diff options
Diffstat (limited to 'thirdparty/bullet/BulletInverseDynamics/IDMath.cpp')
-rw-r--r-- | thirdparty/bullet/BulletInverseDynamics/IDMath.cpp | 369 |
1 files changed, 221 insertions, 148 deletions
diff --git a/thirdparty/bullet/BulletInverseDynamics/IDMath.cpp b/thirdparty/bullet/BulletInverseDynamics/IDMath.cpp index 99fe20e492..2f120ed489 100644 --- a/thirdparty/bullet/BulletInverseDynamics/IDMath.cpp +++ b/thirdparty/bullet/BulletInverseDynamics/IDMath.cpp @@ -3,25 +3,30 @@ #include <cmath> #include <limits> -namespace btInverseDynamics { +namespace btInverseDynamics +{ static const idScalar kIsZero = 5 * std::numeric_limits<idScalar>::epsilon(); // requirements for axis length deviation from 1.0 // experimentally set from random euler angle rotation matrices static const idScalar kAxisLengthEpsilon = 10 * kIsZero; -void setZero(vec3 &v) { +void setZero(vec3 &v) +{ v(0) = 0; v(1) = 0; v(2) = 0; } -void setZero(vecx &v) { - for (int i = 0; i < v.size(); i++) { +void setZero(vecx &v) +{ + for (int i = 0; i < v.size(); i++) + { v(i) = 0; } } -void setZero(mat33 &m) { +void setZero(mat33 &m) +{ m(0, 0) = 0; m(0, 1) = 0; m(0, 2) = 0; @@ -33,7 +38,8 @@ void setZero(mat33 &m) { m(2, 2) = 0; } -void skew(vec3& v, mat33* result) { +void skew(vec3 &v, mat33 *result) +{ (*result)(0, 0) = 0.0; (*result)(0, 1) = -v(2); (*result)(0, 2) = v(1); @@ -45,22 +51,28 @@ void skew(vec3& v, mat33* result) { (*result)(2, 2) = 0.0; } -idScalar maxAbs(const vecx &v) { +idScalar maxAbs(const vecx &v) +{ idScalar result = 0.0; - for (int i = 0; i < v.size(); i++) { + for (int i = 0; i < v.size(); i++) + { const idScalar tmp = BT_ID_FABS(v(i)); - if (tmp > result) { + if (tmp > result) + { result = tmp; } } return result; } -idScalar maxAbs(const vec3 &v) { +idScalar maxAbs(const vec3 &v) +{ idScalar result = 0.0; - for (int i = 0; i < 3; i++) { + for (int i = 0; i < 3; i++) + { const idScalar tmp = BT_ID_FABS(v(i)); - if (tmp > result) { + if (tmp > result) + { result = tmp; } } @@ -68,60 +80,75 @@ idScalar maxAbs(const vec3 &v) { } #if (defined BT_ID_HAVE_MAT3X) -idScalar maxAbsMat3x(const mat3x &m) { - // only used for tests -- so just loop here for portability - idScalar result = 0.0; - for (idArrayIdx col = 0; col < m.cols(); col++) { - for (idArrayIdx row = 0; row < 3; row++) { - result = BT_ID_MAX(result, std::fabs(m(row, col))); - } - } - return result; +idScalar maxAbsMat3x(const mat3x &m) +{ + // only used for tests -- so just loop here for portability + idScalar result = 0.0; + for (idArrayIdx col = 0; col < m.cols(); col++) + { + for (idArrayIdx row = 0; row < 3; row++) + { + result = BT_ID_MAX(result, std::fabs(m(row, col))); + } + } + return result; } -void mul(const mat33 &a, const mat3x &b, mat3x *result) { - if (b.cols() != result->cols()) { - error_message("size missmatch. b.cols()= %d, result->cols()= %d\n", - static_cast<int>(b.cols()), static_cast<int>(result->cols())); - abort(); - } - - for (idArrayIdx col = 0; col < b.cols(); col++) { - const idScalar x = a(0,0)*b(0,col)+a(0,1)*b(1,col)+a(0,2)*b(2,col); - const idScalar y = a(1,0)*b(0,col)+a(1,1)*b(1,col)+a(1,2)*b(2,col); - const idScalar z = a(2,0)*b(0,col)+a(2,1)*b(1,col)+a(2,2)*b(2,col); - setMat3xElem(0, col, x, result); - setMat3xElem(1, col, y, result); - setMat3xElem(2, col, z, result); - } +void mul(const mat33 &a, const mat3x &b, mat3x *result) +{ + if (b.cols() != result->cols()) + { + bt_id_error_message("size missmatch. b.cols()= %d, result->cols()= %d\n", + static_cast<int>(b.cols()), static_cast<int>(result->cols())); + abort(); + } + + for (idArrayIdx col = 0; col < b.cols(); col++) + { + const idScalar x = a(0, 0) * b(0, col) + a(0, 1) * b(1, col) + a(0, 2) * b(2, col); + const idScalar y = a(1, 0) * b(0, col) + a(1, 1) * b(1, col) + a(1, 2) * b(2, col); + const idScalar z = a(2, 0) * b(0, col) + a(2, 1) * b(1, col) + a(2, 2) * b(2, col); + setMat3xElem(0, col, x, result); + setMat3xElem(1, col, y, result); + setMat3xElem(2, col, z, result); + } } -void add(const mat3x &a, const mat3x &b, mat3x *result) { - if (a.cols() != b.cols()) { - error_message("size missmatch. a.cols()= %d, b.cols()= %d\n", - static_cast<int>(a.cols()), static_cast<int>(b.cols())); - abort(); - } - for (idArrayIdx col = 0; col < b.cols(); col++) { - for (idArrayIdx row = 0; row < 3; row++) { - setMat3xElem(row, col, a(row, col) + b(row, col), result); - } - } +void add(const mat3x &a, const mat3x &b, mat3x *result) +{ + if (a.cols() != b.cols()) + { + bt_id_error_message("size missmatch. a.cols()= %d, b.cols()= %d\n", + static_cast<int>(a.cols()), static_cast<int>(b.cols())); + abort(); + } + for (idArrayIdx col = 0; col < b.cols(); col++) + { + for (idArrayIdx row = 0; row < 3; row++) + { + setMat3xElem(row, col, a(row, col) + b(row, col), result); + } + } } -void sub(const mat3x &a, const mat3x &b, mat3x *result) { - if (a.cols() != b.cols()) { - error_message("size missmatch. a.cols()= %d, b.cols()= %d\n", - static_cast<int>(a.cols()), static_cast<int>(b.cols())); - abort(); - } - for (idArrayIdx col = 0; col < b.cols(); col++) { - for (idArrayIdx row = 0; row < 3; row++) { - setMat3xElem(row, col, a(row, col) - b(row, col), result); - } - } +void sub(const mat3x &a, const mat3x &b, mat3x *result) +{ + if (a.cols() != b.cols()) + { + bt_id_error_message("size missmatch. a.cols()= %d, b.cols()= %d\n", + static_cast<int>(a.cols()), static_cast<int>(b.cols())); + abort(); + } + for (idArrayIdx col = 0; col < b.cols(); col++) + { + for (idArrayIdx row = 0; row < 3; row++) + { + setMat3xElem(row, col, a(row, col) - b(row, col), result); + } + } } #endif -mat33 transformX(const idScalar &alpha) { +mat33 transformX(const idScalar &alpha) +{ mat33 T; const idScalar cos_alpha = BT_ID_COS(alpha); const idScalar sin_alpha = BT_ID_SIN(alpha); @@ -143,7 +170,8 @@ mat33 transformX(const idScalar &alpha) { return T; } -mat33 transformY(const