summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletDynamics/MLCPSolvers
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/bullet/BulletDynamics/MLCPSolvers')
-rw-r--r--thirdparty/bullet/BulletDynamics/MLCPSolvers/btDantzigLCP.cpp2158
-rw-r--r--thirdparty/bullet/BulletDynamics/MLCPSolvers/btDantzigLCP.h73
-rw-r--r--thirdparty/bullet/BulletDynamics/MLCPSolvers/btDantzigSolver.h106
-rw-r--r--thirdparty/bullet/BulletDynamics/MLCPSolvers/btLemkeAlgorithm.cpp369
-rw-r--r--thirdparty/bullet/BulletDynamics/MLCPSolvers/btLemkeAlgorithm.h102
-rw-r--r--thirdparty/bullet/BulletDynamics/MLCPSolvers/btLemkeSolver.h338
-rw-r--r--thirdparty/bullet/BulletDynamics/MLCPSolvers/btMLCPSolver.cpp620
-rw-r--r--thirdparty/bullet/BulletDynamics/MLCPSolvers/btMLCPSolver.h88
-rw-r--r--thirdparty/bullet/BulletDynamics/MLCPSolvers/btMLCPSolverInterface.h33
-rw-r--r--thirdparty/bullet/BulletDynamics/MLCPSolvers/btPATHSolver.h142
-rw-r--r--thirdparty/bullet/BulletDynamics/MLCPSolvers/btSolveProjectedGaussSeidel.h107
11 files changed, 0 insertions, 4136 deletions
diff --git a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btDantzigLCP.cpp b/thirdparty/bullet/BulletDynamics/MLCPSolvers/btDantzigLCP.cpp
deleted file mode 100644
index 98ecdc0794..0000000000
--- a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btDantzigLCP.cpp
+++ /dev/null
@@ -1,2158 +0,0 @@
-/*************************************************************************
-* *
-* Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. *
-* All rights reserved. Email: russ@q12.org Web: www.q12.org *
-* *
-* This library is free software; you can redistribute it and/or *
-* modify it under the terms of EITHER: *
-* (1) The GNU Lesser General Public License as published by the Free *
-* Software Foundation; either version 2.1 of the License, or (at *
-* your option) any later version. The text of the GNU Lesser *
-* General Public License is included with this library in the *
-* file LICENSE.TXT. *
-* (2) The BSD-style license that is included with this library in *
-* the file LICENSE-BSD.TXT. *
-* *
-* This library is distributed in the hope that it will be useful, *
-* but WITHOUT ANY WARRANTY; without even the implied warranty of *
-* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
-* LICENSE.TXT and LICENSE-BSD.TXT for more details. *
-* *
-*************************************************************************/
-
-/*
-
-
-THE ALGORITHM
--------------
-
-solve A*x = b+w, with x and w subject to certain LCP conditions.
-each x(i),w(i) must lie on one of the three line segments in the following
-diagram. each line segment corresponds to one index set :
-
- w(i)
- /|\ | :
- | | :
- | |i in N :
- w>0 | |state[i]=0 :
- | | :
- | | : i in C
- w=0 + +-----------------------+
- | : |
- | : |
- w<0 | : |i in N
- | : |state[i]=1
- | : |
- | : |
- +-------|-----------|-----------|----------> x(i)
- lo 0 hi
-
-the Dantzig algorithm proceeds as follows:
- for i=1:n
- * if (x(i),w(i)) is not on the line, push x(i) and w(i) positive or
- negative towards the line. as this is done, the other (x(j),w(j))
- for j<i are constrained to be on the line. if any (x,w) reaches the
- end of a line segment then it is switched between index sets.
- * i is added to the appropriate index set depending on what line segment
- it hits.
-
-we restrict lo(i) <= 0 and hi(i) >= 0. this makes the algorithm a bit
-simpler, because the starting point for x(i),w(i) is always on the dotted
-line x=0 and x will only ever increase in one direction, so it can only hit
-two out of the three line segments.
-
-
-NOTES
------
-
-this is an implementation of "lcp_dantzig2_ldlt.m" and "lcp_dantzig_lohi.m".
-the implementation is split into an LCP problem object (btLCP) and an LCP
-driver function. most optimization occurs in the btLCP object.
-
-a naive implementation of the algorithm requires either a lot of data motion
-or a lot of permutation-array lookup, because we are constantly re-ordering
-rows and columns. to avoid this and make a more optimized algorithm, a
-non-trivial data structure is used to represent the matrix A (this is
-implemented in the fast version of the btLCP object).
-
-during execution of this algorithm, some indexes in A are clamped (set C),
-some are non-clamped (set N), and some are "don't care" (where x=0).
-A,x,b,w (and other problem vectors) are permuted such that the clamped
-indexes are first, the unclamped indexes are next, and the don't-care
-indexes are last. this permutation is recorded in the array `p'.
-initially p = 0..n-1, and as the rows and columns of A,x,b,w are swapped,
-the corresponding elements of p are swapped.
-
-because the C and N elements are grouped together in the rows of A, we can do
-lots of work with a fast dot product function. if A,x,etc were not permuted
-and we only had a permutation array, then those dot products would be much
-slower as we would have a permutation array lookup in some inner loops.
-
-A is accessed through an array of row pointers, so that element (i,j) of the
-permuted matrix is A[i][j]. this makes row swapping fast. for column swapping
-we still have to actually move the data.
-
-during execution of this algorithm we maintain an L*D*L' factorization of
-the clamped submatrix of A (call it `AC') which is the top left nC*nC
-submatrix of A. there are two ways we could arrange the rows/columns in AC.
-
-(1) AC is always permuted such that L*D*L' = AC. this causes a problem
-when a row/column is removed from C, because then all the rows/columns of A
-between the deleted index and the end of C need to be rotated downward.
-this results in a lot of data motion and slows things down.
-(2) L*D*L' is actually a factorization of a *permutation* of AC (which is
-itself a permutation of the underlying A). this is what we do - the
-permutation is recorded in the vector C. call this permutation A[C,C].
-when a row/column is removed from C, all we have to do is swap two
-rows/columns and manipulate C.
-
-*/
-
-#include "btDantzigLCP.h"
-
-#include <string.h> //memcpy
-
-bool s_error = false;
-
-//***************************************************************************
-// code generation parameters
-
-#define btLCP_FAST // use fast btLCP object
-
-// option 1 : matrix row pointers (less data copying)
-#define BTROWPTRS
-#define BTATYPE btScalar **
-#define BTAROW(i) (m_A[i])
-
-// option 2 : no matrix row pointers (slightly faster inner loops)
-//#define NOROWPTRS
-//#define BTATYPE btScalar *
-//#define BTAROW(i) (m_A+(i)*m_nskip)
-
-#define BTNUB_OPTIMIZATIONS
-
-/* solve L*X=B, with B containing 1 right hand sides.
- * L is an n*n lower triangular matrix with ones on the diagonal.
- * L is stored by rows and its leading dimension is lskip.
- * B is an n*1 matrix that contains the right hand sides.
- * B is stored by columns and its leading dimension is also lskip.
- * B is overwritten with X.
- * this processes blocks of 2*2.
- * if this is in the factorizer source file, n must be a multiple of 2.
- */
-
-static void btSolveL1_1(const btScalar *L, btScalar *B, int n, int lskip1)
-{
- /* declare variables - Z matrix, p and q vectors, etc */
- btScalar Z11, m11, Z21, m21, p1, q1, p2, *ex;
- const btScalar *ell;
- int i, j;
- /* compute all 2 x 1 blocks of X */
- for (i = 0; i < n; i += 2)
- {
- /* compute all 2 x 1 block of X, from rows i..i+2-1 */
- /* set the Z matrix to 0 */
- Z11 = 0;
- Z21 = 0;
- ell = L + i * lskip1;
- ex = B;
- /* the inner loop that computes outer products and adds them to Z */
- for (j = i - 2; j >= 0; j -= 2)
- {
- /* compute outer product and add it to the Z matrix */
- p1 = ell[0];
- q1 = ex[0];
- m11 = p1 * q1;
- p2 = ell[lskip1];
- m21 = p2 * q1;
- Z11 += m11;
- Z21 += m21;
- /* compute outer product and add it to the Z matrix */
- p1 = ell[1];
- q1 = ex[1];
- m11 = p1 * q1;
- p2 = ell[1 + lskip1];
- m21 = p2 * q1;
- /* advance pointers */
- ell += 2;
- ex += 2;
- Z11 += m11;
- Z21 += m21;
- /* end of inner loop */
- }
- /* compute left-over iterations */
- j += 2;
- for (; j > 0; j--)
- {
- /* compute outer product and add it to the Z matrix */
- p1 = ell[0];
- q1 = ex[0];
- m11 = p1 * q1;
- p2 = ell[lskip1];
- m21 = p2 * q1;
- /* advance pointers */
- ell += 1;
- ex += 1;
- Z11 += m11;
- Z21 += m21;
- }
- /* finish computing the X(i) block */
- Z11 = ex[0] - Z11;
- ex[0] = Z11;
- p1 = ell[lskip1];
- Z21 = ex[1] - Z21 - p1 * Z11;
- ex[1] = Z21;
- /* end of outer loop */
- }
-}
-
-/* solve L*X=B, with B containing 2 right hand sides.
- * L is an n*n lower triangular matrix with ones on the diagonal.
- * L is stored by rows and its leading dimension is lskip.
- * B is an n*2 matrix that contains the right hand sides.
- * B is stored by columns and its leading dimension is also lskip.
- * B is overwritten with X.
- * this processes blocks of 2*2.
- * if this is in the factorizer source file, n must be a multiple of 2.
- */
-
-static void btSolveL1_2(const btScalar *L, btScalar *B, int n, int lskip1)
-{
- /* declare variables - Z matrix, p and q vectors, etc */
- btScalar Z11, m11, Z12, m12, Z21, m21, Z22, m22, p1, q1, p2, q2, *ex;
- const btScalar *ell;
- int i, j;
- /* compute all 2 x 2 blocks of X */
- for (i = 0; i < n; i += 2)
- {
- /* compute all 2 x 2 block of X, from rows i..i+2-1 */
- /* set the Z matrix to 0 */
- Z11 = 0;
- Z12 = 0;
- Z21 = 0;
- Z22 = 0;
- ell = L + i * lskip1;
- ex = B;
- /* the inner loop that computes outer products and adds them to Z */
- for (j = i - 2; j >= 0; j -= 2)
- {
- /* compute outer product and add it to the Z matrix */
- p1 = ell[0];
- q1 = ex[0];
- m11 = p1 * q1;
- q2 = ex[lskip1];
- m12 = p1 * q2;
- p2 = ell[lskip1];
- m21 = p2 * q1;
- m22 = p2 * q2;
- Z11 += m11;
- Z12 += m12;
- Z21 += m21;
- Z22 += m22;
- /* compute outer product and add it to the Z matrix */
- p1 = ell[1];
- q1 = ex[1];
- m11 = p1 * q1;
- q2 = ex[1 + lskip1];
- m12 = p1 * q2;
- p2 = ell[1 + lskip1];
- m21 = p2 * q1;
- m22 = p2 * q2;
- /* advance pointers */
- ell += 2;
- ex += 2;
- Z11 += m11;
- Z12 += m12;
- Z21 += m21;
- Z22 += m22;
- /* end of inner loop */
- }
- /* compute left-over iterations */
- j += 2;
- for (; j > 0; j--)
- {
- /* compute outer product and add it to the Z matrix */
- p1 = ell[0];
- q1 = ex[0];
- m11 = p1 * q1;
- q2 = ex[lskip1];
- m12 = p1 * q2;
- p2 = ell[lskip1];
- m21 = p2 * q1;
- m22 = p2 * q2;
- /* advance pointers */
- ell += 1;
- ex += 1;
- Z11 += m11;
- Z12 += m12;
- Z21 += m21;
- Z22 += m22;
- }
- /* finish computing the X(i) block */
- Z11 = ex[0] - Z11;
- ex[0] = Z11;
- Z12 = ex[lskip1] - Z12;
- ex[lskip1] = Z12;
- p1 = ell[lskip1];
- Z21 = ex[1] - Z21 - p1 * Z11;
- ex[1] = Z21;
- Z22 = ex[1 + lskip1] - Z22 - p1 * Z12;
- ex[1 + lskip1] = Z22;
- /* end of outer loop */
- }
-}
-
-void btFactorLDLT(btScalar *A, btScalar *d, int n, int nskip1)
-{
- int i, j;
- btScalar sum, *ell, *dee, dd, p1, p2, q1, q2, Z11, m11, Z21, m21, Z22, m22;
- if (n < 1) return;
-
- for (i = 0; i <= n - 2; i += 2)
- {
- /* solve L*(D*l)=a, l is scaled elements in 2 x i block at A(i,0) */
- btSolveL1_2(A, A + i * nskip1, i, nskip1);
- /* scale the elements in a 2 x i block at A(i,0), and also */
- /* compute Z = the outer product matrix that we'll need. */
- Z11 = 0;
- Z21 = 0;
- Z22 = 0;
- ell = A + i * nskip1;
- dee = d;
- for (j = i - 6; j >= 0; j -= 6)
- {
- p1 = ell[0];
- p2 = ell[nskip1];
- dd = dee[0];
- q1 = p1 * dd;
- q2 = p2 * dd;
- ell[0] = q1;
- ell[nskip1] = q2;
- m11 = p1 * q1;
- m21 = p2 * q1;
- m22 = p2 * q2;
- Z11 += m11;
- Z21 += m21;
- Z22 += m22;
- p1 = ell[1];
- p2 = ell[1 + nskip1];
- dd = dee[1];
- q1 = p1 * dd;
- q2 = p2 * dd;
- ell[1] = q1;
- ell[1 + nskip1] = q2;
- m11 = p1 * q1;
- m21 = p2 * q1;
- m22 = p2 * q2;
- Z11 += m11;
- Z21 += m21;
- Z22 += m22;
- p1 = ell[2];
- p2 = ell[2 + nskip1];
- dd = dee[2];
- q1 = p1 * dd;
- q2 = p2 * dd;
- ell[2] = q1;
- ell[2 + nskip1] = q2;
- m11 = p1 * q1;
- m21 = p2 * q1;
- m22 = p2 * q2;
- Z11 += m11;
- Z21 += m21;
- Z22 += m22;
- p1 = ell[3];
- p2 = ell[3 + nskip1];
- dd = dee[3];
- q1 = p1 * dd;
- q2 = p2 * dd;
- ell[3] = q1;
- ell[3 + nskip1] = q2;
- m11 = p1 * q1;
- m21 = p2 * q1;
- m22 = p2 * q2;
- Z11 += m11;
- Z21 += m21;
- Z22 += m22;
- p1 = ell[4];
- p2 = ell[4 + nskip1];
- dd = dee[4];
- q1 = p1 * dd;
- q2 = p2 * dd;
- ell[4] = q1;
- ell[4 + nskip1] = q2;
- m11 = p1 * q1;
- m21 = p2 * q1;
- m22 = p2 * q2;
- Z11 += m11;
- Z21 += m21;
- Z22 += m22;
- p1 = ell[5];
- p2 = ell[5 + nskip1];
- dd = dee[5];
- q1 = p1 * dd;
- q2 = p2 * dd;
- ell[5] = q1;
- ell[5 + nskip1] = q2;
- m11 = p1 * q1;
- m21 = p2 * q1;
- m22 = p2 * q2;
- Z11 += m11;
- Z21 += m21;
- Z22 += m22;
- ell += 6;
- dee += 6;
- }
- /* compute left-over iterations */
- j += 6;
- for (; j > 0; j--)
- {
- p1 = ell[0];
- p2 = ell[nskip1];
- dd = dee[0];
- q1 = p1 * dd;
- q2 = p2 * dd;
- ell[0] = q1;
- ell[nskip1] = q2;
- m11 = p1 * q1;
- m21 = p2 * q1;
- m22 = p2 * q2;
- Z11 += m11;
- Z21 += m21;
- Z22 += m22;
- ell++;
- dee++;
- }
- /* solve for diagonal 2 x 2 block at A(i,i) */
- Z11 = ell[0] - Z11;
- Z21 = ell[nskip1] - Z21;
- Z22 = ell[1 + nskip1] - Z22;
- dee = d + i;
- /* factorize 2 x 2 block Z,dee */
- /* factorize row 1 */
- dee[0] = btRecip(Z11);
- /* factorize row 2 */
- sum = 0;
- q1 = Z21;
- q2 = q1 * dee[0];
- Z21 = q2;
- sum += q1 * q2;
- dee[1] = btRecip(Z22 - sum);
- /* done factorizing 2 x 2 block */
- ell[nskip1] = Z21;
- }
- /* compute the (less than 2) rows at the bottom */
- switch (n - i)
- {
- case 0:
- break;
-
- case 1:
- btSolveL1_1(A, A + i * nskip1, i, nskip1);
- /* scale the elements in a 1 x i block at A(i,0), and also */
- /* compute Z = the outer product matrix that we'll need. */
- Z11 = 0;
- ell = A + i * nskip1;
- dee = d;
- for (j = i - 6; j >= 0; j -= 6)
- {
- p1 = ell[0];
- dd = dee[0];
- q1 = p1 * dd;
- ell[0] = q1;
- m11 = p1 * q1;
- Z11 += m11;
- p1 = ell[1];
- dd = dee[1];
- q1 = p1 * dd;
- ell[1] = q1;
- m11 = p1 * q1;
- Z11 += m11;
- p1 = ell[2];
- dd = dee[2];
- q1 = p1 * dd;
- ell[2] = q1;
- m11 = p1 * q1;
- Z11 += m11;
- p1 = ell[3];
- dd = dee[3];
- q1 = p1 * dd;
- ell[3] = q1;
- m11 = p1 * q1;
- Z11 += m11;
- p1 = ell[4];
- dd = dee[4];
- q1 = p1 * dd;
- ell[4] = q1;
- m11 = p1 * q1;
- Z11 += m11;
- p1 = ell[5];
- dd = dee[5];
- q1 = p1 * dd;
- ell[5] = q1;
- m11 = p1 * q1;
- Z11 += m11;
- ell += 6;
- dee += 6;
- }
- /* compute left-over iterations */
- j += 6;
- for (; j > 0; j--)
- {
- p1 = ell[0];
- dd = dee[0];
- q1 = p1 * dd;
- ell[0] = q1;
- m11 = p1 * q1;
- Z11 += m11;
- ell++;
- dee++;
- }
- /* solve for diagonal 1 x 1 block at A(i,i) */
- Z11 = ell[0] - Z11;
- dee = d + i;
- /* factorize 1 x 1 block Z,dee */
- /* factorize row 1 */
- dee[0] = btRecip(Z11);
- /* done factorizing 1 x 1 block */
- break;
-
- //default: *((char*)0)=0; /* this should never happen! */
- }
-}
-
-/* solve L*X=B, with B containing 1 right hand sides.
