summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletDynamics/MLCPSolvers
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/bullet/BulletDynamics/MLCPSolvers')
-rw-r--r--thirdparty/bullet/BulletDynamics/MLCPSolvers/btDantzigLCP.cpp3526
-rw-r--r--thirdparty/bullet/BulletDynamics/MLCPSolvers/btDantzigLCP.h12
-rw-r--r--thirdparty/bullet/BulletDynamics/MLCPSolvers/btDantzigSolver.h32
-rw-r--r--thirdparty/bullet/BulletDynamics/MLCPSolvers/btLemkeAlgorithm.cpp482
-rw-r--r--thirdparty/bullet/BulletDynamics/MLCPSolvers/btLemkeAlgorithm.h82
-rw-r--r--thirdparty/bullet/BulletDynamics/MLCPSolvers/btLemkeSolver.h476
-rw-r--r--thirdparty/bullet/BulletDynamics/MLCPSolvers/btMLCPSolver.cpp395
-rw-r--r--thirdparty/bullet/BulletDynamics/MLCPSolvers/btMLCPSolver.h40
-rw-r--r--thirdparty/bullet/BulletDynamics/MLCPSolvers/btMLCPSolverInterface.h4
-rw-r--r--thirdparty/bullet/BulletDynamics/MLCPSolvers/btPATHSolver.h61
-rw-r--r--thirdparty/bullet/BulletDynamics/MLCPSolvers/btSolveProjectedGaussSeidel.h65
11 files changed, 2593 insertions, 2582 deletions
diff --git a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btDantzigLCP.cpp b/thirdparty/bullet/BulletDynamics/MLCPSolvers/btDantzigLCP.cpp
index 986f214870..98ecdc0794 100644
--- a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btDantzigLCP.cpp
+++ b/thirdparty/bullet/BulletDynamics/MLCPSolvers/btDantzigLCP.cpp
@@ -108,18 +108,16 @@ rows/columns and manipulate C.
*/
-
#include "btDantzigLCP.h"
-#include <string.h>//memcpy
+#include <string.h> //memcpy
bool s_error = false;
//***************************************************************************
// code generation parameters
-
-#define btLCP_FAST // use fast btLCP object
+#define btLCP_FAST // use fast btLCP object
// option 1 : matrix row pointers (less data copying)
#define BTROWPTRS
@@ -133,8 +131,6 @@ bool s_error = false;
#define BTNUB_OPTIMIZATIONS
-
-
/* solve L*X=B, with B containing 1 right hand sides.
* L is an n*n lower triangular matrix with ones on the diagonal.
* L is stored by rows and its leading dimension is lskip.
@@ -145,66 +141,69 @@ bool s_error = false;
* if this is in the factorizer source file, n must be a multiple of 2.
*/
-static void btSolveL1_1 (const btScalar *L, btScalar *B, int n, int lskip1)
-{
- /* declare variables - Z matrix, p and q vectors, etc */
- btScalar Z11,m11,Z21,m21,p1,q1,p2,*ex;
- const btScalar *ell;
- int i,j;
- /* compute all 2 x 1 blocks of X */
- for (i=0; i < n; i+=2) {
- /* compute all 2 x 1 block of X, from rows i..i+2-1 */
- /* set the Z matrix to 0 */
- Z11=0;
- Z21=0;
- ell = L + i*lskip1;
- ex = B;
- /* the inner loop that computes outer products and adds them to Z */
- for (j=i-2; j >= 0; j -= 2) {
- /* compute outer product and add it to the Z matrix */
- p1=ell[0];
- q1=ex[0];
- m11 = p1 * q1;
- p2=ell[lskip1];
- m21 = p2 * q1;
- Z11 += m11;
- Z21 += m21;
- /* compute outer product and add it to the Z matrix */
- p1=ell[1];
- q1=ex[1];
- m11 = p1 * q1;
- p2=ell[1+lskip1];
- m21 = p2 * q1;
- /* advance pointers */
- ell += 2;
- ex += 2;
- Z11 += m11;
- Z21 += m21;
- /* end of inner loop */
- }
- /* compute left-over iterations */
- j += 2;
- for (; j > 0; j--) {
- /* compute outer product and add it to the Z matrix */
- p1=ell[0];
- q1=ex[0];
- m11 = p1 * q1;
- p2=ell[lskip1];
- m21 = p2 * q1;
- /* advance pointers */
- ell += 1;
- ex += 1;
- Z11 += m11;
- Z21 += m21;
- }
- /* finish computing the X(i) block */
- Z11 = ex[0] - Z11;
- ex[0] = Z11;
- p1 = ell[lskip1];
- Z21 = ex[1] - Z21 - p1*Z11;
- ex[1] = Z21;
- /* end of outer loop */
- }
+static void btSolveL1_1(const btScalar *L, btScalar *B, int n, int lskip1)
+{
+ /* declare variables - Z matrix, p and q vectors, etc */
+ btScalar Z11, m11, Z21, m21, p1, q1, p2, *ex;
+ const btScalar *ell;
+ int i, j;
+ /* compute all 2 x 1 blocks of X */
+ for (i = 0; i < n; i += 2)
+ {
+ /* compute all 2 x 1 block of X, from rows i..i+2-1 */
+ /* set the Z matrix to 0 */
+ Z11 = 0;
+ Z21 = 0;
+ ell = L + i * lskip1;
+ ex = B;
+ /* the inner loop that computes outer products and adds them to Z */
+ for (j = i - 2; j >= 0; j -= 2)
+ {
+ /* compute outer product and add it to the Z matrix */
+ p1 = ell[0];
+ q1 = ex[0];
+ m11 = p1 * q1;
+ p2 = ell[lskip1];
+ m21 = p2 * q1;
+ Z11 += m11;
+ Z21 += m21;
+ /* compute outer product and add it to the Z matrix */
+ p1 = ell[1];
+ q1 = ex[1];
+ m11 = p1 * q1;
+ p2 = ell[1 + lskip1];
+ m21 = p2 * q1;
+ /* advance pointers */
+ ell += 2;
+ ex += 2;
+ Z11 += m11;
+ Z21 += m21;
+ /* end of inner loop */
+ }
+ /* compute left-over iterations */
+ j += 2;
+ for (; j > 0; j--)
+ {
+ /* compute outer product and add it to the Z matrix */
+ p1 = ell[0];
+ q1 = ex[0];
+ m11 = p1 * q1;
+ p2 = ell[lskip1];
+ m21 = p2 * q1;
+ /* advance pointers */
+ ell += 1;
+ ex += 1;
+ Z11 += m11;
+ Z21 += m21;
+ }
+ /* finish computing the X(i) block */
+ Z11 = ex[0] - Z11;
+ ex[0] = Z11;
+ p1 = ell[lskip1];
+ Z21 = ex[1] - Z21 - p1 * Z11;
+ ex[1] = Z21;
+ /* end of outer loop */
+ }
}
/* solve L*X=B, with B containing 2 right hand sides.
@@ -217,300 +216,308 @@ static void btSolveL1_1 (const btScalar *L, btScalar *B, int n, int lskip1)
* if this is in the factorizer source file, n must be a multiple of 2.
*/
-static void btSolveL1_2 (const btScalar *L, btScalar *B, int n, int lskip1)
-{
- /* declare variables - Z matrix, p and q vectors, etc */
- btScalar Z11,m11,Z12,m12,Z21,m21,Z22,m22,p1,q1,p2,q2,*ex;
- const btScalar *ell;
- int i,j;
- /* compute all 2 x 2 blocks of X */
- for (i=0; i < n; i+=2) {
- /* compute all 2 x 2 block of X, from rows i..i+2-1 */
- /* set the Z matrix to 0 */
- Z11=0;
- Z12=0;
- Z21=0;
- Z22=0;
- ell = L + i*lskip1;
- ex = B;
- /* the inner loop that computes outer products and adds them to Z */
- for (j=i-2; j >= 0; j -= 2) {
- /* compute outer product and add it to the Z matrix */
- p1=ell[0];
- q1=ex[0];
- m11 = p1 * q1;
- q2=ex[lskip1];
- m12 = p1 * q2;
- p2=ell[lskip1];
- m21 = p2 * q1;
- m22 = p2 * q2;
- Z11 += m11;
- Z12 += m12;
- Z21 += m21;
- Z22 += m22;
- /* compute outer product and add it to the Z matrix */
- p1=ell[1];
- q1=ex[1];
- m11 = p1 * q1;
- q2=ex[1+lskip1];
- m12 = p1 * q2;
- p2=ell[1+lskip1];
- m21 = p2 * q1;
- m22 = p2 * q2;
- /* advance pointers */
- ell += 2;
- ex += 2;
- Z11 += m11;
- Z12 += m12;
- Z21 += m21;
- Z22 += m22;
- /* end of inner loop */
- }
- /* compute left-over iterations */
- j += 2;
- for (; j > 0; j--) {
- /* compute outer product and add it to the Z matrix */
- p1=ell[0];
- q1=ex[0];
- m11 = p1 * q1;
- q2=ex[lskip1];
- m12 = p1 * q2;
- p2=ell[lskip1];
- m21 = p2 * q1;
- m22 = p2 * q2;
- /* advance pointers */
- ell += 1;
- ex += 1;
- Z11 += m11;
- Z12 += m12;
- Z21 += m21;
- Z22 += m22;
- }
- /* finish computing the X(i) block */
- Z11 = ex[0] - Z11;
- ex[0] = Z11;
- Z12 = ex[lskip1] - Z12;
- ex[lskip1] = Z12;
- p1 = ell[lskip1];
- Z21 = ex[1] - Z21 - p1*Z11;
- ex[1] = Z21;
- Z22 = ex[1+lskip1] - Z22 - p1*Z12;
- ex[1+lskip1] = Z22;
- /* end of outer loop */
- }
+static void btSolveL1_2(const btScalar *L, btScalar *B, int n, int lskip1)
+{
+ /* declare variables - Z matrix, p and q vectors, etc */
+ btScalar Z11, m11, Z12, m12, Z21, m21, Z22, m22, p1, q1, p2, q2, *ex;
+ const btScalar *ell;
+ int i, j;
+ /* compute all 2 x 2 blocks of X */
+ for (i = 0; i < n; i += 2)
+ {
+ /* compute all 2 x 2 block of X, from rows i..i+2-1 */
+ /* set the Z matrix to 0 */
+ Z11 = 0;
+ Z12 = 0;
+ Z21 = 0;
+ Z22 = 0;
+ ell = L + i * lskip1;
+ ex = B;
+ /* the inner loop that computes outer products and adds them to Z */
+ for (j = i - 2; j >= 0; j -= 2)
+ {
+ /* compute outer product and add it to the Z matrix */
+ p1 = ell[0];
+ q1 = ex[0];
+ m11 = p1 * q1;
+ q2 = ex[lskip1];
+ m12 = p1 * q2;
+ p2 = ell[lskip1];
+ m21 = p2 * q1;
+ m22 = p2 * q2;
+ Z11 += m11;
+ Z12 += m12;
+ Z21 += m21;
+ Z22 += m22;
+ /* compute outer product and add it to the Z matrix */
+ p1 = ell[1];
+ q1 = ex[1];
+ m11 = p1 * q1;
+ q2 = ex[1 + lskip1];
+ m12 = p1 * q2;
+ p2 = ell[1 + lskip1];
+ m21 = p2 * q1;
+ m22 = p2 * q2;
+ /* advance pointers */
+ ell += 2;
+ ex += 2;
+ Z11 += m11;
+ Z12 += m12;
+ Z21 += m21;
+ Z22 += m22;
+ /* end of inner loop */
+ }
+ /* compute left-over iterations */
+ j += 2;
+ for (; j > 0; j--)
+ {
+ /* compute outer product and add it to the Z matrix */
+ p1 = ell[0];
+ q1 = ex[0];
+ m11 = p1 * q1;
+ q2 = ex[lskip1];
+ m12 = p1 * q2;
+ p2 = ell[lskip1];
+ m21 = p2 * q1;
+ m22 = p2 * q2;
+ /* advance pointers */
+ ell += 1;
+ ex += 1;
+ Z11 += m11;
+ Z12 += m12;
+ Z21 += m21;
+ Z22 += m22;
+ }
+ /* finish computing the X(i) block */
+ Z11 = ex[0] - Z11;
+ ex[0] = Z11;
+ Z12 = ex[lskip1] - Z12;
+ ex[lskip1] = Z12;
+ p1 = ell[lskip1];
+ Z21 = ex[1] - Z21 - p1 * Z11;
+ ex[1] = Z21;
+ Z22 = ex[1 + lskip1] - Z22 - p1 * Z12;
+ ex[1 + lskip1] = Z22;
+ /* end of outer loop */
+ }
}
+void btFactorLDLT(btScalar *A, btScalar *d, int n, int nskip1)
+{
+ int i, j;
+ btScalar sum, *ell, *dee, dd, p1, p2, q1, q2, Z11, m11, Z21, m21, Z22, m22;
+ if (n < 1) return;
-void btFactorLDLT (btScalar *A, btScalar *d, int n, int nskip1)
-{
- int i,j;
- btScalar sum,*ell,*dee,dd,p1,p2,q1,q2,Z11,m11,Z21,m21,Z22,m22;
- if (n < 1) return;
-
- for (i=0; i<=n-2; i += 2) {
- /* solve L*(D*l)=a, l is scaled elements in 2 x i block at A(i,0) */
- btSolveL1_2 (A,A+i*nskip1,i,nskip1);
- /* scale the elements in a 2 x i block at A(i,0), and also */
- /* compute Z = the outer product matrix that we'll need. */
- Z11 = 0;
- Z21 = 0;
- Z22 = 0;
- ell = A+i*nskip1;
- dee = d;
- for (j=i-6; j >= 0; j -= 6) {
- p1 = ell[0];
- p2 = ell[nskip1];
- dd = dee[0];
- q1 = p1*dd;
- q2 = p2*dd;
- ell[0] = q1;
- ell[nskip1] = q2;
- m11 = p1*q1;
- m21 = p2*q1;
- m22 = p2*q2;
- Z11 += m11;
- Z21 += m21;
- Z22 += m22;
- p1 = ell[1];
- p2 = ell[1+nskip1];
- dd = dee[1];
- q1 = p1*dd;
- q2 = p2*dd;
- ell[1] = q1;
- ell[1+nskip1] = q2;
- m11 = p1*q1;
- m21 = p2*q1;
- m22 = p2*q2;
- Z11 += m11;
- Z21 += m21;
- Z22 += m22;
- p1 = ell[2];
- p2 = ell[2+nskip1];
- dd = dee[2];
- q1 = p1*dd;
- q2 = p2*dd;
- ell[2] = q1;
- ell[2+nskip1] = q2;
- m11 = p1*q1;
- m21 = p2*q1;
- m22 = p2*q2;
- Z11 += m11;
- Z21 += m21;
- Z22 += m22;
- p1 = ell[3];
- p2 = ell[3+nskip1];
- dd = dee[3];
- q1 = p1*dd;
- q2 = p2*dd;
- ell[3] = q1;
- ell[3+nskip1] = q2;
- m11 = p1*q1;
- m21 = p2*q1;
- m22 = p2*q2;
- Z11 += m11;
- Z21 += m21;
- Z22 += m22;
- p1 = ell[4];
- p2 = ell[4+nskip1];
- dd = dee[4];
- q1 = p1*dd;
- q2 = p2*dd;
- ell[4] = q1;
- ell[4+nskip1] = q2;
- m11 = p1*q1;
- m21 = p2*q1;
- m22 = p2*q2;
- Z11 += m11;
- Z21 += m21;
- Z22 += m22;
- p1 = ell[5];
- p2 = ell[5+nskip1];
- dd = dee[5];
- q1 = p1*dd;
- q2 = p2*dd;
- ell[5] = q1;
- ell[5+nskip1] = q2;
- m11 = p1*q1;
- m21 = p2*q1;
- m22 = p2*q2;
- Z11 += m11;
- Z21 += m21;
- Z22 += m22;
- ell += 6;
- dee += 6;
- }
- /* compute left-over iterations */
- j += 6;
- for (; j > 0; j--) {
- p1 = ell[0];
- p2 = ell[nskip1];
- dd = dee[0];
- q1 = p1*dd;
- q2 = p2*dd;
- ell[0] = q1;
- ell[nskip1] = q2;
- m11 = p1*q1;
- m21 = p2*q1;
- m22 = p2*q2;
- Z11 += m11;
- Z21 += m21;
- Z22 += m22;
- ell++;
- dee++;
- }
- /* solve for diagonal 2 x 2 block at A(i,i) */
- Z11 = ell[0] - Z11;
- Z21 = ell[nskip1] - Z21;
- Z22 = ell[1+nskip1] - Z22;
- dee = d + i;
- /* factorize 2 x 2 block Z,dee */
- /* factorize row 1 */
- dee[0] = btRecip(Z11);
- /* factorize row 2 */
- sum = 0;
- q1 = Z21;
- q2 = q1 * dee[0];
- Z21 = q2;
- sum += q1*q2;
- dee[1] = btRecip(Z22 - sum);
- /* done factorizing 2 x 2 block */
- ell[nskip1] = Z21;
- }
- /* compute the (less than 2) rows at the bottom */
- switch (n-i) {
- case 0:
- break;
-
- case 1:
- btSolveL1_1 (A,A+i*nskip1,i,nskip1);
- /* scale the elements in a 1 x i block at A(i,0), and also */
- /* compute Z = the outer product matrix that we'll need. */
- Z11 = 0;
- ell = A+i*nskip1;
- dee = d;
- for (j=i-6; j >= 0; j -= 6) {
- p1 = ell[0];
- dd = dee[0];
- q1 = p1*dd;
- ell[0] = q1;
- m11 = p1*q1;
- Z11 += m11;
- p1 = ell[1];
- dd = dee[1];
- q1 = p1*dd;
- ell[1] = q1;
- m11 = p1*q1;
- Z11 += m11;
- p1 = ell[2];
- dd = dee[2];
- q1 = p1*dd;
- ell[2] = q1;
- m11 = p1*q1;
- Z11 += m11;
- p1 = ell[3];
- dd = dee[3];
- q1 = p1*dd;
- ell[3] = q1;
- m11 = p1*q1;
- Z11 += m11;
- p1 = ell[4];
- dd = dee[4];
- q1 = p1*dd;
- ell[4] = q1;
- m11 = p1*q1;
- Z11 += m11;
- p1 = ell[5];
- dd = dee[5];
- q1 = p1*dd;
- ell[5] = q1;
- m11 = p1*q1;
- Z11 += m11;
- ell += 6;
- dee += 6;
- }
- /* compute left-over iterations */
- j += 6;
- for (; j > 0; j--) {
- p1 = ell[0];
- dd = dee[0];
- q1 = p1*dd;
- ell[0] = q1;
- m11 = p1*q1;
- Z11 += m11;
- ell++;
- dee++;
- }
- /* solve for diagonal 1 x 1 block at A(i,i) */
- Z11 = ell[0] - Z11;
- dee = d + i;
- /* factorize 1 x 1 block Z,dee */
- /* factorize row 1 */
- dee[0] = btRecip(Z11);
- /* done factorizing 1 x 1 block */
- break;
-
- //default: *((char*)0)=0; /* this should never happen! */
- }
+ for (i = 0; i <= n - 2; i += 2)
+ {
+ /* solve L*(D*l)=a, l is scaled elements in 2 x i block at A(i,0) */
+ btSolveL1_2(A, A + i * nskip1, i, nskip1);
+ /* scale the elements in a 2 x i block at A(i,0), and also */
+ /* compute Z = the outer product matrix that we'll need. */
+ Z11 = 0;
+ Z21 = 0;
+ Z22 = 0;
+ ell = A + i * nskip1;
+ dee = d;
+ for (j = i - 6; j >= 0; j -= 6)
+ {
+ p1 = ell[0];
+ p2 = ell[nskip1];
+ dd = dee[0];
+ q1 = p1 * dd;
+ q2 = p2 * dd;
+ ell[0] = q1;
+ ell[nskip1] = q2;
+ m11 = p1 * q1;
+ m21 = p2 * q1;
+ m22 = p2 * q2;
+ Z11 += m11;
+ Z21 += m21;
+ Z22 += m22;
+ p1 = ell[1];
+ p2 = ell[1 + nskip1];
+ dd = dee[1];
+ q1 = p1 * dd;
+ q2 = p2 * dd;
+ ell[1] = q1;
+ ell[1 + nskip1] = q2;
+ m11 = p1 * q1;
+ m21 = p2 * q1;
+ m22 = p2 * q2;
+ Z11 += m11;
+ Z21 += m21;
+ Z22 += m22;
+ p1 = ell[2];
+ p2 = ell[2 + nskip1];
+ dd = dee[2];
+ q1 = p1 * dd;
+ q2 = p2 * dd;
+ ell[2] = q1;
+ ell[2 + nskip1] = q2;
+ m11 = p1 * q1;
+ m21 = p2 * q1;
+ m22 = p2 * q2;
+ Z11 += m11;
+ Z21 += m21;
+ Z22 += m22;
+ p1 = ell[3];
+ p2 = ell[3 + nskip1];
+ dd = dee[3];
+ q1 = p1 * dd;
+ q2 = p2 * dd;
+ ell[3] = q1;
+ ell[3 + nskip1] = q2;
+ m11 = p1 * q1;
+ m21 = p2 * q1;
+ m22 = p2 * q2;
+ Z11 += m11;
+ Z21 += m21;
+ Z22 += m22;
+ p1 = ell[4];
+ p2 = ell[4 + nskip1];
+ dd = dee[4];
+ q1 = p1 * dd;
+ q2 = p2 * dd;
+ ell[4] = q1;
+ ell[4 + nskip1] = q2;
+ m11 = p1 * q1;
+ m21 = p2 * q1;
+ m22 = p2 * q2;
+ Z11 += m11;
+ Z21 += m21;
+ Z22 += m22;
+ p1 = ell[5];
+ p2 = ell[5 + nskip1];
+ dd = dee[5];
+ q1 = p1 * dd;
+ q2 = p2 * dd;
+ ell[5] = q1;
+ ell[5 + nskip1] = q2;
+ m11 = p1 * q1;
+ m21 = p2 * q1;
+ m22 = p2 * q2;
+ Z11 += m11;
+ Z21 += m21;
+ Z22 += m22;
+ ell += 6;
+ dee += 6;
+ }
+ /* compute left-over iterations */
+ j += 6;
+ for (; j > 0; j--)
+ {
+ p1 = ell[0];
+ p2 = ell[nskip1];
+ dd = dee[0];
+ q1 = p1 * dd;
+ q2 = p2 * dd;
+ ell[0] = q1;
+ ell[nskip1] = q2;
+ m11 = p1 * q1;
+ m21 = p2 * q1;
+ m22 = p2 * q2;
+ Z11 += m11;
+ Z21 += m21;
+ Z22 += m22;
+ ell++;
+ dee++;
+ }
+ /* solve for diagonal 2 x 2 block at A(i,i) */
+ Z11 = ell[0] - Z11;
+ Z21 = ell[nskip1] - Z21;
+ Z22 = ell[1 + nskip1] - Z22;
+ dee = d + i;
+ /* factorize 2 x 2 block Z,dee */
+ /* factorize row 1 */
+ dee[0] = btRecip(Z11);
+ /* factorize row 2 */
+ sum = 0;
+ q1 = Z21;
+ q2 = q1 * dee[0];
+ Z21 = q2;
+ sum += q1 * q2;
+ dee[1] = btRecip(Z22 - sum);
+ /* done factorizing 2 x 2 block */
+ ell[nskip1] = Z21;
+ }
+ /* compute the (less than 2) rows at the bottom */
+ switch (n - i)
+ {
+ case 0:
+ break;
+
+ case 1:
+ btSolveL1_1(A, A + i * nskip1, i, nskip1);
+ /* scale the elements in a 1 x i block at A(i,0), and also */
+ /* compute Z = the outer product matrix that we'll need. */
+ Z11 = 0;
+ ell = A + i * nskip1;
+ dee = d;
+ for (j = i - 6; j >= 0; j -= 6)
+ {
+ p1 = ell[0];
+ dd = dee[0];
+ q1 = p1 * dd;
+ ell[0] = q1;
+ m11 = p1 * q1;
+ Z11 += m11;
+ p1 = ell[1];
+ dd = dee[1];
+ q1 = p1 * dd;
+ ell[1] = q1;
+ m11 = p1 * q1;
+ Z11 += m11;
+ p1 = ell[2];
+ dd = dee[2];
+ q1 = p1 * dd;
+ ell[2] = q1;
+ m11 = p1 * q1;
+ Z11 += m11;
+ p1 = ell[3];
+ dd = dee[3];
+ q1 = p1 * dd;
+ ell[3] = q1;
+ m11 = p1 * q1;
+ Z11 += m11;
+ p1 = ell[4];
+ dd = dee[4];
+ q1 = p1 * dd;
+ ell[4] = q1;
+ m11 = p1 * q1;
+ Z11 += m11;
+ p1 = ell[5];
+ dd = dee[5];
+ q1 = p1 * dd;
+ ell[5] = q1;
+ m11 = p1 * q1;
+ Z11 += m11;
+ ell += 6;
+ dee += 6;
+ }
+ /* compute left-over iterations */
+ j += 6;
+ for (; j > 0; j--)
+ {
+ p1 = ell[0];
+ dd = dee[0];
+ q1 = p1 * dd;
+ ell[0] = q1;
+ m11 = p1 * q1;
+ Z11 += m11;
+ ell++;
+ dee++;
+ }
+ /* solve for diagonal 1 x 1 block at A(i,i) */
+ Z11 = ell[0] - Z11;
+ dee = d + i;
+ /* factorize 1 x 1 block Z,dee */
+ /* factorize row 1 */
+ dee[0] = btRecip(Z11);
+ /* done factorizing 1 x 1 block */
+ break;
+
+ //default: *((char*)0)=0; /* this should never happen! */
+ }
}
/* solve L*X=B, with B containing 1 right hand sides.
@@ -523,289 +530,295 @@ void btFactorLDLT (btScalar *A, btScalar *d, int n, int nskip1)
* if this is in the factorizer source file, n must be a multiple of 4.
