summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletInverseDynamics/details/IDMatVec.hpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/bullet/BulletInverseDynamics/details/IDMatVec.hpp')
-rw-r--r--thirdparty/bullet/BulletInverseDynamics/details/IDMatVec.hpp415
1 files changed, 415 insertions, 0 deletions
diff --git a/thirdparty/bullet/BulletInverseDynamics/details/IDMatVec.hpp b/thirdparty/bullet/BulletInverseDynamics/details/IDMatVec.hpp
new file mode 100644
index 0000000000..4d3f6c87e9
--- /dev/null
+++ b/thirdparty/bullet/BulletInverseDynamics/details/IDMatVec.hpp
@@ -0,0 +1,415 @@
+/// @file Built-In Matrix-Vector functions
+#ifndef IDMATVEC_HPP_
+#define IDMATVEC_HPP_
+
+#include <cstdlib>
+
+#include "../IDConfig.hpp"
+#define BT_ID_HAVE_MAT3X
+
+namespace btInverseDynamics {
+class vec3;
+class vecx;
+class mat33;
+class matxx;
+class mat3x;
+
+/// This is a very basic implementation to enable stand-alone use of the library.
+/// The implementation is not really optimized and misses many features that you would
+/// want from a "fully featured" linear math library.
+class vec3 {
+public:
+ idScalar& operator()(int i) { return m_data[i]; }
+ const idScalar& operator()(int i) const { return m_data[i]; }
+ const int size() const { return 3; }
+ const vec3& operator=(const vec3& rhs);
+ const vec3& operator+=(const vec3& b);
+ const vec3& operator-=(const vec3& b);
+ vec3 cross(const vec3& b) const;
+ idScalar dot(const vec3& b) const;
+
+ friend vec3 operator*(const mat33& a, const vec3& b);
+ friend vec3 operator*(const vec3& a, const idScalar& s);
+ friend vec3 operator*(const idScalar& s, const vec3& a);
+
+ friend vec3 operator+(const vec3& a, const vec3& b);
+ friend vec3 operator-(const vec3& a, const vec3& b);
+ friend vec3 operator/(const vec3& a, const idScalar& s);
+
+private:
+ idScalar m_data[3];
+};
+
+class mat33 {
+public:
+ idScalar& operator()(int i, int j) { return m_data[3 * i + j]; }
+ const idScalar& operator()(int i, int j) const { return m_data[3 * i + j]; }
+ const mat33& operator=(const mat33& rhs);
+ mat33 transpose() const;
+ const mat33& operator+=(const mat33& b);
+ const mat33& operator-=(const mat33& b);
+
+ friend mat33 operator*(const mat33& a, const mat33& b);
+ friend vec3 operator*(const mat33& a, const vec3& b);
+ friend mat33 operator*(const mat33& a, const idScalar& s);
+ friend mat33 operator*(const idScalar& s, const mat33& a);
+ friend mat33 operator+(const mat33& a, const mat33& b);
+ friend mat33 operator-(const mat33& a, const mat33& b);
+ friend mat33 operator/(const mat33& a, const idScalar& s);
+
+private:
+ // layout is [0,1,2;3,4,5;6,7,8]
+ idScalar m_data[9];
+};
+
+class vecx {
+public:
+ vecx(int size) : m_size(size) {
+ m_data = static_cast<idScalar*>(idMalloc(sizeof(idScalar) * size));
+ }
+ ~vecx() { idFree(m_data); }
+ const vecx& operator=(const vecx& rhs);
+ idScalar& operator()(int i) { return m_data[i]; }
+ const idScalar& operator()(int i) const { return m_data[i]; }
+ const int& size() const { return m_size; }
