num_dofs || mass_matrix->rows() != m_num_dofs ||
+ mass_matrix->cols() != m_num_dofs) {
+ error_message("Dimension error. System has %d DOFs,\n"
+ "but dim(q)= %d, dim(mass_matrix)= %d x %d\n",
+ m_num_dofs, static_cast<int>(q.size()), static_cast<int>(mass_matrix->rows()),
+ static_cast<int>(mass_matrix->cols()));
+ return -1;
+ }
+
+ // TODO add optimized zeroing function?
+ if (initialize_matrix) {
+ for (int i = 0; i < m_num_dofs; i++) {
+ for (int j = 0; j < m_num_dofs; j++) {
+ setMatxxElem(i, j, 0.0, mass_matrix);
+ }
+ }
+ }
+
+ if (update_kinematics) {
+ // 1. update relative kinematics
+ // 1.1 for revolute joints
+ for (idArrayIdx i = 0; i < m_body_revolute_list.size(); i++) {
+ RigidBody &body = m_body_list[m_body_revolute_list[i]];
+ // from reference orientation (q=0) of body-fixed frame to current orientation
+ mat33 body_T_body_ref;
+ bodyTParentFromAxisAngle(body.m_Jac_JR, q(body.m_q_index), &body_T_body_ref);
+ body.m_body_T_parent = body_T_body_ref * body.m_body_T_parent_ref;
+ }
+ // 1.2 for prismatic joints
+ for (idArrayIdx i = 0; i < m_body_prismatic_list.size(); i++) {
+ RigidBody &body = m_body_list[m_body_prismatic_list[i]];
+ // body.m_body_T_parent= fixed
+ body.m_parent_pos_parent_body =
+ body.m_parent_pos_parent_body_ref + body.m_parent_Jac_JT * q(body.m_q_index);
+ }
+ // 1.3 fixed joints: nothing to do
+ // 1.4 6dof joints:
+ for (idArrayIdx i = 0; i < m_body_floating_list.size(); i++) {
+ RigidBody &body = m_body_list[m_body_floating_list[i]];
+
+ body.m_body_T_parent = transformZ(q(body.m_q_index + 2)) *
+ transformY(q(body.m_q_index + 1)) *
+ transformX(q(body.m_q_index));
+ body.m_parent_pos_parent_body(0) = q(body.m_q_index + 3);
+ body.m_parent_pos_parent_body(1) = q(body.m_q_index + 4);
+ body.m_parent_pos_parent_body(2) = q(body.m_q_index + 5);
+
+ body.m_parent_pos_parent_body = body.m_body_T_parent * body.m_parent_pos_parent_body;
+ }
+ }
+ for (int i = m_body_list.size() - 1; i >= 0; i--) {
+ RigidBody &body = m_body_list[i];
+ // calculate mass, center of mass and inertia of "composite rigid body",
+ // ie, sub-tree starting at current body
+ body.m_subtree_mass = body.m_mass;
+ body.m_body_subtree_mass_com = body.m_body_mass_com;
+ body.m_body_subtree_I_body = body.m_body_I_body;
+
+ for (idArrayIdx c = 0; c < m_child_indices[i].size(); c++) {
+ RigidBody &child = m_body_list[m_child_indices[i][c]];
+ mat33 body_T_child = child.m_body_T_parent.transpose();
+
+ body.m_subtree_mass += child.m_subtree_mass;
+ body.m_body_subtree_mass_com += body_T_child * child.m_body_subtree_mass_com +
+ child.m_parent_pos_parent_body * child.m_subtree_mass;
+ body.m_body_subtree_I_body +=
+ body_T_child * child.m_body_subtree_I_body * child.m_body_T_parent;
+
+ if (child.m_subtree_mass > 0) {
+ // Shift the reference point for the child subtree inertia using the
+ // Huygens-Steiner ("parallel axis") theorem.