*/
-void btSolveL1 (const btScalar *L, btScalar *B, int n, int lskip1)
-{
- /* declare variables - Z matrix, p and q vectors, etc */
- btScalar Z11,Z21,Z31,Z41,p1,q1,p2,p3,p4,*ex;
- const btScalar *ell;
- int lskip2,lskip3,i,j;
- /* compute lskip values */
- lskip2 = 2*lskip1;
- lskip3 = 3*lskip1;
- /* compute all 4 x 1 blocks of X */
- for (i=0; i <= n-4; i+=4) {
- /* compute all 4 x 1 block of X, from rows i..i+4-1 */
- /* set the Z matrix to 0 */
- Z11=0;
- Z21=0;
- Z31=0;
- Z41=0;
- ell = L + i*lskip1;
- ex = B;
- /* the inner loop that computes outer products and adds them to Z */
- for (j=i-12; j >= 0; j -= 12) {
- /* load p and q values */
- p1=ell[0];
- q1=ex[0];
- p2=ell[lskip1];
- p3=ell[lskip2];
- p4=ell[lskip3];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- Z21 += p2 * q1;
- Z31 += p3 * q1;
- Z41 += p4 * q1;
- /* load p and q values */
- p1=ell[1];
- q1=ex[1];
- p2=ell[1+lskip1];
- p3=ell[1+lskip2];
- p4=ell[1+lskip3];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- Z21 += p2 * q1;
- Z31 += p3 * q1;
- Z41 += p4 * q1;
- /* load p and q values */
- p1=ell[2];
- q1=ex[2];
- p2=ell[2+lskip1];
- p3=ell[2+lskip2];
- p4=ell[2+lskip3];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- Z21 += p2 * q1;
- Z31 += p3 * q1;
- Z41 += p4 * q1;
- /* load p and q values */
- p1=ell[3];
- q1=ex[3];
- p2=ell[3+lskip1];
- p3=ell[3+lskip2];
- p4=ell[3+lskip3];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- Z21 += p2 * q1;
- Z31 += p3 * q1;
- Z41 += p4 * q1;
- /* load p and q values */
- p1=ell[4];
- q1=ex[4];
- p2=ell[4+lskip1];
- p3=ell[4+lskip2];
- p4=ell[4+lskip3];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- Z21 += p2 * q1;
- Z31 += p3 * q1;
- Z41 += p4 * q1;
- /* load p and q values */
- p1=ell[5];
- q1=ex[5];
- p2=ell[5+lskip1];
- p3=ell[5+lskip2];
- p4=ell[5+lskip3];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- Z21 += p2 * q1;
- Z31 += p3 * q1;
- Z41 += p4 * q1;
- /* load p and q values */
- p1=ell[6];
- q1=ex[6];
- p2=ell[6+lskip1];
- p3=ell[6+lskip2];
- p4=ell[6+lskip3];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- Z21 += p2 * q1;
- Z31 += p3 * q1;
- Z41 += p4 * q1;
- /* load p and q values */
- p1=ell[7];
- q1=ex[7];
- p2=ell[7+lskip1];
- p3=ell[7+lskip2];
- p4=ell[7+lskip3];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- Z21 += p2 * q1;
- Z31 += p3 * q1;
- Z41 += p4 * q1;
- /* load p and q values */
- p1=ell[8];
- q1=ex[8];
- p2=ell[8+lskip1];
- p3=ell[8+lskip2];
- p4=ell[8+lskip3];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- Z21 += p2 * q1;
- Z31 += p3 * q1;
- Z41 += p4 * q1;
- /* load p and q values */
- p1=ell[9];
- q1=ex[9];
- p2=ell[9+lskip1];
- p3=ell[9+lskip2];
- p4=ell[9+lskip3];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- Z21 += p2 * q1;
- Z31 += p3 * q1;
- Z41 += p4 * q1;
- /* load p and q values */
- p1=ell[10];
- q1=ex[10];
- p2=ell[10+lskip1];
- p3=ell[10+lskip2];
- p4=ell[10+lskip3];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- Z21 += p2 * q1;
- Z31 += p3 * q1;
- Z41 += p4 * q1;
- /* load p and q values */
- p1=ell[11];
- q1=ex[11];
- p2=ell[11+lskip1];
- p3=ell[11+lskip2];
- p4=ell[11+lskip3];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- Z21 += p2 * q1;
- Z31 += p3 * q1;
- Z41 += p4 * q1;
- /* advance pointers */
- ell += 12;
- ex += 12;
- /* end of inner loop */
- }
- /* compute left-over iterations */
- j += 12;
- for (; j > 0; j--) {
- /* load p and q values */
- p1=ell[0];
- q1=ex[0];
- p2=ell[lskip1];
- p3=ell[lskip2];
- p4=ell[lskip3];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- Z21 += p2 * q1;
- Z31 += p3 * q1;
- Z41 += p4 * q1;
- /* advance pointers */
- ell += 1;
- ex += 1;
- }
- /* finish computing the X(i) block */
- Z11 = ex[0] - Z11;
- ex[0] = Z11;
- p1 = ell[lskip1];
- Z21 = ex[1] - Z21 - p1*Z11;
- ex[1] = Z21;
- p1 = ell[lskip2];
- p2 = ell[1+lskip2];
- Z31 = ex[2] - Z31 - p1*Z11 - p2*Z21;
- ex[2] = Z31;
- p1 = ell[lskip3];
- p2 = ell[1+lskip3];
- p3 = ell[2+lskip3];
- Z41 = ex[3] - Z41 - p1*Z11 - p2*Z21 - p3*Z31;
- ex[3] = Z41;
- /* end of outer loop */
- }
- /* compute rows at end that are not a multiple of block size */
- for (; i < n; i++) {
- /* compute all 1 x 1 block of X, from rows i..i+1-1 */
- /* set the Z matrix to 0 */
- Z11=0;
- ell = L + i*lskip1;
- ex = B;
- /* the inner loop that computes outer products and adds them to Z */
- for (j=i-12; j >= 0; j -= 12) {
- /* load p and q values */
- p1=ell[0];
- q1=ex[0];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- /* load p and q values */
- p1=ell[1];
- q1=ex[1];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- /* load p and q values */
- p1=ell[2];
- q1=ex[2];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- /* load p and q values */
- p1=ell[3];
- q1=ex[3];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- /* load p and q values */
- p1=ell[4];
- q1=ex[4];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- /* load p and q values */
- p1=ell[5];
- q1=ex[5];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- /* load p and q values */
- p1=ell[6];
- q1=ex[6];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- /* load p and q values */
- p1=ell[7];
- q1=ex[7];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- /* load p and q values */
- p1=ell[8];
- q1=ex[8];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- /* load p and q values */
- p1=ell[9];
- q1=ex[9];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- /* load p and q values */
- p1=ell[10];
- q1=ex[10];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- /* load p and q values */
- p1=ell[11];
- q1=ex[11];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- /* advance pointers */
- ell += 12;
- ex += 12;
- /* end of inner loop */
- }
- /* compute left-over iterations */
- j += 12;
- for (; j > 0; j--) {
- /* load p and q values */
- p1=ell[0];
- q1=ex[0];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- /* advance pointers */
- ell += 1;
- ex += 1;
- }
- /* finish computing the X(i) block */
- Z11 = ex[0] - Z11;
- ex[0] = Z11;
- }
+void btSolveL1(const btScalar *L, btScalar *B, int n, int lskip1)
+{
+ /* declare variables - Z matrix, p and q vectors, etc */
+ btScalar Z11, Z21, Z31, Z41, p1, q1, p2, p3, p4, *ex;
+ const btScalar *ell;
+ int lskip2, lskip3, i, j;
+ /* compute lskip values */
+ lskip2 = 2 * lskip1;
+ lskip3 = 3 * lskip1;
+ /* compute all 4 x 1 blocks of X */
+ for (i = 0; i <= n - 4; i += 4)
+ {
+ /* compute all 4 x 1 block of X, from rows i..i+4-1 */
+ /* set the Z matrix to 0 */
+ Z11 = 0;
+ Z21 = 0;
+ Z31 = 0;
+ Z41 = 0;
+ ell = L + i * lskip1;
+ ex = B;
+ /* the inner loop that computes outer products and adds them to Z */
+ for (j = i - 12; j >= 0; j -= 12)
+ {
+ /* load p and q values */
+ p1 = ell[0];
+ q1 = ex[0];
+ p2 = ell[lskip1];
+ p3 = ell[lskip2];
+ p4 = ell[lskip3];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ Z21 += p2 * q1;
+ Z31 += p3 * q1;
+ Z41 += p4 * q1;
+ /* load p and q values */
+ p1 = ell[1];
+ q1 = ex[1];
+ p2 = ell[1 + lskip1];
+ p3 = ell[1 + lskip2];
+ p4 = ell[1 + lskip3];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ Z21 += p2 * q1;
+ Z31 += p3 * q1;
+ Z41 += p4 * q1;
+ /* load p and q values */
+ p1 = ell[2];
+ q1 = ex[2];
+ p2 = ell[2 + lskip1];
+ p3 = ell[2 + lskip2];
+ p4 = ell[2 + lskip3];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ Z21 += p2 * q1;
+ Z31 += p3 * q1;
+ Z41 += p4 * q1;
+ /* load p and q values */
+ p1 = ell[3];
+ q1 = ex[3];
+ p2 = ell[3 + lskip1];
+ p3 = ell[3 + lskip2];
+ p4 = ell[3 + lskip3];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ Z21 += p2 * q1;
+ Z31 += p3 * q1;
+ Z41 += p4 * q1;
+ /* load p and q values */
+ p1 = ell[4];
+ q1 = ex[4];
+ p2 = ell[4 + lskip1];
+ p3 = ell[4 + lskip2];
+ p4 = ell[4 + lskip3];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ Z21 += p2 * q1;
+ Z31 += p3 * q1;
+ Z41 += p4 * q1;
+ /* load p and q values */
+ p1 = ell[5];
+ q1 = ex[5];
+ p2 = ell[5 + lskip1];
+ p3 = ell[5 + lskip2];
+ p4 = ell[5 + lskip3];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ Z21 += p2 * q1;
+ Z31 += p3 * q1;
+ Z41 += p4 * q1;
+ /* load p and q values */
+ p1 = ell[6];
+ q1 = ex[6];
+ p2 = ell[6 + lskip1];
+ p3 = ell[6 + lskip2];
+ p4 = ell[6 + lskip3];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ Z21 += p2 * q1;
+ Z31 += p3 * q1;
+ Z41 += p4 * q1;
+ /* load p and q values */
+ p1 = ell[7];
+ q1 = ex[7];
+ p2 = ell[7 + lskip1];
+ p3 = ell[7 + lskip2];
+ p4 = ell[7 + lskip3];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ Z21 += p2 * q1;
+ Z31 += p3 * q1;
+ Z41 += p4 * q1;
+ /* load p and q values */
+ p1 = ell[8];
+ q1 = ex[8];
+ p2 = ell[8 + lskip1];
+ p3 = ell[8 + lskip2];
+ p4 = ell[8 + lskip3];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ Z21 += p2 * q1;
+ Z31 += p3 * q1;
+ Z41 += p4 * q1;
+ /* load p and q values */
+ p1 = ell[9];
+ q1 = ex[9];
+ p2 = ell[9 + lskip1];
+ p3 = ell[9 + lskip2];
+ p4 = ell[9 + lskip3];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ Z21 += p2 * q1;
+ Z31 += p3 * q1;
+ Z41 += p4 * q1;
+ /* load p and q values */
+ p1 = ell[10];
+ q1 = ex[10];
+ p2 = ell[10 + lskip1];
+ p3 = ell[10 + lskip2];
+ p4 = ell[10 + lskip3];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ Z21 += p2 * q1;
+ Z31 += p3 * q1;
+ Z41 += p4 * q1;
+ /* load p and q values */
+ p1 = ell[11];
+ q1 = ex[11];
+ p2 = ell[11 + lskip1];
+ p3 = ell[11 + lskip2];
+ p4 = ell[11 + lskip3];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ Z21 += p2 * q1;
+ Z31 += p3 * q1;
+ Z41 += p4 * q1;
+ /* advance pointers */
+ ell += 12;
+ ex += 12;
+ /* end of inner loop */
+ }
+ /* compute left-over iterations */
+ j += 12;
+ for (; j > 0; j--)
+ {
+ /* load p and q values */
+ p1 = ell[0];
+ q1 = ex[0];
+ p2 = ell[lskip1];
+ p3 = ell[lskip2];
+ p4 = ell[lskip3];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ Z21 += p2 * q1;
+ Z31 += p3 * q1;
+ Z41 += p4 * q1;
+ /* advance pointers */
+ ell += 1;
+ ex += 1;
+ }
+ /* finish computing the X(i) block */
+ Z11 = ex[0] - Z11;
+ ex[0] = Z11;
+ p1 = ell[lskip1];
+ Z21 = ex[1] - Z21 - p1 * Z11;
+ ex[1] = Z21;
+ p1 = ell[lskip2];
+ p2 = ell[1 + lskip2];
+ Z31 = ex[2] - Z31 - p1 * Z11 - p2 * Z21;
+ ex[2] = Z31;
+ p1 = ell[lskip3];
+ p2 = ell[1 + lskip3];
+ p3 = ell[2 + lskip3];
+ Z41 = ex[3] - Z41 - p1 * Z11 - p2 * Z21 - p3 * Z31;
+ ex[3] = Z41;
+ /* end of outer loop */
+ }
+ /* compute rows at end that are not a multiple of block size */
+ for (; i < n; i++)
+ {
+ /* compute all 1 x 1 block of X, from rows i..i+1-1 */
+ /* set the Z matrix to 0 */
+ Z11 = 0;
+ ell = L + i * lskip1;
+ ex = B;
+ /* the inner loop that computes outer products and adds them to Z */
+ for (j = i - 12; j >= 0; j -= 12)
+ {
+ /* load p and q values */
+ p1 = ell[0];
+ q1 = ex[0];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ /* load p and q values */
+ p1 = ell[1];
+ q1 = ex[1];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ /* load p and q values */
+ p1 = ell[2];
+ q1 = ex[2];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ /* load p and q values */
+ p1 = ell[3];
+ q1 = ex[3];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ /* load p and q values */
+ p1 = ell[4];
+ q1 = ex[4];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ /* load p and q values */
+ p1 = ell[5];
+ q1 = ex[5];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ /* load p and q values */
+ p1 = ell[6];
+ q1 = ex[6];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ /* load p and q values */
+ p1 = ell[7];
+ q1 = ex[7];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ /* load p and q values */
+ p1 = ell[8];
+ q1 = ex[8];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ /* load p and q values */
+ p1 = ell[9];
+ q1 = ex[9];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ /* load p and q values */
+ p1 = ell[10];
+ q1 = ex[10];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ /* load p and q values */
+ p1 = ell[11];
+ q1 = ex[11];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ /* advance pointers */
+ ell += 12;
+ ex += 12;
+ /* end of inner loop */
+ }
+ /* compute left-over iterations */
+ j += 12;
+ for (; j > 0; j--)
+ {
+ /* load p and q values */
+ p1 = ell[0];
+ q1 = ex[0];
+ /* compute outer product and add it to the Z matrix */
+ Z11 += p1 * q1;
+ /* advance pointers */
+ ell += 1;
+ ex += 1;
+ }
+ /* finish computing the X(i) block */
+ Z11 = ex[0] - Z11;
+ ex[0] = Z11;
+ }
}
/* solve L^T * x=b, with b containing 1 right hand side.
@@ -816,215 +829,218 @@ void btSolveL1 (const btScalar *L, btScalar *B, int n, int lskip1)
* this processes blocks of 4.
*/
-void btSolveL1T (const btScalar *L, btScalar *B, int n, int lskip1)
-{
- /* declare variables - Z matrix, p and q vectors, etc */
- btScalar Z11,m11,Z21,m21,Z31,m31,Z41,m41,p1,q1,p2,p3,p4,*ex;
- const btScalar *ell;
- int lskip2,i,j;
-// int lskip3;
- /* special handling for L and B because we're solving L1 *transpose* */
- L = L + (n-1)*(lskip1+1);
- B = B + n-1;
- lskip1 = -lskip1;
- /* compute lskip values */
- lskip2 = 2*lskip1;
- //lskip3 = 3*lskip1;
- /* compute all 4 x 1 blocks of X */
- for (i=0; i <= n-4; i+=4) {
- /* compute all 4 x 1 block of X, from rows i..i+4-1 */
- /* set the Z matrix to 0 */
- Z11=0;
- Z21=0;
- Z31=0;
- Z41=0;
- ell = L - i;
- ex = B;
- /* the inner loop that computes outer products and adds them to Z */
- for (j=i-4; j >= 0; j -= 4) {
- /* load p and q values */
- p1=ell[0];
- q1=ex[0];
- p2=ell[-1];
- p3=ell[-2];
- p4=ell[-3];
- /* compute outer product and add it to the Z matrix */
- m11 = p1 * q1;
- m21 = p2 * q1;
- m31 = p3 * q1;
- m41 = p4 * q1;
- ell += lskip1;
- Z11 += m11;
- Z21 += m21;
- Z31 += m31;
- Z41 += m41;
- /* load p and q values */
- p1=ell[0];
- q1=ex[-1];
- p2=ell[-1];
- p3=ell[-2];
- p4=ell[-3];
- /* compute outer product and add it to the Z matrix */
- m11 = p1 * q1;
- m21 = p2 * q1;
- m31 = p3 * q1;
- m41 = p4 * q1;
- ell += lskip1;
- Z11 += m11;
- Z21 += m21;
- Z31 += m31;
- Z41 += m41;
- /* load p and q values */
- p1=ell[0];
- q1=ex[-2];
- p2=ell[-1];
- p3=ell[-2];
- p4=ell[-3];
- /* compute outer product and add it to the Z matrix */
- m11 = p1 * q1;
- m21 = p2 * q1;
- m31 = p3 * q1;
- m41 = p4 * q1;
- ell += lskip1;
- Z11 += m11;
- Z21 += m21;
- Z31 += m31;
- Z41 += m41;
- /* load p and q values */
- p1=ell[0];
- q1=ex[-3];
- p2=ell[-1];
- p3=ell[-2];
- p4=ell[-3];
- /* compute outer product and add it to the Z matrix */
- m11 = p1 * q1;
- m21 = p2 * q1;
- m31 = p3 * q1;
- m41 = p4 * q1;
- ell += lskip1;
- ex -= 4;
- Z11 += m11;
- Z21 += m21;
- Z31 += m31;
- Z41 += m41;
- /* end of inner loop */
- }
- /* compute left-over iterations */
- j += 4;
- for (; j > 0; j--) {
- /* load p and q values */
- p1=ell[0];
- q1=ex[0];
- p2=ell[-1];
- p3=ell[-2];
- p4=ell[-3];
- /* compute outer product and add it to the Z matrix */
- m11 = p1 * q1;
- m21 = p2 * q1;
- m31 = p3 * q1;
- m41 = p4 * q1;
- ell += lskip1;
- ex -= 1;
- Z11 += m11;
- Z21 += m21;
- Z31 += m31;
- Z41 += m41;
- }
- /* finish computing the X(i) block */
- Z11 = ex[0] - Z11;
- ex[0] = Z11;
- p1 = ell[-1];
- Z21 = ex[-1] - Z21 - p1*Z11;
- ex[-1] = Z21;
- p1 = ell[-2];
- p2 = ell[-2+lskip1];
- Z31 = ex[-2] - Z31 - p1*Z11 - p2*Z21;
- ex[-2] = Z31;
- p1 = ell[-3];
- p2 = ell[-3+lskip1];
- p3 = ell[-3+lskip2];
- Z41 = ex[-3] - Z41 - p1*Z11 - p2*Z21 - p3*Z31;
- ex[-3] = Z41;
- /* end of outer loop */
- }
- /* compute rows at end that are not a multiple of block size */
- for (; i < n; i++) {
- /* compute all 1 x 1 block of X, from rows i..i+1-1 */
- /* set the Z matrix to 0 */
- Z11=0;
- ell = L - i;
- ex = B;
- /* the inner loop that computes outer products and adds them to Z */
- for (j=i-4; j >= 0; j -= 4) {
- /* load p and q values */
- p1=ell[0];
- q1=ex[0];
- /* compute outer product and add it to the Z matrix */
- m11 = p1 * q1;
- ell += lskip1;
- Z11 += m11;
- /* load p and q values */
- p1=ell[0];
- q1=ex[-1];
- /* compute outer product and add it to the Z matrix */
- m11 = p1 * q1;
- ell += lskip1;
- Z11 += m11;
- /* load p and q values */
- p1=ell[0];
- q1=ex[-2];
- /* compute outer product and add it to the Z matrix */
- m11 = p1 * q1;
- ell += lskip1;
- Z11 += m11;
- /* load p and q values */
- p1=ell[0];
- q1=ex[-3];
- /* compute outer product and add it to the Z matrix */
- m11 = p1 * q1;
- ell += lskip1;
- ex -= 4;
- Z11 += m11;
- /* end of inner loop */
- }
- /* compute left-over iterations */
- j += 4;
- for (; j > 0; j--) {
- /* load p and q values */
- p1=ell[0];
- q1=ex[0];
- /* compute outer product and add it to the Z matrix */
- m11 = p1 * q1;
- ell += lskip1;
- ex -= 1;
- Z11 += m11;
- }
- /* finish computing the X(i) block */
- Z11 = ex[0] - Z11;
- ex[0] = Z11;
- }
+void btSolveL1T(const btScalar *L, btScalar *B, int n, int lskip1)
+{
+ /* declare variables - Z matrix, p and q vectors, etc */
+ btScalar Z11, m11, Z21, m21, Z31, m31, Z41, m41, p1, q1, p2, p3, p4, *ex;
+ const btScalar *ell;
+ int lskip2, i, j;
+ // int lskip3;
+ /* special handling for L and B because we're solving L1 *transpose* */
+ L = L + (n - 1) * (lskip1 + 1);
+ B = B + n - 1;
+ lskip1 = -lskip1;
+ /* compute lskip values */
+ lskip2 = 2 * lskip1;
+ //lskip3 = 3*lskip1;
+ /* compute all 4 x 1 blocks of X */
+ for (i = 0; i <= n - 4; i += 4)
+ {
+ /* compute all 4 x 1 block of X, from rows i..i+4-1 */
+ /* set the Z matrix to 0 */
+ Z11 = 0;
+ Z21 = 0;
+ Z31 = 0;
+ Z41 = 0;
+ ell = L - i;
+ ex = B;
+ /* the inner loop that computes outer products and adds them to Z */
+ for (j = i - 4; j >= 0; j -= 4)
+ {
+ /* load p and q values */
+ p1 = ell[0];
+ q1 = ex[0];
+ p2 = ell[-1];
+ p3 = ell[-2];
+ p4 = ell[-3];
+ /* compute outer product and add it to the Z matrix */
+ m11 = p1 * q1;
+ m21 = p2 * q1;
+ m31 = p3 * q1;
+ m41 = p4 * q1;
+ ell += lskip1;
+ Z11 += m11;
+ Z21 += m21;
+ Z31 += m31;
+ Z41 += m41;
+ /* load p and q values */
+ p1 = ell[0];
+ q1 = ex[-1];
+ p2 = ell[-1];
+ p3 = ell[-2];
+ p4 = ell[-3];
+ /* compute outer product and add it to the Z matrix */
+ m11 = p1 * q1;
+ m21 = p2 * q1;
+ m31 = p3 * q1;
+ m41 = p4 * q1;
+ ell += lskip1;
+ Z11 += m11;
+ Z21 += m21;
+ Z31 += m31;
+ Z41 += m41;
+ /* load p and q values */
+ p1 = ell[0];
+ q1 = ex[-2];
+ p2 = ell[-1];
+ p3 = ell[-2];
+ p4 = ell[-3];
+ /* compute outer product and add it to the Z matrix */
+ m11 = p1 * q1;
+ m21 = p2 * q1;
+ m31 = p3 * q1;
+ m41 = p4 * q1;
+ ell += lskip1;
+ Z11 += m11;
+ Z21 += m21;
+ Z31 += m31;
+ Z41 += m41;
+ /* load p and q values */
+ p1 = ell[0];
+ q1 = ex[-3];
+ p2 = ell[-1];
+ p3 = ell[-2];
+ p4 = ell[-3];
+ /* compute outer product and add it to the Z matrix */
+ m11 = p1 * q1;
+ m21 = p2 * q1;
+ m31 = p3 * q1;
+ m41 = p4 * q1;
+ ell += lskip1;
+ ex -= 4;
+ Z11 += m11;
+ Z21 += m21;
+ Z31 += m31;
+ Z41 += m41;
+ /* end of inner loop */
+ }
+ /* compute left-over iterations */
+ j += 4;
+ for (; j > 0; j--)
+ {
+ /* load p and q values */
+ p1 = ell[0];
+ q1 = ex[0];
+ p2 = ell[-1];
+ p3 = ell[-2];
+ p4 = ell[-3];
+ /* compute outer product and add it to the Z matrix */
+ m11 = p1 * q1;
+ m21 = p2 * q1;
+ m31 = p3 * q1;
+ m41 = p4 * q1;
+ ell += lskip1;
+ ex -= 1;
+ Z11 += m11;
+ Z21 += m21;
+ Z31 += m31;
+ Z41 += m41;
+ }
+ /* finish computing the X(i) block */
+ Z11 = ex[0] - Z11;
+ ex[0] = Z11;
+ p1 = ell[-1];
+ Z21 = ex[-1] - Z21 - p1 * Z11;
+ ex[-1] = Z21;
+ p1 = ell[-2];
+ p2 = ell[-2 + lskip1];
+ Z31 = ex[-2] - Z31 - p1 * Z11 - p2 * Z21;
+ ex[-2] = Z31;
+ p1 = ell[-3];
+ p2 = ell[-3 + lskip1];
+ p3 = ell[-3 + lskip2];
+ Z41 = ex[-3] - Z41 - p1 * Z11 - p2 * Z21 - p3 * Z31;
+ ex[-3] = Z41;
+ /* end of outer loop */
+ }
+ /* compute rows at end that are not a multiple of block size */
+ for (; i < n; i++)
+ {
+ /* compute all 1 x 1 block of X, from rows i..i+1-1 */
+ /* set the Z matrix to 0 */
+ Z11 = 0;
+ ell = L - i;
+ ex = B;
+ /* the inner loop that computes outer products and adds them to Z */
+ for (j = i - 4; j >= 0; j -= 4)
+ {
+ /* load p and q values */
+ p1 = ell[0];
+ q1 = ex[0];
+ /* compute outer product and add it to the Z matrix */
+ m11 = p1 * q1;
+ ell += lskip1;
+ Z11 += m11;
+ /* load p and q values */
+ p1 = ell[0];
+ q1 = ex[-1];
+ /* compute outer product and add it to the Z matrix */
+ m11 = p1 * q1;
+ ell += lskip1;
+ Z11 += m11;
+ /* load p and q values */
+ p1 = ell[0];
+ q1 = ex[-2];
+ /* compute outer product and add it to the Z matrix */
+ m11 = p1 * q1;
+ ell += lskip1;
+ Z11 += m11;
+ /* load p and q values */
+ p1 = ell[0];
+ q1 = ex[-3];
+ /* compute outer product and add it to the Z matrix */
+ m11 = p1 * q1;
+ ell += lskip1;
+ ex -= 4;
+ Z11 += m11;
+ /* end of inner loop */
+ }
+ /* compute left-over iterations */
+ j += 4;
+ for (; j > 0; j--)
+ {
+ /* load p and q values */
+ p1 = ell[0];
+ q1 = ex[0];
+ /* compute outer product and add it to the Z matrix */
+ m11 = p1 * q1;
+ ell += lskip1;
+ ex -= 1;
+ Z11 += m11;
+ }
+ /* finish computing the X(i) block */
+ Z11 = ex[0] - Z11;
+ ex[0] = Z11;
+ }
}
-
-
-void btVectorScale (btScalar *a, const btScalar *d, int n)
+void btVectorScale(btScalar *a, const btScalar *d, int n)
{
- btAssert (a && d && n >= 0);
- for (int i=0; i<n; i++) {
- a[i] *= d[i];
- }
+ btAssert(a && d && n >= 0);
+ for (int i = 0; i < n; i++)
+ {
+ a[i] *= d[i];
+ }
}
-void btSolveLDLT (const btScalar *L, const btScalar *d, btScalar *b, int n, int nskip)
+void btSolveLDLT(const btScalar *L, const btScalar *d, btScalar *b, int n, int nskip)
{
- btAssert (L && d && b && n > 0 && nskip >= n);
- btSolveL1 (L,b,n,nskip);
- btVectorScale (b,d,n);
- btSolveL1T (L,b,n,nskip);
+ btAssert(L && d && b && n > 0 && nskip >= n);
+ btSolveL1(L, b, n, nskip);
+ btVectorScale(b, d, n);
+ btSolveL1T(L, b, n, nskip);
}
-
-
//***************************************************************************
// swap row/column i1 with i2 in the n*n matrix A. the leading dimension of
@@ -1033,124 +1049,129 @@ void btSolveLDLT (const btScalar *L, const btScalar *d, btScalar *b, int n, int
// rows will be swapped by exchanging row pointers. otherwise the data will
// be copied.
-static void btSwapRowsAndCols (BTATYPE A, int n, int i1, int i2, int nskip,
- int do_fast_row_swaps)
+static void btSwapRowsAndCols(BTATYPE A, int n, int i1, int i2, int nskip,
+ int do_fast_row_swaps)
{
- btAssert (A && n > 0 && i1 >= 0 && i2 >= 0 && i1 < n && i2 < n &&
- nskip >= n && i1 < i2);
-
-# ifdef BTROWPTRS
- btScalar *A_i1 = A[i1];
- btScalar *A_i2 = A[i2];
- for (int i=i1+1; i<i2; ++i) {
- btScalar *A_i_i1 = A[i] + i1;
- A_i1[i] = *A_i_i1;
- *A_i_i1 = A_i2[i];
- }
- A_i1[i2] = A_i1[i1];
- A_i1[i1] = A_i2[i1];
- A_i2[i1] = A_i2[i2];
- // swap rows, by swapping row pointers
- if (do_fast_row_swaps) {
- A[i1] = A_i2;
- A[i2] = A_i1;
- }
- else {
- // Only swap till i2 column to match A plain storage variant.
- for (int k = 0; k <= i2; ++k) {
- btScalar tmp = A_i1[k];
- A_i1[k] = A_i2[k];
- A_i2[k] = tmp;
- }
- }
- // swap columns the hard way
- for (int j=i2+1; j<n; ++j) {
- btScalar *A_j = A[j];
- btScalar tmp = A_j[i1];
- A_j[i1] = A_j[i2];
- A_j[i2] = tmp;
- }
-# else
- btScalar *A_i1 = A+i1*nskip;
- btScalar *A_i2 = A+i2*nskip;
- for (int k = 0; k < i1; ++k) {
- btScalar tmp = A_i1[k];
- A_i1[k] = A_i2[k];
- A_i2[k] = tmp;
- }
- btScalar *A_i = A_i1 + nskip;
- for (int i=i1+1; i<i2; A_i+=nskip, ++i) {
- btScalar tmp = A_i2[i];
- A_i2[i] = A_i[i1];
- A_i[i1] = tmp;
- }
- {
- btScalar tmp = A_i1[i1];
- A_i1[i1] = A_i2[i2];
- A_i2[i2] = tmp;
- }
- btScalar *A_j = A_i2 + nskip;
- for (int j=i2+1; j<n; A_j+=nskip, ++j) {
- btScalar tmp = A_j[i1];
- A_j[i1] = A_j[i2];
- A_j[i2] = tmp;
- }
-# endif
-}
+ btAssert(A && n > 0 && i1 >= 0 && i2 >= 0 && i1 < n && i2 < n &&
+ nskip >= n && i1 < i2);
+#ifdef BTROWPTRS
+ btScalar *A_i1 = A[i1];
+ btScalar *A_i2 = A[i2];
+ for (int i = i1 + 1; i < i2; ++i)
+ {
+ btScalar *A_i_i1 = A[i] + i1;
+ A_i1[i] = *A_i_i1;
+ *A_i_i1 = A_i2[i];
+ }
+ A_i1[i2] = A_i1[i1];
+ A_i1[i1] = A_i2[i1];
+ A_i2[i1] = A_i2[i2];
+ // swap rows, by swapping row pointers
+ if (do_fast_row_swaps)
+ {
+ A[i1] = A_i2;
+ A[i2] = A_i1;
+ }
+ else
+ {
+ // Only swap till i2 column to match A plain storage variant.