+
+ friend vecx operator*(const vecx& a, const idScalar& s);
+ friend vecx operator*(const idScalar& s, const vecx& a);
+
+ friend vecx operator+(const vecx& a, const vecx& b);
+ friend vecx operator-(const vecx& a, const vecx& b);
+ friend vecx operator/(const vecx& a, const idScalar& s);
+
+private:
+ int m_size;
+ idScalar* m_data;
+};
+
+class matxx {
+public:
+ matxx() {
+ m_data = 0x0;
+ m_cols=0;
+ m_rows=0;
+ }
+ matxx(int rows, int cols) : m_rows(rows), m_cols(cols) {
+ m_data = static_cast<idScalar*>(idMalloc(sizeof(idScalar) * rows * cols));
+ }
+ ~matxx() { idFree(m_data); }
+ idScalar& operator()(int row, int col) { return m_data[row * m_cols + col]; }
+ const idScalar& operator()(int row, int col) const { return m_data[row * m_cols + col]; }
+ const int& rows() const { return m_rows; }
+ const int& cols() const { return m_cols; }
+
+private:
+ int m_rows;
+ int m_cols;
+ idScalar* m_data;
+};
+
+class mat3x {
+public:
+ mat3x() {
+ m_data = 0x0;
+ m_cols=0;
+ }
+ mat3x(const mat3x&rhs) {
+ m_cols=rhs.m_cols;
+ allocate();
+ *this = rhs;
+ }
+ mat3x(int rows, int cols): m_cols(cols) {
+ allocate();
+ };
+ void operator=(const mat3x& rhs) {
+ if (m_cols != rhs.m_cols) {
+ error_message("size missmatch, cols= %d but rhs.cols= %d\n", cols(), rhs.cols());
+ abort();
+ }
+ for(int i=0;i<3*m_cols;i++) {
+ m_data[i] = rhs.m_data[i];
+ }
+ }
+
+ ~mat3x() {
+ free();
+ }
+ idScalar& operator()(int row, int col) { return m_data[row * m_cols + col]; }
+ const idScalar& operator()(int row, int col) const { return m_data[row * m_cols + col]; }
+ int rows() const { return m_rows; }
+ const int& cols() const { return m_cols; }
+ void resize(int rows, int cols) {
+ m_cols=cols;
+ free();
+ allocate();
+ }
+ void setZero() {
+ memset(m_data,0x0,sizeof(idScalar)*m_rows*m_cols);
+ }
+ // avoid operators that would allocate -- use functions sub/add/mul in IDMath.hpp instead
+private:
+ void allocate(){m_data = static_cast<idScalar*>(idMalloc(sizeof(idScalar) * m_rows * m_cols));}
+ void free() { idFree(m_data);}
+ enum {m_rows=3};
+ int m_cols;
+ idScalar* m_data;
+};
+
+inline void resize(mat3x &m, idArrayIdx size) {
+ m.resize(3, size);
+ m.setZero();
+}
+
+//////////////////////////////////////////////////
+// Implementations
+inline const vec3& vec3::operator=(const vec3& rhs) {
+ if (&rhs != this) {
+ memcpy(m_data, rhs.m_data, 3 * sizeof(idScalar));
+ }
+ return *this;
+}
+
+inline vec3 vec3::cross(const vec3& b) const {
+ vec3 result;
+ result.m_data[0] = m_data[1] * b.m_data[2] - m_data[2] * b.m_data[1];
+ result.m_data[1] = m_data[2] * b.m_data[0] - m_data[0] * b.m_data[2];
+ result.m_data[2] = m_data[0] * b.m_data[1] - m_data[1] * b.m_data[0];
+
+ return result;
+}
+
+inline idScalar vec3::dot(const vec3& b) const {
+ return m_data[0] * b.m_data[0] + m_data[1] * b.m_data[1] + m_data[2] * b.m_data[2];
+}
+
+inline const mat33& mat33::operator=(const mat33& rhs) {
+ if (&rhs != this) {
+ memcpy(m_data, rhs.m_data, 9 * sizeof(idScalar));
+ }
+ return *this;
+}
+inline mat33 mat33::transpose() const {