+ // (First shift from child origin to child com, then from there to this body's
+ // origin)
+ vec3 r_com = body_T_child * child.m_body_subtree_mass_com / child.m_subtree_mass;
+ mat33 tilde_r_child_com = tildeOperator(r_com);
+ mat33 tilde_r_body_com = tildeOperator(child.m_parent_pos_parent_body + r_com);
+ body.m_body_subtree_I_body +=
+ child.m_subtree_mass *
+ (tilde_r_child_com * tilde_r_child_com - tilde_r_body_com * tilde_r_body_com);
+ }
+ }
+ }
+
+ for (int i = m_body_list.size() - 1; i >= 0; i--) {
+ const RigidBody &body = m_body_list[i];
+
+ // determine DoF-range for body
+ const int q_index_min = body.m_q_index;
+ const int q_index_max = q_index_min + jointNumDoFs(body.m_joint_type) - 1;
+ // loop over the DoFs used by this body
+ // local joint jacobians (ok as is for 1-DoF joints)
+ vec3 Jac_JR = body.m_Jac_JR;
+ vec3 Jac_JT = body.m_Jac_JT;
+ for (int col = q_index_max; col >= q_index_min; col--) {
+ // set jacobians for 6-DoF joints
+ if (FLOATING == body.m_joint_type) {
+ setSixDoFJacobians(col - q_index_min, Jac_JR, Jac_JT);
+ }
+
+ vec3 body_eom_rot =
+ body.m_body_subtree_I_body * Jac_JR + body.m_body_subtree_mass_com.cross(Jac_JT);
+ vec3 body_eom_trans =
+ body.m_subtree_mass * Jac_JT - body.m_body_subtree_mass_com.cross(Jac_JR);
+ setMatxxElem(col, col, Jac_JR.dot(body_eom_rot) + Jac_JT.dot(body_eom_trans), mass_matrix);
+
+ // rest of the mass matrix column upwards
+ {
+ // 1. for multi-dof joints, rest of the dofs of this body
+ for (int row = col - 1; row >= q_index_min; row--) {
+ if (FLOATING != body.m_joint_type) {
+ error_message("??\n");
+ return -1;
+ }
+ setSixDoFJacobians(row - q_index_min, Jac_JR, Jac_JT);
+ const double Mrc = Jac_JR.dot(body_eom_rot) + Jac_JT.dot(body_eom_trans);
+ setMatxxElem(col, row, Mrc, mass_matrix);
+ }
+ // 2. ancestor dofs
+ int child_idx = i;
+ int parent_idx = m_parent_index[i];
+ while (parent_idx >= 0) {
+ const RigidBody &child_body = m_body_list[child_idx];
+ const RigidBody &parent_body = m_body_list[parent_idx];
+
+ const mat33 parent_T_child = child_body.m_body_T_parent.transpose();
+ body_eom_rot = parent_T_child * body_eom_rot;
+ body_eom_trans = parent_T_child * body_eom_trans;
+ body_eom_rot += child_body.m_parent_pos_parent_body.cross(body_eom_trans);
+
+ const int parent_body_q_index_min = parent_body.m_q_index;
+ const int parent_body_q_index_max =
+ parent_body_q_index_min + jointNumDoFs(parent_body.m_joint_type) - 1;
+ vec3 Jac_JR = parent_body.m_Jac_JR;
+ vec3 Jac_JT = parent_body.m_Jac_JT;
+ for (int row = parent_body_q_index_max; row >= parent_body_q_index_min; row--) {
+ // set jacobians for 6-DoF joints
+ if (FLOATING == parent_body.m_joint_type) {
+ setSixDoFJacobians(row - parent_body_q_index_min, Jac_JR, Jac_JT);
+ }
+ const double Mrc = Jac_JR.dot(body_eom_rot) + Jac_JT.dot(body_eom_trans);
+ setMatxxElem(col, row, Mrc, mass_matrix);
+ }
+
+ child_idx = parent_idx;
+ parent_idx = m_parent_index[child_idx];
+ }
+ }
+ }
+ }
+
+ if (set_lower_triangular_matrix) {
+ for (int col = 0; col < m_num_dofs; col++) {
+ for (int row = 0; row < col; row++) {
+ setMatxxElem(row, col, (*mass_matrix)(col, row), mass_matrix);
+ }
+ }
+ }
+ return 0;
+}
+
+// utility macro
+#define CHECK_IF_BODY_INDEX_IS_VALID(index) \
+ do { \
+ if (index < 0 || index >= m_num_bodies) { \
+ error_message("invalid index %d (num_bodies= %d)\n", index, m_num_bodies); \
+ return -1; \
+ } \
+ } while (0)
+
+int MultiBodyTree::MultiBodyImpl::getParentIndex(const int body_index, int *p) {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ *p = m_parent_index[body_index];
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::getUserInt(const int body_index, int *user_int) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ *user_int = m_user_int[body_index];
+ return 0;
+}
+int MultiBodyTree::MultiBodyImpl::getUserPtr(const int body_index, void **user_ptr) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ *user_ptr = m_user_ptr[body_index];