- * L is an n*n lower triangular matrix with ones on the diagonal.
- * L is stored by rows and its leading dimension is lskip.
- * B is an n*1 matrix that contains the right hand sides.
- * B is stored by columns and its leading dimension is also lskip.
- * B is overwritten with X.
- * this processes blocks of 4*4.
- * if this is in the factorizer source file, n must be a multiple of 4.
- */
-
-void btSolveL1(const btScalar *L, btScalar *B, int n, int lskip1)
-{
- /* declare variables - Z matrix, p and q vectors, etc */
- btScalar Z11, Z21, Z31, Z41, p1, q1, p2, p3, p4, *ex;
- const btScalar *ell;
- int lskip2, lskip3, i, j;
- /* compute lskip values */
- lskip2 = 2 * lskip1;
- lskip3 = 3 * lskip1;
- /* compute all 4 x 1 blocks of X */
- for (i = 0; i <= n - 4; i += 4)
- {
- /* compute all 4 x 1 block of X, from rows i..i+4-1 */
- /* set the Z matrix to 0 */
- Z11 = 0;
- Z21 = 0;
- Z31 = 0;
- Z41 = 0;
- ell = L + i * lskip1;
- ex = B;
- /* the inner loop that computes outer products and adds them to Z */
- for (j = i - 12; j >= 0; j -= 12)
- {
- /* load p and q values */
- p1 = ell[0];
- q1 = ex[0];
- p2 = ell[lskip1];
- p3 = ell[lskip2];
- p4 = ell[lskip3];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- Z21 += p2 * q1;
- Z31 += p3 * q1;
- Z41 += p4 * q1;
- /* load p and q values */
- p1 = ell[1];
- q1 = ex[1];
- p2 = ell[1 + lskip1];
- p3 = ell[1 + lskip2];
- p4 = ell[1 + lskip3];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- Z21 += p2 * q1;
- Z31 += p3 * q1;
- Z41 += p4 * q1;
- /* load p and q values */
- p1 = ell[2];
- q1 = ex[2];
- p2 = ell[2 + lskip1];
- p3 = ell[2 + lskip2];
- p4 = ell[2 + lskip3];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- Z21 += p2 * q1;
- Z31 += p3 * q1;
- Z41 += p4 * q1;
- /* load p and q values */
- p1 = ell[3];
- q1 = ex[3];
- p2 = ell[3 + lskip1];
- p3 = ell[3 + lskip2];
- p4 = ell[3 + lskip3];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- Z21 += p2 * q1;
- Z31 += p3 * q1;
- Z41 += p4 * q1;
- /* load p and q values */
- p1 = ell[4];
- q1 = ex[4];
- p2 = ell[4 + lskip1];
- p3 = ell[4 + lskip2];
- p4 = ell[4 + lskip3];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- Z21 += p2 * q1;
- Z31 += p3 * q1;
- Z41 += p4 * q1;
- /* load p and q values */
- p1 = ell[5];
- q1 = ex[5];
- p2 = ell[5 + lskip1];
- p3 = ell[5 + lskip2];
- p4 = ell[5 + lskip3];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- Z21 += p2 * q1;
- Z31 += p3 * q1;
- Z41 += p4 * q1;
- /* load p and q values */
- p1 = ell[6];
- q1 = ex[6];
- p2 = ell[6 + lskip1];
- p3 = ell[6 + lskip2];
- p4 = ell[6 + lskip3];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- Z21 += p2 * q1;
- Z31 += p3 * q1;
- Z41 += p4 * q1;
- /* load p and q values */
- p1 = ell[7];
- q1 = ex[7];
- p2 = ell[7 + lskip1];
- p3 = ell[7 + lskip2];
- p4 = ell[7 + lskip3];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- Z21 += p2 * q1;
- Z31 += p3 * q1;
- Z41 += p4 * q1;
- /* load p and q values */
- p1 = ell[8];
- q1 = ex[8];
- p2 = ell[8 + lskip1];
- p3 = ell[8 + lskip2];
- p4 = ell[8 + lskip3];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- Z21 += p2 * q1;
- Z31 += p3 * q1;
- Z41 += p4 * q1;
- /* load p and q values */
- p1 = ell[9];
- q1 = ex[9];
- p2 = ell[9 + lskip1];
- p3 = ell[9 + lskip2];
- p4 = ell[9 + lskip3];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- Z21 += p2 * q1;
- Z31 += p3 * q1;
- Z41 += p4 * q1;
- /* load p and q values */
- p1 = ell[10];
- q1 = ex[10];
- p2 = ell[10 + lskip1];
- p3 = ell[10 + lskip2];
- p4 = ell[10 + lskip3];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- Z21 += p2 * q1;
- Z31 += p3 * q1;
- Z41 += p4 * q1;
- /* load p and q values */
- p1 = ell[11];
- q1 = ex[11];
- p2 = ell[11 + lskip1];
- p3 = ell[11 + lskip2];
- p4 = ell[11 + lskip3];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- Z21 += p2 * q1;
- Z31 += p3 * q1;
- Z41 += p4 * q1;
- /* advance pointers */
- ell += 12;
- ex += 12;
- /* end of inner loop */
- }
- /* compute left-over iterations */
- j += 12;
- for (; j > 0; j--)
- {
- /* load p and q values */
- p1 = ell[0];
- q1 = ex[0];
- p2 = ell[lskip1];
- p3 = ell[lskip2];
- p4 = ell[lskip3];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- Z21 += p2 * q1;
- Z31 += p3 * q1;
- Z41 += p4 * q1;
- /* advance pointers */
- ell += 1;
- ex += 1;
- }
- /* finish computing the X(i) block */
- Z11 = ex[0] - Z11;
- ex[0] = Z11;
- p1 = ell[lskip1];
- Z21 = ex[1] - Z21 - p1 * Z11;
- ex[1] = Z21;
- p1 = ell[lskip2];
- p2 = ell[1 + lskip2];
- Z31 = ex[2] - Z31 - p1 * Z11 - p2 * Z21;
- ex[2] = Z31;
- p1 = ell[lskip3];
- p2 = ell[1 + lskip3];
- p3 = ell[2 + lskip3];
- Z41 = ex[3] - Z41 - p1 * Z11 - p2 * Z21 - p3 * Z31;
- ex[3] = Z41;
- /* end of outer loop */
- }
- /* compute rows at end that are not a multiple of block size */
- for (; i < n; i++)
- {
- /* compute all 1 x 1 block of X, from rows i..i+1-1 */
- /* set the Z matrix to 0 */
- Z11 = 0;
- ell = L + i * lskip1;
- ex = B;
- /* the inner loop that computes outer products and adds them to Z */
- for (j = i - 12; j >= 0; j -= 12)
- {
- /* load p and q values */
- p1 = ell[0];
- q1 = ex[0];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- /* load p and q values */
- p1 = ell[1];
- q1 = ex[1];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- /* load p and q values */
- p1 = ell[2];
- q1 = ex[2];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- /* load p and q values */
- p1 = ell[3];
- q1 = ex[3];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- /* load p and q values */
- p1 = ell[4];
- q1 = ex[4];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- /* load p and q values */
- p1 = ell[5];
- q1 = ex[5];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- /* load p and q values */
- p1 = ell[6];
- q1 = ex[6];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- /* load p and q values */
- p1 = ell[7];
- q1 = ex[7];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- /* load p and q values */
- p1 = ell[8];
- q1 = ex[8];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- /* load p and q values */
- p1 = ell[9];
- q1 = ex[9];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- /* load p and q values */
- p1 = ell[10];
- q1 = ex[10];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- /* load p and q values */
- p1 = ell[11];
- q1 = ex[11];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- /* advance pointers */
- ell += 12;
- ex += 12;
- /* end of inner loop */
- }
- /* compute left-over iterations */
- j += 12;
- for (; j > 0; j--)
- {
- /* load p and q values */
- p1 = ell[0];
- q1 = ex[0];
- /* compute outer product and add it to the Z matrix */
- Z11 += p1 * q1;
- /* advance pointers */
- ell += 1;
- ex += 1;
- }
- /* finish computing the X(i) block */
- Z11 = ex[0] - Z11;
- ex[0] = Z11;
- }
-}
-
-/* solve L^T * x=b, with b containing 1 right hand side.
- * L is an n*n lower triangular matrix with ones on the diagonal.
- * L is stored by rows and its leading dimension is lskip.
- * b is an n*1 matrix that contains the right hand side.
- * b is overwritten with x.
- * this processes blocks of 4.
- */
-
-void btSolveL1T(const btScalar *L, btScalar *B, int n, int lskip1)
-{
- /* declare variables - Z matrix, p and q vectors, etc */
- btScalar Z11, m11, Z21, m21, Z31, m31, Z41, m41, p1, q1, p2, p3, p4, *ex;
- const btScalar *ell;
- int lskip2, i, j;
- // int lskip3;
- /* special handling for L and B because we're solving L1 *transpose* */
- L = L + (n - 1) * (lskip1 + 1);
- B = B + n - 1;
- lskip1 = -lskip1;
- /* compute lskip values */
- lskip2 = 2 * lskip1;
- //lskip3 = 3*lskip1;
- /* compute all 4 x 1 blocks of X */
- for (i = 0; i <= n - 4; i += 4)
- {
- /* compute all 4 x 1 block of X, from rows i..i+4-1 */
- /* set the Z matrix to 0 */
- Z11 = 0;
- Z21 = 0;
- Z31 = 0;
- Z41 = 0;
- ell = L - i;
- ex = B;
- /* the inner loop that computes outer products and adds them to Z */
- for (j = i - 4; j >= 0; j -= 4)
- {
- /* load p and q values */
- p1 = ell[0];
- q1 = ex[0];
- p2 = ell[-1];
- p3 = ell[-2];
- p4 = ell[-3];
- /* compute outer product and add it to the Z matrix */
- m11 = p1 * q1;
- m21 = p2 * q1;
- m31 = p3 * q1;
- m41 = p4 * q1;
- ell += lskip1;
- Z11 += m11;
- Z21 += m21;
- Z31 += m31;
- Z41 += m41;
- /* load p and q values */
- p1 = ell[0];
- q1 = ex[-1];
- p2 = ell[-1];
- p3 = ell[-2];
- p4 = ell[-3];
- /* compute outer product and add it to the Z matrix */
- m11 = p1 * q1;
- m21 = p2 * q1;
- m31 = p3 * q1;
- m41 = p4 * q1;
- ell += lskip1;
- Z11 += m11;
- Z21 += m21;
- Z31 += m31;
- Z41 += m41;
- /* load p and q values */
- p1 = ell[0];
- q1 = ex[-2];
- p2 = ell[-1];
- p3 = ell[-2];
- p4 = ell[-3];
- /* compute outer product and add it to the Z matrix */
- m11 = p1 * q1;
- m21 = p2 * q1;
- m31 = p3 * q1;
- m41 = p4 * q1;
- ell += lskip1;
- Z11 += m11;
- Z21 += m21;
- Z31 += m31;
- Z41 += m41;
- /* load p and q values */
- p1 = ell[0];
- q1 = ex[-3];
- p2 = ell[-1];
- p3 = ell[-2];
- p4 = ell[-3];
- /* compute outer product and add it to the Z matrix */
- m11 = p1 * q1;
- m21 = p2 * q1;
- m31 = p3 * q1;
- m41 = p4 * q1;
- ell += lskip1;
- ex -= 4;
- Z11 += m11;
- Z21 += m21;
- Z31 += m31;
- Z41 += m41;
- /* end of inner loop */
- }
- /* compute left-over iterations */
- j += 4;
- for (; j > 0; j--)
- {
- /* load p and q values */
- p1 = ell[0];
- q1 = ex[0];
- p2 = ell[-1];
- p3 = ell[-2];
- p4 = ell[-3];
- /* compute outer product and add it to the Z matrix */
- m11 = p1 * q1;
- m21 = p2 * q1;
- m31 = p3 * q1;
- m41 = p4 * q1;
- ell += lskip1;
- ex -= 1;
- Z11 += m11;
- Z21 += m21;
- Z31 += m31;
- Z41 += m41;
- }
- /* finish computing the X(i) block */
- Z11 = ex[0] - Z11;
- ex[0] = Z11;
- p1 = ell[-1];
- Z21 = ex[-1] - Z21 - p1 * Z11;
- ex[-1] = Z21;
- p1 = ell[-2];
- p2 = ell[-2 + lskip1];
- Z31 = ex[-2] - Z31 - p1 * Z11 - p2 * Z21;
- ex[-2] = Z31;
- p1 = ell[-3];
- p2 = ell[-3 + lskip1];
- p3 = ell[-3 + lskip2];
- Z41 = ex[-3] - Z41 - p1 * Z11 - p2 * Z21 - p3 * Z31;
- ex[-3] = Z41;
- /* end of outer loop */
- }
- /* compute rows at end that are not a multiple of block size */
- for (; i < n; i++)
- {
- /* compute all 1 x 1 block of X, from rows i..i+1-1 */
- /* set the Z matrix to 0 */
- Z11 = 0;
- ell = L - i;
- ex = B;
- /* the inner loop that computes outer products and adds them to Z */
- for (j = i - 4; j >= 0; j -= 4)
- {
- /* load p and q values */
- p1 = ell[0];
- q1 = ex[0];
- /* compute outer product and add it to the Z matrix */
- m11 = p1 * q1;
- ell += lskip1;
- Z11 += m11;
- /* load p and q values */
- p1 = ell[0];
- q1 = ex[-1];
- /* compute outer product and add it to the Z matrix */
- m11 = p1 * q1;
- ell += lskip1;
- Z11 += m11;
- /* load p and q values */
- p1 = ell[0];
- q1 = ex[-2];
- /* compute outer product and add it to the Z matrix */
- m11 = p1 * q1;
- ell += lskip1;
- Z11 += m11;
- /* load p and q values */
- p1 = ell[0];
- q1 = ex[-3];
- /* compute outer product and add it to the Z matrix */
- m11 = p1 * q1;
- ell += lskip1;
- ex -= 4;
- Z11 += m11;
- /* end of inner loop */
- }
- /* compute left-over iterations */
- j += 4;
- for (; j > 0; j--)
- {
- /* load p and q values */
- p1 = ell[0];
- q1 = ex[0];
- /* compute outer product and add it to the Z matrix */
- m11 = p1 * q1;
- ell += lskip1;
- ex -= 1;
- Z11 += m11;
- }
- /* finish computing the X(i) block */
- Z11 = ex[0] - Z11;
- ex[0] = Z11;
- }
-}
-
-void btVectorScale(btScalar *a, const btScalar *d, int n)
-{
- btAssert(a && d && n >= 0);
- for (int i = 0; i < n; i++)
- {
- a[i] *= d[i];
- }
-}
-
-void btSolveLDLT(const btScalar *L, const btScalar *d, btScalar *b, int n, int nskip)
-{
- btAssert(L && d && b && n > 0 && nskip >= n);
- btSolveL1(L, b, n, nskip);
- btVectorScale(b, d, n);
- btSolveL1T(L, b, n, nskip);
-}
-
-//***************************************************************************
-
-// swap row/column i1 with i2 in the n*n matrix A. the leading dimension of
-// A is nskip. this only references and swaps the lower triangle.
-// if `do_fast_row_swaps' is nonzero and row pointers are being used, then
-// rows will be swapped by exchanging row pointers. otherwise the data will
-// be copied.
-
-static void btSwapRowsAndCols(BTATYPE A, int n, int i1, int i2, int nskip,
- int do_fast_row_swaps)
-{
- btAssert(A && n > 0 && i1 >= 0 && i2 >= 0 && i1 < n && i2 < n &&
- nskip >= n && i1 < i2);
-
-#ifdef BTROWPTRS
- btScalar *A_i1 = A[i1];
- btScalar *A_i2 = A[i2];
- for (int i = i1 + 1; i < i2; ++i)
- {
- btScalar *A_i_i1 = A[i] + i1;
- A_i1[i] = *A_i_i1;
- *A_i_i1 = A_i2[i];
- }
- A_i1[i2] = A_i1[i1];
- A_i1[i1] = A_i2[i1];
- A_i2[i1] = A_i2[i2];
- // swap rows, by swapping row pointers
- if (do_fast_row_swaps)
- {
- A[i1] = A_i2;
- A[i2] = A_i1;
- }
- else
- {
- // Only swap till i2 column to match A plain storage variant.
- for (int k = 0; k <= i2; ++k)
- {
- btScalar tmp = A_i1[k];
- A_i1[k] = A_i2[k];
- A_i2[k] = tmp;
- }
- }
- // swap columns the hard way
- for (int j = i2 + 1; j < n; ++j)
- {
- btScalar *A_j = A[j];
- btScalar tmp = A_j[i1];
- A_j[i1] = A_j[i2];
- A_j[i2] = tmp;
- }
-#else
- btScalar *A_i1 = A + i1 * nskip;
- btScalar *A_i2 = A + i2 * nskip;
- for (int k = 0; k < i1; ++k)
- {
- btScalar tmp = A_i1[k];
- A_i1[k] = A_i2[k];
- A_i2[k] = tmp;
- }
- btScalar *A_i = A_i1 + nskip;
- for (int i = i1 + 1; i < i2; A_i += nskip, ++i)
- {
- btScalar tmp = A_i2[i];
- A_i2[i] = A_i[i1];
- A_i[i1] = tmp;
- }
- {
- btScalar tmp = A_i1[i1];
- A_i1[i1] = A_i2[i2];
- A_i2[i2] = tmp;
- }
- btScalar *A_j = A_i2 + nskip;
- for (int j = i2 + 1; j < n; A_j += nskip, ++j)
- {
- btScalar tmp = A_j[i1];
- A_j[i1] = A_j[i2];
- A_j[i2] = tmp;
- }
-#endif
-}
-
-// swap two indexes in the n*n LCP problem. i1 must be <= i2.
