diff options
Diffstat (limited to 'thirdparty/bullet/BulletDynamics/MLCPSolvers/btLemkeSolver.h')
-rw-r--r-- | thirdparty/bullet/BulletDynamics/MLCPSolvers/btLemkeSolver.h | 476 |
1 files changed, 232 insertions, 244 deletions
diff --git a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btLemkeSolver.h b/thirdparty/bullet/BulletDynamics/MLCPSolvers/btLemkeSolver.h index 98484c3796..ac2fc46ab0 100644 --- a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btLemkeSolver.h +++ b/thirdparty/bullet/BulletDynamics/MLCPSolvers/btLemkeSolver.h @@ -17,334 +17,322 @@ subject to the following restrictions: #ifndef BT_LEMKE_SOLVER_H #define BT_LEMKE_SOLVER_H - #include "btMLCPSolverInterface.h" #include "btLemkeAlgorithm.h" - - - -///The btLemkeSolver is based on "Fast Implementation of Lemke’s Algorithm for Rigid Body Contact Simulation (John E. Lloyd) " +///The btLemkeSolver is based on "Fast Implementation of Lemke's Algorithm for Rigid Body Contact Simulation (John E. Lloyd) " ///It is a slower but more accurate solver. Increase the m_maxLoops for better convergence, at the cost of more CPU time. ///The original implementation of the btLemkeAlgorithm was done by Kilian Grundl from the MBSim team class btLemkeSolver : public btMLCPSolverInterface { protected: - public: - - btScalar m_maxValue; - int m_debugLevel; - int m_maxLoops; - bool m_useLoHighBounds; - - + btScalar m_maxValue; + int m_debugLevel; + int m_maxLoops; + bool m_useLoHighBounds; btLemkeSolver() - :m_maxValue(100000), - m_debugLevel(0), - m_maxLoops(1000), - m_useLoHighBounds(true) + : m_maxValue(100000), + m_debugLevel(0), + m_maxLoops(1000), + m_useLoHighBounds(true) { } - virtual bool solveMLCP(const btMatrixXu & A, const btVectorXu & b, btVectorXu& x, const btVectorXu & lo,const btVectorXu & hi,const btAlignedObjectArray<int>& limitDependency, int numIterations, bool useSparsity = true) + virtual bool solveMLCP(const btMatrixXu& A, const btVectorXu& b, btVectorXu& x, const btVectorXu& lo, const btVectorXu& hi, const btAlignedObjectArray<int>& limitDependency, int numIterations, bool useSparsity = true) { - if (m_useLoHighBounds) { + BT_PROFILE("btLemkeSolver::solveMLCP"); + int n = A.rows(); + if (0 == n) + return true; - BT_PROFILE("btLemkeSolver::solveMLCP"); - int n = A.rows(); - if (0==n) - return true; - - bool fail = false; - - btVectorXu solution(n); - btVectorXu q1; - q1.resize(n); - for (int row=0;row<n;row++) - { - q1[row] = -b[row]; - } + bool fail = false; + + btVectorXu solution(n); + btVectorXu q1; + q1.resize(n); + for (int row = 0; row < n; row++) + { + q1[row] = -b[row]; + } - // cout << "A" << endl; - // cout << A << endl; + // cout << "A" << endl; + // cout << A << endl; ///////////////////////////////////// //slow matrix inversion, replace with LU decomposition btMatrixXu A1; - btMatrixXu B(n,n); + btMatrixXu B(n, n); { - BT_PROFILE("inverse(slow)"); - A1.resize(A.rows(),A.cols()); - for (int row=0;row<A.rows();row++) + //BT_PROFILE("inverse(slow)"); + A1.resize(A.rows(), A.cols()); + for (int row = 0; row < A.rows(); row++) { - for (int col=0;col<A.cols();col++) + for (int col = 0; col < A.cols(); col++) { - A1.setElem(row,col,A(row,col)); + A1.setElem(row, col, A(row, col)); } } btMatrixXu matrix; - matrix.resize(n,2*n); - for (int row=0;row<n;row++) + matrix.resize(n, 2 * n); + for (int row = 0; row < n; row++) { - for (int col=0;col<n;col++) + for (int col = 0; col < n; col++) { - matrix.setElem(row,col,A1(row,col)); + matrix.setElem(row, col, A1(row, col)); } } - - btScalar ratio,a; - int i,j,k; - for(i = 0; i < n; i++){ - for(j = n; j < 2*n; j++){ - if(i==(j-n)) - matrix.setElem(i,j,1.0); - else - matrix.setElem(i,j,0.0); + btScalar ratio, a; + int i, j, k; + for (i = 0; i < n; i++) + { + for (j = n; j < 2 * n; j++) + { + if (i == (j - n)) + matrix.setElem(i, j, 1.0); + else + matrix.setElem(i, j, 0.0); + } } - } - for(i = 0; i < n; i++){ - for(j = 0; j < n; j++){ - if(i!=j) + for (i = 0; i < n; i++) + { + for (j = 0; j < n; j++) { - btScalar v = matrix(i,i); - if (btFuzzyZero(v)) + if (i != j) { - a = 0.000001f; - } - ratio = matrix(j,i)/matrix(i,i); - for(k = 0; k < 2*n; k++){ - matrix.addElem(j,k,- ratio * matrix(i,k)); + btScalar v = matrix(i, i); + if (btFuzzyZero(v)) + { + a = 0.000001f; + } + ratio = matrix(j, i) / matrix(i, i); + for (k = 0; k < 2 * n; k++) + { + matrix.addElem(j, k, -ratio * matrix(i, k)); + } } } } - } - for(i = 0; i < n; i++){ - a = matrix(i,i); - if (btFuzzyZero(a)) + for (i = 0; i < n; i++) { - a = 0.000001f; - } - btScalar invA = 1.f/a; - for(j = 0; j < 2*n; j++){ - matrix.mulElem(i,j,invA); + a = matrix(i, i); + if (btFuzzyZero(a)) + { + a = 0.000001f; + } + btScalar invA = 1.f / a; + for (j = 0; j < 2 * n; j++) + { + matrix.mulElem(i, j, invA); + } } - } - - - - - for (int row=0;row<n;row++) + for (int row = 0; row < n; row++) { - for (int col=0;col<n;col++) + for (int col = 0; col < n; col++) { - B.setElem(row,col,matrix(row,n+col)); + B.setElem(row, col, matrix(row, n + col)); } } } - btMatrixXu b1(n,1); + btMatrixXu b1(n, 1); - btMatrixXu M(n*2,n*2); - for (int row=0;row<n;row++) - { - b1.setElem(row,0,-b[row]); - for (int col=0;col<n;col++) + btMatrixXu M(n * 2, n * 2); + for (int row = 0; row < n; row++) { - btScalar v =B(row,col); - M.setElem(row,col,v); - M.setElem(n+row,n+col,v); - M.setElem(n+row,col,-v); - M.setElem(row,n+col,-v); - + b1.setElem(row, 0, -b[row]); + for (int col = 0; col < n; col++) + { + btScalar v = B(row, col); + M.setElem(row, col, v); + M.setElem(n + row, n + col, v); + M.setElem(n + row, col, -v); + M.setElem(row, n + col, -v); + } } - } - btMatrixXu Bb1 = B*b1; -// q = [ (-B*b1 - lo)' (hi + B*b1)' ]' + btMatrixXu Bb1 = B * b1; + // q = [ (-B*b1 - lo)' (hi + B*b1)' ]' - btVectorXu qq; - qq.resize(n*2); - for (int row=0;row<n;row++) - { - qq[row] = -Bb1(row,0)-lo[row]; - qq[n+row] = Bb1(row,0)+hi[row]; - } + btVectorXu qq; + qq.resize(n * 2); + for (int row = 0; row < n; row++) + { + qq[row] = -Bb1(row, 0) - lo[row]; + qq[n + row] = Bb1(row, 0) + hi[row]; + } - btVectorXu z1; + btVectorXu z1; - btMatrixXu y1; - y1.resize(n,1); - btLemkeAlgorithm lemke(M,qq,m_debugLevel); - { - BT_PROFILE("lemke.solve"); - lemke.setSystem(M,qq); - z1 = lemke.solve(m_maxLoops); - } - for (int row=0;row<n;row++) - { - y1.setElem(row,0,z1[2*n+row]-z1[3*n+row]); - } - btMatrixXu y1_b1(n,1); - for (int i=0;i<n;i++) - { - y1_b1.setElem(i,0,y1(i,0)-b1(i,0)); - } + btMatrixXu y1; + y1.resize(n, 1); + btLemkeAlgorithm lemke(M, qq, m_debugLevel); + { + //BT_PROFILE("lemke.solve"); + lemke.setSystem(M, qq); + z1 = lemke.solve(m_maxLoops); + } + for (int row = 0; row < n; row++) + { + y1.setElem(row, 0, z1[2 * n + row] - z1[3 * n + row]); + } + btMatrixXu y1_b1(n, 1); + for (int i = 0; i < n; i++) + { + y1_b1.setElem(i, 0, y1(i, 0) - b1(i, 0)); + } - btMatrixXu x1; + btMatrixXu x1; - x1 = B*(y1_b1); - - for (int row=0;row<n;row++) - { - solution[row] = x1(row,0);//n]; - } + x1 = B * (y1_b1); - int errorIndexMax = -1; - int errorIndexMin = -1; - float errorValueMax = -1e30; - float errorValueMin = 1e30; - - for (int i=0;i<n;i++) - { - x[i] = solution[i]; - volatile btScalar check = x[i]; - if (x[i] != check) + for (int row = 0; row < n; row++) { - //printf("Lemke result is #NAN\n"); - x.setZero(); - return false; + solution[row] = x1(row, 0); //n]; } - - //this is some hack/safety mechanism, to discard invalid solutions from the Lemke solver - //we need to figure out why it happens, and fix it, or detect it properly) - if (x[i]>m_maxValue) + + int errorIndexMax = -1; + int errorIndexMin = -1; + float errorValueMax = -1e30; + float errorValueMin = 1e30; + + for (int i = 0; i < n; i++) { - if (x[i]> errorValueMax) + x[i] = solution[i]; + volatile btScalar check = x[i]; + if (x[i] != check) + { + //printf("Lemke result is #NAN\n"); + x.setZero(); + return false; + } + + //this is some hack/safety mechanism, to discard invalid solutions from the Lemke solver + //we need to figure out why it happens, and fix it, or detect it properly) + if (x[i] > m_maxValue) + { + if (x[i] > errorValueMax) + { + fail = true; + errorIndexMax = i; + errorValueMax = x[i]; + } + ////printf("x[i] = %f,",x[i]); + } + if (x[i] < -m_maxValue) { - fail = true; - errorIndexMax = i; - errorValueMax = x[i]; + if (x[i] < errorValueMin) + { + errorIndexMin = i; + errorValueMin = x[i]; + fail = true; + //printf("x[i] = %f,",x[i]); + } } - ////printf("x[i] = %f,",x[i]); } - if (x[i]<-m_maxValue) + if (fail) { - if (x[i]<errorValueMin) + int m_errorCountTimes = 0; + if (errorIndexMin < 0) + errorValueMin = 0.f; + if (errorIndexMax < 0) + errorValueMax = 0.f; + m_errorCountTimes++; + // printf("Error (x[%d] = %f, x[%d] = %f), resetting %d times\n", errorIndexMin,errorValueMin, errorIndexMax, errorValueMax, errorCountTimes++); + for (int i = 0; i < n; i++) { - errorIndexMin = i; - errorValueMin = x[i]; - fail = true; - //printf("x[i] = %f,",x[i]); + x[i] = 0.f; } } + return !fail; } - if (fail) + else + { - int m_errorCountTimes = 0; - if (errorIndexMin<0) - errorValueMin = 0.f; - if (errorIndexMax<0) - errorValueMax = 0.f; - m_errorCountTimes++; - // printf("Error (x[%d] = %f, x[%d] = %f), resetting %d times\n", errorIndexMin,errorValueMin, errorIndexMax, errorValueMax, errorCountTimes++); - for (int i=0;i<n;i++) - { - x[i]=0.f; - } - } - return !fail; - } else - - { int dimension = A.rows(); - if (0==dimension) - return true; - -// printf("================ solving using Lemke/Newton/Fixpoint\n"); - - btVectorXu q; - q.resize(dimension); - for (int row=0;row<dimension;row++) - { - q[row] = -b[row]; - } - - btLemkeAlgorithm lemke(A,q,m_debugLevel); - - - lemke.setSystem(A,q); - - btVectorXu solution = lemke.solve(m_maxLoops); - - //check solution - - bool fail = false; - int errorIndexMax = -1; - int errorIndexMin = -1; - float errorValueMax = -1e30; - float errorValueMin = 1e30; - - for (int i=0;i<dimension;i++) - { - x[i] = solution[i+dimension]; - volatile btScalar check = x[i]; - if (x[i] != check) + if (0 == dimension) + return true; + + // printf("================ solving using Lemke/Newton/Fixpoint\n"); + + btVectorXu q; + q.resize(dimension); + for (int row = 0; row < dimension; row++) { - x.setZero(); - return false; + q[row] = -b[row]; } - - //this is some hack/safety mechanism, to discard invalid solutions from the Lemke solver - //we need to figure out why it happens, and fix it, or detect it properly) - if (x[i]>m_maxValue) + + btLemkeAlgorithm lemke(A, q, m_debugLevel); + + lemke.setSystem(A, q); + + btVectorXu solution = lemke.solve(m_maxLoops); + + //check solution + + bool fail = false; + int errorIndexMax = -1; + int errorIndexMin = -1; + float errorValueMax = -1e30; + float errorValueMin = 1e30; + + for (int i = 0; i < dimension; i++) { - if (x[i]> errorValueMax) + x[i] = solution[i + dimension]; + volatile btScalar check = x[i]; + if (x[i] != check) { - fail = true; - errorIndexMax = i; - errorValueMax = x[i]; + x.setZero(); + return false; } - ////printf("x[i] = %f,",x[i]); - } - if (x[i]<-m_maxValue) - { - if (x[i]<errorValueMin) + + //this is some hack/safety mechanism, to discard invalid solutions from the Lemke solver + //we need to figure out why it happens, and fix it, or detect it properly) + if (x[i] > m_maxValue) + { + if (x[i] > errorValueMax) + { + fail = true; + errorIndexMax = i; + errorValueMax = x[i]; + } + ////printf("x[i] = %f,",x[i]); + } + if (x[i] < -m_maxValue) { - errorIndexMin = i; - errorValueMin = x[i]; - fail = true; - //printf("x[i] = %f,",x[i]); + if (x[i] < errorValueMin) + { + errorIndexMin = i; + errorValueMin = x[i]; + fail = true; + //printf("x[i] = %f,",x[i]); + } } } - } - if (fail) - { - static int errorCountTimes = 0; - if (errorIndexMin<0) - errorValueMin = 0.f; - if (errorIndexMax<0) - errorValueMax = 0.f; - printf("Error (x[%d] = %f, x[%d] = %f), resetting %d times\n", errorIndexMin,errorValueMin, errorIndexMax, errorValueMax, errorCountTimes++); - for (int i=0;i<dimension;i++) + if (fail) { - x[i]=0.f; + static int errorCountTimes = 0; + if (errorIndexMin < 0) + errorValueMin = 0.f; + if (errorIndexMax < 0) + errorValueMax = 0.f; + printf("Error (x[%d] = %f, x[%d] = %f), resetting %d times\n", errorIndexMin, errorValueMin, errorIndexMax, errorValueMax, errorCountTimes++); + for (int i = 0; i < dimension; i++) + { + x[i] = 0.f; + } } - } - - - return !fail; - } - return true; + return !fail; + } + return true; } - }; -#endif //BT_LEMKE_SOLVER_H +#endif //BT_LEMKE_SOLVER_H |