idScalar &beta) { +mat33 transformY(const idScalar &beta) +{ mat33 T; const idScalar cos_beta = BT_ID_COS(beta); const idScalar sin_beta = BT_ID_SIN(beta); @@ -165,7 +193,8 @@ mat33 transformY(const idScalar &beta) { return T; } -mat33 transformZ(const idScalar &gamma) { +mat33 transformZ(const idScalar &gamma) +{ mat33 T; const idScalar cos_gamma = BT_ID_COS(gamma); const idScalar sin_gamma = BT_ID_SIN(gamma); @@ -187,7 +216,8 @@ mat33 transformZ(const idScalar &gamma) { return T; } -mat33 tildeOperator(const vec3 &v) { +mat33 tildeOperator(const vec3 &v) +{ mat33 m; m(0, 0) = 0.0; m(0, 1) = -v(2); @@ -201,7 +231,8 @@ mat33 tildeOperator(const vec3 &v) { return m; } -void getVecMatFromDH(idScalar theta, idScalar d, idScalar a, idScalar alpha, vec3 *r, mat33 *T) { +void getVecMatFromDH(idScalar theta, idScalar d, idScalar a, idScalar alpha, vec3 *r, mat33 *T) +{ const idScalar sa = BT_ID_SIN(alpha); const idScalar ca = BT_ID_COS(alpha); const idScalar st = BT_ID_SIN(theta); @@ -224,7 +255,8 @@ void getVecMatFromDH(idScalar theta, idScalar d, idScalar a, idScalar alpha, vec (*T)(2, 2) = ca; } -void bodyTParentFromAxisAngle(const vec3 &axis, const idScalar &angle, mat33 *T) { +void bodyTParentFromAxisAngle(const vec3 &axis, const idScalar &angle, mat33 *T) +{ const idScalar c = BT_ID_COS(angle); const idScalar s = -BT_ID_SIN(angle); const idScalar one_m_c = 1.0 - c; @@ -246,192 +278,233 @@ void bodyTParentFromAxisAngle(const vec3 &axis, const idScalar &angle, mat33 *T) (*T)(2, 2) = z * z * one_m_c + c; } -bool isPositiveDefinite(const mat33 &m) { +bool isPositiveDefinite(const mat33 &m) +{ // test if all upper left determinants are positive - if (m(0, 0) <= 0) { // upper 1x1 + if (m(0, 0) <= 0) + { // upper 1x1 return false; } - if (m(0, 0) * m(1, 1) - m(0, 1) * m(1, 0) <= 0) { // upper 2x2 + if (m(0, 0) * m(1, 1) - m(0, 1) * m(1, 0) <= 0) + { // upper 2x2 return false; } if ((m(0, 0) * (m(1, 1) * m(2, 2) - m(1, 2) * m(2, 1)) - m(0, 1) * (m(1, 0) * m(2, 2) - m(1, 2) * m(2, 0)) + - m(0, 2) * (m(1, 0) * m(2, 1) - m(1, 1) * m(2, 0))) < 0) { + m(0, 2) * (m(1, 0) * m(2, 1) - m(1, 1) * m(2, 0))) < 0) + { return false; } return true; } -bool isPositiveSemiDefinite(const mat33 &m) { +bool isPositiveSemiDefinite(const mat33 &m) +{ // test if all upper left determinants are positive - if (m(0, 0) < 0) { // upper 1x1 + if (m(0, 0) < 0) + { // upper 1x1 return false; } - if (m(0, 0) * m(1, 1) - m(0, 1) * m(1, 0) < 0) { // upper 2x2 + if (m(0, 0) * m(1, 1) - m(0, 1) * m(1, 0) < 0) + { // upper 2x2 return false; } if ((m(0, 0) * (m(1, 1) * m(2, 2) - m(1, 2) * m(2, 1)) - m(0, 1) * (m(1, 0) * m(2, 2) - m(1, 2) * m(2, 0)) + - m(0, 2) * (m(1, 0) * m(2, 1) - m(1, 1) * m(2, 0))) < 0) { + m(0, 2) * (m(1, 0) * m(2, 1) - m(1, 1) * m(2, 0))) < 0) + { return false; } return true; } -bool isPositiveSemiDefiniteFuzzy(const mat33 &m) { +bool isPositiveSemiDefiniteFuzzy(const mat33 &m) +{ // test if all upper left