-
-static void btSwapProblem(BTATYPE A, btScalar *x, btScalar *b, btScalar *w, btScalar *lo,
- btScalar *hi, int *p, bool *state, int *findex,
- int n, int i1, int i2, int nskip,
- int do_fast_row_swaps)
-{
- btScalar tmpr;
- int tmpi;
- bool tmpb;
- btAssert(n > 0 && i1 >= 0 && i2 >= 0 && i1 < n && i2 < n && nskip >= n && i1 <= i2);
- if (i1 == i2) return;
-
- btSwapRowsAndCols(A, n, i1, i2, nskip, do_fast_row_swaps);
-
- tmpr = x[i1];
- x[i1] = x[i2];
- x[i2] = tmpr;
-
- tmpr = b[i1];
- b[i1] = b[i2];
- b[i2] = tmpr;
-
- tmpr = w[i1];
- w[i1] = w[i2];
- w[i2] = tmpr;
-
- tmpr = lo[i1];
- lo[i1] = lo[i2];
- lo[i2] = tmpr;
-
- tmpr = hi[i1];
- hi[i1] = hi[i2];
- hi[i2] = tmpr;
-
- tmpi = p[i1];
- p[i1] = p[i2];
- p[i2] = tmpi;
-
- tmpb = state[i1];
- state[i1] = state[i2];
- state[i2] = tmpb;
-
- if (findex)
- {
- tmpi = findex[i1];
- findex[i1] = findex[i2];
- findex[i2] = tmpi;
- }
-}
-
-//***************************************************************************
-// btLCP manipulator object. this represents an n*n LCP problem.
-//
-// two index sets C and N are kept. each set holds a subset of
-// the variable indexes 0..n-1. an index can only be in one set.
-// initially both sets are empty.
-//
-// the index set C is special: solutions to A(C,C)\A(C,i) can be generated.
-
-//***************************************************************************
-// fast implementation of btLCP. see the above definition of btLCP for
-// interface comments.
-//
-// `p' records the permutation of A,x,b,w,etc. p is initially 1:n and is
-// permuted as the other vectors/matrices are permuted.
-//
-// A,x,b,w,lo,hi,state,findex,p,c are permuted such that sets C,N have
-// contiguous indexes. the don't-care indexes follow N.
-//
-// an L*D*L' factorization is maintained of A(C,C), and whenever indexes are
-// added or removed from the set C the factorization is updated.
-// thus L*D*L'=A[C,C], i.e. a permuted top left nC*nC submatrix of A.
-// the leading dimension of the matrix L is always `nskip'.
-//
-// at the start there may be other indexes that are unbounded but are not
-// included in `nub'. btLCP will permute the matrix so that absolutely all
-// unbounded vectors are at the start. thus there may be some initial
-// permutation.
-//
-// the algorithms here assume certain patterns, particularly with respect to
-// index transfer.
-
-#ifdef btLCP_FAST
-
-struct btLCP
-{
- const int m_n;
- const int m_nskip;
- int m_nub;
- int m_nC, m_nN; // size of each index set
- BTATYPE const m_A; // A rows
- btScalar *const m_x, *const m_b, *const m_w, *const m_lo, *const m_hi; // permuted LCP problem data
- btScalar *const m_L, *const m_d; // L*D*L' factorization of set C
- btScalar *const m_Dell, *const m_ell, *const m_tmp;
- bool *const m_state;
- int *const m_findex, *const m_p, *const m_C;
-
- btLCP(int _n, int _nskip, int _nub, btScalar *_Adata, btScalar *_x, btScalar *_b, btScalar *_w,
- btScalar *_lo, btScalar *_hi, btScalar *l, btScalar *_d,
- btScalar *_Dell, btScalar *_ell, btScalar *_tmp,
- bool *_state, int *_findex, int *p, int *c, btScalar **Arows);
- int getNub() const { return m_nub; }
- void transfer_i_to_C(int i);
- void transfer_i_to_N(int i) { m_nN++; } // because we can assume C and N span 1:i-1
- void transfer_i_from_N_to_C(int i);
- void transfer_i_from_C_to_N(int i, btAlignedObjectArray<btScalar> &scratch);
- int numC() const { return m_nC; }
- int numN() const { return m_nN; }
- int indexC(int i) const { return i; }
- int indexN(int i) const { return i + m_nC; }
- btScalar Aii(int i) const { return BTAROW(i)[i]; }
- btScalar AiC_times_qC(int i, btScalar *q) const { return btLargeDot(BTAROW(i), q, m_nC); }
- btScalar AiN_times_qN(int i, btScalar *q) const { return btLargeDot(BTAROW(i) + m_nC, q + m_nC, m_nN); }
- void pN_equals_ANC_times_qC(btScalar *p, btScalar *q);
- void pN_plusequals_ANi(btScalar *p, int i, int sign = 1);
- void pC_plusequals_s_times_qC(btScalar *p, btScalar s, btScalar *q);
- void pN_plusequals_s_times_qN(btScalar *p, btScalar s, btScalar *q);
- void solve1(btScalar *a, int i, int dir = 1, int only_transfer = 0);
- void unpermute();
-};
-
-btLCP::btLCP(int _n, int _nskip, int _nub, btScalar *_Adata, btScalar *_x, btScalar *_b, btScalar *_w,
- btScalar *_lo, btScalar *_hi, btScalar *l, btScalar *_d,
- btScalar *_Dell, btScalar *_ell, btScalar *_tmp,
- bool *_state, int *_findex, int *p, int *c, btScalar **Arows) : m_n(_n), m_nskip(_nskip), m_nub(_nub), m_nC(0), m_nN(0),
-#ifdef BTROWPTRS
- m_A(Arows),
-#else
- m_A(_Adata),
-#endif
- m_x(_x),
- m_b(_b),
- m_w(_w),
- m_lo(_lo),
- m_hi(_hi),
- m_L(l),
- m_d(_d),
- m_Dell(_Dell),
- m_ell(_ell),
- m_tmp(_tmp),
- m_state(_state),
- m_findex(_findex),
- m_p(p),
- m_C(c)
-{
- {
- btSetZero(m_x, m_n);
- }
-
- {
-#ifdef BTROWPTRS
- // make matrix row pointers
- btScalar *aptr = _Adata;
- BTATYPE A = m_A;
- const int n = m_n, nskip = m_nskip;
- for (int k = 0; k < n; aptr += nskip, ++k) A[k] = aptr;
-#endif
- }
-
- {
- int *p = m_p;
- const int n = m_n;
- for (int k = 0; k < n; ++k) p[k] = k; // initially unpermuted
- }
-
- /*
- // for testing, we can do some random swaps in the area i > nub
- {
- const int n = m_n;
- const int nub = m_nub;
- if (nub < n) {
- for (int k=0; k<100; k++) {
- int i1,i2;
- do {
- i1 = dRandInt(n-nub)+nub;
- i2 = dRandInt(n-nub)+nub;
- }
- while (i1 > i2);
- //printf ("--> %d %d\n",i1,i2);
- btSwapProblem (m_A,m_x,m_b,m_w,m_lo,m_hi,m_p,m_state,m_findex,n,i1,i2,m_nskip,0);
- }
- }
- */
-
- // permute the problem so that *all* the unbounded variables are at the
- // start, i.e. look for unbounded variables not included in `nub'. we can
- // potentially push up `nub' this way and get a bigger initial factorization.
- // note that when we swap rows/cols here we must not just swap row pointers,
- // as the initial factorization relies on the data being all in one chunk.
- // variables that have findex >= 0 are *not* considered to be unbounded even
- // if lo=-inf and hi=inf - this is because these limits may change during the
- // solution process.
-
- {
- int *findex = m_findex;
- btScalar *lo = m_lo, *hi = m_hi;
- const int n = m_n;
- for (int k = m_nub; k < n; ++k)
- {
- if (findex && findex[k] >= 0) continue;
- if (lo[k] == -BT_INFINITY && hi[k] == BT_INFINITY)
- {
- btSwapProblem(m_A, m_x, m_b, m_w, lo, hi, m_p, m_state, findex, n, m_nub, k, m_nskip, 0);
- m_nub++;
- }
- }
- }
-
- // if there are unbounded variables at the start, factorize A up to that
- // point and solve for x. this puts all indexes 0..nub-1 into C.
- if (m_nub > 0)
- {
- const int nub = m_nub;
- {
- btScalar *Lrow = m_L;
- const int nskip = m_nskip;
- for (int j = 0; j < nub; Lrow += nskip, ++j) memcpy(Lrow, BTAROW(j), (j + 1) * sizeof(btScalar));
- }
- btFactorLDLT(m_L, m_d, nub, m_nskip);
- memcpy(m_x, m_b, nub * sizeof(btScalar));
- btSolveLDLT(m_L, m_d, m_x, nub, m_nskip);
- btSetZero(m_w, nub);
- {
- int *C = m_C;
- for (int k = 0; k < nub; ++k) C[k] = k;
- }
- m_nC = nub;
- }
-
- // permute the indexes > nub such that all findex variables are at the end
- if (m_findex)
- {
- const int nub = m_nub;
- int *findex = m_findex;
- int num_at_end = 0;
- for (int k = m_n - 1; k >= nub; k--)
- {
- if (findex[k] >= 0)
- {
- btSwapProblem(m_A, m_x, m_b, m_w, m_lo, m_hi, m_p, m_state, findex, m_n, k, m_n - 1 - num_at_end, m_nskip, 1);
- num_at_end++;
- }
- }
- }
-
- // print info about indexes
- /*
- {
- const int n = m_n;
- const int nub = m_nub;
- for (int k=0; k<n; k++) {
- if (k<nub) printf ("C");
- else if (m_lo[k]==-BT_INFINITY && m_hi[k]==BT_INFINITY) printf ("c");
- else printf (".");
- }
- printf ("\n");
- }
- */
-}
-
-void btLCP::transfer_i_to_C(int i)
-{
- {
- if (m_nC > 0)
- {
- // ell,Dell were computed by solve1(). note, ell = D \ L1solve (L,A(i,C))
- {
- const int nC = m_nC;
- btScalar *const Ltgt = m_L + nC * m_nskip, *ell = m_ell;
- for (int j = 0; j < nC; ++j) Ltgt[j] = ell[j];
- }
- const int nC = m_nC;
- m_d[nC] = btRecip(BTAROW(i)[i] - btLargeDot(m_ell, m_Dell, nC));
- }
- else
- {
- m_d[0] = btRecip(BTAROW(i)[i]);
- }
-
- btSwapProblem(m_A, m_x, m_b, m_w, m_lo, m_hi, m_p, m_state, m_findex, m_n, m_nC, i, m_nskip, 1);
-
- const int nC = m_nC;
- m_C[nC] = nC;
- m_nC = nC + 1; // nC value is outdated after this line
- }
-}
-
-void btLCP::transfer_i_from_N_to_C(int i)
-{
- {
- if (m_nC > 0)
- {
- {
- btScalar *const aptr = BTAROW(i);
- btScalar *Dell = m_Dell;
- const int *C = m_C;
-#ifdef BTNUB_OPTIMIZATIONS
- // if nub>0, initial part of aptr unpermuted
- const int nub = m_nub;
- int j = 0;
- for (; j < nub; ++j) Dell[j] = aptr[j];
- const int nC = m_nC;
- for (; j < nC; ++j) Dell[j] = aptr[C[j]];
-#else
- const int nC = m_nC;
- for (int j = 0; j < nC; ++j) Dell[j] = aptr[C[j]];
-#endif
- }
- btSolveL1(m_L, m_Dell, m_nC, m_nskip);
- {
- const int nC = m_nC;
- btScalar *const Ltgt = m_L + nC * m_nskip;
- btScalar *ell = m_ell, *Dell = m_Dell, *d = m_d;
- for (int j = 0; j < nC; ++j) Ltgt[j] = ell[j] = Dell[j] * d[j];
- }
- const int nC = m_nC;
- m_d[nC] = btRecip(BTAROW(i)[i] - btLargeDot(m_ell, m_Dell, nC));
- }
- else
- {
- m_d[0] = btRecip(BTAROW(i)[i]);
- }
-
- btSwapProblem(m_A, m_x, m_b, m_w, m_lo, m_hi, m_p, m_state, m_findex, m_n, m_nC, i, m_nskip, 1);
-
- const int nC = m_nC;
- m_C[nC] = nC;
- m_nN--;
- m_nC = nC + 1; // nC value is outdated after this line
- }
-
- // @@@ TO DO LATER
- // if we just finish here then we'll go back and re-solve for
- // delta_x. but actually we can be more efficient and incrementally
- // update delta_x here. but if we do this, we wont have ell and Dell
- // to use in updating the factorization later.
-}
-
-void btRemoveRowCol(btScalar *A, int n, int nskip, int r)
-{
- btAssert(A && n > 0 && nskip >= n && r >= 0 && r < n);
- if (r >= n - 1) return;
- if (r > 0)
- {
- {
- const size_t move_size = (n - r - 1) * sizeof(btScalar);
- btScalar *Adst = A + r;
- for (int i = 0; i < r; Adst += nskip, ++i)
- {
- btScalar *Asrc = Adst + 1;
- memmove(Adst, Asrc, move_size);
- }
- }
- {
- const size_t cpy_size = r * sizeof(btScalar);
- btScalar *Adst = A + r * nskip;
- for (int i = r; i < (n - 1); ++i)
- {
- btScalar *Asrc = Adst + nskip;
- memcpy(Adst, Asrc, cpy_size);
- Adst = Asrc;
- }
- }
- }
- {
- const size_t cpy_size = (n - r - 1) * sizeof(btScalar);
- btScalar *Adst = A + r * (nskip + 1);
- for (int i = r; i < (n - 1); ++i)
- {
- btScalar *Asrc = Adst + (nskip + 1);
- memcpy(Adst, Asrc, cpy_size);
- Adst = Asrc - 1;
- }
- }
-}
-
-void btLDLTAddTL(btScalar *L, btScalar *d, const btScalar *a, int n, int nskip, btAlignedObjectArray<btScalar> &scratch)
-{
- btAssert(L && d && a && n > 0 && nskip >= n);
-
- if (n < 2) return;
- scratch.resize(2 * nskip);
- btScalar *W1 = &scratch[0];
-
- btScalar *W2 = W1 + nskip;
-
- W1[0] = btScalar(0.0);
- W2[0] = btScalar(0.0);
- for (int j = 1; j < n; ++j)
- {
- W1[j] = W2[j] = (btScalar)(a[j] * SIMDSQRT12);
- }
- btScalar W11 = (btScalar)((btScalar(0.5) * a[0] + 1) * SIMDSQRT12);
- btScalar W21 = (btScalar)((btScalar(0.5) * a[0] - 1) * SIMDSQRT12);
-
- btScalar alpha1 = btScalar(1.0);
- btScalar alpha2 = btScalar(1.0);
-
- {
- btScalar dee = d[0];
- btScalar alphanew = alpha1 + (W11 * W11) * dee;
- btAssert(alphanew != btScalar(0.0));
- dee /= alphanew;
- btScalar gamma1 = W11 * dee;
- dee *= alpha1;
- alpha1 = alphanew;
- alphanew = alpha2 - (W21 * W21) * dee;
- dee /= alphanew;
- //btScalar gamma2 = W21 * dee;
- alpha2 = alphanew;
- btScalar k1 = btScalar(1.0) - W21 * gamma1;
- btScalar k2 = W21 * gamma1 * W11 - W21;
- btScalar *ll = L + nskip;
- for (int p = 1; p < n; ll += nskip, ++p)
- {
- btScalar Wp = W1[p];
- btScalar ell = *ll;
- W1[p] = Wp - W11 * ell;
- W2[p] = k1 * Wp + k2 * ell;
- }
- }
-
- btScalar *ll = L + (nskip + 1);
- for (int j = 1; j < n; ll += nskip + 1, ++j)
- {
- btScalar k1 = W1[j];
- btScalar k2 = W2[j];
-
- btScalar dee = d[j];
- btScalar alphanew = alpha1 + (k1 * k1) * dee;
- btAssert(alphanew != btScalar(0.0));
- dee /= alphanew;
- btScalar gamma1 = k1 * dee;
- dee *= alpha1;
- alpha1 = alphanew;
- alphanew = alpha2 - (k2 * k2) * dee;
- dee /= alphanew;
- btScalar gamma2 = k2 * dee;
- dee *= alpha2;
- d[j] = dee;
- alpha2 = alphanew;
-
- btScalar *l = ll + nskip;
- for (int p = j + 1; p < n; l += nskip, ++p)
- {
- btScalar ell = *l;
- btScalar Wp = W1[p] - k1 * ell;
- ell += gamma1 * Wp;
- W1[p] = Wp;
- Wp = W2[p] - k2 * ell;
- ell -= gamma2 * Wp;
- W2[p] = Wp;
- *l = ell;
- }
- }
-}
-
-#define _BTGETA(i, j) (A[i][j])
-//#define _GETA(i,j) (A[(i)*nskip+(j)])
-#define BTGETA(i, j) ((i > j) ? _BTGETA(i, j) : _BTGETA(j, i))
-
-inline size_t btEstimateLDLTAddTLTmpbufSize(int nskip)
-{
- return nskip * 2 * sizeof(btScalar);
-}
-
-void btLDLTRemove(btScalar **A, const int *p, btScalar *L, btScalar *d,
- int n1, int n2, int r, int nskip, btAlignedObjectArray<btScalar> &scratch)
-{
- btAssert(A && p && L && d && n1 > 0 && n2 > 0 && r >= 0 && r < n2 &&
- n1 >= n2 && nskip >= n1);
-#ifdef BT_DEBUG
- for (int i = 0; i < n2; ++i)
- btAssert(p[i] >= 0 && p[i] < n1);
-#endif
-
- if (r == n2 - 1)
- {
- return; // deleting last row/col is easy
- }
- else
- {
- size_t LDLTAddTL_size = btEstimateLDLTAddTLTmpbufSize(nskip);
- btAssert(LDLTAddTL_size % sizeof(btScalar) == 0);
- scratch.resize(nskip * 2 + n2);
- btScalar *tmp = &scratch[0];
- if (r == 0)
- {
- btScalar *a = (btScalar *)((char *)tmp + LDLTAddTL_size);
- const int p_0 = p[0];
- for (int i = 0; i < n2; ++i)
- {
- a[i] = -BTGETA(p[i], p_0);
- }
- a[0] += btScalar(1.0);
- btLDLTAddTL(L, d, a, n2, nskip, scratch);
- }
- else
- {
- btScalar *t = (btScalar *)((char *)tmp + LDLTAddTL_size);
- {
- btScalar *Lcurr = L + r * nskip;
- for (int i = 0; i < r; ++Lcurr, ++i)
- {
- btAssert(d[i] != btScalar(0.0));
- t[i] = *Lcurr / d[i];
- }
- }
- btScalar *a = t + r;
- {
- btScalar *Lcurr = L + r * nskip;
- const int *pp_r = p + r, p_r = *pp_r;
- const int n2_minus_r = n2 - r;
- for (int i = 0; i < n2_minus_r; Lcurr += nskip, ++i)
- {
- a[i] = btLargeDot(Lcurr, t, r) - BTGETA(pp_r[i], p_r);
- }
- }
- a[0] += btScalar(1.0);
- btLDLTAddTL(L + r * nskip + r, d + r, a, n2 - r, nskip, scratch);
- }
- }
-
- // snip out row/column r from L and d
- btRemoveRowCol(L, n2, nskip, r);
- if (r < (n2 - 1)) memmove(d + r, d + r + 1, (n2 - r - 1) * sizeof(btScalar));
-}
-
-void btLCP::transfer_i_from_C_to_N(int i, btAlignedObjectArray<btScalar> &scratch)
-{
- {
- int *C = m_C;
- // remove a row/column from the factorization, and adjust the
- // indexes (black magic!)
