diff options
Diffstat (limited to 'thirdparty/bullet/BulletInverseDynamics/details/IDMatVec.hpp')
-rw-r--r-- | thirdparty/bullet/BulletInverseDynamics/details/IDMatVec.hpp | 415 |
1 files changed, 415 insertions, 0 deletions
diff --git a/thirdparty/bullet/BulletInverseDynamics/details/IDMatVec.hpp b/thirdparty/bullet/BulletInverseDynamics/details/IDMatVec.hpp new file mode 100644 index 0000000000..4d3f6c87e9 --- /dev/null +++ b/thirdparty/bullet/BulletInverseDynamics/details/IDMatVec.hpp @@ -0,0 +1,415 @@ +/// @file Built-In Matrix-Vector functions +#ifndef IDMATVEC_HPP_ +#define IDMATVEC_HPP_ + +#include <cstdlib> + +#include "../IDConfig.hpp" +#define BT_ID_HAVE_MAT3X + +namespace btInverseDynamics { +class vec3; +class vecx; +class mat33; +class matxx; +class mat3x; + +/// This is a very basic implementation to enable stand-alone use of the library. +/// The implementation is not really optimized and misses many features that you would +/// want from a "fully featured" linear math library. +class vec3 { +public: + idScalar& operator()(int i) { return m_data[i]; } + const idScalar& operator()(int i) const { return m_data[i]; } + const int size() const { return 3; } + const vec3& operator=(const vec3& rhs); + const vec3& operator+=(const vec3& b); + const vec3& operator-=(const vec3& b); + vec3 cross(const vec3& b) const; + idScalar dot(const vec3& b) const; + + friend vec3 operator*(const mat33& a, const vec3& b); + friend vec3 operator*(const vec3& a, const idScalar& s); + friend vec3 operator*(const idScalar& s, const vec3& a); + + friend vec3 operator+(const vec3& a, const vec3& b); + friend vec3 operator-(const vec3& a, const vec3& b); + friend vec3 operator/(const vec3& a, const idScalar& s); + +private: + idScalar m_data[3]; +}; + +class mat33 { +public: + idScalar& operator()(int i, int j) { return m_data[3 * i + j]; } + const idScalar& operator()(int i, int j) const { return m_data[3 * i + j]; } + const mat33& operator=(const mat33& rhs); + mat33 transpose() const; + const mat33& operator+=(const mat33& b); + const mat33& operator-=(const mat33& b); + + friend mat33 operator*(const mat33& a, const mat33& b); + friend vec3 operator*(const mat33& a, const vec3& b); + friend mat33 operator*(const mat33& a, const idScalar& s); + friend mat33 operator*(const idScalar& s, const mat33& a); + friend mat33 operator+(const mat33& a, const mat33& b); + friend mat33 operator-(const mat33& a, const mat33& b); + friend mat33 operator/(const mat33& a, const idScalar& s); + +private: + // layout is [0,1,2;3,4,5;6,7,8] + idScalar m_data[9]; +}; + +class vecx { +public: + vecx(int size) : m_size(size) { + m_data = static_cast<idScalar*>(idMalloc(sizeof(idScalar) * size)); + } + ~vecx() { idFree(m_data); } + const vecx& operator=(const vecx& rhs); + idScalar& operator()(int i) { return m_data[i]; } + const idScalar& operator()(int i) const { return m_data[i]; } + const int& size() const { return m_size; } + + friend vecx operator*(const vecx& a, const idScalar& s); + friend vecx operator*(const idScalar& s, const vecx& a); + + friend vecx operator+(const vecx& a, const vecx& b); + friend vecx operator-(const vecx& a, const vecx& b); + friend vecx operator/(const vecx& a, const idScalar& s); + +private: + int m_size; + idScalar* m_data; +}; + +class matxx { +public: + matxx() { + m_data = 0x0; + m_cols=0; + m_rows=0; + } + matxx(int rows, int cols) : m_rows(rows), m_cols(cols) { + m_data = static_cast<idScalar*>(idMalloc(sizeof(idScalar) * rows * cols)); + } + ~matxx() { idFree(m_data); } + idScalar& operator()(int row, int col) { return m_data[row * m_cols + col]; } + const idScalar& operator()(int row, int col) const { return m_data[row * m_cols + col]; } + const int& rows() const { return m_rows; } + const int& cols() const { return m_cols; } + +private: + int m_rows; + int m_cols; + idScalar* m_data; +}; + +class mat3x { +public: + mat3x() { + m_data = 0x0; + m_cols=0; + } + mat3x(const mat3x&rhs) { + m_cols=rhs.m_cols; + allocate(); + *this = rhs; + } + mat3x(int