+ for (int k = 0; k <= i2; ++k)
+ {
+ btScalar tmp = A_i1[k];
+ A_i1[k] = A_i2[k];
+ A_i2[k] = tmp;
+ }
+ }
+ // swap columns the hard way
+ for (int j = i2 + 1; j < n; ++j)
+ {
+ btScalar *A_j = A[j];
+ btScalar tmp = A_j[i1];
+ A_j[i1] = A_j[i2];
+ A_j[i2] = tmp;
+ }
+#else
+ btScalar *A_i1 = A + i1 * nskip;
+ btScalar *A_i2 = A + i2 * nskip;
+ for (int k = 0; k < i1; ++k)
+ {
+ btScalar tmp = A_i1[k];
+ A_i1[k] = A_i2[k];
+ A_i2[k] = tmp;
+ }
+ btScalar *A_i = A_i1 + nskip;
+ for (int i = i1 + 1; i < i2; A_i += nskip, ++i)
+ {
+ btScalar tmp = A_i2[i];
+ A_i2[i] = A_i[i1];
+ A_i[i1] = tmp;
+ }
+ {
+ btScalar tmp = A_i1[i1];
+ A_i1[i1] = A_i2[i2];
+ A_i2[i2] = tmp;
+ }
+ btScalar *A_j = A_i2 + nskip;
+ for (int j = i2 + 1; j < n; A_j += nskip, ++j)
+ {
+ btScalar tmp = A_j[i1];
+ A_j[i1] = A_j[i2];
+ A_j[i2] = tmp;
+ }
+#endif
+}
// swap two indexes in the n*n LCP problem. i1 must be <= i2.
-static void btSwapProblem (BTATYPE A, btScalar *x, btScalar *b, btScalar *w, btScalar *lo,
- btScalar *hi, int *p, bool *state, int *findex,
- int n, int i1, int i2, int nskip,
- int do_fast_row_swaps)
+static void btSwapProblem(BTATYPE A, btScalar *x, btScalar *b, btScalar *w, btScalar *lo,
+ btScalar *hi, int *p, bool *state, int *findex,
+ int n, int i1, int i2, int nskip,
+ int do_fast_row_swaps)
{
- btScalar tmpr;
- int tmpi;
- bool tmpb;
- btAssert (n>0 && i1 >=0 && i2 >= 0 && i1 < n && i2 < n && nskip >= n && i1 <= i2);
- if (i1==i2) return;
-
- btSwapRowsAndCols (A,n,i1,i2,nskip,do_fast_row_swaps);
-
- tmpr = x[i1];
- x[i1] = x[i2];
- x[i2] = tmpr;
-
- tmpr = b[i1];
- b[i1] = b[i2];
- b[i2] = tmpr;
-
- tmpr = w[i1];
- w[i1] = w[i2];
- w[i2] = tmpr;
-
- tmpr = lo[i1];
- lo[i1] = lo[i2];
- lo[i2] = tmpr;
-
- tmpr = hi[i1];
- hi[i1] = hi[i2];
- hi[i2] = tmpr;
-
- tmpi = p[i1];
- p[i1] = p[i2];
- p[i2] = tmpi;
-
- tmpb = state[i1];
- state[i1] = state[i2];
- state[i2] = tmpb;
-
- if (findex) {
- tmpi = findex[i1];
- findex[i1] = findex[i2];
- findex[i2] = tmpi;
- }
-}
+ btScalar tmpr;
+ int tmpi;
+ bool tmpb;
+ btAssert(n > 0 && i1 >= 0 && i2 >= 0 && i1 < n && i2 < n && nskip >= n && i1 <= i2);
+ if (i1 == i2) return;
+
+ btSwapRowsAndCols(A, n, i1, i2, nskip, do_fast_row_swaps);
+
+ tmpr = x[i1];
+ x[i1] = x[i2];
+ x[i2] = tmpr;
+ tmpr = b[i1];
+ b[i1] = b[i2];
+ b[i2] = tmpr;
+ tmpr = w[i1];
+ w[i1] = w[i2];
+ w[i2] = tmpr;
+ tmpr = lo[i1];
+ lo[i1] = lo[i2];
+ lo[i2] = tmpr;
+
+ tmpr = hi[i1];
+ hi[i1] = hi[i2];
+ hi[i2] = tmpr;
+
+ tmpi = p[i1];
+ p[i1] = p[i2];
+ p[i2] = tmpi;
+
+ tmpb = state[i1];
+ state[i1] = state[i2];
+ state[i2] = tmpb;
+
+ if (findex)
+ {
+ tmpi = findex[i1];
+ findex[i1] = findex[i2];
+ findex[i2] = tmpi;
+ }
+}
//***************************************************************************
// btLCP manipulator object. this represents an n*n LCP problem.
@@ -1186,79 +1207,88 @@ static void btSwapProblem (BTATYPE A, btScalar *x, btScalar *b, btScalar *w, btS
#ifdef btLCP_FAST
-struct btLCP
+struct btLCP
{
const int m_n;
const int m_nskip;
int m_nub;
- int m_nC, m_nN; // size of each index set
- BTATYPE const m_A; // A rows
- btScalar *const m_x, * const m_b, *const m_w, *const m_lo,* const m_hi; // permuted LCP problem data
- btScalar *const m_L, *const m_d; // L*D*L' factorization of set C
+ int m_nC, m_nN; // size of each index set
+ BTATYPE const m_A; // A rows
+ btScalar *const m_x, *const m_b, *const m_w, *const m_lo, *const m_hi; // permuted LCP problem data
+ btScalar *const m_L, *const m_d; // L*D*L' factorization of set C
btScalar *const m_Dell, *const m_ell, *const m_tmp;
bool *const m_state;
int *const m_findex, *const m_p, *const m_C;
- btLCP (int _n, int _nskip, int _nub, btScalar *_Adata, btScalar *_x, btScalar *_b, btScalar *_w,
- btScalar *_lo, btScalar *_hi, btScalar *l, btScalar *_d,
- btScalar *_Dell, btScalar *_ell, btScalar *_tmp,
- bool *_state, int *_findex, int *p, int *c, btScalar **Arows);
+ btLCP(int _n, int _nskip, int _nub, btScalar *_Adata, btScalar *_x, btScalar *_b, btScalar *_w,
+ btScalar *_lo, btScalar *_hi, btScalar *l, btScalar *_d,
+ btScalar *_Dell, btScalar *_ell, btScalar *_tmp,
+ bool *_state, int *_findex, int *p, int *c, btScalar **Arows);
int getNub() const { return m_nub; }
- void transfer_i_to_C (int i);
- void transfer_i_to_N (int i) { m_nN++; } // because we can assume C and N span 1:i-1
- void transfer_i_from_N_to_C (int i);
- void transfer_i_from_C_to_N (int i, btAlignedObjectArray<btScalar>& scratch);
+ void transfer_i_to_C(int i);
+ void transfer_i_to_N(int i) { m_nN++; } // because we can assume C and N span 1:i-1
+ void transfer_i_from_N_to_C(int i);
+ void transfer_i_from_C_to_N(int i, btAlignedObjectArray<btScalar> &scratch);
int numC() const { return m_nC; }
int numN() const { return m_nN; }
- int indexC (int i) const { return i; }
- int indexN (int i) const { return i+m_nC; }
- btScalar Aii (int i) const { return BTAROW(i)[i]; }
- btScalar AiC_times_qC (int i, btScalar *q) const { return btLargeDot (BTAROW(i), q, m_nC); }
- btScalar AiN_times_qN (int i, btScalar *q) const { return btLargeDot (BTAROW(i)+m_nC, q+m_nC, m_nN); }
- void pN_equals_ANC_times_qC (btScalar *p, btScalar *q);
- void pN_plusequals_ANi (btScalar *p, int i, int sign=1);
- void pC_plusequals_s_times_qC (btScalar *p, btScalar s, btScalar *q);
- void pN_plusequals_s_times_qN (btScalar *p, btScalar s, btScalar *q);
- void solve1 (btScalar *a, int i, int dir=1, int only_transfer=0);
+ int indexC(int i) const { return i; }
+ int indexN(int i) const { return i + m_nC; }
+ btScalar Aii(int i) const { return BTAROW(i)[i]; }
+ btScalar AiC_times_qC(int i, btScalar *q) const { return btLargeDot(BTAROW(i), q, m_nC); }
+ btScalar AiN_times_qN(int i, btScalar *q) const { return btLargeDot(BTAROW(i) + m_nC, q + m_nC, m_nN); }
+ void pN_equals_ANC_times_qC(btScalar *p, btScalar *q);
+ void pN_plusequals_ANi(btScalar *p, int i, int sign = 1);
+ void pC_plusequals_s_times_qC(btScalar *p, btScalar s, btScalar *q);
+ void pN_plusequals_s_times_qN(btScalar *p, btScalar s, btScalar *q);
+ void solve1(btScalar *a, int i, int dir = 1, int only_transfer = 0);
void unpermute();
};
-
-btLCP::btLCP (int _n, int _nskip, int _nub, btScalar *_Adata, btScalar *_x, btScalar *_b, btScalar *_w,
- btScalar *_lo, btScalar *_hi, btScalar *l, btScalar *_d,
- btScalar *_Dell, btScalar *_ell, btScalar *_tmp,
- bool *_state, int *_findex, int *p, int *c, btScalar **Arows):
- m_n(_n), m_nskip(_nskip), m_nub(_nub), m_nC(0), m_nN(0),
-# ifdef BTROWPTRS
- m_A(Arows),
+btLCP::btLCP(int _n, int _nskip, int _nub, btScalar *_Adata, btScalar *_x, btScalar *_b, btScalar *_w,
+ btScalar *_lo, btScalar *_hi, btScalar *l, btScalar *_d,
+ btScalar *_Dell, btScalar *_ell, btScalar *_tmp,
+ bool *_state, int *_findex, int *p, int *c, btScalar **Arows) : m_n(_n), m_nskip(_nskip), m_nub(_nub), m_nC(0), m_nN(0),
+#ifdef BTROWPTRS
+ m_A(Arows),
#else
- m_A(_Adata),
+ m_A(_Adata),
#endif
- m_x(_x), m_b(_b), m_w(_w), m_lo(_lo), m_hi(_hi),
- m_L(l), m_d(_d), m_Dell(_Dell), m_ell(_ell), m_tmp(_tmp),
- m_state(_state), m_findex(_findex), m_p(p), m_C(c)
+ m_x(_x),
+ m_b(_b),
+ m_w(_w),
+ m_lo(_lo),
+ m_hi(_hi),
+ m_L(l),
+ m_d(_d),
+ m_Dell(_Dell),
+ m_ell(_ell),
+ m_tmp(_tmp),
+ m_state(_state),
+ m_findex(_findex),
+ m_p(p),
+ m_C(c)
{
- {
- btSetZero (m_x,m_n);
- }
+ {
+ btSetZero(m_x, m_n);
+ }
- {
-# ifdef BTROWPTRS
- // make matrix row pointers
- btScalar *aptr = _Adata;
- BTATYPE A = m_A;
- const int n = m_n, nskip = m_nskip;
- for (int k=0; k<n; aptr+=nskip, ++k) A[k] = aptr;
-# endif
- }
+ {
+#ifdef BTROWPTRS
+ // make matrix row pointers
+ btScalar *aptr = _Adata;
+ BTATYPE A = m_A;
+ const int n = m_n, nskip = m_nskip;
+ for (int k = 0; k < n; aptr += nskip, ++k) A[k] = aptr;
+#endif
+ }
- {
- int *p = m_p;
- const int n = m_n;
- for (int k=0; k<n; ++k) p[k]=k; // initially unpermuted
- }
+ {
+ int *p = m_p;
+ const int n = m_n;
+ for (int k = 0; k < n; ++k) p[k] = k; // initially unpermuted
+ }
- /*
+ /*
// for testing, we can do some random swaps in the area i > nub
{
const int n = m_n;
@@ -1277,63 +1307,69 @@ btLCP::btLCP (int _n, int _nskip, int _nub, btScalar *_Adata, btScalar *_x, btSc
}
*/
- // permute the problem so that *all* the unbounded variables are at the
- // start, i.e. look for unbounded variables not included in `nub'. we can
- // potentially push up `nub' this way and get a bigger initial factorization.
- // note that when we swap rows/cols here we must not just swap row pointers,
- // as the initial factorization relies on the data being all in one chunk.
- // variables that have findex >= 0 are *not* considered to be unbounded even
- // if lo=-inf and hi=inf - this is because these limits may change during the
- // solution process.
-
- {
- int *findex = m_findex;
- btScalar *lo = m_lo, *hi = m_hi;
- const int n = m_n;
- for (int k = m_nub; k<n; ++k) {
- if (findex && findex[k] >= 0) continue;
- if (lo[k]==-BT_INFINITY && hi[k]==BT_INFINITY) {
- btSwapProblem (m_A,m_x,m_b,m_w,lo,hi,m_p,m_state,findex,n,m_nub,k,m_nskip,0);
- m_nub++;
- }
- }
- }
-
- // if there are unbounded variables at the start, factorize A up to that
- // point and solve for x. this puts all indexes 0..nub-1 into C.
- if (m_nub > 0) {
- const int nub = m_nub;
- {
- btScalar *Lrow = m_L;
- const int nskip = m_nskip;
- for (int j=0; j<nub; Lrow+=nskip, ++j) memcpy(Lrow,BTAROW(j),(j+1)*sizeof(btScalar));
- }
- btFactorLDLT (m_L,m_d,nub,m_nskip);
- memcpy (m_x,m_b,nub*sizeof(btScalar));
- btSolveLDLT (m_L,m_d,m_x,nub,m_nskip);
- btSetZero (m_w,nub);
- {
- int *C = m_C;
- for (int k=0; k<nub; ++k) C[k] = k;
- }
- m_nC = nub;
- }
-
- // permute the indexes > nub such that all findex variables are at the end
- if (m_findex) {
- const int nub = m_nub;
- int *findex = m_findex;
- int num_at_end = 0;
- for (int k=m_n-1; k >= nub; k--) {
- if (findex[k] >= 0) {
- btSwapProblem (m_A,m_x,m_b,m_w,m_lo,m_hi,m_p,m_state,findex,m_n,k,m_n-1-num_at_end,m_nskip,1);
- num_at_end++;
- }
- }
- }
+ // permute the problem so that *all* the unbounded variables are at the
+ // start, i.e. look for unbounded variables not included in `nub'. we can
+ // potentially push up `nub' this way and get a bigger initial factorization.
+ // note that when we swap rows/cols here we must not just swap row pointers,
+ // as the initial factorization relies on the data being all in one chunk.
+ // variables that have findex >= 0 are *not* considered to be unbounded even
+ // if lo=-inf and hi=inf - this is because these limits may change during the
+ // solution process.
- // print info about indexes
- /*
+ {
+ int *findex = m_findex;
+ btScalar *lo = m_lo, *hi = m_hi;
+ const int n = m_n;
+ for (int k = m_nub; k < n; ++k)
+ {
+ if (findex && findex[k] >= 0) continue;
+ if (lo[k] == -BT_INFINITY && hi[k] == BT_INFINITY)
+ {
+ btSwapProblem(m_A, m_x, m_b, m_w, lo, hi, m_p, m_state, findex, n, m_nub, k, m_nskip, 0);
+ m_nub++;
+ }
+ }
+ }
+
+ // if there are unbounded variables at the start, factorize A up to that
+ // point and solve for x. this puts all indexes 0..nub-1 into C.
+ if (m_nub > 0)
+ {
+ const int nub = m_nub;
+ {
+ btScalar *Lrow = m_L;
+ const int nskip = m_nskip;
+ for (int j = 0; j < nub; Lrow += nskip, ++j) memcpy(Lrow, BTAROW(j), (j + 1) * sizeof(btScalar));
+ }
+ btFactorLDLT(m_L, m_d, nub, m_nskip);
+ memcpy(m_x, m_b, nub * sizeof(btScalar));
+ btSolveLDLT(m_L, m_d, m_x, nub, m_nskip);
+ btSetZero(m_w, nub);
+ {
+ int *C = m_C;
+ for (int k = 0; k < nub; ++k) C[k] = k;
+ }
+ m_nC = nub;
+ }
+
+ // permute the indexes > nub such that all findex variables are at the end
+ if (m_findex)
+ {
+ const int nub = m_nub;
+ int *findex = m_findex;
+ int num_at_end = 0;
+ for (int k = m_n - 1; k >= nub; k--)
+ {
+ if (findex[k] >= 0)
+ {
+ btSwapProblem(m_A, m_x, m_b, m_w, m_lo, m_hi, m_p, m_state, findex, m_n, k, m_n - 1 - num_at_end, m_nskip, 1);
+ num_at_end++;
+ }
+ }
+ }
+
+ // print info about indexes
+ /*
{
const int n = m_n;
const int nub = m_nub;
@@ -1347,734 +1383,776 @@ btLCP::btLCP (int _n, int _nskip, int _nub, btScalar *_Adata, btScalar *_x, btSc
*/
}
-
-void btLCP::transfer_i_to_C (int i)
+void btLCP::transfer_i_to_C(int i)
{
- {
- if (m_nC > 0) {
- // ell,Dell were computed by solve1(). note, ell = D \ L1solve (L,A(i,C))
- {
- const int nC = m_nC;
- btScalar *const Ltgt = m_L + nC*m_nskip, *ell = m_ell;
- for (int j=0; j<nC; ++j) Ltgt[j] = ell[j];
- }
- const int nC = m_nC;
- m_d[nC] = btRecip (BTAROW(i)[i] - btLargeDot(m_ell,m_Dell,nC));
- }
- else {
- m_d[0] = btRecip (BTAROW(i)[i]);
- }
-
- btSwapProblem (m_A,m_x,m_b,m_w,m_lo,m_hi,m_p,m_state,m_findex,m_n,m_nC,i,m_nskip,1);
+ {
+ if (m_nC > 0)
+ {
+ // ell,Dell were computed by solve1(). note, ell = D \ L1solve (L,A(i,C))
+ {
+ const int nC = m_nC;
+ btScalar *const Ltgt = m_L + nC * m_nskip, *ell = m_ell;
+ for (int j = 0; j < nC; ++j) Ltgt[j] = ell[j];
+ }
+ const int nC = m_nC;
+ m_d[nC] = btRecip(BTAROW(i)[i] - btLargeDot(m_ell, m_Dell, nC));
+ }
+ else
+ {
+ m_d[0] = btRecip(BTAROW(i)[i]);
+ }
- const int nC = m_nC;
- m_C[nC] = nC;
- m_nC = nC + 1; // nC value is outdated after this line
- }
+ btSwapProblem(m_A, m_x, m_b, m_w, m_lo, m_hi, m_p, m_state, m_findex, m_n, m_nC, i, m_nskip, 1);
+ const int nC = m_nC;
+ m_C[nC] = nC;
+ m_nC = nC + 1; // nC value is outdated after this line
+ }
}
-
-void btLCP::transfer_i_from_N_to_C (int i)
+void btLCP::transfer_i_from_N_to_C(int i)
{
- {
- if (m_nC > 0) {
- {
- btScalar *const aptr = BTAROW(i);
- btScalar *Dell = m_Dell;
- const int *C = m_C;
-# ifdef BTNUB_OPTIMIZATIONS
- // if nub>0, initial part of aptr unpermuted
- const int nub = m_nub;
- int j=0;
- for ( ; j<nub; ++j) Dell[j] = aptr[j];
- const int nC = m_nC;
- for ( ; j<nC; ++j) Dell[j] = aptr[C[j]];
-# else
- const int nC = m_nC;
- for (int j=0; j<nC; ++j) Dell[j] = aptr[C[j]];
-# endif
- }
- btSolveL1 (m_L,m_Dell,m_nC,m_nskip);
- {
- const int nC = m_nC;
- btScalar *const Ltgt = m_L + nC*m_nskip;
- btScalar *ell = m_ell, *Dell = m_Dell, *d = m_d;
- for (int j=0; j<nC; ++j) Ltgt[j] = ell[j] = Dell[j] * d[j];
- }
- const int nC = m_nC;
- m_d[nC] = btRecip (BTAROW(i)[i] - btLargeDot(m_ell,m_Dell,nC));
- }
- else {
- m_d[0] = btRecip (BTAROW(i)[i]);
- }
-
- btSwapProblem (m_A,m_x,m_b,m_w,m_lo,m_hi,m_p,m_state,m_findex,m_n,m_nC,i,m_nskip,1);
-
- const int nC = m_nC;
- m_C[nC] = nC;
- m_nN--;
- m_nC = nC + 1; // nC value is outdated after this line
- }
-
- // @@@ TO DO LATER
- // if we just finish here then we'll go back and re-solve for
- // delta_x. but actually we can be more efficient and incrementally
- // update delta_x here. but if we do this, we wont have ell and Dell
- // to use in updating the factorization later.
-
+ {
+ if (m_nC > 0)
+ {
+ {
+ btScalar *const aptr = BTAROW(i);
+ btScalar *Dell = m_Dell;
+ const int *C = m_C;
+#ifdef BTNUB_OPTIMIZATIONS
+ // if nub>0, initial part of aptr unpermuted
+ const int nub = m_nub;
+ int j = 0;
+ for (; j < nub; ++j) Dell[j] = aptr[j];
+ const int nC = m_nC;
+ for (; j < nC; ++j) Dell[j] = aptr[C[j]];
+#else
+ const int nC = m_nC;
+ for (int j = 0; j < nC; ++j) Dell[j] = aptr[C[j]];
+#endif
+ }
+ btSolveL1(m_L, m_Dell, m_nC, m_nskip);
+ {
+ const int nC = m_nC;
+ btScalar *const Ltgt = m_L + nC * m_nskip;
+ btScalar *ell = m_ell, *Dell = m_Dell, *d = m_d;
+ for (int j = 0; j < nC; ++j) Ltgt[j] = ell[j] = Dell[j] * d[j];
+ }
+ const int nC = m_nC;
+ m_d[nC] = btRecip(BTAROW(i)[i] - btLargeDot(m_ell, m_Dell, nC));
+ }
+ else
+ {
+ m_d[0] = btRecip(BTAROW(i)[i]);
+ }
+
+ btSwapProblem(m_A, m_x, m_b, m_w, m_lo, m_hi, m_p, m_state, m_findex, m_n, m_nC, i, m_nskip, 1);
+
+ const int nC = m_nC;
+ m_C[nC] = nC;
+ m_nN--;
+ m_nC = nC + 1; // nC value is outdated after this line
+ }
+
+ // @@@ TO DO LATER
+ // if we just finish here then we'll go back and re-solve for
+ // delta_x. but actually we can be more efficient and incrementally
+ // update delta_x here. but if we do this, we wont have ell and Dell
+ // to use in updating the factorization later.