- int last_idx = -1;
- const int nC = m_nC;
- int j = 0;
- for (; j < nC; ++j)
- {
- if (C[j] == nC - 1)
- {
- last_idx = j;
- }
- if (C[j] == i)
- {
- btLDLTRemove(m_A, C, m_L, m_d, m_n, nC, j, m_nskip, scratch);
- int k;
- if (last_idx == -1)
- {
- for (k = j + 1; k < nC; ++k)
- {
- if (C[k] == nC - 1)
- {
- break;
- }
- }
- btAssert(k < nC);
- }
- else
- {
- k = last_idx;
- }
- C[k] = C[j];
- if (j < (nC - 1)) memmove(C + j, C + j + 1, (nC - j - 1) * sizeof(int));
- break;
- }
- }
- btAssert(j < nC);
-
- btSwapProblem(m_A, m_x, m_b, m_w, m_lo, m_hi, m_p, m_state, m_findex, m_n, i, nC - 1, m_nskip, 1);
-
- m_nN++;
- m_nC = nC - 1; // nC value is outdated after this line
- }
-}
-
-void btLCP::pN_equals_ANC_times_qC(btScalar *p, btScalar *q)
-{
- // we could try to make this matrix-vector multiplication faster using
- // outer product matrix tricks, e.g. with the dMultidotX() functions.
- // but i tried it and it actually made things slower on random 100x100
- // problems because of the overhead involved. so we'll stick with the
- // simple method for now.
- const int nC = m_nC;
- btScalar *ptgt = p + nC;
- const int nN = m_nN;
- for (int i = 0; i < nN; ++i)
- {
- ptgt[i] = btLargeDot(BTAROW(i + nC), q, nC);
- }
-}
-
-void btLCP::pN_plusequals_ANi(btScalar *p, int i, int sign)
-{
- const int nC = m_nC;
- btScalar *aptr = BTAROW(i) + nC;
- btScalar *ptgt = p + nC;
- if (sign > 0)
- {
- const int nN = m_nN;
- for (int j = 0; j < nN; ++j) ptgt[j] += aptr[j];
- }
- else
- {
- const int nN = m_nN;
- for (int j = 0; j < nN; ++j) ptgt[j] -= aptr[j];
- }
-}
-
-void btLCP::pC_plusequals_s_times_qC(btScalar *p, btScalar s, btScalar *q)
-{
- const int nC = m_nC;
- for (int i = 0; i < nC; ++i)
- {
- p[i] += s * q[i];
- }
-}
-
-void btLCP::pN_plusequals_s_times_qN(btScalar *p, btScalar s, btScalar *q)
-{
- const int nC = m_nC;
- btScalar *ptgt = p + nC, *qsrc = q + nC;
- const int nN = m_nN;
- for (int i = 0; i < nN; ++i)
- {
- ptgt[i] += s * qsrc[i];
- }
-}
-
-void btLCP::solve1(btScalar *a, int i, int dir, int only_transfer)
-{
- // the `Dell' and `ell' that are computed here are saved. if index i is
- // later added to the factorization then they can be reused.
- //
- // @@@ question: do we need to solve for entire delta_x??? yes, but
- // only if an x goes below 0 during the step.
-
- if (m_nC > 0)
- {
- {
- btScalar *Dell = m_Dell;
- int *C = m_C;
- btScalar *aptr = BTAROW(i);
-#ifdef BTNUB_OPTIMIZATIONS
- // if nub>0, initial part of aptr[] is guaranteed unpermuted
- const int nub = m_nub;
- int j = 0;
- for (; j < nub; ++j) Dell[j] = aptr[j];
- const int nC = m_nC;
- for (; j < nC; ++j) Dell[j] = aptr[C[j]];
-#else
- const int nC = m_nC;
- for (int j = 0; j < nC; ++j) Dell[j] = aptr[C[j]];
-#endif
- }
- btSolveL1(m_L, m_Dell, m_nC, m_nskip);
- {
- btScalar *ell = m_ell, *Dell = m_Dell, *d = m_d;
- const int nC = m_nC;
- for (int j = 0; j < nC; ++j) ell[j] = Dell[j] * d[j];
- }
-
- if (!only_transfer)
- {
- btScalar *tmp = m_tmp, *ell = m_ell;
- {
- const int nC = m_nC;
- for (int j = 0; j < nC; ++j) tmp[j] = ell[j];
- }
- btSolveL1T(m_L, tmp, m_nC, m_nskip);
- if (dir > 0)
- {
- int *C = m_C;
- btScalar *tmp = m_tmp;
- const int nC = m_nC;
- for (int j = 0; j < nC; ++j) a[C[j]] = -tmp[j];
- }
- else
- {
- int *C = m_C;
- btScalar *tmp = m_tmp;
- const int nC = m_nC;
- for (int j = 0; j < nC; ++j) a[C[j]] = tmp[j];
- }
- }
- }
-}
-
-void btLCP::unpermute()
-{
- // now we have to un-permute x and w
- {
- memcpy(m_tmp, m_x, m_n * sizeof(btScalar));
- btScalar *x = m_x, *tmp = m_tmp;
- const int *p = m_p;
- const int n = m_n;
- for (int j = 0; j < n; ++j) x[p[j]] = tmp[j];
- }
- {
- memcpy(m_tmp, m_w, m_n * sizeof(btScalar));
- btScalar *w = m_w, *tmp = m_tmp;
- const int *p = m_p;
- const int n = m_n;
- for (int j = 0; j < n; ++j) w[p[j]] = tmp[j];
- }
-}
-
-#endif // btLCP_FAST
-
-//***************************************************************************
-// an optimized Dantzig LCP driver routine for the lo-hi LCP problem.
-
-bool btSolveDantzigLCP(int n, btScalar *A, btScalar *x, btScalar *b,
- btScalar *outer_w, int nub, btScalar *lo, btScalar *hi, int *findex, btDantzigScratchMemory &scratchMem)
-{
- s_error = false;
-
- // printf("btSolveDantzigLCP n=%d\n",n);
- btAssert(n > 0 && A && x && b && lo && hi && nub >= 0 && nub <= n);
- btAssert(outer_w);
-
-#ifdef BT_DEBUG
- {
- // check restrictions on lo and hi
- for (int k = 0; k < n; ++k)
- btAssert(lo[k] <= 0 && hi[k] >= 0);
- }
-#endif
-
- // if all the variables are unbounded then we can just factor, solve,
- // and return
- if (nub >= n)
- {
- int nskip = (n);
- btFactorLDLT(A, outer_w, n, nskip);
- btSolveLDLT(A, outer_w, b, n, nskip);
- memcpy(x, b, n * sizeof(btScalar));
-
- return !s_error;
- }
-
- const int nskip = (n);
- scratchMem.L.resize(n * nskip);
-
- scratchMem.d.resize(n);
-
- btScalar *w = outer_w;
- scratchMem.delta_w.resize(n);
- scratchMem.delta_x.resize(n);
- scratchMem.Dell.resize(n);
- scratchMem.ell.resize(n);
- scratchMem.Arows.resize(n);
- scratchMem.p.resize(n);
- scratchMem.C.resize(n);
-
- // for i in N, state[i] is 0 if x(i)==lo(i) or 1 if x(i)==hi(i)
- scratchMem.state.resize(n);
-
- // create LCP object. note that tmp is set to delta_w to save space, this
- // optimization relies on knowledge of how tmp is used, so be careful!
- btLCP lcp(n, nskip, nub, A, x, b, w, lo, hi, &scratchMem.L[0], &scratchMem.d[0], &scratchMem.Dell[0], &scratchMem.ell[0], &scratchMem.delta_w[0], &scratchMem.state[0], findex, &scratchMem.p[0], &scratchMem.C[0], &scratchMem.Arows[0]);
- int adj_nub = lcp.getNub();
-
- // loop over all indexes adj_nub..n-1. for index i, if x(i),w(i) satisfy the
- // LCP conditions then i is added to the appropriate index set. otherwise
- // x(i),w(i) is driven either +ve or -ve to force it to the valid region.
- // as we drive x(i), x(C) is also adjusted to keep w(C) at zero.
- // while driving x(i) we maintain the LCP conditions on the other variables
- // 0..i-1. we do this by watching out for other x(i),w(i) values going
- // outside the valid region, and then switching them between index sets
- // when that happens.
-
- bool hit_first_friction_index = false;
- for (int i = adj_nub; i < n; ++i)
- {
- s_error = false;
- // the index i is the driving index and indexes i+1..n-1 are "dont care",
- // i.e. when we make changes to the system those x's will be zero and we
- // don't care what happens to those w's. in other words, we only consider
- // an (i+1)*(i+1) sub-problem of A*x=b+w.
-
- // if we've hit the first friction index, we have to compute the lo and
- // hi values based on the values of x already computed. we have been
- // permuting the indexes, so the values stored in the findex vector are
- // no longer valid. thus we have to temporarily unpermute the x vector.
- // for the purposes of this computation, 0*infinity = 0 ... so if the
- // contact constraint's normal force is 0, there should be no tangential
- // force applied.
-
- if (!hit_first_friction_index && findex && findex[i] >= 0)
- {
- // un-permute x into delta_w, which is not being used at the moment
- for (int j = 0; j < n; ++j) scratchMem.delta_w[scratchMem.p[j]] = x[j];
-
- // set lo and hi values
- for (int k = i; k < n; ++k)
- {
- btScalar wfk = scratchMem.delta_w[findex[k]];
- if (wfk == 0)
- {
- hi[k] = 0;
- lo[k] = 0;
- }
- else
- {
- hi[k] = btFabs(hi[k] * wfk);
- lo[k] = -hi[k];
- }
- }
- hit_first_friction_index = true;
- }
-
- // thus far we have not even been computing the w values for indexes
- // greater than i, so compute w[i] now.
- w[i] = lcp.AiC_times_qC(i, x) + lcp.AiN_times_qN(i, x) - b[i];
-
- // if lo=hi=0 (which can happen for tangential friction when normals are
- // 0) then the index will be assigned to set N with some state. however,
- // set C's line has zero size, so the index will always remain in set N.
- // with the "normal" switching logic, if w changed sign then the index
- // would have to switch to set C and then back to set N with an inverted
- // state. this is pointless, and also computationally expensive. to
- // prevent this from happening, we use the rule that indexes with lo=hi=0
- // will never be checked for set changes. this means that the state for
- // these indexes may be incorrect, but that doesn't matter.
-
- // see if x(i),w(i) is in a valid region
- if (lo[i] == 0 && w[i] >= 0)
- {
- lcp.transfer_i_to_N(i);
- scratchMem.state[i] = false;
- }
- else if (hi[i] == 0 && w[i] <= 0)
- {
- lcp.transfer_i_to_N(i);
- scratchMem.state[i] = true;
- }
- else if (w[i] == 0)
- {
- // this is a degenerate case. by the time we get to this test we know
- // that lo != 0, which means that lo < 0 as lo is not allowed to be +ve,
- // and similarly that hi > 0. this means that the line segment
- // corresponding to set C is at least finite in extent, and we are on it.
- // NOTE: we must call lcp.solve1() before lcp.transfer_i_to_C()
- lcp.solve1(&scratchMem.delta_x[0], i, 0, 1);
-
- lcp.transfer_i_to_C(i);
- }
- else
- {
- // we must push x(i) and w(i)
- for (;;)
- {
- int dir;
- btScalar dirf;
- // find direction to push on x(i)
- if (w[i] <= 0)
- {
- dir = 1;
- dirf = btScalar(1.0);
- }
- else
- {
- dir = -1;
- dirf = btScalar(-1.0);
- }
-
- // compute: delta_x(C) = -dir*A(C,C)\A(C,i)
- lcp.solve1(&scratchMem.delta_x[0], i, dir);
-
- // note that delta_x[i] = dirf, but we wont bother to set it
-
- // compute: delta_w = A*delta_x ... note we only care about
- // delta_w(N) and delta_w(i), the rest is ignored
- lcp.pN_equals_ANC_times_qC(&scratchMem.delta_w[0], &scratchMem.delta_x[0]);
- lcp.pN_plusequals_ANi(&scratchMem.delta_w[0], i, dir);
- scratchMem.delta_w[i] = lcp.AiC_times_qC(i, &scratchMem.delta_x[0]) + lcp.Aii(i) * dirf;
-
- // find largest step we can take (size=s), either to drive x(i),w(i)
- // to the valid LCP region or to drive an already-valid variable
- // outside the valid region.
-
- int cmd = 1; // index switching command
- int si = 0; // si = index to switch if cmd>3
- btScalar s = -w[i] / scratchMem.delta_w[i];
- if (dir > 0)
- {
- if (hi[i] < BT_INFINITY)
- {
- btScalar s2 = (hi[i] - x[i]) * dirf; // was (hi[i]-x[i])/dirf // step to x(i)=hi(i)
- if (s2 < s)
- {
- s = s2;
- cmd = 3;
- }
- }
- }
- else
- {
- if (lo[i] > -BT_INFINITY)
- {
- btScalar s2 = (lo[i] - x[i]) * dirf; // was (lo[i]-x[i])/dirf // step to x(i)=lo(i)
- if (s2 < s)
- {
- s = s2;
- cmd = 2;
- }
- }
- }
-
- {
- const int numN = lcp.numN();
- for (int k = 0; k < numN; ++k)
- {
- const int indexN_k = lcp.indexN(k);
- if (!scratchMem.state[indexN_k] ? scratchMem.delta_w[indexN_k] < 0 : scratchMem.delta_w[indexN_k] > 0)
- {
- // don't bother checking if lo=hi=0
- if (lo[indexN_k] == 0 && hi[indexN_k] == 0) continue;
- btScalar s2 = -w[indexN_k] / scratchMem.delta_w[indexN_k];
- if (s2 < s)
- {
- s = s2;
- cmd = 4;
- si = indexN_k;
- }
- }
- }
- }
-
- {
- const int numC = lcp.numC();
- for (int k = adj_nub; k < numC; ++k)
- {
- const int indexC_k = lcp.indexC(k);
- if (scratchMem.delta_x[indexC_k] < 0 && lo[indexC_k] > -BT_INFINITY)
- {
- btScalar s2 = (lo[indexC_k] - x[indexC_k]) / scratchMem.delta_x[indexC_k];
- if (s2 < s)
- {
- s = s2;
- cmd = 5;
- si = indexC_k;
- }
- }
- if (scratchMem.delta_x[indexC_k] > 0 && hi[indexC_k] < BT_INFINITY)
- {
- btScalar s2 = (hi[indexC_k] - x[indexC_k]) / scratchMem.delta_x[indexC_k];
- if (s2 < s)
- {
- s = s2;
- cmd = 6;
- si = indexC_k;
- }
- }
- }
- }
-
- //static char* cmdstring[8] = {0,"->C","->NL","->NH","N->C",
- // "C->NL","C->NH"};
- //printf ("cmd=%d (%s), si=%d\n",cmd,cmdstring[cmd],(cmd>3) ? si : i);
-
- // if s <= 0 then we've got a problem. if we just keep going then
- // we're going to get stuck in an infinite loop. instead, just cross
- // our fingers and exit with the current solution.
- if (s <= btScalar(0.0))
- {
- // printf("LCP internal error, s <= 0 (s=%.4e)",(double)s);
- if (i < n)
- {
- btSetZero(x + i, n - i);
- btSetZero(w + i, n - i);
- }
- s_error = true;
- break;
- }
-
- // apply x = x + s * delta_x
- lcp.pC_plusequals_s_times_qC(x, s, &scratchMem.delta_x[0]);
- x[i] += s * dirf;
-
- // apply w = w + s * delta_w
- lcp.pN_plusequals_s_times_qN(w, s, &scratchMem.delta_w[0]);
- w[i] += s * scratchMem.delta_w[i];
-
- // void *tmpbuf;
- // switch indexes between sets if necessary
- switch (cmd)
- {
- case 1: // done
- w[i] = 0;
- lcp.transfer_i_to_C(i);
- break;
- case 2: // done
- x[i] = lo[i];
- scratchMem.state[i] = false;
- lcp.transfer_i_to_N(i);
- break;
- case 3: // done
- x[i] = hi[i];
- scratchMem.state[i] = true;
- lcp.transfer_i_to_N(i);
- break;
- case 4: // keep going
- w[si] = 0;
- lcp.transfer_i_from_N_to_C(si);
- break;
- case 5: // keep going
- x[si] = lo[si];
- scratchMem.state[si] = false;
- lcp.transfer_i_from_C_to_N(si, scratchMem.m_scratch);
- break;
- case 6: // keep going
- x[si] = hi[si];
- scratchMem.state[si] = true;
- lcp.transfer_i_from_C_to_N(si, scratchMem.m_scratch);
- break;
- }
-
- if (cmd <= 3) break;
- } // for (;;)
- } // else
-
- if (s_error)
- {
- break;
- }
- } // for (int i=adj_nub; i<n; ++i)
-
- lcp.unpermute();
-
- return !s_error;
-}
diff --git a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btDantzigLCP.h b/thirdparty/bullet/BulletDynamics/MLCPSolvers/btDantzigLCP.h
deleted file mode 100644
index 8d9b2a13e9..0000000000
--- a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btDantzigLCP.h
+++ /dev/null
@@ -1,73 +0,0 @@
-/*************************************************************************
- * *
- * Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. *
- * All rights reserved. Email: russ@q12.org Web: www.q12.org *
- * *
- * This library is free software; you can redistribute it and/or *
- * modify it under the terms of *
- * The BSD-style license that is included with this library in *
- * the file LICENSE-BSD.TXT. *
- * *
- * This library is distributed in the hope that it will be useful, *
- * but WITHOUT ANY WARRANTY; without even the implied warranty of *
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files *
- * LICENSE.TXT and LICENSE-BSD.TXT for more details. *
- * *
- *************************************************************************/
-
-/*
-
-given (A,b,lo,hi), solve the LCP problem: A*x = b+w, where each x(i),w(i)
-satisfies one of
- (1) x = lo, w >= 0
- (2) x = hi, w <= 0
- (3) lo < x < hi, w = 0
-A is a matrix of dimension n*n, everything else is a vector of size n*1.