rows, int cols): m_cols(cols) { + allocate(); + }; + void operator=(const mat3x& rhs) { + if (m_cols != rhs.m_cols) { + error_message("size missmatch, cols= %d but rhs.cols= %d\n", cols(), rhs.cols()); + abort(); + } + for(int i=0;i<3*m_cols;i++) { + m_data[i] = rhs.m_data[i]; + } + } + + ~mat3x() { + free(); + } + idScalar& operator()(int row, int col) { return m_data[row * m_cols + col]; } + const idScalar& operator()(int row, int col) const { return m_data[row * m_cols + col]; } + int rows() const { return m_rows; } + const int& cols() const { return m_cols; } + void resize(int rows, int cols) { + m_cols=cols; + free(); + allocate(); + } + void setZero() { + memset(m_data,0x0,sizeof(idScalar)*m_rows*m_cols); + } + // avoid operators that would allocate -- use functions sub/add/mul in IDMath.hpp instead +private: + void allocate(){m_data = static_cast<idScalar*>(idMalloc(sizeof(idScalar) * m_rows * m_cols));} + void free() { idFree(m_data);} + enum {m_rows=3}; + int m_cols; + idScalar* m_data; +}; + +inline void resize(mat3x &m, idArrayIdx size) { + m.resize(3, size); + m.setZero(); +} + +////////////////////////////////////////////////// +// Implementations +inline const vec3& vec3::operator=(const vec3& rhs) { + if (&rhs != this) { + memcpy(m_data, rhs.m_data, 3 * sizeof(idScalar)); + } + return *this; +} + +inline vec3 vec3::cross(const vec3& b) const { + vec3 result; + result.m_data[0] = m_data[1] * b.m_data[2] - m_data[2] * b.m_data[1]; + result.m_data[1] = m_data[2] * b.m_data[0] - m_data[0] * b.m_data[2]; + result.m_data[2] = m_data[0] * b.m_data[1] - m_data[1] * b.m_data[0]; + + return result; +} + +inline idScalar vec3::dot(const vec3& b) const { + return m_data[0] * b.m_data[0] + m_data[1] * b.m_data[1] + m_data[2] * b.m_data[2]; +} + +inline const mat33& mat33::operator=(const mat33& rhs) { + if (&rhs != this) { + memcpy(m_data, rhs.m_data, 9 * sizeof(idScalar)); + } + return *this; +} +inline mat33 mat33::transpose() const { + mat33 result; + result.m_data[0] = m_data[0]; + result.m_data[1] = m_data[3]; + result.m_data[2] = m_data[6]; + result.m_data[3] = m_data[1]; + result.m_data[4] = m_data[4]; + result.m_data[5] = m_data[7]; + result.m_data[6] = m_data[2]; + result.m_data[7] = m_data[5]; + result.m_data[8] = m_data[8]; + + return result; +} + +inline mat33 operator*(const mat33& a, const mat33& b) { + mat33 result; + result.m_data[0] = + a.m_data[0] * b.m_data[0] + a.m_data[1] * b.m_data[3] + a.m_data[2] * b.m_data[6]; + result.m_data[1] = + a.m_data[0] * b.m_data[1] + a.m_data[1] * b.m_data[4] + a.m_data[2] * b.m_data[7]; + result.m_data[2] = + a.m_data[0] * b.m_data[2] + a.m_data[1] * b.m_data[5] + a.m_data[2] * b.m_data[8]; + result.m_data[3] = + a.m_data[3] * b.m_data[0] + a.m_data[4] * b.m_data[3] + a.m_data[5] * b.m_data[6]; + result.m_data[4] = + a.m_data[3] * b.m_data[1] + a.m_data[4] * b.m_data[4] + a.m_data[5] * b.m_data[7]; + result.m_data[5] = + a.m_data[3] * b.m_data[2] + a.m_data[4] * b.m_data[5] + a.m_data[5] * b.m_data[8]; + result.m_data[6] = + a.m_data[6] * b.m_data[0] + a.m_data[7] * b.m_data[3] + a.m_data[8] * b.m_data[6]; + result.m_data[7] = + a.m_data[6] * b.m_data[1] + a.m_data[7] * b.m_data[4] + a.m_data[8] * b.m_data[7]; + result.m_data[8] = + a.m_data[6] * b.m_data[2] + a.m_data[7] * b.m_data[5] + a.m_data[8] * b.m_data[8]; + + return result; +} + +inline const mat33& mat33::operator+=(const mat33& b) { + for (int i = 0; i < 9; i++) { + m_data[i] += b.m_data[i]; + } + + return *this; +} + +inline const mat33& mat33::operator-=(const mat33& b) { + for (int i = 0; i < 9; i++) { + m_data[i] -= b.m_data[i]; + } + return *this; +} + +inline vec3 operator*(const mat33& a, const vec3& b) { + vec3 result; + + result.m_data[0] = + a.m_data[0] * b.m_data[0] + a.m_data[1] * b.m_data[1] + a.m_data[2] * b.m_data[2]; + result.m_data[1] = + a.m_data[3] * b.m_data[0] + a.m_data[4] * b.m_data[1] + a.m_data[5] * b.m_data[2]; + result.m_data[2] = + a.m_data[6] * b.m_data[0] + a.m_data[7] * b.m_data[1] + a.m_data[8] * b.m_data[2]; + + return