summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletDynamics/MLCPSolvers/btLemkeSolver.h
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/bullet/BulletDynamics/MLCPSolvers/btLemkeSolver.h')
-rw-r--r--thirdparty/bullet/BulletDynamics/MLCPSolvers/btLemkeSolver.h476
1 files changed, 232 insertions, 244 deletions
diff --git a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btLemkeSolver.h b/thirdparty/bullet/BulletDynamics/MLCPSolvers/btLemkeSolver.h
index 98484c3796..ac2fc46ab0 100644
--- a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btLemkeSolver.h
+++ b/thirdparty/bullet/BulletDynamics/MLCPSolvers/btLemkeSolver.h
@@ -17,334 +17,322 @@ subject to the following restrictions:
#ifndef BT_LEMKE_SOLVER_H
#define BT_LEMKE_SOLVER_H
-
#include "btMLCPSolverInterface.h"
#include "btLemkeAlgorithm.h"
-
-
-
-///The btLemkeSolver is based on "Fast Implementation of Lemke’s Algorithm for Rigid Body Contact Simulation (John E. Lloyd) "
+///The btLemkeSolver is based on "Fast Implementation of Lemke's Algorithm for Rigid Body Contact Simulation (John E. Lloyd) "
///It is a slower but more accurate solver. Increase the m_maxLoops for better convergence, at the cost of more CPU time.
///The original implementation of the btLemkeAlgorithm was done by Kilian Grundl from the MBSim team
class btLemkeSolver : public btMLCPSolverInterface
{
protected:
-
public:
-
- btScalar m_maxValue;
- int m_debugLevel;
- int m_maxLoops;
- bool m_useLoHighBounds;
-
-
+ btScalar m_maxValue;
+ int m_debugLevel;
+ int m_maxLoops;
+ bool m_useLoHighBounds;
btLemkeSolver()
- :m_maxValue(100000),
- m_debugLevel(0),
- m_maxLoops(1000),
- m_useLoHighBounds(true)
+ : m_maxValue(100000),
+ m_debugLevel(0),
+ m_maxLoops(1000),
+ m_useLoHighBounds(true)
{
}
- virtual bool solveMLCP(const btMatrixXu & A, const btVectorXu & b, btVectorXu& x, const btVectorXu & lo,const btVectorXu & hi,const btAlignedObjectArray<int>& limitDependency, int numIterations, bool useSparsity = true)
+ virtual bool solveMLCP(const btMatrixXu& A, const btVectorXu& b, btVectorXu& x, const btVectorXu& lo, const btVectorXu& hi, const btAlignedObjectArray<int>& limitDependency, int numIterations, bool useSparsity = true)
{
-
if (m_useLoHighBounds)
{
+ BT_PROFILE("btLemkeSolver::solveMLCP");
+ int n = A.rows();
+ if (0 == n)
+ return true;
- BT_PROFILE("btLemkeSolver::solveMLCP");
- int n = A.rows();
- if (0==n)
- return true;
-
- bool fail = false;
-
- btVectorXu solution(n);
- btVectorXu q1;
- q1.resize(n);
- for (int row=0;row<n;row++)
- {
- q1[row] = -b[row];
- }
+ bool fail = false;
+
+ btVectorXu solution(n);
+ btVectorXu q1;
+ q1.resize(n);
+ for (int row = 0; row < n; row++)
+ {
+ q1[row] = -b[row];
+ }
- // cout << "A" << endl;
- // cout << A << endl;
+ // cout << "A" << endl;
+ // cout << A << endl;
/////////////////////////////////////
//slow matrix inversion, replace with LU decomposition
btMatrixXu A1;
- btMatrixXu B(n,n);
+ btMatrixXu B(n, n);
{
- BT_PROFILE("inverse(slow)");
- A1.resize(A.rows(),A.cols());
- for (int row=0;row<A.rows();row++)
+ //BT_PROFILE("inverse(slow)");
+ A1.resize(A.rows(), A.cols());
+ for (int row = 0; row < A.rows(); row++)
{
- for (int col=0;col<A.cols();col++)
+ for (int col = 0; col < A.cols(); col++)
{
- A1.setElem(row,col,A(row,col));
+ A1.setElem(row, col, A(row, col));