-lo and hi can be +/- dInfinity as needed. the first `nub' variables are
-unbounded, i.e. hi and lo are assumed to be +/- dInfinity.
-
-we restrict lo(i) <= 0 and hi(i) >= 0.
-
-the original data (A,b) may be modified by this function.
-
-if the `findex' (friction index) parameter is nonzero, it points to an array
-of index values. in this case constraints that have findex[i] >= 0 are
-special. all non-special constraints are solved for, then the lo and hi values
-for the special constraints are set:
- hi[i] = abs( hi[i] * x[findex[i]] )
- lo[i] = -hi[i]
-and the solution continues. this mechanism allows a friction approximation
-to be implemented. the first `nub' variables are assumed to have findex < 0.
-
-*/
-
-#ifndef _BT_LCP_H_
-#define _BT_LCP_H_
-
-#include <stdlib.h>
-#include <stdio.h>
-#include <assert.h>
-
-#include "LinearMath/btScalar.h"
-#include "LinearMath/btAlignedObjectArray.h"
-
-struct btDantzigScratchMemory
-{
- btAlignedObjectArray<btScalar> m_scratch;
- btAlignedObjectArray<btScalar> L;
- btAlignedObjectArray<btScalar> d;
- btAlignedObjectArray<btScalar> delta_w;
- btAlignedObjectArray<btScalar> delta_x;
- btAlignedObjectArray<btScalar> Dell;
- btAlignedObjectArray<btScalar> ell;
- btAlignedObjectArray<btScalar *> Arows;
- btAlignedObjectArray<int> p;
- btAlignedObjectArray<int> C;
- btAlignedObjectArray<bool> state;
-};
-
-//return false if solving failed
-bool btSolveDantzigLCP(int n, btScalar *A, btScalar *x, btScalar *b, btScalar *w,
- int nub, btScalar *lo, btScalar *hi, int *findex, btDantzigScratchMemory &scratch);
-
-#endif //_BT_LCP_H_
diff --git a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btDantzigSolver.h b/thirdparty/bullet/BulletDynamics/MLCPSolvers/btDantzigSolver.h
deleted file mode 100644
index 1f669751ce..0000000000
--- a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btDantzigSolver.h
+++ /dev/null
@@ -1,106 +0,0 @@
-/*
-Bullet Continuous Collision Detection and Physics Library
-Copyright (c) 2003-2013 Erwin Coumans http://bulletphysics.org
-
-This software is provided 'as-is', without any express or implied warranty.
-In no event will the authors be held liable for any damages arising from the use of this software.
-Permission is granted to anyone to use this software for any purpose,
-including commercial applications, and to alter it and redistribute it freely,
-subject to the following restrictions:
-
-1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
-2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
-3. This notice may not be removed or altered from any source distribution.
-*/
-///original version written by Erwin Coumans, October 2013
-
-#ifndef BT_DANTZIG_SOLVER_H
-#define BT_DANTZIG_SOLVER_H
-
-#include "btMLCPSolverInterface.h"
-#include "btDantzigLCP.h"
-
-class btDantzigSolver : public btMLCPSolverInterface
-{
-protected:
- btScalar m_acceptableUpperLimitSolution;
-
- btAlignedObjectArray<char> m_tempBuffer;
-
- btAlignedObjectArray<btScalar> m_A;
- btAlignedObjectArray<btScalar> m_b;
- btAlignedObjectArray<btScalar> m_x;
- btAlignedObjectArray<btScalar> m_lo;
- btAlignedObjectArray<btScalar> m_hi;
- btAlignedObjectArray<int> m_dependencies;
- btDantzigScratchMemory m_scratchMemory;
-
-public:
- btDantzigSolver()
- : m_acceptableUpperLimitSolution(btScalar(1000))
- {
- }
-
- virtual bool solveMLCP(const btMatrixXu& A, const btVectorXu& b, btVectorXu& x, const btVectorXu& lo, const btVectorXu& hi, const btAlignedObjectArray<int>& limitDependency, int numIterations, bool useSparsity = true)
- {
- bool result = true;
- int n = b.rows();
- if (n)
- {
- int nub = 0;
- btAlignedObjectArray<btScalar> ww;
- ww.resize(n);
-
- const btScalar* Aptr = A.getBufferPointer();
- m_A.resize(n * n);
- for (int i = 0; i < n * n; i++)
- {
- m_A[i] = Aptr[i];
- }
-
- m_b.resize(n);
- m_x.resize(n);
- m_lo.resize(n);
- m_hi.resize(n);
- m_dependencies.resize(n);
- for (int i = 0; i < n; i++)
- {
- m_lo[i] = lo[i];
- m_hi[i] = hi[i];
- m_b[i] = b[i];
- m_x[i] = x[i];
- m_dependencies[i] = limitDependency[i];
- }
-
- result = btSolveDantzigLCP(n, &m_A[0], &m_x[0], &m_b[0], &ww[0], nub, &m_lo[0], &m_hi[0], &m_dependencies[0], m_scratchMemory);
- if (!result)
- return result;
-
- // printf("numAllocas = %d\n",numAllocas);
- for (int i = 0; i < n; i++)
- {
- volatile btScalar xx = m_x[i];
- if (xx != m_x[i])
- return false;
- if (x[i] >= m_acceptableUpperLimitSolution)
- {
- return false;
- }
-
- if (x[i] <= -m_acceptableUpperLimitSolution)
- {
- return false;
- }
- }
-
- for (int i = 0; i < n; i++)
- {
- x[i] = m_x[i];
- }
- }
-
- return result;
- }
-};
-
-#endif //BT_DANTZIG_SOLVER_H
diff --git a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btLemkeAlgorithm.cpp b/thirdparty/bullet/BulletDynamics/MLCPSolvers/btLemkeAlgorithm.cpp
deleted file mode 100644
index 954ffaed75..0000000000
--- a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btLemkeAlgorithm.cpp
+++ /dev/null
@@ -1,369 +0,0 @@
-/* Copyright (C) 2004-2013 MBSim Development Team
-
-Code was converted for the Bullet Continuous Collision Detection and Physics Library
-
-This software is provided 'as-is', without any express or implied warranty.
-In no event will the authors be held liable for any damages arising from the use of this software.
-Permission is granted to anyone to use this software for any purpose,
-including commercial applications, and to alter it and redistribute it freely,
-subject to the following restrictions:
-
-1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
-2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
-3. This notice may not be removed or altered from any source distribution.
-*/
-
-//The original version is here
-//https://code.google.com/p/mbsim-env/source/browse/trunk/kernel/mbsim/numerics/linear_complementarity_problem/lemke_algorithm.cc
-//This file is re-distributed under the ZLib license, with permission of the original author
-//Math library was replaced from fmatvec to a the file src/LinearMath/btMatrixX.h
-//STL/std::vector replaced by btAlignedObjectArray
-
-#include "btLemkeAlgorithm.h"
-
-#undef BT_DEBUG_OSTREAM
-#ifdef BT_DEBUG_OSTREAM
-using namespace std;
-#endif //BT_DEBUG_OSTREAM
-
-btScalar btMachEps()
-{
- static bool calculated = false;
- static btScalar machEps = btScalar(1.);
- if (!calculated)
- {
- do
- {
- machEps /= btScalar(2.0);
- // If next epsilon yields 1, then break, because current
- // epsilon is the machine epsilon.
- } while ((btScalar)(1.0 + (machEps / btScalar(2.0))) != btScalar(1.0));
- // printf( "\nCalculated Machine epsilon: %G\n", machEps );
- calculated = true;
- }
- return machEps;
-}
-
-btScalar btEpsRoot()
-{
- static btScalar epsroot = 0.;
- static bool alreadyCalculated = false;
-
- if (!alreadyCalculated)
- {
- epsroot = btSqrt(btMachEps());
- alreadyCalculated = true;
- }
- return epsroot;
-}
-
-btVectorXu btLemkeAlgorithm::solve(unsigned int maxloops /* = 0*/)
-{
- steps = 0;
-
- int dim = m_q.size();
-#ifdef BT_DEBUG_OSTREAM
- if (DEBUGLEVEL >= 1)
- {
- cout << "Dimension = " << dim << endl;
- }
-#endif //BT_DEBUG_OSTREAM
-
- btVectorXu solutionVector(2 * dim);
- solutionVector.setZero();
-
- //, INIT, 0.);
-
- btMatrixXu ident(dim, dim);
- ident.setIdentity();
-#ifdef BT_DEBUG_OSTREAM
- cout << m_M << std::endl;
-#endif
-
- btMatrixXu mNeg = m_M.negative();
-
- btMatrixXu A(dim, 2 * dim + 2);
- //
- A.setSubMatrix(0, 0, dim - 1, dim - 1, ident);
- A.setSubMatrix(0, dim, dim - 1, 2 * dim - 1, mNeg);
- A.setSubMatrix(0, 2 * dim, dim - 1, 2 * dim, -1.f);
- A.setSubMatrix(0, 2 * dim + 1, dim - 1, 2 * dim + 1, m_q);
-
-#ifdef BT_DEBUG_OSTREAM
- cout << A << std::endl;
-#endif //BT_DEBUG_OSTREAM
-
- // btVectorXu q_;
- // q_ >> A(0, 2 * dim + 1, dim - 1, 2 * dim + 1);
-
- btAlignedObjectArray<int> basis;
- //At first, all w-values are in the basis
- for (int i = 0; i < dim; i++)
- basis.push_back(i);
-
- int pivotRowIndex = -1;
- btScalar minValue = 1e30f;
- bool greaterZero = true;
- for (int i = 0; i < dim; i++)
- {
- btScalar v = A(i, 2 * dim + 1);
- if (v < minValue)
- {
- minValue = v;
- pivotRowIndex = i;
- }
- if (v < 0)
- greaterZero = false;
- }
-
- // int pivotRowIndex = q_.minIndex();//minIndex(q_); // first row is that with lowest q-value
- int z0Row = pivotRowIndex; // remember the col of z0 for ending algorithm afterwards
- int pivotColIndex = 2 * dim; // first col is that of z0
-
-#ifdef BT_DEBUG_OSTREAM
- if (DEBUGLEVEL >= 3)
- {
- // cout << "A: " << A << endl;
- cout << "pivotRowIndex " << pivotRowIndex << endl;
- cout << "pivotColIndex " << pivotColIndex << endl;
- cout << "Basis: ";
- for (int i = 0; i < basis.size(); i++)
- cout << basis[i] << " ";
- cout << endl;
- }
-#endif //BT_DEBUG_OSTREAM
-
- if (!greaterZero)
- {
- if (maxloops == 0)
- {
- maxloops = 100;
- // maxloops = UINT_MAX; //TODO: not a really nice way, problem is: maxloops should be 2^dim (=1<<dim), but this could exceed UINT_MAX and thus the result would be 0 and therefore the lemke algorithm wouldn't start but probably would find a solution within less then UINT_MAX steps. Therefore this constant is used as a upper border right now...
- }
-
- /*start looping*/
- for (steps = 0; steps < maxloops; steps++)
- {
- GaussJordanEliminationStep(A, pivotRowIndex, pivotColIndex, basis);
-#ifdef BT_DEBUG_OSTREAM
- if (DEBUGLEVEL >= 3)
- {
- // cout << "A: " << A << endl;
- cout << "pivotRowIndex " << pivotRowIndex << endl;
- cout << "pivotColIndex " << pivotColIndex << endl;
- cout << "Basis: ";
- for (int i = 0; i < basis.size(); i++)
- cout << basis[i] << " ";
- cout << endl;
- }
-#endif //BT_DEBUG_OSTREAM
-
- int pivotColIndexOld = pivotColIndex;
-
- /*find new column index */
- if (basis[pivotRowIndex] < dim) //if a w-value left the basis get in the correspondent z-value
- pivotColIndex = basis[pivotRowIndex] + dim;
- else
- //else do it the other way round and get in the corresponding w-value
- pivotColIndex = basis[pivotRowIndex] - dim;
-
- /*the column becomes part of the basis*/
- basis[pivotRowIndex] = pivotColIndexOld;
-
- pivotRowIndex = findLexicographicMinimum(A, pivotColIndex);
-
- if (z0Row == pivotRowIndex)
- { //if z0 leaves the basis the solution is found --> one last elimination step is necessary
- GaussJordanEliminationStep(A, pivotRowIndex, pivotColIndex, basis);
- basis[pivotRowIndex] = pivotColIndex; //update basis
- break;
- }
- }
-#ifdef BT_DEBUG_OSTREAM
- if (DEBUGLEVEL >= 1)
- {
- cout << "Number of loops: " << steps << endl;
- cout << "Number of maximal loops: " << maxloops << endl;
- }
-#endif //BT_DEBUG_OSTREAM
-
- if (!validBasis(basis))
- {
- info = -1;
-#ifdef BT_DEBUG_OSTREAM
- if (DEBUGLEVEL >= 1)
- cerr << "Lemke-Algorithm ended with Ray-Termination (no valid solution)." << endl;
-#endif //BT_DEBUG_OSTREAM
-
- return solutionVector;
- }
- }
-#ifdef BT_DEBUG_OSTREAM
- if (DEBUGLEVEL >= 2)
- {
- // cout << "A: " << A << endl;
- cout << "pivotRowIndex " << pivotRowIndex << endl;
- cout << "pivotColIndex " << pivotColIndex << endl;
- }
-#endif //BT_DEBUG_OSTREAM
-
- for (int i = 0; i < basis.size(); i++)
- {
- solutionVector[basis[i]] = A(i, 2 * dim + 1); //q_[i];
- }
-
- info = 0;
-
- return solutionVector;
-}
-
-int btLemkeAlgorithm::findLexicographicMinimum(const btMatrixXu& A, const int& pivotColIndex)
-{
- int RowIndex = 0;
- int dim = A.rows();
- btAlignedObjectArray<btVectorXu> Rows;
- for (int row = 0; row < dim; row++)
- {
- btVectorXu vec(dim + 1);
- vec.setZero(); //, INIT, 0.)
- Rows.push_back(vec);
- btScalar a = A(row, pivotColIndex);
- if (a > 0)
- {
- Rows[row][0] = A(row, 2 * dim + 1) / a;
- Rows[row][1] = A(row, 2 * dim) / a;
- for (int j = 2; j < dim + 1; j++)
- Rows[row][j] = A(row, j - 1) / a;
-
-#ifdef BT_DEBUG_OSTREAM
- // if (DEBUGLEVEL) {
- // cout << "Rows(" << row << ") = " << Rows[row] << endl;
- // }
-#endif
- }
- }
-
- for (int i = 0; i < Rows.size(); i++)
- {
- if (Rows[i].nrm2() > 0.)
- {
- int j = 0;
- for (; j < Rows.size(); j++)
- {
- if (i != j)
- {
- if (Rows[j].nrm2() > 0.)
- {
- btVectorXu test(dim + 1);
- for (int ii = 0; ii < dim + 1; ii++)
- {
- test[ii] = Rows[j][ii] - Rows[i][ii];
- }
-
- //=Rows[j] - Rows[i]
- if (!LexicographicPositive(test))
- break;
- }
- }
- }
-
- if (j == Rows.size())
- {
- RowIndex += i;
- break;
- }
- }
- }
-
- return RowIndex;
-}
-
-bool btLemkeAlgorithm::LexicographicPositive(const btVectorXu& v)
-{
- int i = 0;
- // if (DEBUGLEVEL)
- // cout << "v " << v << endl;
-
- while (i < v.size() - 1 && fabs(v[i]) < btMachEps())
- i++;
- if (v[i] > 0)
- return true;
-
- return false;
-}
-
-void btLemkeAlgorithm::GaussJordanEliminationStep(btMatrixXu& A, int pivotRowIndex, int pivotColumnIndex, const btAlignedObjectArray<int>& basis)
-{
- btScalar a = -1 / A(pivotRowIndex, pivotColumnIndex);
-#ifdef BT_DEBUG_OSTREAM
- cout << A << std::endl;
-#endif
-
- for (int i = 0; i < A.rows(); i++)
- {
- if (i != pivotRowIndex)
- {
- for (int j = 0; j < A.cols(); j++)
- {
- if (j != pivotColumnIndex)
- {
- btScalar v = A(i, j);
- v += A(pivotRowIndex, j) * A(i, pivotColumnIndex) * a;
- A.setElem(i, j, v);
- }
- }
- }
- }
-
-#ifdef BT_DEBUG_OSTREAM
- cout << A << std::endl;
-#endif //BT_DEBUG_OSTREAM
- for (int i = 0; i < A.cols(); i++)
- {
- A.mulElem(pivotRowIndex, i, -a);
- }
-#ifdef BT_DEBUG_OSTREAM
- cout << A << std::endl;
-#endif //#ifdef BT_DEBUG_OSTREAM
-
- for (int i = 0; i < A.rows(); i++)
- {
- if (i != pivotRowIndex)
- {
- A.setElem(i, pivotColumnIndex, 0);
- }
- }
-#ifdef BT_DEBUG_OSTREAM
- cout << A << std::endl;
-#endif //#ifdef BT_DEBUG_OSTREAM
-}
-
-bool btLemkeAlgorithm::greaterZero(const btVectorXu& vector)
-{
- bool isGreater = true;
- for (int i = 0; i < vector.size(); i++)
- {
- if (vector[i] < 0)
- {
- isGreater = false;
- break;
- }
- }
-
- return isGreater;
-}
-
-bool btLemkeAlgorithm::validBasis(const btAlignedObjectArray<int>& basis)
-{
- bool isValid = true;
- for (int i = 0; i < basis.size(); i++)
- {
- if (basis[i] >= basis.size() * 2)
- { //then z0 is in the base
- isValid = false;
- break;
- }
- }
-
- return isValid;
-}
diff --git a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btLemkeAlgorithm.h b/thirdparty/bullet/BulletDynamics/MLCPSolvers/btLemkeAlgorithm.h
deleted file mode 100644
index 3c6bf72a23..0000000000
--- a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btLemkeAlgorithm.h
+++ /dev/null
@@ -1,102 +0,0 @@
-/* Copyright (C) 2004-2013 MBSim Development Team
-
-Code was converted for the Bullet Continuous Collision Detection and Physics Library
-
-This software is provided 'as-is', without any express or implied warranty.