+ mat33 result;
+ result.m_data[0] = m_data[0];
+ result.m_data[1] = m_data[3];
+ result.m_data[2] = m_data[6];
+ result.m_data[3] = m_data[1];
+ result.m_data[4] = m_data[4];
+ result.m_data[5] = m_data[7];
+ result.m_data[6] = m_data[2];
+ result.m_data[7] = m_data[5];
+ result.m_data[8] = m_data[8];
+
+ return result;
+}
+
+inline mat33 operator*(const mat33& a, const mat33& b) {
+ mat33 result;
+ result.m_data[0] =
+ a.m_data[0] * b.m_data[0] + a.m_data[1] * b.m_data[3] + a.m_data[2] * b.m_data[6];
+ result.m_data[1] =
+ a.m_data[0] * b.m_data[1] + a.m_data[1] * b.m_data[4] + a.m_data[2] * b.m_data[7];
+ result.m_data[2] =
+ a.m_data[0] * b.m_data[2] + a.m_data[1] * b.m_data[5] + a.m_data[2] * b.m_data[8];
+ result.m_data[3] =
+ a.m_data[3] * b.m_data[0] + a.m_data[4] * b.m_data[3] + a.m_data[5] * b.m_data[6];
+ result.m_data[4] =
+ a.m_data[3] * b.m_data[1] + a.m_data[4] * b.m_data[4] + a.m_data[5] * b.m_data[7];
+ result.m_data[5] =
+ a.m_data[3] * b.m_data[2] + a.m_data[4] * b.m_data[5] + a.m_data[5] * b.m_data[8];
+ result.m_data[6] =
+ a.m_data[6] * b.m_data[0] + a.m_data[7] * b.m_data[3] + a.m_data[8] * b.m_data[6];
+ result.m_data[7] =
+ a.m_data[6] * b.m_data[1] + a.m_data[7] * b.m_data[4] + a.m_data[8] * b.m_data[7];
+ result.m_data[8] =
+ a.m_data[6] * b.m_data[2] + a.m_data[7] * b.m_data[5] + a.m_data[8] * b.m_data[8];
+
+ return result;
+}
+
+inline const mat33& mat33::operator+=(const mat33& b) {
+ for (int i = 0; i < 9; i++) {
+ m_data[i] += b.m_data[i];
+ }
+
+ return *this;
+}
+
+inline const mat33& mat33::operator-=(const mat33& b) {
+ for (int i = 0; i < 9; i++) {
+ m_data[i] -= b.m_data[i];
+ }
+ return *this;
+}
+
+inline vec3 operator*(const mat33& a, const vec3& b) {
+ vec3 result;
+
+ result.m_data[0] =
+ a.m_data[0] * b.m_data[0] + a.m_data[1] * b.m_data[1] + a.m_data[2] * b.m_data[2];
+ result.m_data[1] =
+ a.m_data[3] * b.m_data[0] + a.m_data[4] * b.m_data[1] + a.m_data[5] * b.m_data[2];
+ result.m_data[2] =
+ a.m_data[6] * b.m_data[0] + a.m_data[7] * b.m_data[1] + a.m_data[8] * b.m_data[2];
+
+ return result;
+}
+
+inline const vec3& vec3::operator+=(const vec3& b) {
+ for (int i = 0; i < 3; i++) {
+ m_data[i] += b.m_data[i];
+ }
+ return *this;
+}
+
+inline const vec3& vec3::operator-=(const vec3& b) {
+ for (int i = 0; i < 3; i++) {
+ m_data[i] -= b.m_data[i];
+ }
+ return *this;
+}
+
+inline mat33 operator*(const mat33& a, const idScalar& s) {
+ mat33 result;
+ for (int i = 0; i < 9; i++) {
+ result.m_data[i] = a.m_data[i] * s;
+ }
+ return result;
+}
+
+inline mat33 operator*(const idScalar& s, const mat33& a) { return a * s; }
+
+inline vec3 operator*(const vec3& a, const idScalar& s) {
+ vec3 result;
+ for (int i = 0; i < 3; i++) {
+ result.m_data[i] = a.m_data[i] * s;
+ }
+ return result;
+}
+inline vec3 operator*(const idScalar& s, const vec3& a) { return a * s; }
+
+inline mat33 operator+(const mat33& a, const mat33& b) {
+ mat33 result;
+ for (int i = 0; i < 9; i++) {
+ result.m_data[i] = a.m_data[i] + b.m_data[i];
+ }
+ return result;