}
}
btMatrixXu matrix;
- matrix.resize(n,2*n);
- for (int row=0;row<n;row++)
+ matrix.resize(n, 2 * n);
+ for (int row = 0; row < n; row++)
{
- for (int col=0;col<n;col++)
+ for (int col = 0; col < n; col++)
{
- matrix.setElem(row,col,A1(row,col));
+ matrix.setElem(row, col, A1(row, col));
}
}
-
- btScalar ratio,a;
- int i,j,k;
- for(i = 0; i < n; i++){
- for(j = n; j < 2*n; j++){
- if(i==(j-n))
- matrix.setElem(i,j,1.0);
- else
- matrix.setElem(i,j,0.0);
+ btScalar ratio, a;
+ int i, j, k;
+ for (i = 0; i < n; i++)
+ {
+ for (j = n; j < 2 * n; j++)
+ {
+ if (i == (j - n))
+ matrix.setElem(i, j, 1.0);
+ else
+ matrix.setElem(i, j, 0.0);
+ }
}
- }
- for(i = 0; i < n; i++){
- for(j = 0; j < n; j++){
- if(i!=j)
+ for (i = 0; i < n; i++)
+ {
+ for (j = 0; j < n; j++)
{
- btScalar v = matrix(i,i);
- if (btFuzzyZero(v))
+ if (i != j)
{
- a = 0.000001f;
- }
- ratio = matrix(j,i)/matrix(i,i);
- for(k = 0; k < 2*n; k++){
- matrix.addElem(j,k,- ratio * matrix(i,k));
+ btScalar v = matrix(i, i);
+ if (btFuzzyZero(v))
+ {
+ a = 0.000001f;
+ }
+ ratio = matrix(j, i) / matrix(i, i);
+ for (k = 0; k < 2 * n; k++)
+ {
+ matrix.addElem(j, k, -ratio * matrix(i, k));
+ }
}
}
}
- }
- for(i = 0; i < n; i++){
- a = matrix(i,i);
- if (btFuzzyZero(a))
+ for (i = 0; i < n; i++)
{
- a = 0.000001f;
- }
- btScalar invA = 1.f/a;
- for(j = 0; j < 2*n; j++){
- matrix.mulElem(i,j,invA);
+ a = matrix(i, i);
+ if (btFuzzyZero(a))
+ {
+ a = 0.000001f;
+ }
+ btScalar invA = 1.f / a;
+ for (j = 0; j < 2 * n; j++)
+ {
+ matrix.mulElem(i, j, invA);
+ }
}
- }
-
-
-
-
- for (int row=0;row<n;row++)
+ for (int row = 0; row < n; row++)
{
- for (int col=0;col<n;col++)
+ for (int col = 0; col < n; col++)
{
- B.setElem(row,col,matrix(row,n+col));
+ B.setElem(row, col, matrix(row, n + col));
}
}
}
- btMatrixXu b1(n,1);
+ btMatrixXu b1(n, 1);
- btMatrixXu M(n*2,n*2);
- for (int row=0;row<n;row++)
- {
- b1.setElem(row,0,-b[row]);
- for (int col=0;col<n;col++)
+ btMatrixXu M(n * 2, n * 2);
+ for (int row = 0; row < n; row++)
{
- btScalar v =B(row,col);
- M.setElem(row,col,v);
- M.setElem(n+row,n+col,v);
- M.setElem(n+row,col,-v);
- M.setElem(row,n+col,-v);
-
+ b1.setElem(row, 0, -b[row]);
+ for (int col = 0; col < n; col++)
+ {
+ btScalar v = B(row, col);
+ M.setElem(row, col, v);
+ M.setElem(n + row, n + col, v);
+ M.setElem(n + row, col, -v);
+ M.setElem(row, n + col, -v);
+ }
}
- }
- btMatrixXu Bb1 = B*b1;
-// q = [ (-B*b1 - lo)' (hi + B*b1)' ]'
+ btMatrixXu Bb1 = B * b1;
+ // q = [ (-B*b1 - lo)' (hi + B*b1)' ]'
- btVectorXu qq;
- qq.resize(n*2);
- for (int row=0;row<n;row++)
- {
- qq[row] = -Bb1(row,0)-lo[row];
- qq[n+row] = Bb1(row,0)+hi[row];
- }
+ btVectorXu qq;
+ qq.resize(n * 2);
+ for (int row = 0; row < n; row++)
+ {
+ qq[row] = -Bb1(row, 0) - lo[row];
+ qq[n + row] = Bb1(row, 0) + hi[row];
+ }
- btVectorXu z1;
+ btVectorXu z1;
- btMatrixXu y1;
- y1.resize(n,1);
- btLemkeAlgorithm lemke(M,qq,m_debugLevel);
- {
- BT_PROFILE("lemke.solve");
- lemke.setSystem(M,qq);
- z1 = lemke.solve(m_maxLoops);
- }
- for (int row=0;row<n;row++)
- {
- y1.setElem(row,0,z1[2*n+row]-z1[3*n+row]);
- }
- btMatrixXu y1_b1(n,1);
- for (int i=0;i<n;i++)
- {
- y1_b1.setElem(i,0,y1(i,0)-b1(i,0));
- }
+ btMatrixXu y1;
+ y1.resize(n, 1);
+ btLemkeAlgorithm lemke(M, qq, m_debugLevel);
+ {
+ //BT_PROFILE("lemke.solve");