-In no event will the authors be held liable for any damages arising from the use of this software.
-Permission is granted to anyone to use this software for any purpose,
-including commercial applications, and to alter it and redistribute it freely,
-subject to the following restrictions:
-
-1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
-2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
-3. This notice may not be removed or altered from any source distribution.
-*/
-
-//The original version is here
-//https://code.google.com/p/mbsim-env/source/browse/trunk/kernel/mbsim/numerics/linear_complementarity_problem/lemke_algorithm.cc
-//This file is re-distributed under the ZLib license, with permission of the original author (Kilian Grundl)
-//Math library was replaced from fmatvec to a the file src/LinearMath/btMatrixX.h
-//STL/std::vector replaced by btAlignedObjectArray
-
-#ifndef BT_NUMERICS_LEMKE_ALGORITHM_H_
-#define BT_NUMERICS_LEMKE_ALGORITHM_H_
-
-#include "LinearMath/btMatrixX.h"
-
-#include <vector> //todo: replace by btAlignedObjectArray
-
-class btLemkeAlgorithm
-{
-public:
- btLemkeAlgorithm(const btMatrixXu& M_, const btVectorXu& q_, const int& DEBUGLEVEL_ = 0) : DEBUGLEVEL(DEBUGLEVEL_)
- {
- setSystem(M_, q_);
- }
-
- /* GETTER / SETTER */
- /**
- * \brief return info of solution process
- */
- int getInfo()
- {
- return info;
- }
-
- /**
- * \brief get the number of steps until the solution was found
- */
- int getSteps(void)
- {
- return steps;
- }
-
- /**
- * \brief set system with Matrix M and vector q
- */
- void setSystem(const btMatrixXu& M_, const btVectorXu& q_)
- {
- m_M = M_;
- m_q = q_;
- }
- /***************************************************/
-
- /**
- * \brief solve algorithm adapted from : Fast Implementation of Lemke’s Algorithm for Rigid Body Contact Simulation (John E. Lloyd)
- */
- btVectorXu solve(unsigned int maxloops = 0);
-
- virtual ~btLemkeAlgorithm()
- {
- }
-
-protected:
- int findLexicographicMinimum(const btMatrixXu& A, const int& pivotColIndex);
- bool LexicographicPositive(const btVectorXu& v);
- void GaussJordanEliminationStep(btMatrixXu& A, int pivotRowIndex, int pivotColumnIndex, const btAlignedObjectArray<int>& basis);
- bool greaterZero(const btVectorXu& vector);
- bool validBasis(const btAlignedObjectArray<int>& basis);
-
- btMatrixXu m_M;
- btVectorXu m_q;
-
- /**
- * \brief number of steps until the Lemke algorithm found a solution
- */
- unsigned int steps;
-
- /**
- * \brief define level of debug output
- */
- int DEBUGLEVEL;
-
- /**
- * \brief did the algorithm find a solution
- *
- * -1 : not successful
- * 0 : successful
- */
- int info;
-};
-
-#endif /* BT_NUMERICS_LEMKE_ALGORITHM_H_ */
diff --git a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btLemkeSolver.h b/thirdparty/bullet/BulletDynamics/MLCPSolvers/btLemkeSolver.h
deleted file mode 100644
index f18c4ea41b..0000000000
--- a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btLemkeSolver.h
+++ /dev/null
@@ -1,338 +0,0 @@
-/*
-Bullet Continuous Collision Detection and Physics Library
-Copyright (c) 2003-2013 Erwin Coumans http://bulletphysics.org
-
-This software is provided 'as-is', without any express or implied warranty.
-In no event will the authors be held liable for any damages arising from the use of this software.
-Permission is granted to anyone to use this software for any purpose,
-including commercial applications, and to alter it and redistribute it freely,
-subject to the following restrictions:
-
-1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
-2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
-3. This notice may not be removed or altered from any source distribution.
-*/
-///original version written by Erwin Coumans, October 2013
-
-#ifndef BT_LEMKE_SOLVER_H
-#define BT_LEMKE_SOLVER_H
-
-#include "btMLCPSolverInterface.h"
-#include "btLemkeAlgorithm.h"
-
-///The btLemkeSolver is based on "Fast Implementation of Lemke’s Algorithm for Rigid Body Contact Simulation (John E. Lloyd) "
-///It is a slower but more accurate solver. Increase the m_maxLoops for better convergence, at the cost of more CPU time.
-///The original implementation of the btLemkeAlgorithm was done by Kilian Grundl from the MBSim team
-class btLemkeSolver : public btMLCPSolverInterface
-{
-protected:
-public:
- btScalar m_maxValue;
- int m_debugLevel;
- int m_maxLoops;
- bool m_useLoHighBounds;
-
- btLemkeSolver()
- : m_maxValue(100000),
- m_debugLevel(0),
- m_maxLoops(1000),
- m_useLoHighBounds(true)
- {
- }
- virtual bool solveMLCP(const btMatrixXu& A, const btVectorXu& b, btVectorXu& x, const btVectorXu& lo, const btVectorXu& hi, const btAlignedObjectArray<int>& limitDependency, int numIterations, bool useSparsity = true)
- {
- if (m_useLoHighBounds)
- {
- BT_PROFILE("btLemkeSolver::solveMLCP");
- int n = A.rows();
- if (0 == n)
- return true;
-
- bool fail = false;
-
- btVectorXu solution(n);
- btVectorXu q1;
- q1.resize(n);
- for (int row = 0; row < n; row++)
- {
- q1[row] = -b[row];
- }
-
- // cout << "A" << endl;
- // cout << A << endl;
-
- /////////////////////////////////////
-
- //slow matrix inversion, replace with LU decomposition
- btMatrixXu A1;
- btMatrixXu B(n, n);
- {
- //BT_PROFILE("inverse(slow)");
- A1.resize(A.rows(), A.cols());
- for (int row = 0; row < A.rows(); row++)
- {
- for (int col = 0; col < A.cols(); col++)
- {
- A1.setElem(row, col, A(row, col));
- }
- }
-
- btMatrixXu matrix;
- matrix.resize(n, 2 * n);
- for (int row = 0; row < n; row++)
- {
- for (int col = 0; col < n; col++)
- {
- matrix.setElem(row, col, A1(row, col));
- }
- }
-
- btScalar ratio, a;
- int i, j, k;
- for (i = 0; i < n; i++)
- {
- for (j = n; j < 2 * n; j++)
- {
- if (i == (j - n))
- matrix.setElem(i, j, 1.0);
- else
- matrix.setElem(i, j, 0.0);
- }
- }
- for (i = 0; i < n; i++)
- {
- for (j = 0; j < n; j++)
- {
- if (i != j)
- {
- btScalar v = matrix(i, i);
- if (btFuzzyZero(v))
- {
- a = 0.000001f;
- }
- ratio = matrix(j, i) / matrix(i, i);
- for (k = 0; k < 2 * n; k++)
- {
- matrix.addElem(j, k, -ratio * matrix(i, k));
- }
- }
- }
- }
- for (i = 0; i < n; i++)
- {
- a = matrix(i, i);
- if (btFuzzyZero(a))
- {
- a = 0.000001f;
- }
- btScalar invA = 1.f / a;
- for (j = 0; j < 2 * n; j++)
- {
- matrix.mulElem(i, j, invA);
- }
- }
-
- for (int row = 0; row < n; row++)
- {
- for (int col = 0; col < n; col++)
- {
- B.setElem(row, col, matrix(row, n + col));
- }
- }
- }
-
- btMatrixXu b1(n, 1);
-
- btMatrixXu M(n * 2, n * 2);
- for (int row = 0; row < n; row++)
- {
- b1.setElem(row, 0, -b[row]);
- for (int col = 0; col < n; col++)
- {
- btScalar v = B(row, col);
- M.setElem(row, col, v);
- M.setElem(n + row, n + col, v);
- M.setElem(n + row, col, -v);
- M.setElem(row, n + col, -v);
- }
- }
-
- btMatrixXu Bb1 = B * b1;
- // q = [ (-B*b1 - lo)' (hi + B*b1)' ]'
-
- btVectorXu qq;
- qq.resize(n * 2);
- for (int row = 0; row < n; row++)
- {
- qq[row] = -Bb1(row, 0) - lo[row];
- qq[n + row] = Bb1(row, 0) + hi[row];
- }
-
- btVectorXu z1;
-
- btMatrixXu y1;
- y1.resize(n, 1);
- btLemkeAlgorithm lemke(M, qq, m_debugLevel);
- {
- //BT_PROFILE("lemke.solve");
- lemke.setSystem(M, qq);
- z1 = lemke.solve(m_maxLoops);
- }
- for (int row = 0; row < n; row++)
- {
- y1.setElem(row, 0, z1[2 * n + row] - z1[3 * n + row]);
- }
- btMatrixXu y1_b1(n, 1);
- for (int i = 0; i < n; i++)
- {
- y1_b1.setElem(i, 0, y1(i, 0) - b1(i, 0));
- }
-
- btMatrixXu x1;
-
- x1 = B * (y1_b1);
-
- for (int row = 0; row < n; row++)
- {
- solution[row] = x1(row, 0); //n];
- }
-
- int errorIndexMax = -1;
- int errorIndexMin = -1;
- float errorValueMax = -1e30;
- float errorValueMin = 1e30;
-
- for (int i = 0; i < n; i++)
- {
- x[i] = solution[i];
- volatile btScalar check = x[i];
- if (x[i] != check)
- {
- //printf("Lemke result is #NAN\n");
- x.setZero();
- return false;
- }
-
- //this is some hack/safety mechanism, to discard invalid solutions from the Lemke solver
- //we need to figure out why it happens, and fix it, or detect it properly)
- if (x[i] > m_maxValue)
- {
- if (x[i] > errorValueMax)
- {
- fail = true;
- errorIndexMax = i;
- errorValueMax = x[i];
- }
- ////printf("x[i] = %f,",x[i]);
- }
- if (x[i] < -m_maxValue)
- {
- if (x[i] < errorValueMin)
- {
- errorIndexMin = i;
- errorValueMin = x[i];
- fail = true;
- //printf("x[i] = %f,",x[i]);
- }
- }
- }
- if (fail)
- {
- int m_errorCountTimes = 0;
- if (errorIndexMin < 0)
- errorValueMin = 0.f;
- if (errorIndexMax < 0)
- errorValueMax = 0.f;
- m_errorCountTimes++;
- // printf("Error (x[%d] = %f, x[%d] = %f), resetting %d times\n", errorIndexMin,errorValueMin, errorIndexMax, errorValueMax, errorCountTimes++);
- for (int i = 0; i < n; i++)
- {
- x[i] = 0.f;
- }
- }
- return !fail;
- }
- else
-
- {
- int dimension = A.rows();
- if (0 == dimension)
- return true;
-
- // printf("================ solving using Lemke/Newton/Fixpoint\n");
-
- btVectorXu q;
- q.resize(dimension);
- for (int row = 0; row < dimension; row++)
- {
- q[row] = -b[row];
- }
-
- btLemkeAlgorithm lemke(A, q, m_debugLevel);
-
- lemke.setSystem(A, q);
-
- btVectorXu solution = lemke.solve(m_maxLoops);
-
- //check solution
-
- bool fail = false;
- int errorIndexMax = -1;
- int errorIndexMin = -1;
- float errorValueMax = -1e30;
- float errorValueMin = 1e30;
-
- for (int i = 0; i < dimension; i++)
- {
- x[i] = solution[i + dimension];
- volatile btScalar check = x[i];
- if (x[i] != check)
- {
- x.setZero();
- return false;
- }
-
- //this is some hack/safety mechanism, to discard invalid solutions from the Lemke solver
- //we need to figure out why it happens, and fix it, or detect it properly)
- if (x[i] > m_maxValue)
- {
- if (x[i] > errorValueMax)
- {
- fail = true;
- errorIndexMax = i;
- errorValueMax = x[i];
- }
- ////printf("x[i] = %f,",x[i]);
- }
- if (x[i] < -m_maxValue)
- {
- if (x[i] < errorValueMin)
- {
- errorIndexMin = i;
- errorValueMin = x[i];
- fail = true;
- //printf("x[i] = %f,",x[i]);
- }
- }
- }
- if (fail)
- {
- static int errorCountTimes = 0;
- if (errorIndexMin < 0)
- errorValueMin = 0.f;
- if (errorIndexMax < 0)
- errorValueMax = 0.f;
- printf("Error (x[%d] = %f, x[%d] = %f), resetting %d times\n", errorIndexMin, errorValueMin, errorIndexMax, errorValueMax, errorCountTimes++);
- for (int i = 0; i < dimension; i++)
- {
- x[i] = 0.f;
- }
- }
-
- return !fail;
- }
- return true;
- }
-};
-
-#endif //BT_LEMKE_SOLVER_H
diff --git a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btMLCPSolver.cpp b/thirdparty/bullet/BulletDynamics/MLCPSolvers/btMLCPSolver.cpp
deleted file mode 100644
index ed4e0b686d..0000000000
--- a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btMLCPSolver.cpp
+++ /dev/null
@@ -1,620 +0,0 @@
-/*
-Bullet Continuous Collision Detection and Physics Library
-Copyright (c) 2003-2013 Erwin Coumans http://bulletphysics.org
-
-This software is provided 'as-is', without any express or implied warranty.
-In no event will the authors be held liable for any damages arising from the use of this software.
-Permission is granted to anyone to use this software for any purpose,
-including commercial applications, and to alter it and redistribute it freely,
-subject to the following restrictions:
-
-1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
-2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
-3. This notice may not be removed or altered from any source distribution.