result; +} + +inline const vec3& vec3::operator+=(const vec3& b) { + for (int i = 0; i < 3; i++) { + m_data[i] += b.m_data[i]; + } + return *this; +} + +inline const vec3& vec3::operator-=(const vec3& b) { + for (int i = 0; i < 3; i++) { + m_data[i] -= b.m_data[i]; + } + return *this; +} + +inline mat33 operator*(const mat33& a, const idScalar& s) { + mat33 result; + for (int i = 0; i < 9; i++) { + result.m_data[i] = a.m_data[i] * s; + } + return result; +} + +inline mat33 operator*(const idScalar& s, const mat33& a) { return a * s; } + +inline vec3 operator*(const vec3& a, const idScalar& s) { + vec3 result; + for (int i = 0; i < 3; i++) { + result.m_data[i] = a.m_data[i] * s; + } + return result; +} +inline vec3 operator*(const idScalar& s, const vec3& a) { return a * s; } + +inline mat33 operator+(const mat33& a, const mat33& b) { + mat33 result; + for (int i = 0; i < 9; i++) { + result.m_data[i] = a.m_data[i] + b.m_data[i]; + } + return result; +} +inline vec3 operator+(const vec3& a, const vec3& b) { + vec3 result; + for (int i = 0; i < 3; i++) { + result.m_data[i] = a.m_data[i] + b.m_data[i]; + } + return result; +} + +inline mat33 operator-(const mat33& a, const mat33& b) { + mat33 result; + for (int i = 0; i < 9; i++) { + result.m_data[i] = a.m_data[i] - b.m_data[i]; + } + return result; +} +inline vec3 operator-(const vec3& a, const vec3& b) { + vec3 result; + for (int i = 0; i < 3; i++) { + result.m_data[i] = a.m_data[i] - b.m_data[i]; + } + return result; +} + +inline mat33 operator/(const mat33& a, const idScalar& s) { + mat33 result; + for (int i = 0; i < 9; i++) { + result.m_data[i] = a.m_data[i] / s; + } + return result; +} + +inline vec3 operator/(const vec3& a, const idScalar& s) { + vec3 result; + for (int i = 0; i < 3; i++) { + result.m_data[i] = a.m_data[i] / s; + } + return result; +} + +inline const vecx& vecx::operator=(const vecx& rhs) { + if (size() != rhs.size()) { + error_message("size missmatch, size()= %d but rhs.size()= %d\n", size(), rhs.size()); + abort(); + } + if (&rhs != this) { + memcpy(m_data, rhs.m_data, rhs.size() * sizeof(idScalar)); + } + return *this; +} +inline vecx operator*(const vecx& a, const idScalar& s) { + vecx result(a.size()); + for (int i = 0; i < result.size(); i++) { + result.m_data[i] = a.m_data[i] * s; + } + return result; +} +inline vecx operator*(const idScalar& s, const vecx& a) { return a * s; } +inline vecx operator+(const vecx& a, const vecx& b) { + vecx result(a.size()); + // TODO: error handling for a.size() != b.size()?? + if (a.size() != b.size()) { + error_message("size missmatch. a.size()= %d, b.size()= %d\n", a.size(), b.size()); + abort(); + } + for (int i = 0; i < a.size(); i++) { + result.m_data[i] = a.m_data[i] + b.m_data[i]; + } + + return result; +} +inline vecx operator-(const vecx& a, const vecx& b) { + vecx result(a.size()); + // TODO: error handling for a.size() != b.size()?? + if (a.size() != b.size()) { + error_message("size missmatch. a.size()= %d, b.size()= %d\n", a.size(), b.size()); + abort(); + } + for (int i = 0; i < a.size(); i++) { + result.m_data[i] = a.m_data[i] - b.m_data[i]; + } + return result; +} +inline vecx operator/(const vecx& a, const idScalar& s) { + vecx result(a.size()); + for (int i = 0; i < result.size(); i++) { + result.m_data[i] = a.m_data[i] / s; + } + + return result; +} + +inline vec3 operator*(const mat3x& a, const vecx& b) { + vec3 result; + if (a.cols() != b.size()) { + error_message("size missmatch. a.cols()= %d, b.size()= %d\n", a.cols(), b.size()); + abort(); + } + result(0)=0.0; + result(1)=0.0; + result(2)=0.0; + for(int i=0;i<b.size();i++) { + for(int k=0;k<3;k++) { + result(k)+=a(k,i)*b(i); + } + } + return result; +} + +inline void setMatxxElem(const idArrayIdx row, const idArrayIdx col, const idScalar val, matxx*m){ + (*m)(row, col) = val; +} + +inline void setMat3xElem(const idArrayIdx row, const idArrayIdx col, const idScalar val, mat3x*m){ + (*m)(row, col) = val; +} + +} // namespace btInverseDynamcis +#endif |