determinants are positive - if (m(0, 0) < -kIsZero) { // upper 1x1 + if (m(0, 0) < -kIsZero) + { // upper 1x1 return false; } - if (m(0, 0) * m(1, 1) - m(0, 1) * m(1, 0) < -kIsZero) { // upper 2x2 + if (m(0, 0) * m(1, 1) - m(0, 1) * m(1, 0) < -kIsZero) + { // upper 2x2 return false; } if ((m(0, 0) * (m(1, 1) * m(2, 2) - m(1, 2) * m(2, 1)) - m(0, 1) * (m(1, 0) * m(2, 2) - m(1, 2) * m(2, 0)) + - m(0, 2) * (m(1, 0) * m(2, 1) - m(1, 1) * m(2, 0))) < -kIsZero) { + m(0, 2) * (m(1, 0) * m(2, 1) - m(1, 1) * m(2, 0))) < -kIsZero) + { return false; } return true; } -idScalar determinant(const mat33 &m) { +idScalar determinant(const mat33 &m) +{ return m(0, 0) * m(1, 1) * m(2, 2) + m(0, 1) * m(1, 2) * m(2, 0) + m(0, 2) * m(1, 0) * m(2, 1) - m(0, 2) * m(1, 1) * m(2, 0) - m(0, 0) * m(1, 2) * m(2, 1) - m(0, 1) * m(1, 0) * m(2, 2); } -bool isValidInertiaMatrix(const mat33 &I, const int index, bool has_fixed_joint) { +bool isValidInertiaMatrix(const mat33 &I, const int index, bool has_fixed_joint) +{ // TODO(Thomas) do we really want this? // in cases where the inertia tensor about the center of mass is zero, // the determinant of the inertia tensor about the joint axis is almost // zero and can have a very small negative value. - if (!isPositiveSemiDefiniteFuzzy(I)) { - error_message("invalid inertia matrix for body %d, not positive definite " - "(fixed joint)\n", - index); - error_message("matrix is:\n" - "[%.20e %.20e %.20e;\n" - "%.20e %.20e %.20e;\n" - "%.20e %.20e %.20e]\n", - I(0, 0), I(0, 1), I(0, 2), I(1, 0), I(1, 1), I(1, 2), I(2, 0), I(2, 1), - I(2, 2)); + if (!isPositiveSemiDefiniteFuzzy(I)) + { + bt_id_error_message( + "invalid inertia matrix for body %d, not positive definite " + "(fixed joint)\n", + index); + bt_id_error_message( + "matrix is:\n" + "[%.20e %.20e %.20e;\n" + "%.20e %.20e %.20e;\n" + "%.20e %.20e %.20e]\n", + I(0, 0), I(0, 1), I(0, 2), I(1, 0), I(1, 1), I(1, 2), I(2, 0), I(2, 1), + I(2, 2)); return false; } // check triangle inequality, must have I(i,i)+I(j,j)>=I(k,k) - if (!has_fixed_joint) { - if (I(0, 0) + I(1, 1) < I(2, 2)) { - error_message("invalid inertia tensor for body %d, I(0,0) + I(1,1) < I(2,2)\n", index); - error_message("matrix is:\n" - "[%.20e %.20e %.20e;\n" - "%.20e %.20e %.20e;\n" - "%.20e %.20e %.20e]\n", - I(0, 0), I(0, 1), I(0, 2), I(1, 0), I(1, 1), I(1, 2), I(2, 0), I(2, 1), - I(2, 2)); + if (!has_fixed_joint) + { + if (I(0, 0) + I(1, 1) < I(2, 2)) + { + bt_id_error_message("invalid inertia tensor for body %d, I(0,0) + I(1,1) < I(2,2)\n", index); + bt_id_error_message( + "matrix is:\n" + "[%.20e %.20e %.20e;\n" + "%.20e %.20e %.20e;\n" + "%.20e %.20e %.20e]\n", + I(0, 0), I(0, 1), I(0, 2), I(1, 0), I(1, 1), I(1, 2), I(2, 0), I(2, 1), + I(2, 2)); return false; } - if (I(0, 0) + I(1, 1) < I(2, 2)) { - error_message("invalid inertia tensor for body %d, I(0,0) + I(1,1) < I(2,2)\n", index); - error_message("matrix is:\n" - "[%.20e %.20e %.20e;\n" - "%.20e %.20e %.20e;\n" - "%.20e %.20e %.20e]\n", - I(0, 0), I(0, 1), I(0, 2), I(1, 0), I(1, 1), I(1, 2), I(2, 0), I(2, 1), - I(2, 2)); + if (I(0, 0) + I(1, 1) < I(2, 2)) + { + bt_id_error_message("invalid inertia tensor for body %d, I(0,0) + I(1,1) < I(2,2)\n", index); + bt_id_error_message( + "matrix is:\n" + "[%.20e %.20e %.20e;\n" + "%.20e %.20e %.20e;\n" + "%.20e %.20e %.20e]\n", + I(0, 0), I(0, 1), I(0, 2), I(1, 0), I(1, 1), I(1, 2), I(2, 0), I(2, 1), + I(2, 2)); return false; } - if (I(1, 1) + I(2, 2) < I(0, 0)) { - error_message("invalid inertia tensor for body %d, I(1,1) + I(2,2) < I(0,0)\n", index); - error_message("matrix is:\n" - "[%.20e %.20e %.20e;\n" - "%.20e %.20e %.20e;\n" - "%.20e %.20e %.20e]\n", - I(0, 0), I(0, 1), I(0, 2), I(1, 0), I(1, 1), I(1, 2), I(2, 0), I(2, 1), - I(2, 2)); + if (I(1, 1) + I(2, 2) < I(0, 0)) + { + bt_id_error_message("invalid inertia tensor for body %d, I(1,1) + I(2,2) < I(0,0)\n", index); + bt_id_error_message( + "matrix is:\n" + "[%.20e %.20e %.20e;\n" + "%.20e %.20e %.20e;\n" + "%.20e %.20e %.20e]\n", + I(0, 0), I(0, 1), I(0, 2), I(1, 0), I(1, 1), I(1, 2), I(2, 0), I(2, 1), + I(2, 2)); return false; } } // check positive/zero diagonal elements - for (int i = 0; i < 3; i++) { - if (I(i, i) < 0) { // accept zero - error_message("invalid inertia tensor, I(%d,%d)= %e <0\n", i, i, I(i, i)); + for (int i = 0; i < 3; i++) + { + if (I(i, i) < 0) + { // accept zero + bt_id_error_message("invalid inertia tensor, I(%d,%d)= %e <0\n", i, i, I(i, i)); return false; } } // check symmetry - if (BT_ID_FABS(I(1, 0) - I(0, 1)) > kIsZero) { - error_message("invalid inertia tensor for body %d I(1,0)!=I(0,1). I(1,0)-I(0,1)= " - "%e\n", - index, I(1, 0) - I(0, 1)); + if (BT_ID_FABS(I(1, 0) - I(0, 1)) > kIsZero) + { + bt_id_error_message( + "invalid inertia tensor for body %d I(1,0)!=I(0,1). I(1,0)-I(0,1)= " + "%e\n", + index, I(1, 0) - I(0, 1)); return false; } - if (BT_ID_FABS(I(2, 0) - I(0, 2)) > kIsZero) { - error_message("invalid inertia tensor for body %d I(2,0)!=I(0,2). I(2,0)-I(0,2)= " - "%e\n", - index, I(2, 0) - I(0, 2)); + if (BT_ID_FABS(I(2, 0) - I(0, 2)) > kIsZero) + { + bt_id_error_message( + "invalid inertia tensor for body %d I(2,0)!=I(0,2). I(2,0)-I(0,2)= " + "%e\n", + index, I(2, 0) - I(0, 2)); return false; } - if (BT_ID_FABS(I(1, 2) - I(2, 1)) > kIsZero) { - error_message("invalid inertia tensor body %d I(1,2)!=I(2,1). I(1,2)-I(2,1)= %e\n", index, - I(1, 2) - I(2, 1)); + if (BT_ID_FABS(I(1, 2) - I(2, 1)) > kIsZero) + { + bt_id_error_message("invalid inertia tensor body %d I(1,2)!