-*/
-///original version written by Erwin Coumans, October 2013
-
-#include "btMLCPSolver.h"
-#include "LinearMath/btMatrixX.h"
-#include "LinearMath/btQuickprof.h"
-#include "btSolveProjectedGaussSeidel.h"
-
-btMLCPSolver::btMLCPSolver(btMLCPSolverInterface* solver)
- : m_solver(solver),
- m_fallback(0)
-{
-}
-
-btMLCPSolver::~btMLCPSolver()
-{
-}
-
-bool gUseMatrixMultiply = false;
-bool interleaveContactAndFriction = false;
-
-btScalar btMLCPSolver::solveGroupCacheFriendlySetup(btCollisionObject** bodies, int numBodiesUnUsed, btPersistentManifold** manifoldPtr, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal, btIDebugDraw* debugDrawer)
-{
- btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(bodies, numBodiesUnUsed, manifoldPtr, numManifolds, constraints, numConstraints, infoGlobal, debugDrawer);
-
- {
- BT_PROFILE("gather constraint data");
-
- int numFrictionPerContact = m_tmpSolverContactConstraintPool.size() == m_tmpSolverContactFrictionConstraintPool.size() ? 1 : 2;
-
- // int numBodies = m_tmpSolverBodyPool.size();
- m_allConstraintPtrArray.resize(0);
- m_limitDependencies.resize(m_tmpSolverNonContactConstraintPool.size() + m_tmpSolverContactConstraintPool.size() + m_tmpSolverContactFrictionConstraintPool.size());
- btAssert(m_limitDependencies.size() == m_tmpSolverNonContactConstraintPool.size() + m_tmpSolverContactConstraintPool.size() + m_tmpSolverContactFrictionConstraintPool.size());
- // printf("m_limitDependencies.size() = %d\n",m_limitDependencies.size());
-
- int dindex = 0;
- for (int i = 0; i < m_tmpSolverNonContactConstraintPool.size(); i++)
- {
- m_allConstraintPtrArray.push_back(&m_tmpSolverNonContactConstraintPool[i]);
- m_limitDependencies[dindex++] = -1;
- }
-
- ///The btSequentialImpulseConstraintSolver moves all friction constraints at the very end, we can also interleave them instead
-
- int firstContactConstraintOffset = dindex;
-
- if (interleaveContactAndFriction)
- {
- for (int i = 0; i < m_tmpSolverContactConstraintPool.size(); i++)
- {
- m_allConstraintPtrArray.push_back(&m_tmpSolverContactConstraintPool[i]);
- m_limitDependencies[dindex++] = -1;
- m_allConstraintPtrArray.push_back(&m_tmpSolverContactFrictionConstraintPool[i * numFrictionPerContact]);
- int findex = (m_tmpSolverContactFrictionConstraintPool[i * numFrictionPerContact].m_frictionIndex * (1 + numFrictionPerContact));
- m_limitDependencies[dindex++] = findex + firstContactConstraintOffset;
- if (numFrictionPerContact == 2)
- {
- m_allConstraintPtrArray.push_back(&m_tmpSolverContactFrictionConstraintPool[i * numFrictionPerContact + 1]);
- m_limitDependencies[dindex++] = findex + firstContactConstraintOffset;
- }
- }
- }
- else
- {
- for (int i = 0; i < m_tmpSolverContactConstraintPool.size(); i++)
- {
- m_allConstraintPtrArray.push_back(&m_tmpSolverContactConstraintPool[i]);
- m_limitDependencies[dindex++] = -1;
- }
- for (int i = 0; i < m_tmpSolverContactFrictionConstraintPool.size(); i++)
- {
- m_allConstraintPtrArray.push_back(&m_tmpSolverContactFrictionConstraintPool[i]);
- m_limitDependencies[dindex++] = m_tmpSolverContactFrictionConstraintPool[i].m_frictionIndex + firstContactConstraintOffset;
- }
- }
-
- if (!m_allConstraintPtrArray.size())
- {
- m_A.resize(0, 0);
- m_b.resize(0);
- m_x.resize(0);
- m_lo.resize(0);
- m_hi.resize(0);
- return 0.f;
- }
- }
-
- if (gUseMatrixMultiply)
- {
- BT_PROFILE("createMLCP");
- createMLCP(infoGlobal);
- }
- else
- {
- BT_PROFILE("createMLCPFast");
- createMLCPFast(infoGlobal);
- }
-
- return 0.f;
-}
-
-bool btMLCPSolver::solveMLCP(const btContactSolverInfo& infoGlobal)
-{
- bool result = true;
-
- if (m_A.rows() == 0)
- return true;
-
- //if using split impulse, we solve 2 separate (M)LCPs
- if (infoGlobal.m_splitImpulse)
- {
- btMatrixXu Acopy = m_A;
- btAlignedObjectArray<int> limitDependenciesCopy = m_limitDependencies;
- // printf("solve first LCP\n");
- result = m_solver->solveMLCP(m_A, m_b, m_x, m_lo, m_hi, m_limitDependencies, infoGlobal.m_numIterations);
- if (result)
- result = m_solver->solveMLCP(Acopy, m_bSplit, m_xSplit, m_lo, m_hi, limitDependenciesCopy, infoGlobal.m_numIterations);
- }
- else
- {
- result = m_solver->solveMLCP(m_A, m_b, m_x, m_lo, m_hi, m_limitDependencies, infoGlobal.m_numIterations);
- }
- return result;
-}
-
-struct btJointNode
-{
- int jointIndex; // pointer to enclosing dxJoint object
- int otherBodyIndex; // *other* body this joint is connected to
- int nextJointNodeIndex; //-1 for null
- int constraintRowIndex;
-};
-
-void btMLCPSolver::createMLCPFast(const btContactSolverInfo& infoGlobal)
-{
- int numContactRows = interleaveContactAndFriction ? 3 : 1;
-
- int numConstraintRows = m_allConstraintPtrArray.size();
- int n = numConstraintRows;
- {
- BT_PROFILE("init b (rhs)");
- m_b.resize(numConstraintRows);
- m_bSplit.resize(numConstraintRows);
- m_b.setZero();
- m_bSplit.setZero();
- for (int i = 0; i < numConstraintRows; i++)
- {
- btScalar jacDiag = m_allConstraintPtrArray[i]->m_jacDiagABInv;
- if (!btFuzzyZero(jacDiag))
- {
- btScalar rhs = m_allConstraintPtrArray[i]->m_rhs;
- btScalar rhsPenetration = m_allConstraintPtrArray[i]->m_rhsPenetration;
- m_b[i] = rhs / jacDiag;
- m_bSplit[i] = rhsPenetration / jacDiag;
- }
- }
- }
-
- // btScalar* w = 0;
- // int nub = 0;
-
- m_lo.resize(numConstraintRows);
- m_hi.resize(numConstraintRows);
-
- {
- BT_PROFILE("init lo/ho");
-
- for (int i = 0; i < numConstraintRows; i++)
- {
- if (0) //m_limitDependencies[i]>=0)
- {
- m_lo[i] = -BT_INFINITY;
- m_hi[i] = BT_INFINITY;
- }
- else
- {
- m_lo[i] = m_allConstraintPtrArray[i]->m_lowerLimit;
- m_hi[i] = m_allConstraintPtrArray[i]->m_upperLimit;
- }
- }
- }
-
- //
- int m = m_allConstraintPtrArray.size();
-
- int numBodies = m_tmpSolverBodyPool.size();
- btAlignedObjectArray<int> bodyJointNodeArray;
- {
- BT_PROFILE("bodyJointNodeArray.resize");
- bodyJointNodeArray.resize(numBodies, -1);
- }
- btAlignedObjectArray<btJointNode> jointNodeArray;
- {
- BT_PROFILE("jointNodeArray.reserve");
- jointNodeArray.reserve(2 * m_allConstraintPtrArray.size());
- }
-
- btMatrixXu& J3 = m_scratchJ3;
- {
- BT_PROFILE("J3.resize");
- J3.resize(2 * m, 8);
- }
- btMatrixXu& JinvM3 = m_scratchJInvM3;
- {
- BT_PROFILE("JinvM3.resize/setZero");
-
- JinvM3.resize(2 * m, 8);
- JinvM3.setZero();
- J3.setZero();
- }
- int cur = 0;
- int rowOffset = 0;
- btAlignedObjectArray<int>& ofs = m_scratchOfs;
- {
- BT_PROFILE("ofs resize");
- ofs.resize(0);
- ofs.resizeNoInitialize(m_allConstraintPtrArray.size());
- }
- {
- BT_PROFILE("Compute J and JinvM");
- int c = 0;
-
- int numRows = 0;
-
- for (int i = 0; i < m_allConstraintPtrArray.size(); i += numRows, c++)
- {
- ofs[c] = rowOffset;
- int sbA = m_allConstraintPtrArray[i]->m_solverBodyIdA;
- int sbB = m_allConstraintPtrArray[i]->m_solverBodyIdB;
- btRigidBody* orgBodyA = m_tmpSolverBodyPool[sbA].m_originalBody;
- btRigidBody* orgBodyB = m_tmpSolverBodyPool[sbB].m_originalBody;
-
- numRows = i < m_tmpSolverNonContactConstraintPool.size() ? m_tmpConstraintSizesPool[c].m_numConstraintRows : numContactRows;
- if (orgBodyA)
- {
- {
- int slotA = -1;
- //find free jointNode slot for sbA
- slotA = jointNodeArray.size();
- jointNodeArray.expand(); //NonInitializing();
- int prevSlot = bodyJointNodeArray[sbA];
- bodyJointNodeArray[sbA] = slotA;
- jointNodeArray[slotA].nextJointNodeIndex = prevSlot;
- jointNodeArray[slotA].jointIndex = c;
- jointNodeArray[slotA].constraintRowIndex = i;
- jointNodeArray[slotA].otherBodyIndex = orgBodyB ? sbB : -1;
- }
- for (int row = 0; row < numRows; row++, cur++)
- {
- btVector3 normalInvMass = m_allConstraintPtrArray[i + row]->m_contactNormal1 * orgBodyA->getInvMass();
- btVector3 relPosCrossNormalInvInertia = m_allConstraintPtrArray[i + row]->m_relpos1CrossNormal * orgBodyA->getInvInertiaTensorWorld();
-
- for (int r = 0; r < 3; r++)
- {
- J3.setElem(cur, r, m_allConstraintPtrArray[i + row]->m_contactNormal1[r]);
- J3.setElem(cur, r + 4, m_allConstraintPtrArray[i + row]->m_relpos1CrossNormal[r]);
- JinvM3.setElem(cur, r, normalInvMass[r]);
- JinvM3.setElem(cur, r + 4, relPosCrossNormalInvInertia[r]);
- }
- J3.setElem(cur, 3, 0);
- JinvM3.setElem(cur, 3, 0);
- J3.setElem(cur, 7, 0);
- JinvM3.setElem(cur, 7, 0);
- }
- }
- else
- {
- cur += numRows;
- }
- if (orgBodyB)
- {
- {
- int slotB = -1;
- //find free jointNode slot for sbA
- slotB = jointNodeArray.size();
- jointNodeArray.expand(); //NonInitializing();
- int prevSlot = bodyJointNodeArray[sbB];
- bodyJointNodeArray[sbB] = slotB;
- jointNodeArray[slotB].nextJointNodeIndex = prevSlot;
- jointNodeArray[slotB].jointIndex = c;
- jointNodeArray[slotB].otherBodyIndex = orgBodyA ? sbA : -1;
- jointNodeArray[slotB].constraintRowIndex = i;
- }
-
- for (int row = 0; row < numRows; row++, cur++)
- {
- btVector3 normalInvMassB = m_allConstraintPtrArray[i + row]->m_contactNormal2 * orgBodyB->getInvMass();
- btVector3 relPosInvInertiaB = m_allConstraintPtrArray[i + row]->m_relpos2CrossNormal * orgBodyB->getInvInertiaTensorWorld();
-
- for (int r = 0; r < 3; r++)
- {
- J3.setElem(cur, r, m_allConstraintPtrArray[i + row]->m_contactNormal2[r]);
- J3.setElem(cur, r + 4, m_allConstraintPtrArray[i + row]->m_relpos2CrossNormal[r]);
- JinvM3.setElem(cur, r, normalInvMassB[r]);
- JinvM3.setElem(cur, r + 4, relPosInvInertiaB[r]);
- }
- J3.setElem(cur, 3, 0);
- JinvM3.setElem(cur, 3, 0);
- J3.setElem(cur, 7, 0);
- JinvM3.setElem(cur, 7, 0);
- }
- }
- else
- {
- cur += numRows;
- }
- rowOffset += numRows;
- }
- }
-
- //compute JinvM = J*invM.
- const btScalar* JinvM = JinvM3.getBufferPointer();
-
- const btScalar* Jptr = J3.getBufferPointer();
- {
- BT_PROFILE("m_A.resize");
- m_A.resize(n, n);
- }
-
- {
- BT_PROFILE("m_A.setZero");
- m_A.setZero();
- }
- int c = 0;
- {
- int numRows = 0;
- BT_PROFILE("Compute A");
- for (int i = 0; i < m_allConstraintPtrArray.size(); i += numRows, c++)
- {
- int row__ = ofs[c];
- int sbA = m_allConstraintPtrArray[i]->m_solverBodyIdA;
- int sbB = m_allConstraintPtrArray[i]->m_solverBodyIdB;
- // btRigidBody* orgBodyA = m_tmpSolverBodyPool[sbA].m_originalBody;
- // btRigidBody* orgBodyB = m_tmpSolverBodyPool[sbB].m_originalBody;
-
- numRows = i < m_tmpSolverNonContactConstraintPool.size() ? m_tmpConstraintSizesPool[c].m_numConstraintRows : numContactRows;
-
- const btScalar* JinvMrow = JinvM + 2 * 8 * (size_t)row__;
-
- {
- int startJointNodeA = bodyJointNodeArray[sbA];
- while (startJointNodeA >= 0)
- {
- int j0 = jointNodeArray[startJointNodeA].jointIndex;
- int cr0 = jointNodeArray[startJointNodeA].constraintRowIndex;
- if (j0 < c)
- {
- int numRowsOther = cr0 < m_tmpSolverNonContactConstraintPool.size() ? m_tmpConstraintSizesPool[j0].m_numConstraintRows : numContactRows;
- size_t ofsother = (m_allConstraintPtrArray[cr0]->m_solverBodyIdB == sbA) ? 8 * numRowsOther : 0;
- //printf("%d joint i %d and j0: %d: ",count++,i,j0);
- m_A.multiplyAdd2_p8r(JinvMrow,
- Jptr + 2 * 8 * (size_t)ofs[j0] + ofsother, numRows, numRowsOther, row__, ofs[j0]);
- }
- startJointNodeA = jointNodeArray[startJointNodeA].nextJointNodeIndex;
- }
- }
-
- {
- int startJointNodeB = bodyJointNodeArray[sbB];
- while (startJointNodeB >= 0)
- {
- int j1 = jointNodeArray[startJointNodeB].jointIndex;
- int cj1 = jointNodeArray[startJointNodeB].constraintRowIndex;
-
- if (j1 < c)
- {
- int numRowsOther = cj1 < m_tmpSolverNonContactConstraintPool.size() ? m_tmpConstraintSizesPool[j1].m_numConstraintRows : numContactRows;
- size_t ofsother = (m_allConstraintPtrArray[cj1]->m_solverBodyIdB == sbB) ? 8 * numRowsOther : 0;
- m_A.multiplyAdd2_p8r(JinvMrow + 8 * (size_t)numRows,
- Jptr + 2 * 8 * (size_t)ofs[j1] + ofsother, numRows, numRowsOther, row__, ofs[j1]);
- }
- startJointNodeB = jointNodeArray[startJointNodeB].nextJointNodeIndex;
- }
- }
- }
-
- {
- BT_PROFILE("compute diagonal");
- // compute diagonal blocks of m_A
-
- int row__ = 0;
- int numJointRows = m_allConstraintPtrArray.size();
-
- int jj = 0;
- for (; row__ < numJointRows;)
- {
- //int sbA = m_allConstraintPtrArray[row__]->m_solverBodyIdA;
- int sbB = m_allConstraintPtrArray[row__]->m_solverBodyIdB;
- // btRigidBody* orgBodyA = m_tmpSolverBodyPool[sbA].m_originalBody;
- btRigidBody* orgBodyB = m_tmpSolverBodyPool[sbB].m_originalBody;
-
- const unsigned int infom = row__ < m_tmpSolverNonContactConstraintPool.size() ? m_tmpConstraintSizesPool[jj].m_numConstraintRows : numContactRows;
-
- const btScalar* JinvMrow = JinvM + 2 * 8 * (size_t)row__;
- const btScalar* Jrow = Jptr + 2 * 8 * (size_t)row__;
- m_A.multiply2_p8r(JinvMrow, Jrow, infom, infom, row__, row__);
- if (orgBodyB)
- {
- m_A.multiplyAdd2_p8r(JinvMrow + 8 * (size_t)infom, Jrow + 8 * (size_t)infom, infom, infom, row__, row__);
- }
- row__ += infom;
- jj++;
- }
- }
- }
-
- if (1)
- {
- // add cfm to the diagonal of m_A
- for (int i = 0; i < m_A.rows(); ++i)
- {
- m_A.setElem(i, i, m_A(i, i) + infoGlobal.m_globalCfm / infoGlobal.m_timeStep);
- }
- }
-
- ///fill the upper triangle of the matrix, to make it symmetric
- {
- BT_PROFILE("fill the upper triangle ");
- m_A.copyLowerToUpperTriangle();
- }
-
- {
- BT_PROFILE("resize/init x");
- m_x.resize(numConstraintRows);
- m_xSplit.resize(numConstraintRows);
-
- if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
- {
- for (int i = 0; i < m_allConstraintPtrArray.size(); i++)
- {
- const btSolverConstraint& c = *m_allConstraintPtrArray[i];
- m_x[i] = c.m_appliedImpulse;
- m_xSplit[i] = c.m_appliedPushImpulse;
- }
- }
- else
- {
- m_x.setZero();
- m_xSplit.setZero();
- }
- }
-}
-
-void btMLCPSolver::createMLCP(const btContactSolverInfo& infoGlobal)
-{
- int numBodies = this->m_tmpSolverBodyPool.size();
- int numConstraintRows = m_allConstraintPtrArray.size();
-
- m_b.resize(numConstraintRows);
- if (infoGlobal.m_splitImpulse)
- m_bSplit.resize(numConstraintRows);
-
- m_bSplit.setZero();
- m_b.setZero();
-
- for (int i = 0; i < numConstraintRows; i++)
- {
- if (m_allConstraintPtrArray[i]->m_jacDiagABInv)
- {
- m_b[i] = m_allConstraintPtrArray[i]->m_rhs / m_allConstraintPtrArray[i]->m_jacDiagABInv;
- if (infoGlobal.m_splitImpulse)
- m_bSplit[i] = m_allConstraintPtrArray[i]->m_rhsPenetration / m_allConstraintPtrArray[i]->m_jacDiagABInv;
- }
- }
-
- btMatrixXu& Minv = m_scratchMInv;
- Minv.resize(6 * numBodies, 6 * numBodies);
- Minv.setZero();
- for (int i = 0; i < numBodies; i++)
- {
- const btSolverBody& rb = m_tmpSolverBodyPool[i];
- const btVector3& invMass = rb.m_invMass;
- setElem(Minv, i * 6 + 0, i * 6 + 0, invMass[0]);
- setElem(Minv, i * 6 + 1, i * 6 + 1, invMass[1]);
- setElem(Minv, i * 6 + 2, i * 6 + 2, invMass[2]);
- btRigidBody* orgBody = m_tmpSolverBodyPool[i].m_originalBody;
-
- for (int r = 0; r < 3; r++)
- for (int c = 0; c < 3; c++)
- setElem(Minv, i * 6 + 3 + r, i * 6 + 3 + c, orgBody ? orgBody->getInvInertiaTensorWorld()[r][c] : 0);
- }
-
- btMatrixXu& J = m_scratchJ;
- J.resize(numConstraintRows, 6 * numBodies);
- J.setZero();
-
- m_lo.resize(numConstraintRows);
- m_hi.resize(numConstraintRows);
-
- for (int i = 0; i < numConstraintRows; i++)
- {
- m_lo[i] = m_allConstraintPtrArray[i]->m_lowerLimit;
- m_hi[i] = m_allConstraintPtrArray[i]->m_upperLimit;
-
- int bodyIndex0 = m_allConstraintPtrArray[i]->m_solverBodyIdA;
- int bodyIndex1 = m_allConstraintPtrArray[i]->m_solverBodyIdB;
- if (m_tmpSolverBodyPool[bodyIndex0].m_originalBody)
- {
- setElem(J, i, 6 * bodyIndex0 + 0, m_allConstraintPtrArray[i]->m_contactNormal1[0]);
- setElem(J, i, 6 * bodyIndex0 + 1, m_allConstraintPtrArray[i]->m_contactNormal1[1]);
- setElem(J, i, 6 * bodyIndex0 + 2, m_allConstraintPtrArray[i]->m_contactNormal1[2]);
- setElem(J, i, 6 * bodyIndex0 + 3, m_allConstraintPtrArray[i]->m_relpos1CrossNormal[0]);
- setElem(J, i, 6 * bodyIndex0 + 4, m_allConstraintPtrArray[i]->m_relpos1CrossNormal[1]);
- setElem(J, i, 6 * bodyIndex0 + 5, m_allConstraintPtrArray[i]->m_relpos1CrossNormal[2]);
- }
- if (m_tmpSolverBodyPool[bodyIndex1].m_originalBody)
- {
- setElem(J, i, 6 * bodyIndex1 + 0, m_allConstraintPtrArray[i]->m_contactNormal2[0]);
- setElem(J, i, 6 * bodyIndex1 + 1, m_allConstraintPtrArray[i]->m_contactNormal2[1]);
- setElem(J, i, 6 * bodyIndex1 + 2, m_allConstraintPtrArray[i]->m_contactNormal2[2]);
- setElem(J, i, 6 * bodyIndex1 + 3, m_allConstraintPtrArray[i]->m_relpos2CrossNormal[0]);
- setElem(J, i, 6 * bodyIndex1 + 4, m_allConstraintPtrArray[i]->m_relpos2CrossNormal[1]);
- setElem(J, i, 6 * bodyIndex1 + 5, m_allConstraintPtrArray[i]->m_relpos2CrossNormal[2]);
- }
- }
-
- btMatrixXu& J_transpose = m_scratchJTranspose;
- J_transpose = J.transpose();
-
- btMatrixXu& tmp = m_scratchTmp;
- //Minv.printMatrix("Minv=");
- {
- {
- BT_PROFILE("J*Minv");
- tmp = J * Minv;
- }
- {
- BT_PROFILE("J*tmp");
- m_A = tmp * J_transpose;
- }
- }
- //J.printMatrix("J");
- if (1)
- {
- // add cfm to the diagonal of m_A
- for (int i = 0; i < m_A.rows(); ++i)
- {
- m_A.setElem(i, i, m_A(i, i) + infoGlobal.m_globalCfm / infoGlobal.m_timeStep);
- }
- }
-
- m_x.resize(numConstraintRows);
- if (infoGlobal.m_splitImpulse)
- m_xSplit.resize(numConstraintRows);
- // m_x.setZero();
-
- for (int i = 0; i < m_allConstraintPtrArray.size(); i++)
- {
- const btSolverConstraint& c = *m_allConstraintPtrArray[i];
- m_x[i] = c.m_appliedImpulse;
- if (infoGlobal.m_splitImpulse)
- m_xSplit[i] = c.m_appliedPushImpulse;
- }
-}
-
-btScalar btMLCPSolver::solveGroupCacheFriendlyIterations(btCollisionObject** bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal, btIDebugDraw* debugDrawer)
-{
- bool result = true;
- {
- BT_PROFILE("solveMLCP");
- // printf("m_A(%d,%d)\n", m_A.rows(),m_A.cols());
- result = solveMLCP(infoGlobal);
- }
-
- //check if solution is valid, and otherwise fallback to btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyIterations
- if (result)
- {
- BT_PROFILE("process MLCP results");
- for (int i = 0; i < m_allConstraintPtrArray.size(); i++)
- {
- {
- btSolverConstraint& c = *m_allConstraintPtrArray[i];
- int sbA = c.m_solverBodyIdA;
- int sbB = c.m_solverBodyIdB;
- //btRigidBody* orgBodyA = m_tmpSolverBodyPool[sbA].m_originalBody;
- // btRigidBody* orgBodyB = m_tmpSolverBodyPool[sbB].m_originalBody;
-
- btSolverBody& solverBodyA = m_tmpSolverBodyPool[sbA];
- btSolverBody& solverBodyB = m_tmpSolverBodyPool[sbB];
-
- {
- btScalar deltaImpulse = m_x[i] - c.m_appliedImpulse;
- c.m_appliedImpulse = m_x[i];
- solverBodyA.internalApplyImpulse(c.m_contactNormal1 * solverBodyA.internalGetInvMass(), c.m_angularComponentA, deltaImpulse);
- solverBodyB.internalApplyImpulse(c.m_contactNormal2 * solverBodyB.internalGetInvMass(), c.m_angularComponentB, deltaImpulse);
- }
-
- if (infoGlobal.m_splitImpulse)
- {
- btScalar deltaImpulse = m_xSplit[i] - c.m_appliedPushImpulse;
- solverBodyA.internalApplyPushImpulse(c.m_contactNormal1 * solverBodyA.internalGetInvMass(), c.m_angularComponentA, deltaImpulse);
- solverBodyB.internalApplyPushImpulse(c.m_contactNormal2 * solverBodyB.internalGetInvMass(), c.m_angularComponentB, deltaImpulse);
- c.m_appliedPushImpulse = m_xSplit[i];
- }
- }
- }
- }
- else
- {
- // printf("m_fallback = %d\n",m_fallback);
- m_fallback++;
- btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyIterations(bodies, numBodies, manifoldPtr, numManifolds, constraints, numConstraints, infoGlobal, debugDrawer);
- }
-
- return 0.f;
-}
diff --git a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btMLCPSolver.h b/thirdparty/bullet/BulletDynamics/MLCPSolvers/btMLCPSolver.h
deleted file mode 100644
index 510ae59e58..0000000000
--- a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btMLCPSolver.h
+++ /dev/null
@@ -1,88 +0,0 @@
-/*
-Bullet Continuous Collision Detection and Physics Library
-Copyright (c) 2003-2013 Erwin Coumans http://bulletphysics.org
-
-This software is provided 'as-is', without any express or implied warranty.
