summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletDynamics/MLCPSolvers/btSolveProjectedGaussSeidel.h
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/bullet/BulletDynamics/MLCPSolvers/btSolveProjectedGaussSeidel.h')
-rw-r--r--thirdparty/bullet/BulletDynamics/MLCPSolvers/btSolveProjectedGaussSeidel.h65
1 files changed, 31 insertions, 34 deletions
diff --git a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btSolveProjectedGaussSeidel.h b/thirdparty/bullet/BulletDynamics/MLCPSolvers/btSolveProjectedGaussSeidel.h
index c0b40ffd9f..c3f4ec3997 100644
--- a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btSolveProjectedGaussSeidel.h
+++ b/thirdparty/bullet/BulletDynamics/MLCPSolvers/btSolveProjectedGaussSeidel.h
@@ -17,25 +17,22 @@ subject to the following restrictions:
#ifndef BT_SOLVE_PROJECTED_GAUSS_SEIDEL_H
#define BT_SOLVE_PROJECTED_GAUSS_SEIDEL_H
-
#include "btMLCPSolverInterface.h"
///This solver is mainly for debug/learning purposes: it is functionally equivalent to the btSequentialImpulseConstraintSolver solver, but much slower (it builds the full LCP matrix)
class btSolveProjectedGaussSeidel : public btMLCPSolverInterface
{
-
public:
-
btScalar m_leastSquaresResidualThreshold;
btScalar m_leastSquaresResidual;
btSolveProjectedGaussSeidel()
- :m_leastSquaresResidualThreshold(0),
- m_leastSquaresResidual(0)
+ : m_leastSquaresResidualThreshold(0),
+ m_leastSquaresResidual(0)
{
}
- virtual bool solveMLCP(const btMatrixXu & A, const btVectorXu & b, btVectorXu& x, const btVectorXu & lo,const btVectorXu & hi,const btAlignedObjectArray<int>& limitDependency, int numIterations, bool useSparsity = true)
+ virtual bool solveMLCP(const btMatrixXu& A, const btVectorXu& b, btVectorXu& x, const btVectorXu& lo, const btVectorXu& hi, const btAlignedObjectArray<int>& limitDependency, int numIterations, bool useSparsity = true)
{
if (!A.rows())
return true;
@@ -46,65 +43,65 @@ public:
btAssert(A.rows() == b.rows());
int i, j, numRows = A.rows();
-
+
btScalar delta;
- for (int k = 0; k <numIterations; k++)
+ for (int k = 0; k < numIterations; k++)
{
m_leastSquaresResidual = 0.f;
- for (i = 0; i <numRows; i++)
+ for (i = 0; i < numRows; i++)
{
delta = 0.0f;
if (useSparsity)
{
- for (int h=0;h<A.m_rowNonZeroElements1[i].size();h++)
+ for (int h = 0; h < A.m_rowNonZeroElements1[i].size(); h++)
{
- int j = A.m_rowNonZeroElements1[i][h];
- if (j != i)//skip main diagonal
+ j = A.m_rowNonZeroElements1[i][h];
+ if (j != i) //skip main diagonal
{
- delta += A(i,j) * x[j];
+ delta += A(i, j) * x[j];
}
}
- } else
+ }
+ else
{
- for (j = 0; j <i; j++)
- delta += A(i,j) * x[j];
- for (j = i+1; j<numRows; j++)
- delta += A(i,j) * x[j];
+ for (j = 0; j < i; j++)
+ delta += A(i, j) * x[j];
+ for (j = i + 1; j < numRows; j++)
+ delta += A(i, j) * x[j];
}
- btScalar aDiag = A(i,i);
+ btScalar aDiag = A(i, i);
btScalar xOld = x[i];
- x [i] = (b [i] - delta) / aDiag;
+ x[i] = (b[i] - delta) / aDiag;
btScalar s = 1.f;
- if (limitDependency[i]>=0)
+ if (limitDependency[i] >= 0)
{
s = x[limitDependency[i]];
- if (s<0)
- s=1;
+ if (s < 0)
+ s = 1;
}
-
- if (x[i]<lo[i]*s)
- x[i]=lo[i]*s;
- if (x[i]>hi[i]*s)
- x[i]=hi[i]*s;
+
+ if (x[i] < lo[i] * s)
+ x[i] = lo[i] * s;
+ if (x[i] > hi[i] * s)
+ x[i] = hi[i] * s;
btScalar diff = x[i] - xOld;
- m_leastSquaresResidual += diff*diff;
+ m_leastSquaresResidual += diff * diff;
}
- btScalar eps = m_leastSquaresResidualThreshold;
- if ((m_leastSquaresResidual < eps) || (k >=(numIterations-1)))
+ btScalar eps = m_leastSquaresResidualThreshold;
+ if ((m_leastSquaresResidual < eps) || (k >= (numIterations - 1)))
{
#ifdef VERBOSE_PRINTF_RESIDUAL
- printf("totalLenSqr = %f at iteration #%d\n", m_leastSquaresResidual,k);
+ printf("totalLenSqr = %f at iteration #%d\n", m_leastSquaresResidual, k);
#endif
break;
}
}
return true;
}
-
};
-#endif //BT_SOLVE_PROJECTED_GAUSS_SEIDEL_H
+#endif //BT_SOLVE_PROJECTED_GAUSS_SEIDEL_H