+}
+inline vec3 operator+(const vec3& a, const vec3& b) {
+ vec3 result;
+ for (int i = 0; i < 3; i++) {
+ result.m_data[i] = a.m_data[i] + b.m_data[i];
+ }
+ return result;
+}
+
+inline mat33 operator-(const mat33& a, const mat33& b) {
+ mat33 result;
+ for (int i = 0; i < 9; i++) {
+ result.m_data[i] = a.m_data[i] - b.m_data[i];
+ }
+ return result;
+}
+inline vec3 operator-(const vec3& a, const vec3& b) {
+ vec3 result;
+ for (int i = 0; i < 3; i++) {
+ result.m_data[i] = a.m_data[i] - b.m_data[i];
+ }
+ return result;
+}
+
+inline mat33 operator/(const mat33& a, const idScalar& s) {
+ mat33 result;
+ for (int i = 0; i < 9; i++) {
+ result.m_data[i] = a.m_data[i] / s;
+ }
+ return result;
+}
+
+inline vec3 operator/(const vec3& a, const idScalar& s) {
+ vec3 result;
+ for (int i = 0; i < 3; i++) {
+ result.m_data[i] = a.m_data[i] / s;
+ }
+ return result;
+}
+
+inline const vecx& vecx::operator=(const vecx& rhs) {
+ if (size() != rhs.size()) {
+ error_message("size missmatch, size()= %d but rhs.size()= %d\n", size(), rhs.size());
+ abort();
+ }
+ if (&rhs != this) {
+ memcpy(m_data, rhs.m_data, rhs.size() * sizeof(idScalar));
+ }
+ return *this;
+}
+inline vecx operator*(const vecx& a, const idScalar& s) {
+ vecx result(a.size());
+ for (int i = 0; i < result.size(); i++) {
+ result.m_data[i] = a.m_data[i] * s;
+ }
+ return result;
+}
+inline vecx operator*(const idScalar& s, const vecx& a) { return a * s; }
+inline vecx operator+(const vecx& a, const vecx& b) {
+ vecx result(a.size());
+ // TODO: error handling for a.size() != b.size()??
+ if (a.size() != b.size()) {
+ error_message("size missmatch. a.size()= %d, b.size()= %d\n", a.size(), b.size());
+ abort();
+ }
+ for (int i = 0; i < a.size(); i++) {
+ result.m_data[i] = a.m_data[i] + b.m_data[i];
+ }
+
+ return result;
+}
+inline vecx operator-(const vecx& a, const vecx& b) {
+ vecx result(a.size());
+ // TODO: error handling for a.size() != b.size()??
+ if (a.size() != b.size()) {
+ error_message("size missmatch. a.size()= %d, b.size()= %d\n", a.size(), b.size());
+ abort();
+ }
+ for (int i = 0; i < a.size(); i++) {
+ result.m_data[i] = a.m_data[i] - b.m_data[i];
+ }
+ return result;
+}
+inline vecx operator/(const vecx& a, const idScalar& s) {
+ vecx result(a.size());
+ for (int i = 0; i < result.size(); i++) {
+ result.m_data[i] = a.m_data[i] / s;
+ }
+
+ return result;
+}
+
+inline vec3 operator*(const mat3x& a, const vecx& b) {
+ vec3 result;
+ if (a.cols() != b.size()) {
+ error_message("size missmatch. a.cols()= %d, b.size()= %d\n", a.cols(), b.size());
+ abort();
+ }
+ result(0)=0.0;
+ result(1)=0.0;
+ result(2)=0.0;
+ for(int i=0;i<b.size();i++) {
+ for(int k=0;k<3;k++) {
+ result(k)+=a(k,i)*b(i);
+ }
+ }
+ return result;
+}
+
+inline void setMatxxElem(const idArrayIdx row, const idArrayIdx col, const idScalar val, matxx*m){
+ (*m)(row, col) = val;
+}
+
+inline void setMat3xElem(const idArrayIdx row, const idArrayIdx col, const idScalar val, mat3x*m){
+ (*m)(row, col) = val;
+}
+
+} // namespace btInverseDynamcis
+#endif