}
-void btRemoveRowCol (btScalar *A, int n, int nskip, int r)
+void btRemoveRowCol(btScalar *A, int n, int nskip, int r)
{
- btAssert(A && n > 0 && nskip >= n && r >= 0 && r < n);
- if (r >= n-1) return;
- if (r > 0) {
- {
- const size_t move_size = (n-r-1)*sizeof(btScalar);
- btScalar *Adst = A + r;
- for (int i=0; i<r; Adst+=nskip,++i) {
- btScalar *Asrc = Adst + 1;
- memmove (Adst,Asrc,move_size);
- }
- }
- {
- const size_t cpy_size = r*sizeof(btScalar);
- btScalar *Adst = A + r * nskip;
- for (int i=r; i<(n-1); ++i) {
- btScalar *Asrc = Adst + nskip;
- memcpy (Adst,Asrc,cpy_size);
- Adst = Asrc;
- }
- }
- }
- {
- const size_t cpy_size = (n-r-1)*sizeof(btScalar);
- btScalar *Adst = A + r * (nskip + 1);
- for (int i=r; i<(n-1); ++i) {
- btScalar *Asrc = Adst + (nskip + 1);
- memcpy (Adst,Asrc,cpy_size);
- Adst = Asrc - 1;
- }
- }
+ btAssert(A && n > 0 && nskip >= n && r >= 0 && r < n);
+ if (r >= n - 1) return;
+ if (r > 0)
+ {
+ {
+ const size_t move_size = (n - r - 1) * sizeof(btScalar);
+ btScalar *Adst = A + r;
+ for (int i = 0; i < r; Adst += nskip, ++i)
+ {
+ btScalar *Asrc = Adst + 1;
+ memmove(Adst, Asrc, move_size);
+ }
+ }
+ {
+ const size_t cpy_size = r * sizeof(btScalar);
+ btScalar *Adst = A + r * nskip;
+ for (int i = r; i < (n - 1); ++i)
+ {
+ btScalar *Asrc = Adst + nskip;
+ memcpy(Adst, Asrc, cpy_size);
+ Adst = Asrc;
+ }
+ }
+ }
+ {
+ const size_t cpy_size = (n - r - 1) * sizeof(btScalar);
+ btScalar *Adst = A + r * (nskip + 1);
+ for (int i = r; i < (n - 1); ++i)
+ {
+ btScalar *Asrc = Adst + (nskip + 1);
+ memcpy(Adst, Asrc, cpy_size);
+ Adst = Asrc - 1;
+ }
+ }
}
+void btLDLTAddTL(btScalar *L, btScalar *d, const btScalar *a, int n, int nskip, btAlignedObjectArray<btScalar> &scratch)
+{
+ btAssert(L && d && a && n > 0 && nskip >= n);
+ if (n < 2) return;
+ scratch.resize(2 * nskip);
+ btScalar *W1 = &scratch[0];
+ btScalar *W2 = W1 + nskip;
-void btLDLTAddTL (btScalar *L, btScalar *d, const btScalar *a, int n, int nskip, btAlignedObjectArray<btScalar>& scratch)
-{
- btAssert (L && d && a && n > 0 && nskip >= n);
-
- if (n < 2) return;
- scratch.resize(2*nskip);
- btScalar *W1 = &scratch[0];
-
- btScalar *W2 = W1 + nskip;
-
- W1[0] = btScalar(0.0);
- W2[0] = btScalar(0.0);
- for (int j=1; j<n; ++j) {
- W1[j] = W2[j] = (btScalar) (a[j] * SIMDSQRT12);
- }
- btScalar W11 = (btScalar) ((btScalar(0.5)*a[0]+1)*SIMDSQRT12);
- btScalar W21 = (btScalar) ((btScalar(0.5)*a[0]-1)*SIMDSQRT12);
-
- btScalar alpha1 = btScalar(1.0);
- btScalar alpha2 = btScalar(1.0);
+ W1[0] = btScalar(0.0);
+ W2[0] = btScalar(0.0);
+ for (int j = 1; j < n; ++j)
+ {
+ W1[j] = W2[j] = (btScalar)(a[j] * SIMDSQRT12);
+ }
+ btScalar W11 = (btScalar)((btScalar(0.5) * a[0] + 1) * SIMDSQRT12);
+ btScalar W21 = (btScalar)((btScalar(0.5) * a[0] - 1) * SIMDSQRT12);
- {
- btScalar dee = d[0];
- btScalar alphanew = alpha1 + (W11*W11)*dee;
- btAssert(alphanew != btScalar(0.0));
- dee /= alphanew;
- btScalar gamma1 = W11 * dee;
- dee *= alpha1;
- alpha1 = alphanew;
- alphanew = alpha2 - (W21*W21)*dee;
- dee /= alphanew;
- //btScalar gamma2 = W21 * dee;
- alpha2 = alphanew;
- btScalar k1 = btScalar(1.0) - W21*gamma1;
- btScalar k2 = W21*gamma1*W11 - W21;
- btScalar *ll = L + nskip;
- for (int p=1; p<n; ll+=nskip, ++p) {
- btScalar Wp = W1[p];
- btScalar ell = *ll;
- W1[p] = Wp - W11*ell;
- W2[p] = k1*Wp + k2*ell;
- }
- }
+ btScalar alpha1 = btScalar(1.0);
+ btScalar alpha2 = btScalar(1.0);
- btScalar *ll = L + (nskip + 1);
- for (int j=1; j<n; ll+=nskip+1, ++j) {
- btScalar k1 = W1[j];
- btScalar k2 = W2[j];
-
- btScalar dee = d[j];
- btScalar alphanew = alpha1 + (k1*k1)*dee;
- btAssert(alphanew != btScalar(0.0));
- dee /= alphanew;
- btScalar gamma1 = k1 * dee;
- dee *= alpha1;
- alpha1 = alphanew;
- alphanew = alpha2 - (k2*k2)*dee;
- dee /= alphanew;
- btScalar gamma2 = k2 * dee;
- dee *= alpha2;
- d[j] = dee;
- alpha2 = alphanew;
-
- btScalar *l = ll + nskip;
- for (int p=j+1; p<n; l+=nskip, ++p) {
- btScalar ell = *l;
- btScalar Wp = W1[p] - k1 * ell;
- ell += gamma1 * Wp;
- W1[p] = Wp;
- Wp = W2[p] - k2 * ell;
- ell -= gamma2 * Wp;
- W2[p] = Wp;
- *l = ell;
- }
- }
+ {
+ btScalar dee = d[0];
+ btScalar alphanew = alpha1 + (W11 * W11) * dee;
+ btAssert(alphanew != btScalar(0.0));
+ dee /= alphanew;
+ btScalar gamma1 = W11 * dee;
+ dee *= alpha1;
+ alpha1 = alphanew;
+ alphanew = alpha2 - (W21 * W21) * dee;
+ dee /= alphanew;
+ //btScalar gamma2 = W21 * dee;
+ alpha2 = alphanew;
+ btScalar k1 = btScalar(1.0) - W21 * gamma1;
+ btScalar k2 = W21 * gamma1 * W11 - W21;
+ btScalar *ll = L + nskip;
+ for (int p = 1; p < n; ll += nskip, ++p)
+ {
+ btScalar Wp = W1[p];
+ btScalar ell = *ll;
+ W1[p] = Wp - W11 * ell;
+ W2[p] = k1 * Wp + k2 * ell;
+ }
+ }
+
+ btScalar *ll = L + (nskip + 1);
+ for (int j = 1; j < n; ll += nskip + 1, ++j)
+ {
+ btScalar k1 = W1[j];
+ btScalar k2 = W2[j];
+
+ btScalar dee = d[j];
+ btScalar alphanew = alpha1 + (k1 * k1) * dee;
+ btAssert(alphanew != btScalar(0.0));
+ dee /= alphanew;
+ btScalar gamma1 = k1 * dee;
+ dee *= alpha1;
+ alpha1 = alphanew;
+ alphanew = alpha2 - (k2 * k2) * dee;
+ dee /= alphanew;
+ btScalar gamma2 = k2 * dee;
+ dee *= alpha2;
+ d[j] = dee;
+ alpha2 = alphanew;
+
+ btScalar *l = ll + nskip;
+ for (int p = j + 1; p < n; l += nskip, ++p)
+ {
+ btScalar ell = *l;
+ btScalar Wp = W1[p] - k1 * ell;
+ ell += gamma1 * Wp;
+ W1[p] = Wp;
+ Wp = W2[p] - k2 * ell;
+ ell -= gamma2 * Wp;
+ W2[p] = Wp;
+ *l = ell;
+ }
+ }
}
-
-#define _BTGETA(i,j) (A[i][j])
+#define _BTGETA(i, j) (A[i][j])
//#define _GETA(i,j) (A[(i)*nskip+(j)])
-#define BTGETA(i,j) ((i > j) ? _BTGETA(i,j) : _BTGETA(j,i))
+#define BTGETA(i, j) ((i > j) ? _BTGETA(i, j) : _BTGETA(j, i))
inline size_t btEstimateLDLTAddTLTmpbufSize(int nskip)
{
- return nskip * 2 * sizeof(btScalar);
+ return nskip * 2 * sizeof(btScalar);
}
-
-void btLDLTRemove (btScalar **A, const int *p, btScalar *L, btScalar *d,
- int n1, int n2, int r, int nskip, btAlignedObjectArray<btScalar>& scratch)
+void btLDLTRemove(btScalar **A, const int *p, btScalar *L, btScalar *d,
+ int n1, int n2, int r, int nskip, btAlignedObjectArray<btScalar> &scratch)
{
- btAssert(A && p && L && d && n1 > 0 && n2 > 0 && r >= 0 && r < n2 &&
- n1 >= n2 && nskip >= n1);
- #ifdef BT_DEBUG
- for (int i=0; i<n2; ++i)
+ btAssert(A && p && L && d && n1 > 0 && n2 > 0 && r >= 0 && r < n2 &&
+ n1 >= n2 && nskip >= n1);
+#ifdef BT_DEBUG
+ for (int i = 0; i < n2; ++i)
btAssert(p[i] >= 0 && p[i] < n1);
- #endif
-
- if (r==n2-1) {
- return; // deleting last row/col is easy
- }
- else {
- size_t LDLTAddTL_size = btEstimateLDLTAddTLTmpbufSize(nskip);
- btAssert(LDLTAddTL_size % sizeof(btScalar) == 0);
- scratch.resize(nskip * 2+n2);
- btScalar *tmp = &scratch[0];
- if (r==0) {
- btScalar *a = (btScalar *)((char *)tmp + LDLTAddTL_size);
- const int p_0 = p[0];
- for (int i=0; i<n2; ++i) {
- a[i] = -BTGETA(p[i],p_0);
- }
- a[0] += btScalar(1.0);
- btLDLTAddTL (L,d,a,n2,nskip,scratch);
- }
- else {
- btScalar *t = (btScalar *)((char *)tmp + LDLTAddTL_size);
- {
- btScalar *Lcurr = L + r*nskip;
- for (int i=0; i<r; ++Lcurr, ++i) {
- btAssert(d[i] != btScalar(0.0));
- t[i] = *Lcurr / d[i];
- }
- }
- btScalar *a = t + r;
- {
- btScalar *Lcurr = L + r*nskip;
- const int *pp_r = p + r, p_r = *pp_r;
- const int n2_minus_r = n2-r;
- for (int i=0; i<n2_minus_r; Lcurr+=nskip,++i) {
- a[i] = btLargeDot(Lcurr,t,r) - BTGETA(pp_r[i],p_r);
- }
- }
- a[0] += btScalar(1.0);
- btLDLTAddTL (L + r*nskip+r, d+r, a, n2-r, nskip, scratch);
- }
- }
+#endif
- // snip out row/column r from L and d
- btRemoveRowCol (L,n2,nskip,r);
- if (r < (n2-1)) memmove (d+r,d+r+1,(n2-r-1)*sizeof(btScalar));
+ if (r == n2 - 1)
+ {
+ return; // deleting last row/col is easy
+ }
+ else
+ {
+ size_t LDLTAddTL_size = btEstimateLDLTAddTLTmpbufSize(nskip);
+ btAssert(LDLTAddTL_size % sizeof(btScalar) == 0);
+ scratch.resize(nskip * 2 + n2);
+ btScalar *tmp = &scratch[0];
+ if (r == 0)
+ {
+ btScalar *a = (btScalar *)((char *)tmp + LDLTAddTL_size);
+ const int p_0 = p[0];
+ for (int i = 0; i < n2; ++i)
+ {
+ a[i] = -BTGETA(p[i], p_0);
+ }
+ a[0] += btScalar(1.0);
+ btLDLTAddTL(L, d, a, n2, nskip, scratch);
+ }
+ else
+ {
+ btScalar *t = (btScalar *)((char *)tmp + LDLTAddTL_size);
+ {
+ btScalar *Lcurr = L + r * nskip;
+ for (int i = 0; i < r; ++Lcurr, ++i)
+ {
+ btAssert(d[i] != btScalar(0.0));
+ t[i] = *Lcurr / d[i];
+ }
+ }
+ btScalar *a = t + r;
+ {
+ btScalar *Lcurr = L + r * nskip;
+ const int *pp_r = p + r, p_r = *pp_r;
+ const int n2_minus_r = n2 - r;
+ for (int i = 0; i < n2_minus_r; Lcurr += nskip, ++i)
+ {
+ a[i] = btLargeDot(Lcurr, t, r) - BTGETA(pp_r[i], p_r);
+ }
+ }
+ a[0] += btScalar(1.0);
+ btLDLTAddTL(L + r * nskip + r, d + r, a, n2 - r, nskip, scratch);
+ }
+ }
+
+ // snip out row/column r from L and d
+ btRemoveRowCol(L, n2, nskip, r);
+ if (r < (n2 - 1)) memmove(d + r, d + r + 1, (n2 - r - 1) * sizeof(btScalar));
}
-
-void btLCP::transfer_i_from_C_to_N (int i, btAlignedObjectArray<btScalar>& scratch)
+void btLCP::transfer_i_from_C_to_N(int i, btAlignedObjectArray<btScalar> &scratch)
{
- {
- int *C = m_C;
- // remove a row/column from the factorization, and adjust the
- // indexes (black magic!)
- int last_idx = -1;
- const int nC = m_nC;
- int j = 0;
- for ( ; j<nC; ++j) {
- if (C[j]==nC-1) {
- last_idx = j;
- }
- if (C[j]==i) {
- btLDLTRemove (m_A,C,m_L,m_d,m_n,nC,j,m_nskip,scratch);
- int k;
- if (last_idx == -1) {
- for (k=j+1 ; k<nC; ++k) {
- if (C[k]==nC-1) {
- break;
- }
- }
- btAssert (k < nC);
- }
- else {
- k = last_idx;
- }
- C[k] = C[j];
- if (j < (nC-1)) memmove (C+j,C+j+1,(nC-j-1)*sizeof(int));
- break;
- }
- }
- btAssert (j < nC);
-
- btSwapProblem (m_A,m_x,m_b,m_w,m_lo,m_hi,m_p,m_state,m_findex,m_n,i,nC-1,m_nskip,1);
-
- m_nN++;
- m_nC = nC - 1; // nC value is outdated after this line
- }
-
+ {
+ int *C = m_C;
+ // remove a row/column from the factorization, and adjust the
+ // indexes (black magic!)
+ int last_idx = -1;
+ const int nC = m_nC;
+ int j = 0;
+ for (; j < nC; ++j)
+ {
+ if (C[j] == nC - 1)
+ {
+ last_idx = j;
+ }
+ if (C[j] == i)
+ {
+ btLDLTRemove(m_A, C, m_L, m_d, m_n, nC, j, m_nskip, scratch);
+ int k;
+ if (last_idx == -1)
+ {
+ for (k = j + 1; k < nC; ++k)
+ {
+ if (C[k] == nC - 1)
+ {
+ break;
+ }
+ }
+ btAssert(k < nC);
+ }
+ else
+ {
+ k = last_idx;
+ }
+ C[k] = C[j];
+ if (j < (nC - 1)) memmove(C + j, C + j + 1, (nC - j - 1) * sizeof(int));
+ break;
+ }
+ }
+ btAssert(j < nC);
+
+ btSwapProblem(m_A, m_x, m_b, m_w, m_lo, m_hi, m_p, m_state, m_findex, m_n, i, nC - 1, m_nskip, 1);
+
+ m_nN++;
+ m_nC = nC - 1; // nC value is outdated after this line
+ }
}
-
-void btLCP::pN_equals_ANC_times_qC (btScalar *p, btScalar *q)
+void btLCP::pN_equals_ANC_times_qC(btScalar *p, btScalar *q)
{
- // we could try to make this matrix-vector multiplication faster using
- // outer product matrix tricks, e.g. with the dMultidotX() functions.
- // but i tried it and it actually made things slower on random 100x100
- // problems because of the overhead involved. so we'll stick with the
- // simple method for now.
- const int nC = m_nC;
- btScalar *ptgt = p + nC;
- const int nN = m_nN;
- for (int i=0; i<nN; ++i) {
- ptgt[i] = btLargeDot (BTAROW(i+nC),q,nC);
- }
+ // we could try to make this matrix-vector multiplication faster using
+ // outer product matrix tricks, e.g. with the dMultidotX() functions.
+ // but i tried it and it actually made things slower on random 100x100
+ // problems because of the overhead involved. so we'll stick with the
+ // simple method for now.
+ const int nC = m_nC;
+ btScalar *ptgt = p + nC;
+ const int nN = m_nN;
+ for (int i = 0; i < nN; ++i)
+ {
+ ptgt[i] = btLargeDot(BTAROW(i + nC), q, nC);
+ }
}
-
-void btLCP::pN_plusequals_ANi (btScalar *p, int i, int sign)
+void btLCP::pN_plusequals_ANi(btScalar *p, int i, int sign)
{
- const int nC = m_nC;
- btScalar *aptr = BTAROW(i) + nC;
- btScalar *ptgt = p + nC;
- if (sign > 0) {
- const int nN = m_nN;
- for (int j=0; j<nN; ++j) ptgt[j] += aptr[j];
- }
- else {
- const int nN = m_nN;
- for (int j=0; j<nN; ++j) ptgt[j] -= aptr[j];
- }
+ const int nC = m_nC;
+ btScalar *aptr = BTAROW(i) + nC;
+ btScalar *ptgt = p + nC;
+ if (sign > 0)
+ {
+ const int nN = m_nN;
+ for (int j = 0; j < nN; ++j) ptgt[j] += aptr[j];
+ }
+ else
+ {
+ const int nN = m_nN;
+ for (int j = 0; j < nN; ++j) ptgt[j] -= aptr[j];
+ }
}
-void btLCP::pC_plusequals_s_times_qC (btScalar *p, btScalar s, btScalar *q)
+void btLCP::pC_plusequals_s_times_qC(btScalar *p, btScalar s, btScalar *q)
{
- const int nC = m_nC;
- for (int i=0; i<nC; ++i) {
- p[i] += s*q[i];
- }
+ const int nC = m_nC;
+ for (int i = 0; i < nC; ++i)
+ {
+ p[i] += s * q[i];
+ }
}
-void btLCP::pN_plusequals_s_times_qN (btScalar *p, btScalar s, btScalar *q)
+void btLCP::pN_plusequals_s_times_qN(btScalar *p, btScalar s, btScalar *q)
{
- const int nC = m_nC;
- btScalar *ptgt = p + nC, *qsrc = q + nC;
- const int nN = m_nN;
- for (int i=0; i<nN; ++i) {
- ptgt[i] += s*qsrc[i];
- }
+ const int nC = m_nC;
+ btScalar *ptgt = p + nC, *qsrc = q + nC;
+ const int nN = m_nN;
+ for (int i = 0; i < nN; ++i)
+ {
+ ptgt[i] += s * qsrc[i];
+ }
}
-void btLCP::solve1 (btScalar *a, int i, int dir, int only_transfer)
+void btLCP::solve1(btScalar *a, int i, int dir, int only_transfer)
{
- // the `Dell' and `ell' that are computed here are saved. if index i is
- // later added to the factorization then they can be reused.
- //
- // @@@ question: do we need to solve for entire delta_x??? yes, but
- // only if an x goes below 0 during the step.
-
- if (m_nC > 0) {
- {
- btScalar *Dell = m_Dell;
- int *C = m_C;
- btScalar *aptr = BTAROW(i);
-# ifdef BTNUB_OPTIMIZATIONS
- // if nub>0, initial part of aptr[] is guaranteed unpermuted
- const int nub = m_nub;
- int j=0;
- for ( ; j<nub; ++j) Dell[j] = aptr[j];
- const int nC = m_nC;
- for ( ; j<nC; ++j) Dell[j] = aptr[C[j]];
-# else
- const int nC = m_nC;
- for (int j=0; j<nC; ++j) Dell[j] = aptr[C[j]];
-# endif
- }
- btSolveL1 (m_L,m_Dell,m_nC,m_nskip);
- {
- btScalar *ell = m_ell, *Dell = m_Dell, *d = m_d;
- const int nC = m_nC;
- for (int j=0; j<nC; ++j) ell[j] = Dell[j] * d[j];
- }
+ // the `Dell' and `ell' that are computed here are saved. if index i is
+ // later added to the factorization then they can be reused.
+ //
+ // @@@ question: do we need to solve for entire delta_x??? yes, but
+ // only if an x goes below 0 during the step.
- if (!only_transfer) {
- btScalar *tmp = m_tmp, *ell = m_ell;
- {
- const int nC = m_nC;
- for (int j=0; j<nC; ++j) tmp[j] = ell[j];
- }
- btSolveL1T (m_L,tmp,m_nC,m_nskip);
- if (dir > 0) {
- int *C = m_C;
- btScalar *tmp = m_tmp;
- const int nC = m_nC;
- for (int j=0; j<nC; ++j) a[C[j]] = -tmp[j];
- } else {
- int *C = m_C;
- btScalar *tmp = m_tmp;
- const int nC = m_nC;
- for (int j=0; j<nC; ++j) a[C[j]] = tmp[j];
- }
- }
- }
-}
+ if (m_nC > 0)
+ {
+ {
+ btScalar *Dell = m_Dell;
+ int *C = m_C;
+ btScalar *aptr = BTAROW(i);
+#ifdef BTNUB_OPTIMIZATIONS
+ // if nub>0, initial part of aptr[] is guaranteed unpermuted
+ const int nub = m_nub;
+ int j = 0;
+ for (; j < nub; ++j) Dell[j] = aptr[j];
+ const int nC = m_nC;
+ for (; j < nC; ++j) Dell[j] = aptr[C[j]];
+#else
+ const int nC = m_nC;
+ for (int j = 0; j < nC; ++j) Dell[j] = aptr[C[j]];
+#endif
+ }
+ btSolveL1(m_L, m_Dell, m_nC, m_nskip);
+ {
+ btScalar *ell = m_ell, *Dell = m_Dell, *d = m_d;
+ const int nC = m_nC;
+ for (int j = 0; j < nC; ++j) ell[j] = Dell[j] * d[j];
+ }
+ if (!only_transfer)
+ {
+ btScalar *tmp = m_tmp, *ell = m_ell;
+ {
+ const int nC = m_nC;
+ for (int j = 0; j < nC; ++j) tmp[j] = ell[j];
+ }
+ btSolveL1T(m_L, tmp, m_nC, m_nskip);
+ if (dir > 0)
+ {
+ int *C = m_C;
+ btScalar *tmp = m_tmp;
+ const int nC = m_nC;
+ for (int j = 0; j < nC; ++j) a[C[j]] = -tmp[j];
+ }
+ else
+ {
+ int *C = m_C;
+ btScalar *tmp = m_tmp;
+ const int nC = m_nC;
+ for (int j = 0; j < nC; ++j) a[C[j]] = tmp[j];
+ }
+ }
+ }
+}
void btLCP::unpermute()
{
- // now we have to un-permute x and w
- {
- memcpy (m_tmp,m_x,m_n*sizeof(btScalar));
- btScalar *x = m_x, *tmp = m_tmp;
- const int *p = m_p;
- const int n = m_n;
- for (int j=0; j<n; ++j) x[p[j]] = tmp[j];
- }
- {
- memcpy (m_tmp,m_w,m_n*sizeof(btScalar));
- btScalar *w = m_w, *tmp = m_tmp;
- const int *p = m_p;
- const int n = m_n;
- for (int j=0; j<n; ++j) w[p[j]] = tmp[j];
- }
+ // now we have to un-permute x and w
+ {
+ memcpy(m_tmp, m_x, m_n * sizeof(btScalar));
+ btScalar *x = m_x, *tmp = m_tmp;
+ const int *p = m_p;
+ const int n = m_n;
+ for (int j = 0; j < n; ++j) x[p[j]] = tmp[j];
+ }
+ {
+ memcpy(m_tmp, m_w, m_n * sizeof(btScalar));
+ btScalar *w = m_w, *tmp = m_tmp;
+ const int *p = m_p;
+ const int n = m_n;
+ for (int j = 0; j < n; ++j) w[p[j]] = tmp[j];
+ }
}
-#endif // btLCP_FAST
-
+#endif // btLCP_FAST
//***************************************************************************
// an optimized Dantzig LCP driver routine for the lo-hi LCP problem.
-bool btSolveDantzigLCP (int n, btScalar *A, btScalar *x, btScalar *b,
- btScalar* outer_w, int nub, btScalar *lo, btScalar *hi, int *findex, btDantzigScratchMemory& scratchMem)
+bool btSolveDantzigLCP(int n, btScalar *A, btScalar *x, btScalar *b,
+ btScalar *outer_w, int nub, btScalar *lo, btScalar *hi, int *findex, btDantzigScratchMemory &scratchMem)
{
s_error = false;
-// printf("btSolveDantzigLCP n=%d\n",n);
- btAssert (n>0 && A && x && b && lo && hi && nub >= 0 && nub <= n);
- btAssert(outer_w);
+ // printf("btSolveDantzigLCP n=%d\n",n);
+ btAssert(n > 0 && A && x && b && lo && hi && nub >= 0 && nub <= n);
+ btAssert(outer_w);
#ifdef BT_DEBUG
- {
- // check restrictions on lo and hi
- for (int k=0; k<n; ++k)
- btAssert (lo[k] <= 0 && hi[k] >= 0);
- }
-# endif
-
-
- // if all the variables are unbounded then we can just factor, solve,
- // and return
- if (nub >= n)
- {
-
-
- int nskip = (n);
- btFactorLDLT (A, outer_w, n, nskip);
- btSolveLDLT (A, outer_w, b, n, nskip);
- memcpy (x, b, n*sizeof(btScalar));
-
- return !s_error;
- }
-
- const int nskip = (n);
- scratchMem.L.resize(n*nskip);
-
- scratchMem.d.resize(n);
-
- btScalar *w = outer_w;
- scratchMem.delta_w.resize(n);
- scratchMem.delta_x.resize(n);
- scratchMem.Dell.resize(n);
- scratchMem.ell.resize(n);
- scratchMem.Arows.resize(n);
- scratchMem.p.resize(n);
- scratchMem.C.resize(n);
-
- // for i in N, state[i] is 0 if x(i)==lo(i) or 1 if x(i)==hi(i)
- scratchMem.state.resize(n);
-
-
- // create LCP object. note that tmp is set to delta_w to save space, this
- // optimization relies on knowledge of how tmp is used, so be careful!
- btLCP lcp(n,nskip,nub,A,x,b,w,lo,hi,&scratchMem.L[0],&scratchMem.d[0],&scratchMem.Dell[0],&scratchMem.ell[0],&scratchMem.delta_w[0],&scratchMem.state[0],findex,&scratchMem.p[0],&scratchMem.C[0],&scratchMem.Arows[0]);
- int adj_nub = lcp.getNub();
-
- // loop over all indexes adj_nub..n-1. for index i, if x(i),w(i) satisfy the
- // LCP conditions then i is added to the appropriate index set. otherwise
- // x(i),w(i) is driven either +ve or -ve to force it to the valid region.
- // as we drive x(i), x(C) is also adjusted to keep w(C) at zero.
- // while driving x(i) we maintain the LCP conditions on the other variables
- // 0..i-1. we do this by watching out for other x(i),w(i) values going
- // outside the valid region, and then switching them between index sets
- // when that happens.
-
- bool hit_first_friction_index = false;
- for (int i=adj_nub; i<n; ++i)
- {
- s_error = false;
- // the index i is the driving index and indexes i+1..n-1 are "dont care",
- // i.e. when we make changes to the system those x's will be zero and we
- // don't care what happens to those w's. in other words, we only consider
- // an (i+1)*(i+1) sub-problem of A*x=b+w.
-
- // if we've hit the first friction index, we have to compute the lo and
- // hi values based on the values of x already computed. we have been
- // permuting the indexes, so the values stored in the findex vector are
- // no longer valid. thus we have to temporarily unpermute the x vector.
- // for the purposes of this computation, 0*infinity = 0 ... so if the
- // contact constraint's normal force is 0, there should be no tangential
- // force applied.
-
- if (!hit_first_friction_index && findex && findex[i] >= 0) {
- // un-permute x into delta_w, which is not being used at the moment
- for (int j=0; j<n; ++j) scratchMem.delta_w[scratchMem.p[j]] = x[j];
-
- // set lo and hi values
- for (int k=i; k<n; ++k) {
- btScalar wfk = scratchMem.delta_w[findex[k]];
- if (wfk == 0) {
- hi[k] = 0;
- lo[k] = 0;
- }
- else {
- hi[k] = btFabs (hi[k] * wfk);
- lo[k] = -hi[k];
- }
- }
- hit_first_friction_index = true;
- }
-
- // thus far we have not even been computing the w values for indexes
- // greater than i, so compute w[i] now.
- w[i] = lcp.AiC_times_qC (i,x) + lcp.AiN_times_qN (i,x) - b[i];
-
- // if lo=hi=0 (which can happen for tangential friction when normals are
- // 0) then the index will be assigned to set N with some state. however,
- // set C's line has zero size, so the index will always remain in set N.
- // with the "normal" switching logic, if w changed sign then the index
- // would have to switch to set C and then back to set N with an inverted
- // state. this is pointless, and also computationally expensive. to
- // prevent this from happening, we use the rule that indexes with lo=hi=0
- // will never be checked for set changes. this means that the state for
- // these indexes may be incorrect, but that doesn't matter.
-
- // see if x(i),w(i) is in a valid region
- if (lo[i]==0 && w[i] >= 0) {
- lcp.transfer_i_to_N (i);
- scratchMem.state[i] = false;
- }
- else if (hi[i]==0 && w[i] <= 0) {
- lcp.transfer_i_to_N (i);
- scratchMem.state[i] = true;
- }
- else if (w[i]==0) {
- // this is a degenerate case. by the time we get to this test we know
- // that lo != 0, which means that lo < 0 as lo is not allowed to be +ve,
- // and similarly that hi > 0. this means that the line segment
- // corresponding to set C is at least finite in extent, and we are on it.
- // NOTE: we must call lcp.solve1() before lcp.transfer_i_to_C()
- lcp.solve1 (&scratchMem.delta_x[0],i,0,1);
-
- lcp.transfer_i_to_C (i);
- }
- else {
- // we must push x(i) and w(i)
- for (;;) {
- int dir;
- btScalar dirf;
- // find direction to push on x(i)
- if (w[i] <= 0) {
- dir = 1;
- dirf = btScalar(1.0);
- }
- else {
- dir = -1;
- dirf = btScalar(-1.0);
- }
-
- // compute: delta_x(C) = -dir*A(C,C)\A(C,i)
- lcp.solve1 (&scratchMem.delta_x[0],i,dir);
-
- // note that delta_x[i] = dirf, but we wont bother to set it
-
- // compute: delta_w = A*delta_x ... note we only care about
- // delta_w(N) and delta_w(i), the rest is ignored
- lcp.pN_equals_ANC_times_qC (&scratchMem.delta_w[0],&scratchMem.delta_x[0]);
- lcp.pN_plusequals_ANi (&scratchMem.delta_w[0],i,dir);
- scratchMem.delta_w[i] = lcp.AiC_times_qC (i,&scratchMem.delta_x[0]) + lcp.Aii(i)*dirf;
-
- // find largest step we can take (size=s), either to drive x(i),w(i)
- // to the valid LCP region or to drive an already-valid variable
- // outside the valid region.
-
- int cmd = 1; // index switching command
- int si = 0; // si = index to switch if cmd>3
- btScalar s = -w[i]/scratchMem.delta_w[i];
- if (dir > 0) {
- if (hi[i] < BT_INFINITY) {
- btScalar s2 = (hi[i]-x[i])*dirf; // was (hi[i]-x[i])/dirf // step to x(i)=hi(i)
- if (s2 < s) {
- s = s2;
- cmd = 3;
- }
- }
- }
- else {
- if (lo[i] > -BT_INFINITY) {
- btScalar s2 = (lo[i]-x[i])*dirf; // was (lo[i]-x[i])/dirf // step to x(i)=lo(i)
- if (s2 < s) {
- s = s2;
- cmd = 2;
- }
- }
- }
-
- {
- const int numN = lcp.numN();
- for (int k=0; k < numN; ++k) {
- const int indexN_k = lcp.indexN(k);
- if (!scratchMem.state[indexN_k] ? scratchMem.delta_w[indexN_k] < 0 : scratchMem.delta_w[indexN_k] > 0) {
- // don't bother checking if lo=hi=0
- if (lo[indexN_k] == 0 && hi[indexN_k] == 0) continue;
- btScalar s2 = -w[indexN_k] / scratchMem.delta_w[indexN_k];
- if (s2 < s) {
- s = s2;
- cmd = 4;
- si = indexN_k;
- }
- }
- }
- }
-
- {
- const int numC = lcp.numC();
- for (int k=adj_nub; k < numC; ++k) {
- const int indexC_k = lcp.indexC(k);
- if (scratchMem.delta_x[indexC_k] < 0 && lo[indexC_k] > -BT_INFINITY) {
- btScalar s2 = (lo[indexC_k]-x[indexC_k]) / scratchMem.delta_x[indexC_k];
- if (s2 < s) {
- s = s2;
- cmd = 5;
- si = indexC_k;
- }
- }
- if (scratchMem.delta_x[indexC_k] > 0 && hi[indexC_k] < BT_INFINITY) {
- btScalar s2 = (hi[indexC_k]-x[indexC_k]) / scratchMem.delta_x[indexC_k];
- if (s2 < s) {
- s = s2;
- cmd = 6;
- si = indexC_k;
- }
- }
- }
- }
-
- //static char* cmdstring[8] = {0,"->C","->NL","->NH","N->C",
- // "C->NL","C->NH"};
- //printf ("cmd=%d (%s), si=%d\n",cmd,cmdstring[cmd],(cmd>3) ? si : i);
-
- // if s <= 0 then we've got a problem. if we just keep going then
- // we're going to get stuck in an infinite loop. instead, just cross
- // our fingers and exit with the current solution.