-In no event will the authors be held liable for any damages arising from the use of this software.
-Permission is granted to anyone to use this software for any purpose,
-including commercial applications, and to alter it and redistribute it freely,
-subject to the following restrictions:
-
-1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
-2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
-3. This notice may not be removed or altered from any source distribution.
-*/
-///original version written by Erwin Coumans, October 2013
-
-#ifndef BT_MLCP_SOLVER_H
-#define BT_MLCP_SOLVER_H
-
-#include "BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h"
-#include "LinearMath/btMatrixX.h"
-#include "BulletDynamics/MLCPSolvers/btMLCPSolverInterface.h"
-
-class btMLCPSolver : public btSequentialImpulseConstraintSolver
-{
-protected:
- btMatrixXu m_A;
- btVectorXu m_b;
- btVectorXu m_x;
- btVectorXu m_lo;
- btVectorXu m_hi;
-
- ///when using 'split impulse' we solve two separate (M)LCPs
- btVectorXu m_bSplit;
- btVectorXu m_xSplit;
- btVectorXu m_bSplit1;
- btVectorXu m_xSplit2;
-
- btAlignedObjectArray<int> m_limitDependencies;
- btAlignedObjectArray<btSolverConstraint*> m_allConstraintPtrArray;
- btMLCPSolverInterface* m_solver;
- int m_fallback;
-
- /// The following scratch variables are not stateful -- contents are cleared prior to each use.
- /// They are only cached here to avoid extra memory allocations and deallocations and to ensure
- /// that multiple instances of the solver can be run in parallel.
- btMatrixXu m_scratchJ3;
- btMatrixXu m_scratchJInvM3;
- btAlignedObjectArray<int> m_scratchOfs;
- btMatrixXu m_scratchMInv;
- btMatrixXu m_scratchJ;
- btMatrixXu m_scratchJTranspose;
- btMatrixXu m_scratchTmp;
-
- virtual btScalar solveGroupCacheFriendlySetup(btCollisionObject** bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal, btIDebugDraw* debugDrawer);
- virtual btScalar solveGroupCacheFriendlyIterations(btCollisionObject** bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal, btIDebugDraw* debugDrawer);
-
- virtual void createMLCP(const btContactSolverInfo& infoGlobal);
- virtual void createMLCPFast(const btContactSolverInfo& infoGlobal);
-
- //return true is it solves the problem successfully
- virtual bool solveMLCP(const btContactSolverInfo& infoGlobal);
-
-public:
- btMLCPSolver(btMLCPSolverInterface* solver);
- virtual ~btMLCPSolver();
-
- void setMLCPSolver(btMLCPSolverInterface* solver)
- {
- m_solver = solver;
- }
-
- int getNumFallbacks() const
- {
- return m_fallback;
- }
- void setNumFallbacks(int num)
- {
- m_fallback = num;
- }
-
- virtual btConstraintSolverType getSolverType() const
- {
- return BT_MLCP_SOLVER;
- }
-};
-
-#endif //BT_MLCP_SOLVER_H
diff --git a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btMLCPSolverInterface.h b/thirdparty/bullet/BulletDynamics/MLCPSolvers/btMLCPSolverInterface.h
deleted file mode 100644
index 6b0465b88d..0000000000
--- a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btMLCPSolverInterface.h
+++ /dev/null
@@ -1,33 +0,0 @@
-/*
-Bullet Continuous Collision Detection and Physics Library
-Copyright (c) 2003-2013 Erwin Coumans http://bulletphysics.org
-
-This software is provided 'as-is', without any express or implied warranty.
-In no event will the authors be held liable for any damages arising from the use of this software.
-Permission is granted to anyone to use this software for any purpose,
-including commercial applications, and to alter it and redistribute it freely,
-subject to the following restrictions:
-
-1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
-2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
-3. This notice may not be removed or altered from any source distribution.
-*/
-///original version written by Erwin Coumans, October 2013
-
-#ifndef BT_MLCP_SOLVER_INTERFACE_H
-#define BT_MLCP_SOLVER_INTERFACE_H
-
-#include "LinearMath/btMatrixX.h"
-
-class btMLCPSolverInterface
-{
-public:
- virtual ~btMLCPSolverInterface()
- {
- }
-
- //return true is it solves the problem successfully
- virtual bool solveMLCP(const btMatrixXu& A, const btVectorXu& b, btVectorXu& x, const btVectorXu& lo, const btVectorXu& hi, const btAlignedObjectArray<int>& limitDependency, int numIterations, bool useSparsity = true) = 0;
-};
-
-#endif //BT_MLCP_SOLVER_INTERFACE_H
diff --git a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btPATHSolver.h b/thirdparty/bullet/BulletDynamics/MLCPSolvers/btPATHSolver.h
deleted file mode 100644
index 7f8eec3f6e..0000000000
--- a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btPATHSolver.h
+++ /dev/null
@@ -1,142 +0,0 @@
-/*
-Bullet Continuous Collision Detection and Physics Library
-Copyright (c) 2003-2013 Erwin Coumans http://bulletphysics.org
-
-This software is provided 'as-is', without any express or implied warranty.
-In no event will the authors be held liable for any damages arising from the use of this software.
-Permission is granted to anyone to use this software for any purpose,
-including commercial applications, and to alter it and redistribute it freely,
-subject to the following restrictions:
-
-1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
-2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
-3. This notice may not be removed or altered from any source distribution.
-*/
-///original version written by Erwin Coumans, October 2013
-
-#ifndef BT_PATH_SOLVER_H
-#define BT_PATH_SOLVER_H
-
-//#define BT_USE_PATH
-#ifdef BT_USE_PATH
-
-extern "C"
-{
-#include "PATH/SimpleLCP.h"
-#include "PATH/License.h"
-#include "PATH/Error_Interface.h"
-};
-void __stdcall MyError(Void *data, Char *msg)
-{
- printf("Path Error: %s\n", msg);
-}
-void __stdcall MyWarning(Void *data, Char *msg)
-{
- printf("Path Warning: %s\n", msg);
-}
-
-Error_Interface e;
-
-#include "btMLCPSolverInterface.h"
-#include "Dantzig/lcp.h"
-
-class btPathSolver : public btMLCPSolverInterface
-{
-public:
- btPathSolver()
- {
- License_SetString("2069810742&Courtesy_License&&&USR&2013&14_12_2011&1000&PATH&GEN&31_12_2013&0_0_0&0&0_0");
- e.error_data = 0;
- e.warning = MyWarning;
- e.error = MyError;
- Error_SetInterface(&e);
- }
-
- virtual bool solveMLCP(const btMatrixXu &A, const btVectorXu &b, btVectorXu &x, const btVectorXu &lo, const btVectorXu &hi, const btAlignedObjectArray<int> &limitDependency, int numIterations, bool useSparsity = true)
- {
- MCP_Termination status;
-
- int numVariables = b.rows();
- if (0 == numVariables)
- return true;
-
- /* - variables - the number of variables in the problem
- - m_nnz - the number of nonzeros in the M matrix
- - m_i - a vector of size m_nnz containing the row indices for M
- - m_j - a vector of size m_nnz containing the column indices for M
- - m_ij - a vector of size m_nnz containing the data for M
- - q - a vector of size variables
- - lb - a vector of size variables containing the lower bounds on x
- - ub - a vector of size variables containing the upper bounds on x
- */
- btAlignedObjectArray<double> values;
- btAlignedObjectArray<int> rowIndices;
- btAlignedObjectArray<int> colIndices;
-
- for (int i = 0; i < A.rows(); i++)
- {
- for (int j = 0; j < A.cols(); j++)
- {
- if (A(i, j) != 0.f)
- {
- //add 1, because Path starts at 1, instead of 0
- rowIndices.push_back(i + 1);
- colIndices.push_back(j + 1);
- values.push_back(A(i, j));
- }
- }
- }
- int numNonZero = rowIndices.size();
- btAlignedObjectArray<double> zResult;
- zResult.resize(numVariables);
- btAlignedObjectArray<double> rhs;
- btAlignedObjectArray<double> upperBounds;
- btAlignedObjectArray<double> lowerBounds;
- for (int i = 0; i < numVariables; i++)
- {
- upperBounds.push_back(hi[i]);
- lowerBounds.push_back(lo[i]);
- rhs.push_back(-b[i]);
- }
-
- SimpleLCP(numVariables, numNonZero, &rowIndices[0], &colIndices[0], &values[0], &rhs[0], &lowerBounds[0], &upperBounds[0], &status, &zResult[0]);
-
- if (status != MCP_Solved)
- {
- static const char *gReturnMsgs[] = {
- "Invalid return",
- "MCP_Solved: The problem was solved",
- "MCP_NoProgress: A stationary point was found",
- "MCP_MajorIterationLimit: Major iteration limit met",
- "MCP_MinorIterationLimit: Cumulative minor iteration limit met",
- "MCP_TimeLimit: Ran out of time",
- "MCP_UserInterrupt: Control-C, typically",
- "MCP_BoundError: Problem has a bound error",
- "MCP_DomainError: Could not find starting point",
- "MCP_Infeasible: Problem has no solution",
- "MCP_Error: An error occurred within the code",
- "MCP_LicenseError: License could not be found",
- "MCP_OK"};
-
- printf("ERROR: The PATH MCP solver failed: %s\n", gReturnMsgs[(unsigned int)status]); // << std::endl;
- printf("using Projected Gauss Seidel fallback\n");
-
- return false;
- }
- else
- {
- for (int i = 0; i < numVariables; i++)
- {
- x[i] = zResult[i];
- //check for #NAN
- if (x[i] != zResult[i])
- return false;
- }
- return true;
- }
- }
-};
-
-#endif //BT_USE_PATH
-
-#endif //BT_PATH_SOLVER_H
diff --git a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btSolveProjectedGaussSeidel.h b/thirdparty/bullet/BulletDynamics/MLCPSolvers/btSolveProjectedGaussSeidel.h
deleted file mode 100644
index c3f4ec3997..0000000000
--- a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btSolveProjectedGaussSeidel.h
+++ /dev/null
@@ -1,107 +0,0 @@
-/*
-Bullet Continuous Collision Detection and Physics Library
-Copyright (c) 2003-2013 Erwin Coumans http://bulletphysics.org
-
-This software is provided 'as-is', without any express or implied warranty.
-In no event will the authors be held liable for any damages arising from the use of this software.
-Permission is granted to anyone to use this software for any purpose,
-including commercial applications, and to alter it and redistribute it freely,
-subject to the following restrictions:
-
-1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
-2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
-3. This notice may not be removed or altered from any source distribution.
-*/
-///original version written by Erwin Coumans, October 2013
-
-#ifndef BT_SOLVE_PROJECTED_GAUSS_SEIDEL_H
-#define BT_SOLVE_PROJECTED_GAUSS_SEIDEL_H
-
-#include "btMLCPSolverInterface.h"
-
-///This solver is mainly for debug/learning purposes: it is functionally equivalent to the btSequentialImpulseConstraintSolver solver, but much slower (it builds the full LCP matrix)
-class btSolveProjectedGaussSeidel : public btMLCPSolverInterface
-{
-public:
- btScalar m_leastSquaresResidualThreshold;
- btScalar m_leastSquaresResidual;
-
- btSolveProjectedGaussSeidel()
- : m_leastSquaresResidualThreshold(0),
- m_leastSquaresResidual(0)
- {
- }
-
- virtual bool solveMLCP(const btMatrixXu& A, const btVectorXu& b, btVectorXu& x, const btVectorXu& lo, const btVectorXu& hi, const btAlignedObjectArray<int>& limitDependency, int numIterations, bool useSparsity = true)
- {
- if (!A.rows())
- return true;
- //the A matrix is sparse, so compute the non-zero elements
- A.rowComputeNonZeroElements();
-
- //A is a m-n matrix, m rows, n columns
- btAssert(A.rows() == b.rows());
-
- int i, j, numRows = A.rows();
-
- btScalar delta;
-
- for (int k = 0; k < numIterations; k++)
- {
- m_leastSquaresResidual = 0.f;
- for (i = 0; i < numRows; i++)
- {
- delta = 0.0f;
- if (useSparsity)
- {
- for (int h = 0; h < A.m_rowNonZeroElements1[i].size(); h++)
- {
- j = A.m_rowNonZeroElements1[i][h];
- if (j != i) //skip main diagonal
- {
- delta += A(i, j) * x[j];
- }
- }
- }
- else
- {
- for (j = 0; j < i; j++)
- delta += A(i, j) * x[j];
- for (j = i + 1; j < numRows; j++)
- delta += A(i, j) * x[j];
- }
-
- btScalar aDiag = A(i, i);
- btScalar xOld = x[i];
- x[i] = (b[i] - delta) / aDiag;
- btScalar s = 1.f;
-
- if (limitDependency[i] >= 0)
- {
- s = x[limitDependency[i]];
- if (s < 0)
- s = 1;
- }
-
- if (x[i] < lo[i] * s)
- x[i] = lo[i] * s;
- if (x[i] > hi[i] * s)
- x[i] = hi[i] * s;
- btScalar diff = x[i] - xOld;
- m_leastSquaresResidual += diff * diff;
- }
-
- btScalar eps = m_leastSquaresResidualThreshold;
- if ((m_leastSquaresResidual < eps) || (k >= (numIterations - 1)))
- {
-#ifdef VERBOSE_PRINTF_RESIDUAL
- printf("totalLenSqr = %f at iteration #%d\n", m_leastSquaresResidual, k);
-#endif
- break;
- }
- }
- return true;
- }
-};
-
-#endif //BT_SOLVE_PROJECTED_GAUSS_SEIDEL_H