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::setUserInt(const int body_index, const int user_int) {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ m_user_int[body_index] = user_int;
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::setUserPtr(const int body_index, void *const user_ptr) {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ m_user_ptr[body_index] = user_ptr;
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::getBodyOrigin(int body_index, vec3 *world_origin) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ const RigidBody &body = m_body_list[body_index];
+ *world_origin = body.m_body_T_world.transpose() * body.m_body_pos;
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::getBodyCoM(int body_index, vec3 *world_com) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ const RigidBody &body = m_body_list[body_index];
+ if (body.m_mass > 0) {
+ *world_com = body.m_body_T_world.transpose() *
+ (body.m_body_pos + body.m_body_mass_com / body.m_mass);
+ } else {
+ *world_com = body.m_body_T_world.transpose() * (body.m_body_pos);
+ }
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::getBodyTransform(int body_index, mat33 *world_T_body) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ const RigidBody &body = m_body_list[body_index];
+ *world_T_body = body.m_body_T_world.transpose();
+ return 0;
+}
+int MultiBodyTree::MultiBodyImpl::getBodyAngularVelocity(int body_index, vec3 *world_omega) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ const RigidBody &body = m_body_list[body_index];
+ *world_omega = body.m_body_T_world.transpose() * body.m_body_ang_vel;
+ return 0;
+}
+int MultiBodyTree::MultiBodyImpl::getBodyLinearVelocity(int body_index,
+ vec3 *world_velocity) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ const RigidBody &body = m_body_list[body_index];
+ *world_velocity = body.m_body_T_world.transpose() * body.m_body_vel;
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::getBodyLinearVelocityCoM(int body_index,
+ vec3 *world_velocity) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ const RigidBody &body = m_body_list[body_index];
+ vec3 com;
+ if (body.m_mass > 0) {
+ com = body.m_body_mass_com / body.m_mass;
+ } else {
+ com(0) = 0;
+ com(1) = 0;
+ com(2) = 0;
+ }
+
+ *world_velocity =
+ body.m_body_T_world.transpose() * (body.m_body_vel + body.m_body_ang_vel.cross(com));
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::getBodyAngularAcceleration(int body_index,
+ vec3 *world_dot_omega) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ const RigidBody &body = m_body_list[body_index];
+ *world_dot_omega = body.m_body_T_world.transpose() * body.m_body_ang_acc;
+ return 0;
+}
+int MultiBodyTree::MultiBodyImpl::getBodyLinearAcceleration(int body_index,
+ vec3 *world_acceleration) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ const RigidBody &body = m_body_list[body_index];
+ *world_acceleration = body.m_body_T_world.transpose() * body.m_body_acc;
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::getJointType(const int body_index, JointType *joint_type) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ *joint_type = m_body_list[body_index].m_joint_type;
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::getJointTypeStr(const int body_index,
+ const char **joint_type) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ *joint_type = jointTypeToString(m_body_list[body_index].m_joint_type);
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::getParentRParentBodyRef(const int body_index, vec3* r) const{
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ *r=m_body_list[body_index].m_parent_pos_parent_body_ref;
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::getBodyTParentRef(const int body_index, mat33* T) const{
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ *T=m_body_list[body_index].m_body_T_parent_ref;
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::getBodyAxisOfMotion(const int body_index, vec3* axis) const{