=I(2,1). I(1,2)-I(2,1)= %e\n", index, + I(1, 2) - I(2, 1)); return false; } return true; } -bool isValidTransformMatrix(const mat33 &m) { -#define print_mat(x) \ - error_message("matrix is [%e, %e, %e; %e, %e, %e; %e, %e, %e]\n", x(0, 0), x(0, 1), x(0, 2), \ - x(1, 0), x(1, 1), x(1, 2), x(2, 0), x(2, 1), x(2, 2)) +bool isValidTransformMatrix(const mat33 &m) +{ +#define print_mat(x) \ + bt_id_error_message("matrix is [%e, %e, %e; %e, %e, %e; %e, %e, %e]\n", x(0, 0), x(0, 1), x(0, 2), \ + x(1, 0), x(1, 1), x(1, 2), x(2, 0), x(2, 1), x(2, 2)) // check for unit length column vectors - for (int i = 0; i < 3; i++) { + for (int i = 0; i < 3; i++) + { const idScalar length_minus_1 = BT_ID_FABS(m(0, i) * m(0, i) + m(1, i) * m(1, i) + m(2, i) * m(2, i) - 1.0); - if (length_minus_1 > kAxisLengthEpsilon) { - error_message("Not a valid rotation matrix (column %d not unit length)\n" - "column = [%.18e %.18e %.18e]\n" - "length-1.0= %.18e\n", - i, m(0, i), m(1, i), m(2, i), length_minus_1); + if (length_minus_1 > kAxisLengthEpsilon) + { + bt_id_error_message( + "Not a valid rotation matrix (column %d not unit length)\n" + "column = [%.18e %.18e %.18e]\n" + "length-1.0= %.18e\n", + i, m(0, i), m(1, i), m(2, i), length_minus_1); print_mat(m); return false; } } // check for orthogonal column vectors - if (BT_ID_FABS(m(0, 0) * m(0, 1) + m(1, 0) * m(1, 1) + m(2, 0) * m(2, 1)) > kAxisLengthEpsilon) { - error_message("Not a valid rotation matrix (columns 0 and 1 not orthogonal)\n"); + if (BT_ID_FABS(m(0, 0) * m(0, 1) + m(1, 0) * m(1, 1) + m(2, 0) * m(2, 1)) > kAxisLengthEpsilon) + { + bt_id_error_message("Not a valid rotation matrix (columns 0 and 1 not orthogonal)\n"); print_mat(m); return false; } - if (BT_ID_FABS(m(0, 0) * m(0, 2) + m(1, 0) * m(1, 2) + m(2, 0) * m(2, 2)) > kAxisLengthEpsilon) { - error_message("Not a valid rotation matrix (columns 0 and 2 not orthogonal)\n"); + if (BT_ID_FABS(m(0, 0) * m(0, 2) + m(1, 0) * m(1, 2) + m(2, 0) * m(2, 2)) > kAxisLengthEpsilon) + { + bt_id_error_message("Not a valid rotation matrix (columns 0 and 2 not orthogonal)\n"); print_mat(m); return false; } - if (BT_ID_FABS(m(0, 1) * m(0, 2) + m(1, 1) * m(1, 2) + m(2, 1) * m(2, 2)) > kAxisLengthEpsilon) { - error_message("Not a valid rotation matrix (columns 0 and 2 not orthogonal)\n"); + if (BT_ID_FABS(m(0, 1) * m(0, 2) + m(1, 1) * m(1, 2) + m(2, 1) * m(2, 2)) > kAxisLengthEpsilon) + { + bt_id_error_message("Not a valid rotation matrix (columns 0 and 2 not orthogonal)\n"); print_mat(m); return false; } // check determinant (rotation not reflection) - if (determinant(m) <= 0) { - error_message("Not a valid rotation matrix (determinant <=0)\n"); + if (determinant(m) <= 0) + { + bt_id_error_message("Not a valid rotation matrix (determinant <=0)\n"); print_mat(m); return false; } return true; } -bool isUnitVector(const vec3 &vector) { +bool isUnitVector(const vec3 &vector) +{ return BT_ID_FABS(vector(0) * vector(0) + vector(1) * vector(1) + vector(2) * vector(2) - 1.0) < kIsZero; } -vec3 rpyFromMatrix(const mat33 &rot) { +vec3 rpyFromMatrix(const mat33 &rot) +{ vec3 rpy; rpy(2) = BT_ID_ATAN2(-rot(1, 0), rot(0, 0)); rpy(1) = BT_ID_ATAN2(rot(2, 0), BT_ID_COS(rpy(2)) * rot(0, 0) - BT_ID_SIN(rpy(0)) * rot(1, 0)); rpy(0) = BT_ID_ATAN2(-rot(2, 0), rot(2, 2)); return rpy; } -} +} // namespace btInverseDynamics |