- if (s <= btScalar(0.0))
- {
-// printf("LCP internal error, s <= 0 (s=%.4e)",(double)s);
- if (i < n) {
- btSetZero (x+i,n-i);
- btSetZero (w+i,n-i);
- }
- s_error = true;
- break;
- }
-
- // apply x = x + s * delta_x
- lcp.pC_plusequals_s_times_qC (x, s, &scratchMem.delta_x[0]);
- x[i] += s * dirf;
-
- // apply w = w + s * delta_w
- lcp.pN_plusequals_s_times_qN (w, s, &scratchMem.delta_w[0]);
- w[i] += s * scratchMem.delta_w[i];
-
-// void *tmpbuf;
- // switch indexes between sets if necessary
- switch (cmd) {
- case 1: // done
- w[i] = 0;
- lcp.transfer_i_to_C (i);
- break;
- case 2: // done
- x[i] = lo[i];
- scratchMem.state[i] = false;
- lcp.transfer_i_to_N (i);
- break;
- case 3: // done
- x[i] = hi[i];
- scratchMem.state[i] = true;
- lcp.transfer_i_to_N (i);
- break;
- case 4: // keep going
- w[si] = 0;
- lcp.transfer_i_from_N_to_C (si);
- break;
- case 5: // keep going
- x[si] = lo[si];
- scratchMem.state[si] = false;
- lcp.transfer_i_from_C_to_N (si, scratchMem.m_scratch);
- break;
- case 6: // keep going
- x[si] = hi[si];
- scratchMem.state[si] = true;
- lcp.transfer_i_from_C_to_N (si, scratchMem.m_scratch);
- break;
- }
-
- if (cmd <= 3) break;
- } // for (;;)
- } // else
-
- if (s_error)
{
- break;
- }
- } // for (int i=adj_nub; i<n; ++i)
+ // check restrictions on lo and hi
+ for (int k = 0; k < n; ++k)
+ btAssert(lo[k] <= 0 && hi[k] >= 0);
+ }
+#endif
- lcp.unpermute();
+ // if all the variables are unbounded then we can just factor, solve,
+ // and return
+ if (nub >= n)
+ {
+ int nskip = (n);
+ btFactorLDLT(A, outer_w, n, nskip);
+ btSolveLDLT(A, outer_w, b, n, nskip);
+ memcpy(x, b, n * sizeof(btScalar));
+
+ return !s_error;
+ }
+
+ const int nskip = (n);
+ scratchMem.L.resize(n * nskip);
+
+ scratchMem.d.resize(n);
+
+ btScalar *w = outer_w;
+ scratchMem.delta_w.resize(n);
+ scratchMem.delta_x.resize(n);
+ scratchMem.Dell.resize(n);
+ scratchMem.ell.resize(n);
+ scratchMem.Arows.resize(n);
+ scratchMem.p.resize(n);
+ scratchMem.C.resize(n);
+
+ // for i in N, state[i] is 0 if x(i)==lo(i) or 1 if x(i)==hi(i)
+ scratchMem.state.resize(n);
+
+ // create LCP object. note that tmp is set to delta_w to save space, this
+ // optimization relies on knowledge of how tmp is used, so be careful!
+ btLCP lcp(n, nskip, nub, A, x, b, w, lo, hi, &scratchMem.L[0], &scratchMem.d[0], &scratchMem.Dell[0], &scratchMem.ell[0], &scratchMem.delta_w[0], &scratchMem.state[0], findex, &scratchMem.p[0], &scratchMem.C[0], &scratchMem.Arows[0]);
+ int adj_nub = lcp.getNub();
+
+ // loop over all indexes adj_nub..n-1. for index i, if x(i),w(i) satisfy the
+ // LCP conditions then i is added to the appropriate index set. otherwise
+ // x(i),w(i) is driven either +ve or -ve to force it to the valid region.
+ // as we drive x(i), x(C) is also adjusted to keep w(C) at zero.
+ // while driving x(i) we maintain the LCP conditions on the other variables
+ // 0..i-1. we do this by watching out for other x(i),w(i) values going
+ // outside the valid region, and then switching them between index sets
+ // when that happens.
+
+ bool hit_first_friction_index = false;
+ for (int i = adj_nub; i < n; ++i)
+ {
+ s_error = false;
+ // the index i is the driving index and indexes i+1..n-1 are "dont care",
+ // i.e. when we make changes to the system those x's will be zero and we
+ // don't care what happens to those w's. in other words, we only consider
+ // an (i+1)*(i+1) sub-problem of A*x=b+w.
+
+ // if we've hit the first friction index, we have to compute the lo and
+ // hi values based on the values of x already computed. we have been
+ // permuting the indexes, so the values stored in the findex vector are
+ // no longer valid. thus we have to temporarily unpermute the x vector.
+ // for the purposes of this computation, 0*infinity = 0 ... so if the
+ // contact constraint's normal force is 0, there should be no tangential
+ // force applied.
+
+ if (!hit_first_friction_index && findex && findex[i] >= 0)
+ {
+ // un-permute x into delta_w, which is not being used at the moment
+ for (int j = 0; j < n; ++j) scratchMem.delta_w[scratchMem.p[j]] = x[j];
+
+ // set lo and hi values
+ for (int k = i; k < n; ++k)
+ {
+ btScalar wfk = scratchMem.delta_w[findex[k]];
+ if (wfk == 0)
+ {
+ hi[k] = 0;
+ lo[k] = 0;
+ }
+ else
+ {
+ hi[k] = btFabs(hi[k] * wfk);
+ lo[k] = -hi[k];
+ }
+ }
+ hit_first_friction_index = true;
+ }
+
+ // thus far we have not even been computing the w values for indexes
+ // greater than i, so compute w[i] now.
+ w[i] = lcp.AiC_times_qC(i, x) + lcp.AiN_times_qN(i, x) - b[i];
+
+ // if lo=hi=0 (which can happen for tangential friction when normals are
+ // 0) then the index will be assigned to set N with some state. however,
+ // set C's line has zero size, so the index will always remain in set N.
+ // with the "normal" switching logic, if w changed sign then the index
+ // would have to switch to set C and then back to set N with an inverted
+ // state. this is pointless, and also computationally expensive. to
+ // prevent this from happening, we use the rule that indexes with lo=hi=0
+ // will never be checked for set changes. this means that the state for
+ // these indexes may be incorrect, but that doesn't matter.
+
+ // see if x(i),w(i) is in a valid region
+ if (lo[i] == 0 && w[i] >= 0)
+ {
+ lcp.transfer_i_to_N(i);
+ scratchMem.state[i] = false;
+ }
+ else if (hi[i] == 0 && w[i] <= 0)
+ {
+ lcp.transfer_i_to_N(i);
+ scratchMem.state[i] = true;
+ }
+ else if (w[i] == 0)
+ {
+ // this is a degenerate case. by the time we get to this test we know
+ // that lo != 0, which means that lo < 0 as lo is not allowed to be +ve,
+ // and similarly that hi > 0. this means that the line segment
+ // corresponding to set C is at least finite in extent, and we are on it.
+ // NOTE: we must call lcp.solve1() before lcp.transfer_i_to_C()
+ lcp.solve1(&scratchMem.delta_x[0], i, 0, 1);
+
+ lcp.transfer_i_to_C(i);
+ }
+ else
+ {
+ // we must push x(i) and w(i)
+ for (;;)
+ {
+ int dir;
+ btScalar dirf;
+ // find direction to push on x(i)
+ if (w[i] <= 0)
+ {
+ dir = 1;
+ dirf = btScalar(1.0);
+ }
+ else
+ {
+ dir = -1;
+ dirf = btScalar(-1.0);
+ }
+
+ // compute: delta_x(C) = -dir*A(C,C)\A(C,i)
+ lcp.solve1(&scratchMem.delta_x[0], i, dir);
+
+ // note that delta_x[i] = dirf, but we wont bother to set it
+
+ // compute: delta_w = A*delta_x ... note we only care about
+ // delta_w(N) and delta_w(i), the rest is ignored
+ lcp.pN_equals_ANC_times_qC(&scratchMem.delta_w[0], &scratchMem.delta_x[0]);
+ lcp.pN_plusequals_ANi(&scratchMem.delta_w[0], i, dir);
+ scratchMem.delta_w[i] = lcp.AiC_times_qC(i, &scratchMem.delta_x[0]) + lcp.Aii(i) * dirf;
+
+ // find largest step we can take (size=s), either to drive x(i),w(i)
+ // to the valid LCP region or to drive an already-valid variable
+ // outside the valid region.
+
+ int cmd = 1; // index switching command
+ int si = 0; // si = index to switch if cmd>3
+ btScalar s = -w[i] / scratchMem.delta_w[i];
+ if (dir > 0)
+ {
+ if (hi[i] < BT_INFINITY)
+ {
+ btScalar s2 = (hi[i] - x[i]) * dirf; // was (hi[i]-x[i])/dirf // step to x(i)=hi(i)
+ if (s2 < s)
+ {
+ s = s2;
+ cmd = 3;
+ }
+ }
+ }
+ else
+ {
+ if (lo[i] > -BT_INFINITY)
+ {
+ btScalar s2 = (lo[i] - x[i]) * dirf; // was (lo[i]-x[i])/dirf // step to x(i)=lo(i)
+ if (s2 < s)
+ {
+ s = s2;
+ cmd = 2;
+ }
+ }
+ }
+
+ {
+ const int numN = lcp.numN();
+ for (int k = 0; k < numN; ++k)
+ {
+ const int indexN_k = lcp.indexN(k);
+ if (!scratchMem.state[indexN_k] ? scratchMem.delta_w[indexN_k] < 0 : scratchMem.delta_w[indexN_k] > 0)
+ {
+ // don't bother checking if lo=hi=0
+ if (lo[indexN_k] == 0 && hi[indexN_k] == 0) continue;
+ btScalar s2 = -w[indexN_k] / scratchMem.delta_w[indexN_k];
+ if (s2 < s)
+ {
+ s = s2;
+ cmd = 4;
+ si = indexN_k;
+ }
+ }
+ }
+ }
+
+ {
+ const int numC = lcp.numC();
+ for (int k = adj_nub; k < numC; ++k)
+ {
+ const int indexC_k = lcp.indexC(k);
+ if (scratchMem.delta_x[indexC_k] < 0 && lo[indexC_k] > -BT_INFINITY)
+ {
+ btScalar s2 = (lo[indexC_k] - x[indexC_k]) / scratchMem.delta_x[indexC_k];
+ if (s2 < s)
+ {
+ s = s2;
+ cmd = 5;
+ si = indexC_k;
+ }
+ }
+ if (scratchMem.delta_x[indexC_k] > 0 && hi[indexC_k] < BT_INFINITY)
+ {
+ btScalar s2 = (hi[indexC_k] - x[indexC_k]) / scratchMem.delta_x[indexC_k];
+ if (s2 < s)
+ {
+ s = s2;
+ cmd = 6;
+ si = indexC_k;
+ }
+ }
+ }
+ }
+
+ //static char* cmdstring[8] = {0,"->C","->NL","->NH","N->C",
+ // "C->NL","C->NH"};
+ //printf ("cmd=%d (%s), si=%d\n",cmd,cmdstring[cmd],(cmd>3) ? si : i);
+
+ // if s <= 0 then we've got a problem. if we just keep going then
+ // we're going to get stuck in an infinite loop. instead, just cross
+ // our fingers and exit with the current solution.
+ if (s <= btScalar(0.0))
+ {
+ // printf("LCP internal error, s <= 0 (s=%.4e)",(double)s);
+ if (i < n)
+ {
+ btSetZero(x + i, n - i);
+ btSetZero(w + i, n - i);
+ }
+ s_error = true;
+ break;
+ }
+
+ // apply x = x + s * delta_x
+ lcp.pC_plusequals_s_times_qC(x, s, &scratchMem.delta_x[0]);
+ x[i] += s * dirf;
+
+ // apply w = w + s * delta_w
+ lcp.pN_plusequals_s_times_qN(w, s, &scratchMem.delta_w[0]);
+ w[i] += s * scratchMem.delta_w[i];
+
+ // void *tmpbuf;
+ // switch indexes between sets if necessary
+ switch (cmd)
+ {
+ case 1: // done
+ w[i] = 0;
+ lcp.transfer_i_to_C(i);
+ break;
+ case 2: // done
+ x[i] = lo[i];
+ scratchMem.state[i] = false;
+ lcp.transfer_i_to_N(i);
+ break;
+ case 3: // done
+ x[i] = hi[i];
+ scratchMem.state[i] = true;
+ lcp.transfer_i_to_N(i);
+ break;
+ case 4: // keep going
+ w[si] = 0;
+ lcp.transfer_i_from_N_to_C(si);
+ break;
+ case 5: // keep going
+ x[si] = lo[si];
+ scratchMem.state[si] = false;
+ lcp.transfer_i_from_C_to_N(si, scratchMem.m_scratch);
+ break;
+ case 6: // keep going
+ x[si] = hi[si];
+ scratchMem.state[si] = true;
+ lcp.transfer_i_from_C_to_N(si, scratchMem.m_scratch);
+ break;
+ }
+
+ if (cmd <= 3) break;
+ } // for (;;)
+ } // else
+
+ if (s_error)
+ {
+ break;
+ }
+ } // for (int i=adj_nub; i<n; ++i)
+ lcp.unpermute();
- return !s_error;
+ return !s_error;
}
-
diff --git a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btDantzigLCP.h b/thirdparty/bullet/BulletDynamics/MLCPSolvers/btDantzigLCP.h
index 903832770a..8d9b2a13e9 100644
--- a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btDantzigLCP.h
+++ b/thirdparty/bullet/BulletDynamics/MLCPSolvers/btDantzigLCP.h
@@ -41,7 +41,6 @@ to be implemented. the first `nub' variables are assumed to have findex < 0.
*/
-
#ifndef _BT_LCP_H_
#define _BT_LCP_H_
@@ -49,7 +48,6 @@ to be implemented. the first `nub' variables are assumed to have findex < 0.
#include <stdio.h>
#include <assert.h>
-
#include "LinearMath/btScalar.h"
#include "LinearMath/btAlignedObjectArray.h"
@@ -62,16 +60,14 @@ struct btDantzigScratchMemory
btAlignedObjectArray<btScalar> delta_x;
btAlignedObjectArray<btScalar> Dell;
btAlignedObjectArray<btScalar> ell;
- btAlignedObjectArray<btScalar*> Arows;
+ btAlignedObjectArray<btScalar *> Arows;
btAlignedObjectArray<int> p;
btAlignedObjectArray<int> C;
btAlignedObjectArray<bool> state;
};
//return false if solving failed
-bool btSolveDantzigLCP (int n, btScalar *A, btScalar *x, btScalar *b, btScalar *w,
- int nub, btScalar *lo, btScalar *hi, int *findex,btDantzigScratchMemory& scratch);
-
-
+bool btSolveDantzigLCP(int n, btScalar *A, btScalar *x, btScalar *b, btScalar *w,
+ int nub, btScalar *lo, btScalar *hi, int *findex, btDantzigScratchMemory &scratch);
-#endif //_BT_LCP_H_
+#endif //_BT_LCP_H_
diff --git a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btDantzigSolver.h b/thirdparty/bullet/BulletDynamics/MLCPSolvers/btDantzigSolver.h
index 2a2f2d3d32..1f669751ce 100644
--- a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btDantzigSolver.h
+++ b/thirdparty/bullet/BulletDynamics/MLCPSolvers/btDantzigSolver.h
@@ -20,30 +20,28 @@ subject to the following restrictions:
#include "btMLCPSolverInterface.h"
#include "btDantzigLCP.h"
-
class btDantzigSolver : public btMLCPSolverInterface
{
protected:
-
btScalar m_acceptableUpperLimitSolution;
- btAlignedObjectArray<char> m_tempBuffer;
+ btAlignedObjectArray<char> m_tempBuffer;
btAlignedObjectArray<btScalar> m_A;
btAlignedObjectArray<btScalar> m_b;
btAlignedObjectArray<btScalar> m_x;
btAlignedObjectArray<btScalar> m_lo;
btAlignedObjectArray<btScalar> m_hi;
- btAlignedObjectArray<int> m_dependencies;
+ btAlignedObjectArray<int> m_dependencies;
btDantzigScratchMemory m_scratchMemory;
-public:
+public:
btDantzigSolver()
- :m_acceptableUpperLimitSolution(btScalar(1000))
+ : m_acceptableUpperLimitSolution(btScalar(1000))
{
}
- virtual bool solveMLCP(const btMatrixXu & A, const btVectorXu & b, btVectorXu& x, const btVectorXu & lo,const btVectorXu & hi,const btAlignedObjectArray<int>& limitDependency, int numIterations, bool useSparsity = true)
+ virtual bool solveMLCP(const btMatrixXu& A, const btVectorXu& b, btVectorXu& x, const btVectorXu& lo, const btVectorXu& hi, const btAlignedObjectArray<int>& limitDependency, int numIterations, bool useSparsity = true)
{
bool result = true;
int n = b.rows();
@@ -52,14 +50,12 @@ public:
int nub = 0;
btAlignedObjectArray<btScalar> ww;
ww.resize(n);
-
const btScalar* Aptr = A.getBufferPointer();
- m_A.resize(n*n);
- for (int i=0;i<n*n;i++)
+ m_A.resize(n * n);
+ for (int i = 0; i < n * n; i++)
{
m_A[i] = Aptr[i];
-
}
m_b.resize(n);
@@ -67,7 +63,7 @@ public:
m_lo.resize(n);
m_hi.resize(n);
m_dependencies.resize(n);
- for (int i=0;i<n;i++)
+ for (int i = 0; i < n; i++)
{
m_lo[i] = lo[i];
m_hi[i] = hi[i];
@@ -76,13 +72,12 @@ public:
m_dependencies[i] = limitDependency[i];
}
-
- result = btSolveDantzigLCP (n,&m_A[0],&m_x[0],&m_b[0],&ww[0],nub,&m_lo[0],&m_hi[0],&m_dependencies[0],m_scratchMemory);
+ result = btSolveDantzigLCP(n, &m_A[0], &m_x[0], &m_b[0], &ww[0], nub, &m_lo[0], &m_hi[0], &m_dependencies[0], m_scratchMemory);
if (!result)
return result;
-// printf("numAllocas = %d\n",numAllocas);
- for (int i=0;i<n;i++)
+ // printf("numAllocas = %d\n",numAllocas);
+ for (int i = 0; i < n; i++)
{
volatile btScalar xx = m_x[i];
if (xx != m_x[i])
@@ -98,15 +93,14 @@ public:
}
}
- for (int i=0;i<n;i++)
+ for (int i = 0; i < n; i++)
{
x[i] = m_x[i];
}
-
}
return result;
}
};
-#endif //BT_DANTZIG_SOLVER_H
+#endif //BT_DANTZIG_SOLVER_H
diff --git a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btLemkeAlgorithm.cpp b/thirdparty/bullet/BulletDynamics/MLCPSolvers/btLemkeAlgorithm.cpp
index 1f4015c7c7..954ffaed75 100644
--- a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btLemkeAlgorithm.cpp
+++ b/thirdparty/bullet/BulletDynamics/MLCPSolvers/btLemkeAlgorithm.cpp
@@ -19,64 +19,60 @@ subject to the following restrictions:
//Math library was replaced from fmatvec to a the file src/LinearMath/btMatrixX.h
//STL/std::vector replaced by btAlignedObjectArray
-
-
#include "btLemkeAlgorithm.h"
#undef BT_DEBUG_OSTREAM
#ifdef BT_DEBUG_OSTREAM
using namespace std;
-#endif //BT_DEBUG_OSTREAM
+#endif //BT_DEBUG_OSTREAM
btScalar btMachEps()
{
- static bool calculated=false;
+ static bool calculated = false;
static btScalar machEps = btScalar(1.);
if (!calculated)
{
- do {
+ do
+ {
machEps /= btScalar(2.0);
// If next epsilon yields 1, then break, because current
// epsilon is the machine epsilon.
- }
- while ((btScalar)(1.0 + (machEps/btScalar(2.0))) != btScalar(1.0));
-// printf( "\nCalculated Machine epsilon: %G\n", machEps );
- calculated=true;
+ } while ((btScalar)(1.0 + (machEps / btScalar(2.0))) != btScalar(1.0));
+ // printf( "\nCalculated Machine epsilon: %G\n", machEps );
+ calculated = true;
}
return machEps;
}
-btScalar btEpsRoot() {
-
+btScalar btEpsRoot()
+{
static btScalar epsroot = 0.;
static bool alreadyCalculated = false;
-
- if (!alreadyCalculated) {
+
+ if (!alreadyCalculated)
+ {
epsroot = btSqrt(btMachEps());
alreadyCalculated = true;
}
return epsroot;
}
-
-
- btVectorXu btLemkeAlgorithm::solve(unsigned int maxloops /* = 0*/)
+btVectorXu btLemkeAlgorithm::solve(unsigned int maxloops /* = 0*/)
{
-
-
- steps = 0;
+ steps = 0;
- int dim = m_q.size();
+ int dim = m_q.size();
#ifdef BT_DEBUG_OSTREAM
- if(DEBUGLEVEL >= 1) {
- cout << "Dimension = " << dim << endl;
- }
-#endif //BT_DEBUG_OSTREAM
+ if (DEBUGLEVEL >= 1)
+ {
+ cout << "Dimension = " << dim << endl;
+ }
+#endif //BT_DEBUG_OSTREAM
btVectorXu solutionVector(2 * dim);
solutionVector.setZero();
-
- //, INIT, 0.);
+
+ //, INIT, 0.);
btMatrixXu ident(dim, dim);
ident.setIdentity();
@@ -85,287 +81,289 @@ btScalar btEpsRoot() {
#endif
btMatrixXu mNeg = m_M.negative();
-
- btMatrixXu A(dim, 2 * dim + 2);
+
+ btMatrixXu A(dim, 2 * dim + 2);
//
- A.setSubMatrix(0, 0, dim - 1, dim - 1,ident);
- A.setSubMatrix(0, dim, dim - 1, 2 * dim - 1,mNeg);
+ A.setSubMatrix(0, 0, dim - 1, dim - 1, ident);
+ A.setSubMatrix(0, dim, dim - 1, 2 * dim - 1, mNeg);
A.setSubMatrix(0, 2 * dim, dim - 1, 2 * dim, -1.f);
- A.setSubMatrix(0, 2 * dim + 1, dim - 1, 2 * dim + 1,m_q);
+ A.setSubMatrix(0, 2 * dim + 1, dim - 1, 2 * dim + 1, m_q);
#ifdef BT_DEBUG_OSTREAM
cout << A << std::endl;
-#endif //BT_DEBUG_OSTREAM
+#endif //BT_DEBUG_OSTREAM
+ // btVectorXu q_;
+ // q_ >> A(0, 2 * dim + 1, dim - 1, 2 * dim + 1);
- // btVectorXu q_;
- // q_ >> A(0, 2 * dim + 1, dim - 1, 2 * dim + 1);
-
- btAlignedObjectArray<int> basis;
- //At first, all w-values are in the basis
- for (int i = 0; i < dim; i++)
- basis.push_back(i);
+ btAlignedObjectArray<int> basis;
+ //At first, all w-values are in the basis
+ for (int i = 0; i < dim; i++)
+ basis.push_back(i);
int pivotRowIndex = -1;
btScalar minValue = 1e30f;
bool greaterZero = true;
- for (int i=0;i<dim;i++)
+ for (int i = 0; i < dim; i++)
{
- btScalar v =A(i,2*dim+1);
- if (v<minValue)
+ btScalar v = A(i, 2 * dim + 1);
+ if (v < minValue)
{
- minValue=v;
+ minValue = v;
pivotRowIndex = i;
}
- if (v<0)
+ if (v < 0)
greaterZero = false;
}
-
-
- // int pivotRowIndex = q_.minIndex();//minIndex(q_); // first row is that with lowest q-value
- int z0Row = pivotRowIndex; // remember the col of z0 for ending algorithm afterwards
- int pivotColIndex = 2 * dim; // first col is that of z0
+ // int pivotRowIndex = q_.minIndex();//minIndex(q_); // first row is that with lowest q-value
+ int z0Row = pivotRowIndex; // remember the col of z0 for ending algorithm afterwards
+ int pivotColIndex = 2 * dim; // first col is that of z0
#ifdef BT_DEBUG_OSTREAM
- if (DEBUGLEVEL >= 3)
+ if (DEBUGLEVEL >= 3)
{
- // cout << "A: " << A << endl;
- cout << "pivotRowIndex " << pivotRowIndex << endl;
- cout << "pivotColIndex " << pivotColIndex << endl;
- cout << "Basis: ";
- for (int i = 0; i < basis.size(); i++)
- cout << basis[i] << " ";
- cout << endl;
- }
-#endif //BT_DEBUG_OSTREAM
+ // cout << "A: " << A << endl;
+ cout << "pivotRowIndex " << pivotRowIndex << endl;
+ cout << "pivotColIndex " << pivotColIndex << endl;
+ cout << "Basis: ";
+ for (int i = 0; i < basis.size(); i++)
+ cout << basis[i] << " ";
+ cout << endl;
+ }
+#endif //BT_DEBUG_OSTREAM
if (!greaterZero)
{
+ if (maxloops == 0)
+ {
+ maxloops = 100;
+ // maxloops = UINT_MAX; //TODO: not a really nice way, problem is: maxloops should be 2^dim (=1<<dim), but this could exceed UINT_MAX and thus the result would be 0 and therefore the lemke algorithm wouldn't start but probably would find a solution within less then UINT_MAX steps. Therefore this constant is used as a upper border right now...
+ }
- if (maxloops == 0) {
- maxloops = 100;
-// maxloops = UINT_MAX; //TODO: not a really nice way, problem is: maxloops should be 2^dim (=1<<dim), but this could exceed UINT_MAX and thus the result would be 0 and therefore the lemke algorithm wouldn't start but probably would find a solution within less then UINT_MAX steps. Therefore this constant is used as a upper border right now...