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ if(m_body_list[body_index].m_joint_type == REVOLUTE) {
+ *axis = m_body_list[body_index].m_Jac_JR;
+ return 0;
+ }
+ if(m_body_list[body_index].m_joint_type == PRISMATIC) {
+ *axis = m_body_list[body_index].m_Jac_JT;
+ return 0;
+ }
+ setZero(*axis);
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::getDoFOffset(const int body_index, int *q_index) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ *q_index = m_body_list[body_index].m_q_index;
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::setBodyMass(const int body_index, const idScalar mass) {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ m_body_list[body_index].m_mass = mass;
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::setBodyFirstMassMoment(const int body_index,
+ const vec3& first_mass_moment) {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ m_body_list[body_index].m_body_mass_com = first_mass_moment;
+ return 0;
+}
+int MultiBodyTree::MultiBodyImpl::setBodySecondMassMoment(const int body_index,
+ const mat33& second_mass_moment) {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ m_body_list[body_index].m_body_I_body = second_mass_moment;
+ return 0;
+}
+int MultiBodyTree::MultiBodyImpl::getBodyMass(const int body_index, idScalar *mass) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ *mass = m_body_list[body_index].m_mass;
+ return 0;
+}
+int MultiBodyTree::MultiBodyImpl::getBodyFirstMassMoment(const int body_index,
+ vec3 *first_mass_moment) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ *first_mass_moment = m_body_list[body_index].m_body_mass_com;
+ return 0;
+}
+int MultiBodyTree::MultiBodyImpl::getBodySecondMassMoment(const int body_index,
+ mat33 *second_mass_moment) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ *second_mass_moment = m_body_list[body_index].m_body_I_body;
+ return 0;
+}
+
+void MultiBodyTree::MultiBodyImpl::clearAllUserForcesAndMoments() {
+ for (int index = 0; index < m_num_bodies; index++) {
+ RigidBody &body = m_body_list[index];
+ setZero(body.m_body_force_user);
+ setZero(body.m_body_moment_user);
+ }
+}
+
+int MultiBodyTree::MultiBodyImpl::addUserForce(const int body_index, const vec3 &body_force) {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ m_body_list[body_index].m_body_force_user += body_force;
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::addUserMoment(const int body_index, const vec3 &body_moment) {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ m_body_list[body_index].m_body_moment_user += body_moment;
+ return 0;
+}
+
+#if (defined BT_ID_HAVE_MAT3X) && (defined BT_ID_WITH_JACOBIANS)
+int MultiBodyTree::MultiBodyImpl::getBodyDotJacobianTransU(const int body_index, vec3* world_dot_jac_trans_u) const {
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ const RigidBody &body = m_body_list[body_index];
+ *world_dot_jac_trans_u = body.m_body_T_world.transpose() * body.m_body_dot_Jac_T_u;
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::getBodyDotJacobianRotU(const int body_index, vec3* world_dot_jac_rot_u) const{
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ const RigidBody &body = m_body_list[body_index];
+ *world_dot_jac_rot_u = body.m_body_T_world.transpose() * body.m_body_dot_Jac_R_u;
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::getBodyJacobianTrans(const int body_index, mat3x* world_jac_trans) const{
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ const RigidBody &body = m_body_list[body_index];
+ mul(body.m_body_T_world.transpose(), body.m_body_Jac_T, world_jac_trans);
+ return 0;
+}
+
+int MultiBodyTree::MultiBodyImpl::getBodyJacobianRot(const int body_index, mat3x* world_jac_rot) const{
+ CHECK_IF_BODY_INDEX_IS_VALID(body_index);
+ const RigidBody &body = m_body_list[body_index];
+ mul(body.m_body_T_world.transpose(), body.m_body_Jac_R,world_jac_rot);
+ return 0;
+}
+
+#endif
+}