- }
-
- /*start looping*/
- for(steps = 0; steps < maxloops; steps++) {
-
- GaussJordanEliminationStep(A, pivotRowIndex, pivotColIndex, basis);
-#ifdef BT_DEBUG_OSTREAM
- if (DEBUGLEVEL >= 3) {
- // cout << "A: " << A << endl;
- cout << "pivotRowIndex " << pivotRowIndex << endl;
- cout << "pivotColIndex " << pivotColIndex << endl;
- cout << "Basis: ";
- for (int i = 0; i < basis.size(); i++)
- cout << basis[i] << " ";
- cout << endl;
- }
-#endif //BT_DEBUG_OSTREAM
-
- int pivotColIndexOld = pivotColIndex;
-
- /*find new column index */
- if (basis[pivotRowIndex] < dim) //if a w-value left the basis get in the correspondent z-value
- pivotColIndex = basis[pivotRowIndex] + dim;
- else
- //else do it the other way round and get in the corresponding w-value
- pivotColIndex = basis[pivotRowIndex] - dim;
-
- /*the column becomes part of the basis*/
- basis[pivotRowIndex] = pivotColIndexOld;
-
- pivotRowIndex = findLexicographicMinimum(A, pivotColIndex);
-
- if(z0Row == pivotRowIndex) { //if z0 leaves the basis the solution is found --> one last elimination step is necessary
- GaussJordanEliminationStep(A, pivotRowIndex, pivotColIndex, basis);
- basis[pivotRowIndex] = pivotColIndex; //update basis
- break;
- }
-
- }
+ /*start looping*/
+ for (steps = 0; steps < maxloops; steps++)
+ {
+ GaussJordanEliminationStep(A, pivotRowIndex, pivotColIndex, basis);
#ifdef BT_DEBUG_OSTREAM
- if(DEBUGLEVEL >= 1) {
- cout << "Number of loops: " << steps << endl;
- cout << "Number of maximal loops: " << maxloops << endl;
- }
-#endif //BT_DEBUG_OSTREAM
-
- if(!validBasis(basis)) {
- info = -1;
+ if (DEBUGLEVEL >= 3)
+ {
+ // cout << "A: " << A << endl;
+ cout << "pivotRowIndex " << pivotRowIndex << endl;
+ cout << "pivotColIndex " << pivotColIndex << endl;
+ cout << "Basis: ";
+ for (int i = 0; i < basis.size(); i++)
+ cout << basis[i] << " ";
+ cout << endl;
+ }
+#endif //BT_DEBUG_OSTREAM
+
+ int pivotColIndexOld = pivotColIndex;
+
+ /*find new column index */
+ if (basis[pivotRowIndex] < dim) //if a w-value left the basis get in the correspondent z-value
+ pivotColIndex = basis[pivotRowIndex] + dim;
+ else
+ //else do it the other way round and get in the corresponding w-value
+ pivotColIndex = basis[pivotRowIndex] - dim;
+
+ /*the column becomes part of the basis*/
+ basis[pivotRowIndex] = pivotColIndexOld;
+
+ pivotRowIndex = findLexicographicMinimum(A, pivotColIndex);
+
+ if (z0Row == pivotRowIndex)
+ { //if z0 leaves the basis the solution is found --> one last elimination step is necessary
+ GaussJordanEliminationStep(A, pivotRowIndex, pivotColIndex, basis);
+ basis[pivotRowIndex] = pivotColIndex; //update basis
+ break;
+ }
+ }
#ifdef BT_DEBUG_OSTREAM
- if(DEBUGLEVEL >= 1)
- cerr << "Lemke-Algorithm ended with Ray-Termination (no valid solution)." << endl;
-#endif //BT_DEBUG_OSTREAM
+ if (DEBUGLEVEL >= 1)
+ {
+ cout << "Number of loops: " << steps << endl;
+ cout << "Number of maximal loops: " << maxloops << endl;
+ }
+#endif //BT_DEBUG_OSTREAM
- return solutionVector;
- }
+ if (!validBasis(basis))
+ {
+ info = -1;
+#ifdef BT_DEBUG_OSTREAM
+ if (DEBUGLEVEL >= 1)
+ cerr << "Lemke-Algorithm ended with Ray-Termination (no valid solution)." << endl;
+#endif //BT_DEBUG_OSTREAM
- }
+ return solutionVector;
+ }
+ }
#ifdef BT_DEBUG_OSTREAM
- if (DEBUGLEVEL >= 2) {
- // cout << "A: " << A << endl;
- cout << "pivotRowIndex " << pivotRowIndex << endl;
- cout << "pivotColIndex " << pivotColIndex << endl;
- }
-#endif //BT_DEBUG_OSTREAM
-
- for (int i = 0; i < basis.size(); i++)
+ if (DEBUGLEVEL >= 2)
{
- solutionVector[basis[i]] = A(i,2*dim+1);//q_[i];
+ // cout << "A: " << A << endl;
+ cout << "pivotRowIndex " << pivotRowIndex << endl;
+ cout << "pivotColIndex " << pivotColIndex << endl;
}
+#endif //BT_DEBUG_OSTREAM
- info = 0;
+ for (int i = 0; i < basis.size(); i++)
+ {
+ solutionVector[basis[i]] = A(i, 2 * dim + 1); //q_[i];
+ }
- return solutionVector;
- }
+ info = 0;
- int btLemkeAlgorithm::findLexicographicMinimum(const btMatrixXu& A, const int & pivotColIndex) {
- int RowIndex = 0;
- int dim = A.rows();
- btAlignedObjectArray<btVectorXu> Rows;
- for (int row = 0; row < dim; row++)
- {
+ return solutionVector;
+}
- btVectorXu vec(dim + 1);
- vec.setZero();//, INIT, 0.)
- Rows.push_back(vec);
- btScalar a = A(row, pivotColIndex);
- if (a > 0) {
- Rows[row][0] = A(row, 2 * dim + 1) / a;
- Rows[row][1] = A(row, 2 * dim) / a;
- for (int j = 2; j < dim + 1; j++)
- Rows[row][j] = A(row, j - 1) / a;
+int btLemkeAlgorithm::findLexicographicMinimum(const btMatrixXu& A, const int& pivotColIndex)
+{
+ int RowIndex = 0;
+ int dim = A.rows();
+ btAlignedObjectArray<btVectorXu> Rows;
+ for (int row = 0; row < dim; row++)
+ {
+ btVectorXu vec(dim + 1);
+ vec.setZero(); //, INIT, 0.)
+ Rows.push_back(vec);
+ btScalar a = A(row, pivotColIndex);
+ if (a > 0)
+ {
+ Rows[row][0] = A(row, 2 * dim + 1) / a;
+ Rows[row][1] = A(row, 2 * dim) / a;
+ for (int j = 2; j < dim + 1; j++)
+ Rows[row][j] = A(row, j - 1) / a;
#ifdef BT_DEBUG_OSTREAM
- // if (DEBUGLEVEL) {
- // cout << "Rows(" << row << ") = " << Rows[row] << endl;
+ // if (DEBUGLEVEL) {
+ // cout << "Rows(" << row << ") = " << Rows[row] << endl;
// }
-#endif
- }
- }
-
- for (int i = 0; i < Rows.size(); i++)
- {
- if (Rows[i].nrm2() > 0.) {
-
- int j = 0;
- for (; j < Rows.size(); j++)
- {
- if(i != j)
- {
- if(Rows[j].nrm2() > 0.)
- {
- btVectorXu test(dim + 1);
- for (int ii=0;ii<dim+1;ii++)
- {
- test[ii] = Rows[j][ii] - Rows[i][ii];
- }
-
- //=Rows[j] - Rows[i]
- if (! LexicographicPositive(test))
- break;
- }
- }
- }
-
- if (j == Rows.size())
- {
- RowIndex += i;
- break;
- }
- }
- }
-
- return RowIndex;
- }
-
- bool btLemkeAlgorithm::LexicographicPositive(const btVectorXu & v)
-{
- int i = 0;
- // if (DEBUGLEVEL)
- // cout << "v " << v << endl;
+#endif
+ }
+ }
- while(i < v.size()-1 && fabs(v[i]) < btMachEps())
- i++;
- if (v[i] > 0)
- return true;
+ for (int i = 0; i < Rows.size(); i++)
+ {
+ if (Rows[i].nrm2() > 0.)
+ {
+ int j = 0;
+ for (; j < Rows.size(); j++)
+ {
+ if (i != j)
+ {
+ if (Rows[j].nrm2() > 0.)
+ {
+ btVectorXu test(dim + 1);
+ for (int ii = 0; ii < dim + 1; ii++)
+ {
+ test[ii] = Rows[j][ii] - Rows[i][ii];
+ }
+
+ //=Rows[j] - Rows[i]
+ if (!LexicographicPositive(test))
+ break;
+ }
+ }
+ }
+
+ if (j == Rows.size())
+ {
+ RowIndex += i;
+ break;
+ }
+ }
+ }
- return false;
- }
+ return RowIndex;
+}
-void btLemkeAlgorithm::GaussJordanEliminationStep(btMatrixXu& A, int pivotRowIndex, int pivotColumnIndex, const btAlignedObjectArray<int>& basis)
+bool btLemkeAlgorithm::LexicographicPositive(const btVectorXu& v)
{
+ int i = 0;
+ // if (DEBUGLEVEL)
+ // cout << "v " << v << endl;
+
+ while (i < v.size() - 1 && fabs(v[i]) < btMachEps())
+ i++;
+ if (v[i] > 0)
+ return true;
+ return false;
+}
+
+void btLemkeAlgorithm::GaussJordanEliminationStep(btMatrixXu& A, int pivotRowIndex, int pivotColumnIndex, const btAlignedObjectArray<int>& basis)
+{
btScalar a = -1 / A(pivotRowIndex, pivotColumnIndex);
#ifdef BT_DEBUG_OSTREAM
cout << A << std::endl;
#endif
- for (int i = 0; i < A.rows(); i++)
+ for (int i = 0; i < A.rows(); i++)
{
- if (i != pivotRowIndex)
- {
- for (int j = 0; j < A.cols(); j++)
+ if (i != pivotRowIndex)
{
- if (j != pivotColumnIndex)
- {
- btScalar v = A(i, j);
- v += A(pivotRowIndex, j) * A(i, pivotColumnIndex) * a;
- A.setElem(i, j, v);
- }
+ for (int j = 0; j < A.cols(); j++)
+ {
+ if (j != pivotColumnIndex)
+ {
+ btScalar v = A(i, j);
+ v += A(pivotRowIndex, j) * A(i, pivotColumnIndex) * a;
+ A.setElem(i, j, v);
+ }
+ }
}
- }
}
#ifdef BT_DEBUG_OSTREAM
cout << A << std::endl;
-#endif //BT_DEBUG_OSTREAM
- for (int i = 0; i < A.cols(); i++)
+#endif //BT_DEBUG_OSTREAM
+ for (int i = 0; i < A.cols(); i++)
{
- A.mulElem(pivotRowIndex, i,-a);
- }
+ A.mulElem(pivotRowIndex, i, -a);
+ }
#ifdef BT_DEBUG_OSTREAM
cout << A << std::endl;
-#endif //#ifdef BT_DEBUG_OSTREAM
+#endif //#ifdef BT_DEBUG_OSTREAM
- for (int i = 0; i < A.rows(); i++)
+ for (int i = 0; i < A.rows(); i++)
{
- if (i != pivotRowIndex)
- {
- A.setElem(i, pivotColumnIndex,0);
- }
+ if (i != pivotRowIndex)
+ {
+ A.setElem(i, pivotColumnIndex, 0);
+ }
}
#ifdef BT_DEBUG_OSTREAM
cout << A << std::endl;
-#endif //#ifdef BT_DEBUG_OSTREAM
- }
+#endif //#ifdef BT_DEBUG_OSTREAM
+}
- bool btLemkeAlgorithm::greaterZero(const btVectorXu & vector)
+bool btLemkeAlgorithm::greaterZero(const btVectorXu& vector)
{
- bool isGreater = true;
- for (int i = 0; i < vector.size(); i++) {
- if (vector[i] < 0) {
- isGreater = false;
- break;
- }
- }
-
- return isGreater;
- }
-
- bool btLemkeAlgorithm::validBasis(const btAlignedObjectArray<int>& basis)
- {
- bool isValid = true;
- for (int i = 0; i < basis.size(); i++) {
- if (basis[i] >= basis.size() * 2) { //then z0 is in the base
- isValid = false;
- break;
- }
- }
-
- return isValid;
- }
+ bool isGreater = true;
+ for (int i = 0; i < vector.size(); i++)
+ {
+ if (vector[i] < 0)
+ {
+ isGreater = false;
+ break;
+ }
+ }
+ return isGreater;
+}
+bool btLemkeAlgorithm::validBasis(const btAlignedObjectArray<int>& basis)
+{
+ bool isValid = true;
+ for (int i = 0; i < basis.size(); i++)
+ {
+ if (basis[i] >= basis.size() * 2)
+ { //then z0 is in the base
+ isValid = false;
+ break;
+ }
+ }
+
+ return isValid;
+}
diff --git a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btLemkeAlgorithm.h b/thirdparty/bullet/BulletDynamics/MLCPSolvers/btLemkeAlgorithm.h
index 7555cd9d20..3c6bf72a23 100644
--- a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btLemkeAlgorithm.h
+++ b/thirdparty/bullet/BulletDynamics/MLCPSolvers/btLemkeAlgorithm.h
@@ -19,90 +19,84 @@ subject to the following restrictions:
//Math library was replaced from fmatvec to a the file src/LinearMath/btMatrixX.h
//STL/std::vector replaced by btAlignedObjectArray
-
-
#ifndef BT_NUMERICS_LEMKE_ALGORITHM_H_
#define BT_NUMERICS_LEMKE_ALGORITHM_H_
#include "LinearMath/btMatrixX.h"
-
-#include <vector> //todo: replace by btAlignedObjectArray
+#include <vector> //todo: replace by btAlignedObjectArray
class btLemkeAlgorithm
{
public:
-
-
- btLemkeAlgorithm(const btMatrixXu& M_, const btVectorXu& q_, const int & DEBUGLEVEL_ = 0) :
- DEBUGLEVEL(DEBUGLEVEL_)
- {
- setSystem(M_, q_);
- }
+ btLemkeAlgorithm(const btMatrixXu& M_, const btVectorXu& q_, const int& DEBUGLEVEL_ = 0) : DEBUGLEVEL(DEBUGLEVEL_)
+ {
+ setSystem(M_, q_);
+ }
- /* GETTER / SETTER */
- /**
+ /* GETTER / SETTER */
+ /**
* \brief return info of solution process
*/
- int getInfo() {
- return info;
- }
+ int getInfo()
+ {
+ return info;
+ }
- /**
+ /**
* \brief get the number of steps until the solution was found
*/
- int getSteps(void) {
- return steps;
- }
-
-
+ int getSteps(void)
+ {
+ return steps;
+ }
- /**
+ /**
* \brief set system with Matrix M and vector q
*/
- void setSystem(const btMatrixXu & M_, const btVectorXu & q_)
+ void setSystem(const btMatrixXu& M_, const btVectorXu& q_)
{
m_M = M_;
m_q = q_;
- }
- /***************************************************/
+ }
+ /***************************************************/
- /**
+ /**
* \brief solve algorithm adapted from : Fast Implementation of Lemke’s Algorithm for Rigid Body Contact Simulation (John E. Lloyd)
*/
- btVectorXu solve(unsigned int maxloops = 0);
+ btVectorXu solve(unsigned int maxloops = 0);
- virtual ~btLemkeAlgorithm() {
- }
+ virtual ~btLemkeAlgorithm()
+ {
+ }
protected:
- int findLexicographicMinimum(const btMatrixXu &A, const int & pivotColIndex);
- bool LexicographicPositive(const btVectorXu & v);
- void GaussJordanEliminationStep(btMatrixXu &A, int pivotRowIndex, int pivotColumnIndex, const btAlignedObjectArray<int>& basis);
- bool greaterZero(const btVectorXu & vector);
- bool validBasis(const btAlignedObjectArray<int>& basis);
+ int findLexicographicMinimum(const btMatrixXu& A, const int& pivotColIndex);
+ bool LexicographicPositive(const btVectorXu& v);
+ void GaussJordanEliminationStep(btMatrixXu& A, int pivotRowIndex, int pivotColumnIndex, const btAlignedObjectArray<int>& basis);
+ bool greaterZero(const btVectorXu& vector);
+ bool validBasis(const btAlignedObjectArray<int>& basis);
- btMatrixXu m_M;
- btVectorXu m_q;
+ btMatrixXu m_M;
+ btVectorXu m_q;
- /**
+ /**
* \brief number of steps until the Lemke algorithm found a solution
*/
- unsigned int steps;
+ unsigned int steps;
- /**
+ /**
* \brief define level of debug output
*/
- int DEBUGLEVEL;
+ int DEBUGLEVEL;
- /**
+ /**
* \brief did the algorithm find a solution
*
* -1 : not successful
* 0 : successful
*/
- int info;
+ int info;
};
-
#endif /* BT_NUMERICS_LEMKE_ALGORITHM_H_ */
diff --git a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btLemkeSolver.h b/thirdparty/bullet/BulletDynamics/MLCPSolvers/btLemkeSolver.h
index 98484c3796..ac2fc46ab0 100644
--- a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btLemkeSolver.h
+++ b/thirdparty/bullet/BulletDynamics/MLCPSolvers/btLemkeSolver.h
@@ -17,334 +17,322 @@ subject to the following restrictions:
#ifndef BT_LEMKE_SOLVER_H
#define BT_LEMKE_SOLVER_H
-
#include "btMLCPSolverInterface.h"
#include "btLemkeAlgorithm.h"
-
-
-
-///The btLemkeSolver is based on "Fast Implementation of Lemke’s Algorithm for Rigid Body Contact Simulation (John E. Lloyd) "
+///The btLemkeSolver is based on "Fast Implementation of Lemke's Algorithm for Rigid Body Contact Simulation (John E. Lloyd) "
///It is a slower but more accurate solver. Increase the m_maxLoops for better convergence, at the cost of more CPU time.
///The original implementation of the btLemkeAlgorithm was done by Kilian Grundl from the MBSim team
class btLemkeSolver : public btMLCPSolverInterface
{
protected:
-
public:
-
- btScalar m_maxValue;
- int m_debugLevel;
- int m_maxLoops;
- bool m_useLoHighBounds;
-
-
+ btScalar m_maxValue;
+ int m_debugLevel;
+ int m_maxLoops;
+ bool m_useLoHighBounds;
btLemkeSolver()
- :m_maxValue(100000),
- m_debugLevel(0),
- m_maxLoops(1000),
- m_useLoHighBounds(true)
+ : m_maxValue(100000),
+ m_debugLevel(0),
+ m_maxLoops(1000),
+ m_useLoHighBounds(true)
{
}
- virtual bool solveMLCP(const btMatrixXu & A, const btVectorXu & b, btVectorXu& x, const btVectorXu & lo,const btVectorXu & hi,const btAlignedObjectArray<int>& limitDependency, int numIterations, bool useSparsity = true)
+ virtual bool solveMLCP(const btMatrixXu& A, const btVectorXu& b, btVectorXu& x, const btVectorXu& lo, const btVectorXu& hi, const btAlignedObjectArray<int>& limitDependency, int numIterations, bool useSparsity = true)
{
-
if (m_useLoHighBounds)
{
+ BT_PROFILE("btLemkeSolver::solveMLCP");
+ int n = A.rows();
+ if (0 == n)
+ return true;
- BT_PROFILE("btLemkeSolver::solveMLCP");
- int n = A.rows();
- if (0==n)
- return true;
-
- bool fail = false;
-
- btVectorXu solution(n);
- btVectorXu q1;
- q1.resize(n);
- for (int row=0;row<n;row++)
- {
- q1[row] = -b[row];
- }
+ bool fail = false;
+
+ btVectorXu solution(n);
+ btVectorXu q1;
+ q1.resize(n);
+ for (int row = 0; row < n; row++)
+ {
+ q1[row] = -b[row];
+ }
- // cout << "A" << endl;
- // cout << A << endl;
+ // cout << "A" << endl;
+ // cout << A << endl;
/////////////////////////////////////
//slow matrix inversion, replace with LU decomposition
btMatrixXu A1;
- btMatrixXu B(n,n);
+ btMatrixXu B(n, n);
{
- BT_PROFILE("inverse(slow)");
- A1.resize(A.rows(),A.cols());
- for (int row=0;row<A.rows();row++)
+ //BT_PROFILE("inverse(slow)");
+ A1.resize(A.rows(), A.cols());
+ for (int row = 0; row < A.rows(); row++)
{
- for (int col=0;col<A.cols();col++)
+ for (int col = 0; col < A.cols(); col++)
{
- A1.setElem(row,col,A(row,col));
+ A1.setElem(row, col, A(row, col));
}
}
btMatrixXu matrix;
- matrix.resize(n,2*n);
- for (int row=0;row<n;row++)
+ matrix.resize(n, 2 * n);
+ for (int row = 0; row < n; row++)
{
- for (int col=0;col<n;col++)
+ for (int col = 0; col < n; col++)
{
- matrix.setElem(row,col,A1(row,col));
+ matrix.setElem(row, col, A1(row, col));
}
}
-
- btScalar ratio,a;
- int i,j,k;
- for(i = 0; i < n; i++){
- for(j = n; j < 2*n; j++){
- if(i==(j-n))
- matrix.setElem(i,j,1.0);
- else
- matrix.setElem(i,j,0.0);
+ btScalar ratio, a;
+ int i, j, k;
+ for (i = 0; i < n; i++)
+ {
+ for (j = n; j < 2 * n; j++)
+ {
+ if (i == (j - n))
+ matrix.setElem(i, j, 1.0);
+ else
+ matrix.setElem(i, j, 0.0);
+ }
}
- }
- for(i = 0; i < n; i++){
- for(j = 0; j < n; j++){
- if(i!=j)
+ for (i = 0; i < n; i++)
+ {
+ for (j = 0; j < n; j++)
{
- btScalar v = matrix(i,i);
- if (btFuzzyZero(v))
+ if (i != j)
{
- a = 0.000001f;
- }
- ratio = matrix(j,i)/matrix(i,i);
- for(k = 0; k < 2*n; k++){
- matrix.addElem(j,k,- ratio * matrix(i,k));
+ btScalar v = matrix(i, i);
+ if (btFuzzyZero(v))
+ {
+ a = 0.000001f;
+ }
+ ratio = matrix(j, i) / matrix(i, i);
+ for (k = 0; k < 2 * n; k++)
+ {
+ matrix.addElem(j, k, -ratio * matrix(i, k));
+ }
}
}
}
- }
- for(i = 0; i < n; i++){
- a = matrix(i,i);
- if (btFuzzyZero(a))
+ for (i = 0; i < n; i++)
{
- a = 0.000001f;
- }
- btScalar invA = 1.f/a;
- for(j = 0; j < 2*n; j++){
- matrix.mulElem(i,j,invA);
+ a = matrix(i, i);
+ if (btFuzzyZero(a))
+ {
+ a = 0.000001f;
+ }
+ btScalar invA = 1.f / a;
+ for (j = 0; j < 2 * n; j++)
+ {
+ matrix.mulElem(i, j, invA);
+ }
}
- }
-
-
-
-
- for (int row=0;row<n;row++)
+ for (int row = 0; row < n; row++)
{
- for (int col=0;col<n;col++)
+ for (int col = 0; col < n; col++)
{
- B.setElem(row,col,matrix(row,n+col));
+ B.setElem(row, col, matrix(row, n + col));
}
}
}
- btMatrixXu b1(n,1);
+ btMatrixXu b1(n, 1);
- btMatrixXu M(n*2,n*2);
- for (int row=0;row<n;row++)
- {
- b1.setElem(row,0,-b[row]);
- for (int col=0;col<n;col++)
+ btMatrixXu M(n * 2, n * 2);
+ for (int row = 0; row < n; row++)
{
- btScalar v =B(row,col);
- M.setElem(row,col,v);
- M.setElem(n+row,n+col,v);
- M.setElem(n+row,col,-v);
- M.setElem(row,n+col,-v);
-
+ b1.setElem(row, 0, -b[row]);
+ for (int col = 0; col < n; col++)
+ {
+ btScalar v = B(row, col);
+ M.setElem(row, col, v);
+ M.setElem(n + row, n + col, v);
+ M.setElem(n + row, col, -v);
+ M.setElem(row, n + col, -v);
+ }
}
- }
- btMatrixXu Bb1 = B*b1;
-// q = [ (-B*b1 - lo)' (hi + B*b1)' ]'
+ btMatrixXu Bb1 = B * b1;
+ // q = [ (-B*b1 - lo)' (hi + B*b1)' ]'
- btVectorXu qq;
- qq.resize(n*2);
- for (int row=0;row<n;row++)
- {
- qq[row] = -Bb1(row,0)-lo[row];
- qq[n+row] = Bb1(row,0)+hi[row];
- }
+ btVectorXu qq;
+ qq.resize(n * 2);
+ for (int row = 0; row < n; row++)
+ {
+ qq[row] = -Bb1(row, 0) - lo[row];
+ qq[n + row] = Bb1(row, 0) + hi[row];
+ }
- btVectorXu z1;
+ btVectorXu z1;
- btMatrixXu y1;
- y1.resize(n,1);
- btLemkeAlgorithm lemke(M,qq,m_debugLevel);
- {
- BT_PROFILE("lemke.solve");
- lemke.setSystem(M,qq);
- z1 = lemke.solve(m_maxLoops);
- }
- for (int row=0;row<n;row++)
- {
- y1.setElem(row,0,z1[2*n+row]-z1[3*n+row]);
- }
- btMatrixXu y1_b1(n,1);
- for (int i=0;i<n;i++)
- {
- y1_b1.setElem(i,0,y1(i,0)-b1(i,0));
- }
+ btMatrixXu y1;
+ y1.resize(n, 1);
+ btLemkeAlgorithm lemke(M, qq, m_debugLevel);
+ {
+ //BT_PROFILE("lemke.solve");
+ lemke.setSystem(M, qq);
+ z1 = lemke.solve(m_maxLoops);
+ }
+ for (int row = 0; row < n; row++)
+ {
+ y1.setElem(row, 0, z1[2 * n + row] - z1[3 * n + row]);
+ }
+ btMatrixXu y1_b1(n, 1);
+ for (int i = 0; i < n; i++)
+ {
+ y1_b1.setElem(i, 0, y1(i, 0) - b1(i, 0));
+ }
- btMatrixXu x1;
+ btMatrixXu x1;
- x1 = B*(y1_b1);
-
- for (int row=0;row<n;row++)
- {
- solution[row] = x1(row,0);//n];
- }
+ x1 = B * (y1_b1);
- int errorIndexMax = -1;
- int errorIndexMin = -1;
- float errorValueMax = -1e30;
- float errorValueMin = 1e30;
-
- for (int i=0;i<n;i++)
- {
- x[i] = solution[i];
- volatile btScalar check = x[i];
- if (x[i] != check)
+ for (int row = 0; row < n; row++)
{
- //printf("Lemke result is #NAN\n");
- x.setZero();
- return false;
+ solution[row] = x1(row, 0); //n];
}
-
- //this is some hack/safety mechanism, to discard invalid solutions from the Lemke solver
- //we need to figure out why it happens, and fix it, or detect it properly)
- if (x[i]>m_maxValue)
+
+ int errorIndexMax = -1;
+ int errorIndexMin = -1;
+ float errorValueMax = -1e30;
+ float errorValueMin = 1e30;
+
+ for (int i = 0; i < n; i++)
{
- if (x[i]> errorValueMax)
+ x[i] = solution[i];
+ volatile btScalar check = x[i];
+ if (x[i] != check)
+ {
+ //printf("Lemke result is #NAN\n");
+ x.setZero();
+ return false;
+ }
+
+ //this is some hack/safety mechanism, to discard invalid solutions from the Lemke solver
+ //we need to figure out why it happens, and fix it, or detect it properly)
+ if (x[i] > m_maxValue)
+ {
+ if (x[i] > errorValueMax)
+ {
+ fail = true;
+ errorIndexMax = i;
+ errorValueMax = x[i];
+ }
+ ////printf("x[i] = %f,",x[i]);
+ }
+ if (x[i] < -m_maxValue)
{
- fail = true;
- errorIndexMax = i;
- errorValueMax = x[i];
+ if (x[i] < errorValueMin)
+ {
+ errorIndexMin = i;
+ errorValueMin = x[i];
+ fail = true;
+ //printf("x[i] = %f,",x[i]);
+ }
}
- ////printf("x[i] = %f,",x[i]);
}
- if (x[i]<-m_maxValue)
+ if (fail)
{
- if (x[i]<errorValueMin)
+ int m_errorCountTimes = 0;
+ if (errorIndexMin < 0)
+ errorValueMin = 0.f;
+ if (errorIndexMax < 0)
+ errorValueMax = 0.f;
+ m_errorCountTimes++;
+ // printf("Error (x[%d] = %f, x[%d] = %f), resetting %d times\n", errorIndexMin,errorValueMin, errorIndexMax, errorValueMax, errorCountTimes++);
+ for (int i = 0; i < n; i++)
{
- errorIndexMin = i;
- errorValueMin = x[i];
- fail = true;
- //printf("x[i] = %f,",x[i]);
+ x[i] = 0.f;
}
}
+ return !fail;
}
- if (fail)
+ else
+
{
- int m_errorCountTimes = 0;
- if (errorIndexMin<0)
- errorValueMin = 0.f;
- if (errorIndexMax<0)
- errorValueMax = 0.f;
- m_errorCountTimes++;
- // printf("Error (x[%d] = %f, x[%d] = %f), resetting %d times\n", errorIndexMin,errorValueMin, errorIndexMax, errorValueMax, errorCountTimes++);
- for (int i=0;i<n;i++)
- {
- x[i]=0.f;
- }
- }
- return !fail;
- } else
-
- {
int dimension = A.rows();
- if (0==dimension)
- return true;
-
-// printf("================ solving using Lemke/Newton/Fixpoint\n");
-
- btVectorXu q;
- q.resize(dimension);
- for (int row=0;row<dimension;row++)
- {
- q[row] = -b[row];
- }
-
- btLemkeAlgorithm lemke(A,q,m_debugLevel);
-
-
- lemke.setSystem(A,q);
-
- btVectorXu solution = lemke.solve(m_maxLoops);
-
- //check solution
-
- bool fail = false;
- int errorIndexMax = -1;
- int errorIndexMin = -1;
- float errorValueMax = -1e30;
- float errorValueMin = 1e30;
-
- for (int i=0;i<dimension;i++)
- {
- x[i] = solution[i+dimension];
- volatile btScalar check = x[i];
- if (x[i] != check)
+ if (0 == dimension)
+ return true;
+
+ // printf("================ solving using Lemke/Newton/Fixpoint\n");
+
+ btVectorXu q;
+ q.resize(dimension);
+ for (int row = 0; row < dimension; row++)
{
- x.setZero();
- return false;
+ q[row] = -b[row];
}
-
- //this is some hack/safety mechanism, to discard invalid solutions from the Lemke solver
- //we need to figure out why it happens, and fix it, or detect it properly)
- if (x[i]>m_maxValue)
+
+ btLemkeAlgorithm lemke(A, q, m_debugLevel);
+
+ lemke.setSystem(A, q);
+
+ btVectorXu solution = lemke.solve(m_maxLoops);
+
+ //check solution
+
+ bool fail = false;
+ int errorIndexMax = -1;
+ int errorIndexMin = -1;
+ float errorValueMax = -1e30;
+ float errorValueMin = 1e30;
+
+ for (int i = 0; i < dimension; i++)
{
- if (x[i]> errorValueMax)
+ x[i] = solution[i + dimension];
+ volatile btScalar check = x[i];
+ if (x[i] != check)
{
- fail = true;
- errorIndexMax = i;
- errorValueMax = x[i];
+ x.setZero();
+ return false;
}
- ////printf("x[i] = %f,",x[i]);
- }
- if (x[i]<-m_maxValue)
- {
- if (x[i]<errorValueMin)
+
+ //this is some hack/safety mechanism, to discard invalid solutions from the Lemke solver
+ //we need to figure out why it happens, and fix it, or detect it properly)
+ if (x[i] > m_maxValue)
+ {
+ if (x[i] > errorValueMax)
+ {
+ fail = true;
+ errorIndexMax = i;
+ errorValueMax = x[i];
+ }
+ ////printf("x[i] = %f,",x[i]);
+ }
+ if (x[i] < -m_maxValue)
{
- errorIndexMin = i;
- errorValueMin = x[i];
- fail = true;
- //printf("x[i] = %f,",x[i]);
+ if (x[i] < errorValueMin)
+ {
+ errorIndexMin = i;
+ errorValueMin = x[i];
+ fail = true;
+ //printf("x[i] = %f,",x[i]);
+ }
}
}
- }
- if (fail)
- {
- static int errorCountTimes = 0;
- if (errorIndexMin<0)
- errorValueMin = 0.f;
- if (errorIndexMax<0)
- errorValueMax = 0.f;
- printf("Error (x[%d] = %f, x[%d] = %f), resetting %d times\n", errorIndexMin,errorValueMin, errorIndexMax, errorValueMax, errorCountTimes++);
- for (int i=0;i<dimension;i++)
+ if (fail)
{
- x[i]=0.f;
+ static int errorCountTimes = 0;
+ if (errorIndexMin < 0)
+ errorValueMin = 0.f;
+ if (errorIndexMax < 0)
+ errorValueMax = 0.f;
+ printf("Error (x[%d] = %f, x[%d] = %f), resetting %d times\n", errorIndexMin, errorValueMin, errorIndexMax, errorValueMax, errorCountTimes++);
+ for (int i = 0; i < dimension; i++)
+ {
+ x[i] = 0.f;
+ }
}
- }
-
-
- return !fail;
- }
- return true;
+ return !fail;
+ }
+ return true;
}
-
};
-#endif //BT_LEMKE_SOLVER_H
+#endif //BT_LEMKE_SOLVER_H
diff --git a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btMLCPSolver.cpp b/thirdparty/bullet/BulletDynamics/MLCPSolvers/btMLCPSolver.cpp
index 8f54c52626..5d864f2757 100644
--- a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btMLCPSolver.cpp
+++ b/thirdparty/bullet/BulletDynamics/MLCPSolvers/btMLCPSolver.cpp
@@ -19,10 +19,9 @@ subject to the following restrictions:
#include "LinearMath/btQuickprof.h"
#include "btSolveProjectedGaussSeidel.h"
-
-btMLCPSolver::btMLCPSolver( btMLCPSolverInterface* solver)
-:m_solver(solver),
-m_fallback(0)
+btMLCPSolver::btMLCPSolver(btMLCPSolverInterface* solver)
+ : m_solver(solver),
+ m_fallback(0)
{
}
@@ -33,67 +32,65 @@ btMLCPSolver::~btMLCPSolver()
bool gUseMatrixMultiply = false;
bool interleaveContactAndFriction = false;
-btScalar btMLCPSolver::solveGroupCacheFriendlySetup(btCollisionObject** bodies, int numBodiesUnUsed, btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer)
+btScalar btMLCPSolver::solveGroupCacheFriendlySetup(btCollisionObject** bodies, int numBodiesUnUsed, btPersistentManifold** manifoldPtr, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal, btIDebugDraw* debugDrawer)
{
- btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup( bodies, numBodiesUnUsed, manifoldPtr, numManifolds,constraints,numConstraints,infoGlobal,debugDrawer);
+ btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(bodies, numBodiesUnUsed, manifoldPtr, numManifolds, constraints, numConstraints, infoGlobal, debugDrawer);
{
BT_PROFILE("gather constraint data");
- int numFrictionPerContact = m_tmpSolverContactConstraintPool.size()==m_tmpSolverContactFrictionConstraintPool.size()? 1 : 2;
-
+ int numFrictionPerContact = m_tmpSolverContactConstraintPool.size() == m_tmpSolverContactFrictionConstraintPool.size() ? 1 : 2;
- // int numBodies = m_tmpSolverBodyPool.size();
+ // int numBodies = m_tmpSolverBodyPool.size();
m_allConstraintPtrArray.resize(0);
- m_limitDependencies.resize(m_tmpSolverNonContactConstraintPool.size()+m_tmpSolverContactConstraintPool.size()+m_tmpSolverContactFrictionConstraintPool.size());
- btAssert(m_limitDependencies.size() == m_tmpSolverNonContactConstraintPool.size()+m_tmpSolverContactConstraintPool.size()+m_tmpSolverContactFrictionConstraintPool.size());
- // printf("m_limitDependencies.size() = %d\n",m_limitDependencies.size());
+ m_limitDependencies.resize(m_tmpSolverNonContactConstraintPool.size() + m_tmpSolverContactConstraintPool.size() + m_tmpSolverContactFrictionConstraintPool.size());
+ btAssert(m_limitDependencies.size() == m_tmpSolverNonContactConstraintPool.size() + m_tmpSolverContactConstraintPool.size() + m_tmpSolverContactFrictionConstraintPool.size());
+ // printf("m_limitDependencies.size() = %d\n",m_limitDependencies.size());
int dindex = 0;
- for (int i=0;i<m_tmpSolverNonContactConstraintPool.size();i++)
+ for (int i = 0; i < m_tmpSolverNonContactConstraintPool.size(); i++)
{
m_allConstraintPtrArray.push_back(&m_tmpSolverNonContactConstraintPool[i]);
m_limitDependencies[dindex++] = -1;
}
-
+
///The btSequentialImpulseConstraintSolver moves all friction constraints at the very end, we can also interleave them instead
-
- int firstContactConstraintOffset=dindex;
+
+ int firstContactConstraintOffset = dindex;
if (interleaveContactAndFriction)
{
- for (int i=0;i<m_tmpSolverContactConstraintPool.size();i++)
+ for (int i = 0; i < m_tmpSolverContactConstraintPool.size(); i++)
{
m_allConstraintPtrArray.push_back(&m_tmpSolverContactConstraintPool[i]);
m_limitDependencies[dindex++] = -1;
- m_allConstraintPtrArray.push_back(&m_tmpSolverContactFrictionConstraintPool[i*numFrictionPerContact]);
- int findex = (m_tmpSolverContactFrictionConstraintPool[i*numFrictionPerContact].m_frictionIndex*(1+numFrictionPerContact));
- m_limitDependencies[dindex++] = findex +firstContactConstraintOffset;
- if (numFrictionPerContact==2)
+ m_allConstraintPtrArray.push_back(&m_tmpSolverContactFrictionConstraintPool[i * numFrictionPerContact]);
+ int findex = (m_tmpSolverContactFrictionConstraintPool[i * numFrictionPerContact].m_frictionIndex * (1 + numFrictionPerContact));
+ m_limitDependencies[dindex++] = findex + firstContactConstraintOffset;
+ if (numFrictionPerContact == 2)
{
- m_allConstraintPtrArray.push_back(&m_tmpSolverContactFrictionConstraintPool[i*numFrictionPerContact+1]);
- m_limitDependencies[dindex++] = findex+firstContactConstraintOffset;
+ m_allConstraintPtrArray.push_back(&m_tmpSolverContactFrictionConstraintPool[i * numFrictionPerContact + 1]);
+ m_limitDependencies[dindex++] = findex + firstContactConstraintOffset;
}
}
- } else
+ }
+ else
{
- for (int i=0;i<m_tmpSolverContactConstraintPool.size();i++)
+ for (int i = 0; i < m_tmpSolverContactConstraintPool.size(); i++)
{
m_allConstraintPtrArray.push_back(&m_tmpSolverContactConstraintPool[i]);
m_limitDependencies[dindex++] = -1;
}
- for (int i=0;i<m_tmpSolverContactFrictionConstraintPool.size();i++)
+ for (int i = 0; i < m_tmpSolverContactFrictionConstraintPool.size(); i++)
{
m_allConstraintPtrArray.push_back(&m_tmpSolverContactFrictionConstraintPool[i]);
- m_limitDependencies[dindex++] = m_tmpSolverContactFrictionConstraintPool[i].m_frictionIndex+firstContactConstraintOffset;
+ m_limitDependencies[dindex++] = m_tmpSolverContactFrictionConstraintPool[i].m_frictionIndex + firstContactConstraintOffset;
}
-
}
-
if (!m_allConstraintPtrArray.size())
{
- m_A.resize(0,0);
+ m_A.resize(0, 0);
m_b.resize(0);
m_x.resize(0);
m_lo.resize(0);
@@ -102,7 +99,6 @@ btScalar btMLCPSolver::solveGroupCacheFriendlySetup(btCollisionObject** bodies,
}
}
-
if (gUseMatrixMultiply)
{
BT_PROFILE("createMLCP");
@@ -121,7 +117,7 @@ bool btMLCPSolver::solveMLCP(const btContactSolverInfo& infoGlobal)
{
bool result = true;
- if (m_A.rows()==0)
+ if (m_A.rows() == 0)
return true;
//if using split impulse, we solve 2 separate (M)LCPs
@@ -129,28 +125,26 @@ bool btMLCPSolver::solveMLCP(const btContactSolverInfo& infoGlobal)
{
btMatrixXu Acopy = m_A;
btAlignedObjectArray<int> limitDependenciesCopy = m_limitDependencies;
-// printf("solve first LCP\n");
- result = m_solver->solveMLCP(m_A, m_b, m_x, m_lo,m_hi, m_limitDependencies,infoGlobal.m_numIterations );
+ // printf("solve first LCP\n");
+ result = m_solver->solveMLCP(m_A, m_b, m_x, m_lo, m_hi, m_limitDependencies, infoGlobal.m_numIterations);
if (result)
- result = m_solver->solveMLCP(Acopy, m_bSplit, m_xSplit, m_lo,m_hi, limitDependenciesCopy,infoGlobal.m_numIterations );
-
- } else
+ result = m_solver->solveMLCP(Acopy, m_bSplit, m_xSplit, m_lo, m_hi, limitDependenciesCopy, infoGlobal.m_numIterations);
+ }
+ else
{
- result = m_solver->solveMLCP(m_A, m_b, m_x, m_lo,m_hi, m_limitDependencies,infoGlobal.m_numIterations );
+ result = m_solver->solveMLCP(m_A, m_b, m_x, m_lo, m_hi, m_limitDependencies, infoGlobal.m_numIterations);
}
return result;
}
struct btJointNode
{
- int jointIndex; // pointer to enclosing dxJoint object
- int otherBodyIndex; // *other* body this joint is connected to
- int nextJointNodeIndex;//-1 for null
+ int jointIndex; // pointer to enclosing dxJoint object
+ int otherBodyIndex; // *other* body this joint is connected to
+ int nextJointNodeIndex; //-1 for null
int constraintRowIndex;
};
-
-
void btMLCPSolver::createMLCPFast(const btContactSolverInfo& infoGlobal)
{
int numContactRows = interleaveContactAndFriction ? 3 : 1;
@@ -163,36 +157,36 @@ void btMLCPSolver::createMLCPFast(const btContactSolverInfo& infoGlobal)
m_bSplit.resize(numConstraintRows);
m_b.setZero();
m_bSplit.setZero();
- for (int i=0;i<numConstraintRows ;i++)
+ for (int i = 0; i < numConstraintRows; i++)
{
btScalar jacDiag = m_allConstraintPtrArray[i]->m_jacDiagABInv;
if (!btFuzzyZero(jacDiag))
{
btScalar rhs = m_allConstraintPtrArray[i]->m_rhs;
btScalar rhsPenetration = m_allConstraintPtrArray[i]->m_rhsPenetration;
- m_b[i]=rhs/jacDiag;
- m_bSplit[i] = rhsPenetration/jacDiag;
+ m_b[i] = rhs / jacDiag;
+ m_bSplit[i] = rhsPenetration / jacDiag;
}
-
}
}
-// btScalar* w = 0;
-// int nub = 0;
+ // btScalar* w = 0;
+ // int nub = 0;
m_lo.resize(numConstraintRows);
m_hi.resize(numConstraintRows);
-
+
{
BT_PROFILE("init lo/ho");
- for (int i=0;i<numConstraintRows;i++)
+ for (int i = 0; i < numConstraintRows; i++)
{
- if (0)//m_limitDependencies[i]>=0)
+ if (0) //m_limitDependencies[i]>=0)
{
m_lo[i] = -BT_INFINITY;
m_hi[i] = BT_INFINITY;
- } else
+ }
+ else
{
m_lo[i] = m_allConstraintPtrArray[i]->m_lowerLimit;
m_hi[i] = m_allConstraintPtrArray[i]->m_upperLimit;
@@ -201,48 +195,48 @@ void btMLCPSolver::createMLCPFast(const btContactSolverInfo& infoGlobal)
}
//
- int m=m_allConstraintPtrArray.size();
+ int m = m_allConstraintPtrArray.size();
int numBodies = m_tmpSolverBodyPool.size();
btAlignedObjectArray<int> bodyJointNodeArray;
{
BT_PROFILE("bodyJointNodeArray.resize");
- bodyJointNodeArray.resize(numBodies,-1);
+ bodyJointNodeArray.resize(numBodies, -1);
}
btAlignedObjectArray<btJointNode> jointNodeArray;
{
BT_PROFILE("jointNodeArray.reserve");
- jointNodeArray.reserve(2*m_allConstraintPtrArray.size());
+ jointNodeArray.reserve(2 * m_allConstraintPtrArray.size());
}
- btMatrixXu& J3 = m_scratchJ3;
+ btMatrixXu& J3 = m_scratchJ3;
{
BT_PROFILE("J3.resize");
- J3.resize(2*m,8);
+ J3.resize(2 * m, 8);
}
- btMatrixXu& JinvM3 = m_scratchJInvM3;
+ btMatrixXu& JinvM3 = m_scratchJInvM3;
{
BT_PROFILE("JinvM3.resize/setZero");
- JinvM3.resize(2*m,8);
+ JinvM3.resize(2 * m, 8);
JinvM3.setZero();
J3.setZero();
}
- int cur=0;
+ int cur = 0;
int rowOffset = 0;
- btAlignedObjectArray<int>& ofs = m_scratchOfs;
+ btAlignedObjectArray<int>& ofs = m_scratchOfs;
{
BT_PROFILE("ofs resize");
ofs.resize(0);
ofs.resizeNoInitialize(m_allConstraintPtrArray.size());
- }
+ }
{
BT_PROFILE("Compute J and JinvM");
- int c=0;
+ int c = 0;
int numRows = 0;
- for (int i=0;i<m_allConstraintPtrArray.size();i+=numRows,c++)
+ for (int i = 0; i < m_allConstraintPtrArray.size(); i += numRows, c++)
{
ofs[c] = rowOffset;
int sbA = m_allConstraintPtrArray[i]->m_solverBodyIdA;
@@ -250,14 +244,14 @@ void btMLCPSolver::createMLCPFast(const btContactSolverInfo& infoGlobal)
btRigidBody* orgBodyA = m_tmpSolverBodyPool[sbA].m_originalBody;
btRigidBody* orgBodyB = m_tmpSolverBodyPool[sbB].m_originalBody;
- numRows = i<m_tmpSolverNonContactConstraintPool.size() ? m_tmpConstraintSizesPool[c].m_numConstraintRows : numContactRows ;
+ numRows = i < m_tmpSolverNonContactConstraintPool.size() ? m_tmpConstraintSizesPool[c].m_numConstraintRows : numContactRows;
if (orgBodyA)
{
{
- int slotA=-1;
+ int slotA = -1;
//find free jointNode slot for sbA
- slotA =jointNodeArray.size();
- jointNodeArray.expand();//NonInitializing();
+ slotA = jointNodeArray.size();
+ jointNodeArray.expand(); //NonInitializing();
int prevSlot = bodyJointNodeArray[sbA];
bodyJointNodeArray[sbA] = slotA;
jointNodeArray[slotA].nextJointNodeIndex = prevSlot;
@@ -265,35 +259,35 @@ void btMLCPSolver::createMLCPFast(const btContactSolverInfo& infoGlobal)
jointNodeArray[slotA].constraintRowIndex = i;
jointNodeArray[slotA].otherBodyIndex = orgBodyB ? sbB : -1;
}
- for (int row=0;row<numRows;row++,cur++)
+ for (int row = 0; row < numRows; row++, cur++)
{
- btVector3 normalInvMass = m_allConstraintPtrArray[i+row]->m_contactNormal1 * orgBodyA->getInvMass();
- btVector3 relPosCrossNormalInvInertia = m_allConstraintPtrArray[i+row]->m_relpos1CrossNormal * orgBodyA->getInvInertiaTensorWorld();
+ btVector3 normalInvMass = m_allConstraintPtrArray[i + row]->m_contactNormal1 * orgBodyA->getInvMass();
+ btVector3 relPosCrossNormalInvInertia = m_allConstraintPtrArray[i + row]->m_relpos1CrossNormal * orgBodyA->getInvInertiaTensorWorld();
- for (int r=0;r<3;r++)
+ for (int r = 0; r < 3; r++)
{
- J3.setElem(cur,r,m_allConstraintPtrArray[i+row]->m_contactNormal1[r]);
- J3.setElem(cur,r+4,m_allConstraintPtrArray[i+row]->m_relpos1CrossNormal[r]);
- JinvM3.setElem(cur,r,normalInvMass[r]);
- JinvM3.setElem(cur,r+4,relPosCrossNormalInvInertia[r]);
+ J3.setElem(cur, r, m_allConstraintPtrArray[i + row]->m_contactNormal1[r]);
+ J3.setElem(cur, r + 4, m_allConstraintPtrArray[i + row]->m_relpos1CrossNormal[r]);
+ JinvM3.setElem(cur, r, normalInvMass[r]);
+ JinvM3.setElem(cur, r + 4, relPosCrossNormalInvInertia[r]);
}
- J3.setElem(cur,3,0);
- JinvM3.setElem(cur,3,0);
- J3.setElem(cur,7,0);
- JinvM3.setElem(cur,7,0);
+ J3.setElem(cur, 3, 0);
+ JinvM3.setElem(cur, 3, 0);
+ J3.setElem(cur, 7, 0);
+ JinvM3.setElem(cur, 7, 0);
}
- } else
+ }
+ else
{
cur += numRows;
}
if (orgBodyB)
{
-
{
- int slotB=-1;
+ int slotB = -1;
//find free jointNode slot for sbA
- slotB =jointNodeArray.size();
- jointNodeArray.expand();//NonInitializing();
+ slotB = jointNodeArray.size();
+ jointNodeArray.expand(); //NonInitializing();
int prevSlot = bodyJointNodeArray[sbB];
bodyJointNodeArray[sbB] = slotB;
jointNodeArray[slotB].nextJointNodeIndex = prevSlot;
@@ -302,78 +296,74 @@ void btMLCPSolver::createMLCPFast(const btContactSolverInfo& infoGlobal)
jointNodeArray[slotB].constraintRowIndex = i;
}
- for (int row=0;row<numRows;row++,cur++)
+ for (int row = 0; row < numRows; row++, cur++)
{
- btVector3 normalInvMassB = m_allConstraintPtrArray[i+row]->m_contactNormal2*orgBodyB->getInvMass();
- btVector3 relPosInvInertiaB = m_allConstraintPtrArray[i+row]->m_relpos2CrossNormal * orgBodyB->getInvInertiaTensorWorld();
+ btVector3 normalInvMassB = m_allConstraintPtrArray[i + row]->m_contactNormal2 * orgBodyB->getInvMass();
+ btVector3 relPosInvInertiaB = m_allConstraintPtrArray[i + row]->m_relpos2CrossNormal * orgBodyB->getInvInertiaTensorWorld();
- for (int r=0;r<3;r++)
+ for (int r = 0; r < 3; r++)
{
- J3.setElem(cur,r,m_allConstraintPtrArray[i+row]->m_contactNormal2[r]);
- J3.setElem(cur,r+4,m_allConstraintPtrArray[i+row]->m_relpos2CrossNormal[r]);
- JinvM3.setElem(cur,r,normalInvMassB[r]);
- JinvM3.setElem(cur,r+4,relPosInvInertiaB[r]);
+ J3.setElem(cur, r, m_allConstraintPtrArray[i + row]->m_contactNormal2[r]);
+ J3.setElem(cur, r + 4, m_allConstraintPtrArray[i + row]->m_relpos2CrossNormal[r]);
+ JinvM3.setElem(cur, r, normalInvMassB[r]);
+ JinvM3.setElem(cur, r + 4, relPosInvInertiaB[r]);
}
- J3.setElem(cur,3,0);
- JinvM3.setElem(cur,3,0);
- J3.setElem(cur,7,0);
- JinvM3.setElem(cur,7,0);
+ J3.setElem(cur, 3, 0);
+ JinvM3.setElem(cur, 3, 0);
+ J3.setElem(cur, 7, 0);
+ JinvM3.setElem(cur, 7, 0);
}
}
else
{
cur += numRows;
}
- rowOffset+=numRows;
-
+ rowOffset += numRows;
}
-
}
-
//compute JinvM = J*invM.
const btScalar* JinvM = JinvM3.getBufferPointer();
const btScalar* Jptr = J3.getBufferPointer();
{
BT_PROFILE("m_A.resize");
- m_A.resize(n,n);
+ m_A.resize(n, n);
}
-
+
{
BT_PROFILE("m_A.setZero");
m_A.setZero();
}
- int c=0;
+ int c = 0;
{
int numRows = 0;
BT_PROFILE("Compute A");
- for (int i=0;i<m_allConstraintPtrArray.size();i+= numRows,c++)
+ for (int i = 0; i < m_allConstraintPtrArray.size(); i += numRows, c++)
{
int row__ = ofs[c];
int sbA = m_allConstraintPtrArray[i]->m_solverBodyIdA;
int sbB = m_allConstraintPtrArray[i]->m_solverBodyIdB;
- // btRigidBody* orgBodyA = m_tmpSolverBodyPool[sbA].m_originalBody;
- // btRigidBody* orgBodyB = m_tmpSolverBodyPool[sbB].m_originalBody;
+ // btRigidBody* orgBodyA = m_tmpSolverBodyPool[sbA].m_originalBody;
+ // btRigidBody* orgBodyB = m_tmpSolverBodyPool[sbB].m_originalBody;
+
+ numRows = i < m_tmpSolverNonContactConstraintPool.size() ? m_tmpConstraintSizesPool[c].m_numConstraintRows : numContactRows;
- numRows = i<m_tmpSolverNonContactConstraintPool.size() ? m_tmpConstraintSizesPool[c].m_numConstraintRows : numContactRows ;
-
- const btScalar *JinvMrow = JinvM + 2*8*(size_t)row__;
+ const btScalar* JinvMrow = JinvM + 2 * 8 * (size_t)row__;
{
int startJointNodeA = bodyJointNodeArray[sbA];
- while (startJointNodeA>=0)
+ while (startJointNodeA >= 0)
{
int j0 = jointNodeArray[startJointNodeA].jointIndex;
int cr0 = jointNodeArray[startJointNodeA].constraintRowIndex;
- if (j0<c)
+ if (j0 < c)
{
-
int numRowsOther = cr0 < m_tmpSolverNonContactConstraintPool.size() ? m_tmpConstraintSizesPool[j0].m_numConstraintRows : numContactRows;
- size_t ofsother = (m_allConstraintPtrArray[cr0]->m_solverBodyIdB == sbA) ? 8*numRowsOther : 0;
+ size_t ofsother = (m_allConstraintPtrArray[cr0]->m_solverBodyIdB == sbA) ? 8 * numRowsOther : 0;
//printf("%d joint i %d and j0: %d: ",count++,i,j0);
- m_A.multiplyAdd2_p8r ( JinvMrow,
- Jptr + 2*8*(size_t)ofs[j0] + ofsother, numRows, numRowsOther, row__,ofs[j0]);
+ m_A.multiplyAdd2_p8r(JinvMrow,
+ Jptr + 2 * 8 * (size_t)ofs[j0] + ofsother, numRows, numRowsOther, row__, ofs[j0]);
}
startJointNodeA = jointNodeArray[startJointNodeA].nextJointNodeIndex;
}
@@ -381,17 +371,17 @@ void btMLCPSolver::createMLCPFast(const btContactSolverInfo& infoGlobal)
{
int startJointNodeB = bodyJointNodeArray[sbB];
- while (startJointNodeB>=0)
+ while (startJointNodeB >= 0)
{
int j1 = jointNodeArray[startJointNodeB].jointIndex;
int cj1 = jointNodeArray[startJointNodeB].constraintRowIndex;
- if (j1<c)
+ if (j1 < c)
{
- int numRowsOther = cj1 < m_tmpSolverNonContactConstraintPool.size() ? m_tmpConstraintSizesPool[j1].m_numConstraintRows : numContactRows;
- size_t ofsother = (m_allConstraintPtrArray[cj1]->m_solverBodyIdB == sbB) ? 8*numRowsOther : 0;
- m_A.multiplyAdd2_p8r ( JinvMrow + 8*(size_t)numRows,
- Jptr + 2*8*(size_t)ofs[j1] + ofsother, numRows, numRowsOther, row__,ofs[j1]);
+ int numRowsOther = cj1 < m_tmpSolverNonContactConstraintPool.size() ? m_tmpConstraintSizesPool[j1].m_numConstraintRows : numContactRows;
+ size_t ofsother = (m_allConstraintPtrArray[cj1]->m_solverBodyIdB == sbB) ? 8 * numRowsOther : 0;
+ m_A.multiplyAdd2_p8r(JinvMrow + 8 * (size_t)numRows,
+ Jptr + 2 * 8 * (size_t)ofs[j1] + ofsother, numRows, numRowsOther, row__, ofs[j1]);
}
startJointNodeB = jointNodeArray[startJointNodeB].nextJointNodeIndex;
}
@@ -402,27 +392,25 @@ void btMLCPSolver::createMLCPFast(const btContactSolverInfo& infoGlobal)
BT_PROFILE("compute diagonal");
// compute diagonal blocks of m_A
- int row__ = 0;
+ int row__ = 0;
int numJointRows = m_allConstraintPtrArray.size();
- int jj=0;
- for (;row__<numJointRows;)
+ int jj = 0;
+ for (; row__ < numJointRows;)
{
-
//int sbA = m_allConstraintPtrArray[row__]->m_solverBodyIdA;
int sbB = m_allConstraintPtrArray[row__]->m_solverBodyIdB;
- // btRigidBody* orgBodyA = m_tmpSolverBodyPool[sbA].m_originalBody;
+ // btRigidBody* orgBodyA = m_tmpSolverBodyPool[sbA].m_originalBody;
btRigidBody* orgBodyB = m_tmpSolverBodyPool[sbB].m_originalBody;
+ const unsigned int infom = row__ < m_tmpSolverNonContactConstraintPool.size() ? m_tmpConstraintSizesPool[jj].m_numConstraintRows : numContactRows;
- const unsigned int infom = row__ < m_tmpSolverNonContactConstraintPool.size() ? m_tmpConstraintSizesPool[jj].m_numConstraintRows : numContactRows;
-
- const btScalar *JinvMrow = JinvM + 2*8*(size_t)row__;
- const btScalar *Jrow = Jptr + 2*8*(size_t)row__;
- m_A.multiply2_p8r (JinvMrow, Jrow, infom, infom, row__,row__);
- if (orgBodyB)
+ const btScalar* JinvMrow = JinvM + 2 * 8 * (size_t)row__;
+ const btScalar* Jrow = Jptr + 2 * 8 * (size_t)row__;
+ m_A.multiply2_p8r(JinvMrow, Jrow, infom, infom, row__, row__);
+ if (orgBodyB)
{
- m_A.multiplyAdd2_p8r (JinvMrow + 8*(size_t)infom, Jrow + 8*(size_t)infom, infom, infom, row__,row__);
+ m_A.multiplyAdd2_p8r(JinvMrow + 8 * (size_t)infom, Jrow + 8 * (size_t)infom, infom, infom, row__, row__);
}
row__ += infom;
jj++;
@@ -433,12 +421,12 @@ void btMLCPSolver::createMLCPFast(const btContactSolverInfo& infoGlobal)
if (1)
{
// add cfm to the diagonal of m_A
- for ( int i=0; i<m_A.rows(); ++i)
+ for (int i = 0; i < m_A.rows(); ++i)
{
- m_A.setElem(i,i,m_A(i,i)+ infoGlobal.m_globalCfm/ infoGlobal.m_timeStep);
+ m_A.setElem(i, i, m_A(i, i) + infoGlobal.m_globalCfm / infoGlobal.m_timeStep);
}
}
-
+
///fill the upper triangle of the matrix, to make it symmetric
{
BT_PROFILE("fill the upper triangle ");
@@ -450,21 +438,21 @@ void btMLCPSolver::createMLCPFast(const btContactSolverInfo& infoGlobal)
m_x.resize(numConstraintRows);
m_xSplit.resize(numConstraintRows);
- if (infoGlobal.m_solverMode&SOLVER_USE_WARMSTARTING)
+ if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
{
- for (int i=0;i<m_allConstraintPtrArray.size();i++)
+ for (int i = 0; i < m_allConstraintPtrArray.size(); i++)
{
const btSolverConstraint& c = *m_allConstraintPtrArray[i];
- m_x[i]=c.m_appliedImpulse;
+ m_x[i] = c.m_appliedImpulse;
m_xSplit[i] = c.m_appliedPushImpulse;
}
- } else
+ }
+ else
{
m_x.setZero();
m_xSplit.setZero();
}
}
-
}
void btMLCPSolver::createMLCP(const btContactSolverInfo& infoGlobal)
@@ -475,120 +463,116 @@ void btMLCPSolver::createMLCP(const btContactSolverInfo& infoGlobal)
m_b.resize(numConstraintRows);
if (infoGlobal.m_splitImpulse)
m_bSplit.resize(numConstraintRows);
-
+
m_bSplit.setZero();
m_b.setZero();
- for (int i=0;i<numConstraintRows ;i++)
+ for (int i = 0; i < numConstraintRows; i++)
{
if (m_allConstraintPtrArray[i]->m_jacDiagABInv)
{
- m_b[i]=m_allConstraintPtrArray[i]->m_rhs/m_allConstraintPtrArray[i]->m_jacDiagABInv;
+ m_b[i] = m_allConstraintPtrArray[i]->m_rhs / m_allConstraintPtrArray[i]->m_jacDiagABInv;
if (infoGlobal.m_splitImpulse)
- m_bSplit[i] = m_allConstraintPtrArray[i]->m_rhsPenetration/m_allConstraintPtrArray[i]->m_jacDiagABInv;
+ m_bSplit[i] = m_allConstraintPtrArray[i]->m_rhsPenetration / m_allConstraintPtrArray[i]->m_jacDiagABInv;
}
}
-
- btMatrixXu& Minv = m_scratchMInv;
- Minv.resize(6*numBodies,6*numBodies);
+
+ btMatrixXu& Minv = m_scratchMInv;
+ Minv.resize(6 * numBodies, 6 * numBodies);
Minv.setZero();
- for (int i=0;i<numBodies;i++)
+ for (int i = 0; i < numBodies; i++)
{
const btSolverBody& rb = m_tmpSolverBodyPool[i];
const btVector3& invMass = rb.m_invMass;
- setElem(Minv,i*6+0,i*6+0,invMass[0]);
- setElem(Minv,i*6+1,i*6+1,invMass[1]);
- setElem(Minv,i*6+2,i*6+2,invMass[2]);
+ setElem(Minv, i * 6 + 0, i * 6 + 0, invMass[0]);
+ setElem(Minv, i * 6 + 1, i * 6 + 1, invMass[1]);
+ setElem(Minv, i * 6 + 2, i * 6 + 2, invMass[2]);
btRigidBody* orgBody = m_tmpSolverBodyPool[i].m_originalBody;
-
- for (int r=0;r<3;r++)
- for (int c=0;c<3;c++)
- setElem(Minv,i*6+3+r,i*6+3+c,orgBody? orgBody->getInvInertiaTensorWorld()[r][c] : 0);
+
+ for (int r = 0; r < 3; r++)
+ for (int c = 0; c < 3; c++)
+ setElem(Minv, i * 6 + 3 + r, i * 6 + 3 + c, orgBody ? orgBody->getInvInertiaTensorWorld()[r][c] : 0);
}
-
- btMatrixXu& J = m_scratchJ;
- J.resize(numConstraintRows,6*numBodies);
+
+ btMatrixXu& J = m_scratchJ;
+ J.resize(numConstraintRows, 6 * numBodies);
J.setZero();
-
+
m_lo.resize(numConstraintRows);
m_hi.resize(numConstraintRows);
-
- for (int i=0;i<numConstraintRows;i++)
- {
+ for (int i = 0; i < numConstraintRows; i++)
+ {
m_lo[i] = m_allConstraintPtrArray[i]->m_lowerLimit;
m_hi[i] = m_allConstraintPtrArray[i]->m_upperLimit;
-
+
int bodyIndex0 = m_allConstraintPtrArray[i]->m_solverBodyIdA;
int bodyIndex1 = m_allConstraintPtrArray[i]->m_solverBodyIdB;
if (m_tmpSolverBodyPool[bodyIndex0].m_originalBody)
{
- setElem(J,i,6*bodyIndex0+0,m_allConstraintPtrArray[i]->m_contactNormal1[0]);
- setElem(J,i,6*bodyIndex0+1,m_allConstraintPtrArray[i]->m_contactNormal1[1]);
- setElem(J,i,6*bodyIndex0+2,m_allConstraintPtrArray[i]->m_contactNormal1[2]);
- setElem(J,i,6*bodyIndex0+3,m_allConstraintPtrArray[i]->m_relpos1CrossNormal[0]);
- setElem(J,i,6*bodyIndex0+4,m_allConstraintPtrArray[i]->m_relpos1CrossNormal[1]);
- setElem(J,i,6*bodyIndex0+5,m_allConstraintPtrArray[i]->m_relpos1CrossNormal[2]);
+ setElem(J, i, 6 * bodyIndex0 + 0, m_allConstraintPtrArray[i]->m_contactNormal1[0]);
+ setElem(J, i, 6 * bodyIndex0 + 1, m_allConstraintPtrArray[i]->m_contactNormal1[1]);
+ setElem(J, i, 6 * bodyIndex0 + 2, m_allConstraintPtrArray[i]->m_contactNormal1[2]);
+ setElem(J, i, 6 * bodyIndex0 + 3, m_allConstraintPtrArray[i]->m_relpos1CrossNormal[0]);
+ setElem(J, i, 6 * bodyIndex0 + 4, m_allConstraintPtrArray[i]->m_relpos1CrossNormal[1]);
+ setElem(J, i, 6 * bodyIndex0 + 5, m_allConstraintPtrArray[i]->m_relpos1CrossNormal[2]);
}
if (m_tmpSolverBodyPool[bodyIndex1].m_originalBody)
{
- setElem(J,i,6*bodyIndex1+0,m_allConstraintPtrArray[i]->m_contactNormal2[0]);
- setElem(J,i,6*bodyIndex1+1,m_allConstraintPtrArray[i]->m_contactNormal2[1]);
- setElem(J,i,6*bodyIndex1+2,m_allConstraintPtrArray[i]->m_contactNormal2[2]);
- setElem(J,i,6*bodyIndex1+3,m_allConstraintPtrArray[i]->m_relpos2CrossNormal[0]);
- setElem(J,i,6*bodyIndex1+4,m_allConstraintPtrArray[i]->m_relpos2CrossNormal[1]);
- setElem(J,i,6*bodyIndex1+5,m_allConstraintPtrArray[i]->m_relpos2CrossNormal[2]);
+ setElem(J, i, 6 * bodyIndex1 + 0, m_allConstraintPtrArray[i]->m_contactNormal2[0]);
+ setElem(J, i, 6 * bodyIndex1 + 1, m_allConstraintPtrArray[i]->m_contactNormal2[1]);
+ setElem(J, i, 6 * bodyIndex1 + 2, m_allConstraintPtrArray[i]->m_contactNormal2[2]);
+ setElem(J, i, 6 * bodyIndex1 + 3, m_allConstraintPtrArray[i]->m_relpos2CrossNormal[0]);
+ setElem(J, i, 6 * bodyIndex1 + 4, m_allConstraintPtrArray[i]->m_relpos2CrossNormal[1]);
+ setElem(J, i, 6 * bodyIndex1 + 5, m_allConstraintPtrArray[i]->m_relpos2CrossNormal[2]);
}
}
-
- btMatrixXu& J_transpose = m_scratchJTranspose;
- J_transpose= J.transpose();
- btMatrixXu& tmp = m_scratchTmp;
+ btMatrixXu& J_transpose = m_scratchJTranspose;
+ J_transpose = J.transpose();
+
+ btMatrixXu& tmp = m_scratchTmp;
{
{
BT_PROFILE("J*Minv");
- tmp = J*Minv;
-
+ tmp = J * Minv;
}
{
BT_PROFILE("J*tmp");
- m_A = tmp*J_transpose;
+ m_A = tmp * J_transpose;
}
}
if (1)
{
// add cfm to the diagonal of m_A
- for ( int i=0; i<m_A.rows(); ++i)
+ for (int i = 0; i < m_A.rows(); ++i)
{
- m_A.setElem(i,i,m_A(i,i)+ infoGlobal.m_globalCfm / infoGlobal.m_timeStep);
+ m_A.setElem(i, i, m_A(i, i) + infoGlobal.m_globalCfm / infoGlobal.m_timeStep);
}
}
m_x.resize(numConstraintRows);
if (infoGlobal.m_splitImpulse)
m_xSplit.resize(numConstraintRows);
-// m_x.setZero();
+ // m_x.setZero();
- for (int i=0;i<m_allConstraintPtrArray.size();i++)
+ for (int i = 0; i < m_allConstraintPtrArray.size(); i++)
{
const btSolverConstraint& c = *m_allConstraintPtrArray[i];
- m_x[i]=c.m_appliedImpulse;
+ m_x[i] = c.m_appliedImpulse;
if (infoGlobal.m_splitImpulse)
m_xSplit[i] = c.m_appliedPushImpulse;
}
-
}
-
-btScalar btMLCPSolver::solveGroupCacheFriendlyIterations(btCollisionObject** bodies ,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer)
+btScalar btMLCPSolver::solveGroupCacheFriendlyIterations(btCollisionObject** bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal, btIDebugDraw* debugDrawer)
{
bool result = true;
{
BT_PROFILE("solveMLCP");
-// printf("m_A(%d,%d)\n", m_A.rows(),m_A.cols());
+ // printf("m_A(%d,%d)\n", m_A.rows(),m_A.cols());
result = solveMLCP(infoGlobal);
}
@@ -596,44 +580,41 @@ btScalar btMLCPSolver::solveGroupCacheFriendlyIterations(btCollisionObject** bod
if (result)
{
BT_PROFILE("process MLCP results");
- for (int i=0;i<m_allConstraintPtrArray.size();i++)
+ for (int i = 0; i < m_allConstraintPtrArray.size(); i++)
{
{
btSolverConstraint& c = *m_allConstraintPtrArray[i];
int sbA = c.m_solverBodyIdA;
int sbB = c.m_solverBodyIdB;
//btRigidBody* orgBodyA = m_tmpSolverBodyPool[sbA].m_originalBody;
- // btRigidBody* orgBodyB = m_tmpSolverBodyPool[sbB].m_originalBody;
+ // btRigidBody* orgBodyB = m_tmpSolverBodyPool[sbB].m_originalBody;
btSolverBody& solverBodyA = m_tmpSolverBodyPool[sbA];
btSolverBody& solverBodyB = m_tmpSolverBodyPool[sbB];
-
+
{
- btScalar deltaImpulse = m_x[i]-c.m_appliedImpulse;
+ btScalar deltaImpulse = m_x[i] - c.m_appliedImpulse;
c.m_appliedImpulse = m_x[i];
- solverBodyA.internalApplyImpulse(c.m_contactNormal1*solverBodyA.internalGetInvMass(),c.m_angularComponentA,deltaImpulse);
- solverBodyB.internalApplyImpulse(c.m_contactNormal2*solverBodyB.internalGetInvMass(),c.m_angularComponentB,deltaImpulse);
+ solverBodyA.internalApplyImpulse(c.m_contactNormal1 * solverBodyA.internalGetInvMass(), c.m_angularComponentA, deltaImpulse);
+ solverBodyB.internalApplyImpulse(c.m_contactNormal2 * solverBodyB.internalGetInvMass(), c.m_angularComponentB, deltaImpulse);
}
if (infoGlobal.m_splitImpulse)
{
btScalar deltaImpulse = m_xSplit[i] - c.m_appliedPushImpulse;
- solverBodyA.internalApplyPushImpulse(c.m_contactNormal1*solverBodyA.internalGetInvMass(),c.m_angularComponentA,deltaImpulse);
- solverBodyB.internalApplyPushImpulse(c.m_contactNormal2*solverBodyB.internalGetInvMass(),c.m_angularComponentB,deltaImpulse);
+ solverBodyA.internalApplyPushImpulse(c.m_contactNormal1 * solverBodyA.internalGetInvMass(), c.m_angularComponentA, deltaImpulse);
+ solverBodyB.internalApplyPushImpulse(c.m_contactNormal2 * solverBodyB.internalGetInvMass(), c.m_angularComponentB, deltaImpulse);
c.m_appliedPushImpulse = m_xSplit[i];
}
-
}
}
}
else
{
- // printf("m_fallback = %d\n",m_fallback);
+ // printf("m_fallback = %d\n",m_fallback);
m_fallback++;
- btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyIterations(bodies ,numBodies,manifoldPtr, numManifolds,constraints,numConstraints,infoGlobal,debugDrawer);
+ btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyIterations(bodies, numBodies, manifoldPtr, numManifolds, constraints, numConstraints, infoGlobal, debugDrawer);
}
return 0.f;
}
-
-
diff --git a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btMLCPSolver.h b/thirdparty/bullet/BulletDynamics/MLCPSolvers/btMLCPSolver.h
index 26b482ddc1..510ae59e58 100644
--- a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btMLCPSolver.h
+++ b/thirdparty/bullet/BulletDynamics/MLCPSolvers/btMLCPSolver.h
@@ -23,15 +23,13 @@ subject to the following restrictions:
class btMLCPSolver : public btSequentialImpulseConstraintSolver
{
-
protected:
-
btMatrixXu m_A;
btVectorXu m_b;
btVectorXu m_x;
btVectorXu m_lo;
btVectorXu m_hi;
-
+
///when using 'split impulse' we solve two separate (M)LCPs
btVectorXu m_bSplit;
btVectorXu m_xSplit;
@@ -39,24 +37,23 @@ protected:
btVectorXu m_xSplit2;
btAlignedObjectArray<int> m_limitDependencies;
- btAlignedObjectArray<btSolverConstraint*> m_allConstraintPtrArray;
+ btAlignedObjectArray<btSolverConstraint*> m_allConstraintPtrArray;
btMLCPSolverInterface* m_solver;
int m_fallback;
- /// The following scratch variables are not stateful -- contents are cleared prior to each use.
- /// They are only cached here to avoid extra memory allocations and deallocations and to ensure
- /// that multiple instances of the solver can be run in parallel.
- btMatrixXu m_scratchJ3;
- btMatrixXu m_scratchJInvM3;
- btAlignedObjectArray<int> m_scratchOfs;
- btMatrixXu m_scratchMInv;
- btMatrixXu m_scratchJ;
- btMatrixXu m_scratchJTranspose;
- btMatrixXu m_scratchTmp;
-
- virtual btScalar solveGroupCacheFriendlySetup(btCollisionObject** bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer);
- virtual btScalar solveGroupCacheFriendlyIterations(btCollisionObject** bodies ,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer);
+ /// The following scratch variables are not stateful -- contents are cleared prior to each use.
+ /// They are only cached here to avoid extra memory allocations and deallocations and to ensure
+ /// that multiple instances of the solver can be run in parallel.
+ btMatrixXu m_scratchJ3;
+ btMatrixXu m_scratchJInvM3;
+ btAlignedObjectArray<int> m_scratchOfs;
+ btMatrixXu m_scratchMInv;
+ btMatrixXu m_scratchJ;
+ btMatrixXu m_scratchJTranspose;
+ btMatrixXu m_scratchTmp;
+ virtual btScalar solveGroupCacheFriendlySetup(btCollisionObject** bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal, btIDebugDraw* debugDrawer);
+ virtual btScalar solveGroupCacheFriendlyIterations(btCollisionObject** bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal, btIDebugDraw* debugDrawer);
virtual void createMLCP(const btContactSolverInfo& infoGlobal);
virtual void createMLCPFast(const btContactSolverInfo& infoGlobal);
@@ -65,8 +62,7 @@ protected:
virtual bool solveMLCP(const btContactSolverInfo& infoGlobal);
public:
-
- btMLCPSolver( btMLCPSolverInterface* solver);
+ btMLCPSolver(btMLCPSolverInterface* solver);
virtual ~btMLCPSolver();
void setMLCPSolver(btMLCPSolverInterface* solver)
@@ -83,12 +79,10 @@ public:
m_fallback = num;
}
- virtual btConstraintSolverType getSolverType() const
+ virtual btConstraintSolverType getSolverType() const
{
return BT_MLCP_SOLVER;
}
-
};
-
-#endif //BT_MLCP_SOLVER_H
+#endif //BT_MLCP_SOLVER_H
diff --git a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btMLCPSolverInterface.h b/thirdparty/bullet/BulletDynamics/MLCPSolvers/btMLCPSolverInterface.h
index 25bb3f6d32..6b0465b88d 100644
--- a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btMLCPSolverInterface.h
+++ b/thirdparty/bullet/BulletDynamics/MLCPSolvers/btMLCPSolverInterface.h
@@ -27,7 +27,7 @@ public:
}
//return true is it solves the problem successfully
- virtual bool solveMLCP(const btMatrixXu & A, const btVectorXu & b, btVectorXu& x, const btVectorXu & lo,const btVectorXu & hi,const btAlignedObjectArray<int>& limitDependency, int numIterations, bool useSparsity = true)=0;
+ virtual bool solveMLCP(const btMatrixXu& A, const btVectorXu& b, btVectorXu& x, const btVectorXu& lo, const btVectorXu& hi, const btAlignedObjectArray<int>& limitDependency, int numIterations, bool useSparsity = true) = 0;
};
-#endif //BT_MLCP_SOLVER_INTERFACE_H
+#endif //BT_MLCP_SOLVER_INTERFACE_H
diff --git a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btPATHSolver.h b/thirdparty/bullet/BulletDynamics/MLCPSolvers/btPATHSolver.h
index 9ec31a6d4e..7f8eec3f6e 100644
--- a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btPATHSolver.h
+++ b/thirdparty/bullet/BulletDynamics/MLCPSolvers/btPATHSolver.h
@@ -14,38 +14,35 @@ subject to the following restrictions:
*/
///original version written by Erwin Coumans, October 2013
-
#ifndef BT_PATH_SOLVER_H
#define BT_PATH_SOLVER_H
//#define BT_USE_PATH
#ifdef BT_USE_PATH
-extern "C" {
+extern "C"
+{
#include "PATH/SimpleLCP.h"
#include "PATH/License.h"
#include "PATH/Error_Interface.h"
};
- void __stdcall MyError(Void *data, Char *msg)
+void __stdcall MyError(Void *data, Char *msg)
{
- printf("Path Error: %s\n",msg);
+ printf("Path Error: %s\n", msg);
}
- void __stdcall MyWarning(Void *data, Char *msg)
+void __stdcall MyWarning(Void *data, Char *msg)
{
- printf("Path Warning: %s\n",msg);
+ printf("Path Warning: %s\n", msg);
}
Error_Interface e;
-
-
#include "btMLCPSolverInterface.h"
#include "Dantzig/lcp.h"
class btPathSolver : public btMLCPSolverInterface
{
public:
-
btPathSolver()
{
License_SetString("2069810742&Courtesy_License&&&USR&2013&14_12_2011&1000&PATH&GEN&31_12_2013&0_0_0&0&0_0");
@@ -55,17 +52,15 @@ public:
Error_SetInterface(&e);
}
-
- virtual bool solveMLCP(const btMatrixXu & A, const btVectorXu & b, btVectorXu& x, const btVectorXu & lo,const btVectorXu & hi,const btAlignedObjectArray<int>& limitDependency, int numIterations, bool useSparsity = true)
+ virtual bool solveMLCP(const btMatrixXu &A, const btVectorXu &b, btVectorXu &x, const btVectorXu &lo, const btVectorXu &hi, const btAlignedObjectArray<int> &limitDependency, int numIterations, bool useSparsity = true)
{
MCP_Termination status;
-
int numVariables = b.rows();
- if (0==numVariables)
+ if (0 == numVariables)
return true;
- /* - variables - the number of variables in the problem
+ /* - variables - the number of variables in the problem
- m_nnz - the number of nonzeros in the M matrix
- m_i - a vector of size m_nnz containing the row indices for M
- m_j - a vector of size m_nnz containing the column indices for M
@@ -78,16 +73,16 @@ public:
btAlignedObjectArray<int> rowIndices;
btAlignedObjectArray<int> colIndices;
- for (int i=0;i<A.rows();i++)
+ for (int i = 0; i < A.rows(); i++)
{
- for (int j=0;j<A.cols();j++)
+ for (int j = 0; j < A.cols(); j++)
{
- if (A(i,j)!=0.f)
+ if (A(i, j) != 0.f)
{
//add 1, because Path starts at 1, instead of 0
- rowIndices.push_back(i+1);
- colIndices.push_back(j+1);
- values.push_back(A(i,j));
+ rowIndices.push_back(i + 1);
+ colIndices.push_back(j + 1);
+ values.push_back(A(i, j));
}
}
}
@@ -97,19 +92,18 @@ public:
btAlignedObjectArray<double> rhs;
btAlignedObjectArray<double> upperBounds;
btAlignedObjectArray<double> lowerBounds;
- for (int i=0;i<numVariables;i++)
+ for (int i = 0; i < numVariables; i++)
{
upperBounds.push_back(hi[i]);
lowerBounds.push_back(lo[i]);
rhs.push_back(-b[i]);
}
-
- SimpleLCP(numVariables,numNonZero,&rowIndices[0],&colIndices[0],&values[0],&rhs[0],&lowerBounds[0],&upperBounds[0], &status, &zResult[0]);
+ SimpleLCP(numVariables, numNonZero, &rowIndices[0], &colIndices[0], &values[0], &rhs[0], &lowerBounds[0], &upperBounds[0], &status, &zResult[0]);
if (status != MCP_Solved)
{
- static const char* gReturnMsgs[] = {
+ static const char *gReturnMsgs[] = {
"Invalid return",
"MCP_Solved: The problem was solved",
"MCP_NoProgress: A stationary point was found",
@@ -122,16 +116,16 @@ public:
"MCP_Infeasible: Problem has no solution",
"MCP_Error: An error occurred within the code",
"MCP_LicenseError: License could not be found",
- "MCP_OK"
- };
+ "MCP_OK"};
- printf("ERROR: The PATH MCP solver failed: %s\n", gReturnMsgs[(unsigned int)status]);// << std::endl;
+ printf("ERROR: The PATH MCP solver failed: %s\n", gReturnMsgs[(unsigned int)status]); // << std::endl;
printf("using Projected Gauss Seidel fallback\n");
-
+
return false;
- } else
+ }
+ else
{
- for (int i=0;i<numVariables;i++)
+ for (int i = 0; i < numVariables; i++)
{
x[i] = zResult[i];
//check for #NAN
@@ -139,13 +133,10 @@ public:
return false;
}
return true;
-
}
-
}
};
-#endif //BT_USE_PATH
-
+#endif //BT_USE_PATH
-#endif //BT_PATH_SOLVER_H
+#endif //BT_PATH_SOLVER_H
diff --git a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btSolveProjectedGaussSeidel.h b/thirdparty/bullet/BulletDynamics/MLCPSolvers/btSolveProjectedGaussSeidel.h
index c0b40ffd9f..c3f4ec3997 100644
--- a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btSolveProjectedGaussSeidel.h
+++ b/thirdparty/bullet/BulletDynamics/MLCPSolvers/btSolveProjectedGaussSeidel.h
@@ -17,25 +17,22 @@ subject to the following restrictions:
#ifndef BT_SOLVE_PROJECTED_GAUSS_SEIDEL_H
#define BT_SOLVE_PROJECTED_GAUSS_SEIDEL_H
-
#include "btMLCPSolverInterface.h"
///This solver is mainly for debug/learning purposes: it is functionally equivalent to the btSequentialImpulseConstraintSolver solver, but much slower (it builds the full LCP matrix)
class btSolveProjectedGaussSeidel : public btMLCPSolverInterface
{
-
public:
-
btScalar m_leastSquaresResidualThreshold;
btScalar m_leastSquaresResidual;
btSolveProjectedGaussSeidel()
- :m_leastSquaresResidualThreshold(0),
- m_leastSquaresResidual(0)
+ : m_leastSquaresResidualThreshold(0),
+ m_leastSquaresResidual(0)
{
}
- virtual bool solveMLCP(const btMatrixXu & A, const btVectorXu & b, btVectorXu& x, const btVectorXu & lo,const btVectorXu & hi,const btAlignedObjectArray<int>& limitDependency, int numIterations, bool useSparsity = true)
+ virtual bool solveMLCP(const btMatrixXu& A, const btVectorXu& b, btVectorXu& x, const btVectorXu& lo, const btVectorXu& hi, const btAlignedObjectArray<int>& limitDependency, int numIterations, bool useSparsity = true)
{
if (!A.rows())
return true;
@@ -46,65 +43,65 @@ public:
btAssert(A.rows() == b.rows());
int i, j, numRows = A.rows();
-
+
btScalar delta;
- for (int k = 0; k <numIterations; k++)
+ for (int k = 0; k < numIterations; k++)
{
m_leastSquaresResidual = 0.f;
- for (i = 0; i <numRows; i++)
+ for (i = 0; i < numRows; i++)
{
delta = 0.0f;
if (useSparsity)
{
- for (int h=0;h<A.m_rowNonZeroElements1[i].size();h++)
+ for (int h = 0; h < A.m_rowNonZeroElements1[i].size(); h++)
{
- int j = A.m_rowNonZeroElements1[i][h];
- if (j != i)//skip main diagonal
+ j = A.m_rowNonZeroElements1[i][h];
+ if (j != i) //skip main diagonal
{
- delta += A(i,j) * x[j];
+ delta += A(i, j) * x[j];
}
}
- } else
+ }
+ else
{
- for (j = 0; j <i; j++)
- delta += A(i,j) * x[j];
- for (j = i+1; j<numRows; j++)
- delta += A(i,j) * x[j];
+ for (j = 0; j < i; j++)
+ delta += A(i, j) * x[j];
+ for (j = i + 1; j < numRows; j++)
+ delta += A(i, j) * x[j];
}
- btScalar aDiag = A(i,i);
+ btScalar aDiag = A(i, i);
btScalar xOld = x[i];
- x [i] = (b [i] - delta) / aDiag;
+ x[i] = (b[i] - delta) / aDiag;
btScalar s = 1.f;
- if (limitDependency[i]>=0)
+ if (limitDependency[i] >= 0)
{
s = x[limitDependency[i]];
- if (s<0)
- s=1;
+ if (s < 0)
+ s = 1;
}
-
- if (x[i]<lo[i]*s)
- x[i]=lo[i]*s;
- if (x[i]>hi[i]*s)
- x[i]=hi[i]*s;
+
+ if (x[i] < lo[i] * s)
+ x[i] = lo[i] * s;
+ if (x[i] > hi[i] * s)
+ x[i] = hi[i] * s;
btScalar diff = x[i] - xOld;
- m_leastSquaresResidual += diff*diff;
+ m_leastSquaresResidual += diff * diff;
}
- btScalar eps = m_leastSquaresResidualThreshold;
- if ((m_leastSquaresResidual < eps) || (k >=(numIterations-1)))
+ btScalar eps = m_leastSquaresResidualThreshold;
+ if ((m_leastSquaresResidual < eps) || (k >= (numIterations - 1)))
{
#ifdef VERBOSE_PRINTF_RESIDUAL
- printf("totalLenSqr = %f at iteration #%d\n", m_leastSquaresResidual,k);
+ printf("totalLenSqr = %f at iteration #%d\n", m_leastSquaresResidual, k);
#endif
break;
}
}
return true;
}
-
};
-#endif //BT_SOLVE_PROJECTED_GAUSS_SEIDEL_H
+#endif //BT_SOLVE_PROJECTED_GAUSS_SEIDEL_H