+ lemke.setSystem(M, qq);
+ z1 = lemke.solve(m_maxLoops);
+ }
+ for (int row = 0; row < n; row++)
+ {
+ y1.setElem(row, 0, z1[2 * n + row] - z1[3 * n + row]);
+ }
+ btMatrixXu y1_b1(n, 1);
+ for (int i = 0; i < n; i++)
+ {
+ y1_b1.setElem(i, 0, y1(i, 0) - b1(i, 0));
+ }
- btMatrixXu x1;
+ btMatrixXu x1;
- x1 = B*(y1_b1);
-
- for (int row=0;row<n;row++)
- {
- solution[row] = x1(row,0);//n];
- }
+ x1 = B * (y1_b1);
- int errorIndexMax = -1;
- int errorIndexMin = -1;
- float errorValueMax = -1e30;
- float errorValueMin = 1e30;
-
- for (int i=0;i<n;i++)
- {
- x[i] = solution[i];
- volatile btScalar check = x[i];
- if (x[i] != check)
+ for (int row = 0; row < n; row++)
{
- //printf("Lemke result is #NAN\n");
- x.setZero();
- return false;
+ solution[row] = x1(row, 0); //n];
}
-
- //this is some hack/safety mechanism, to discard invalid solutions from the Lemke solver
- //we need to figure out why it happens, and fix it, or detect it properly)
- if (x[i]>m_maxValue)
+
+ int errorIndexMax = -1;
+ int errorIndexMin = -1;
+ float errorValueMax = -1e30;
+ float errorValueMin = 1e30;
+
+ for (int i = 0; i < n; i++)
{
- if (x[i]> errorValueMax)
+ x[i] = solution[i];
+ volatile btScalar check = x[i];
+ if (x[i] != check)
+ {
+ //printf("Lemke result is #NAN\n");
+ x.setZero();
+ return false;
+ }
+
+ //this is some hack/safety mechanism, to discard invalid solutions from the Lemke solver
+ //we need to figure out why it happens, and fix it, or detect it properly)
+ if (x[i] > m_maxValue)
+ {
+ if (x[i] > errorValueMax)
+ {
+ fail = true;
+ errorIndexMax = i;
+ errorValueMax = x[i];
+ }
+ ////printf("x[i] = %f,",x[i]);
+ }
+ if (x[i] < -m_maxValue)
{
- fail = true;
- errorIndexMax = i;
- errorValueMax = x[i];
+ if (x[i] < errorValueMin)
+ {
+ errorIndexMin = i;
+ errorValueMin = x[i];
+ fail = true;
+ //printf("x[i] = %f,",x[i]);
+ }
}
- ////printf("x[i] = %f,",x[i]);
}
- if (x[i]<-m_maxValue)
+ if (fail)
{
- if (x[i]<errorValueMin)
+ int m_errorCountTimes = 0;
+ if (errorIndexMin < 0)
+ errorValueMin = 0.f;
+ if (errorIndexMax < 0)
+ errorValueMax = 0.f;
+ m_errorCountTimes++;
+ // printf("Error (x[%d] = %f, x[%d] = %f), resetting %d times\n", errorIndexMin,errorValueMin, errorIndexMax, errorValueMax, errorCountTimes++);
+ for (int i = 0; i < n; i++)
{
- errorIndexMin = i;
- errorValueMin = x[i];
- fail = true;
- //printf("x[i] = %f,",x[i]);
+ x[i] = 0.f;
}
}
+ return !fail;
}
- if (fail)
+ else
+
{
- int m_errorCountTimes = 0;
- if (errorIndexMin<0)
- errorValueMin = 0.f;
- if (errorIndexMax<0)
- errorValueMax = 0.f;
- m_errorCountTimes++;
- // printf("Error (x[%d] = %f, x[%d] = %f), resetting %d times\n", errorIndexMin,errorValueMin, errorIndexMax, errorValueMax, errorCountTimes++);
- for (int i=0;i<n;i++)
- {
- x[i]=0.f;
- }
- }
- return !fail;
- } else
-
- {
int dimension = A.rows();
- if (0==dimension)
- return true;
-
-// printf("================ solving using Lemke/Newton/Fixpoint\n");
-
- btVectorXu q;
- q.resize(dimension);
- for (int row=0;row<dimension;row++)
- {
- q[row] = -b[row];
- }
-
- btLemkeAlgorithm lemke(A,q,m_debugLevel);
-
-
- lemke.setSystem(A,q);
-
- btVectorXu solution = lemke.solve(m_maxLoops);
-
- //check solution
-
- bool fail = false;
- int errorIndexMax = -1;
- int errorIndexMin = -1;
- float errorValueMax = -1e30;
- float errorValueMin = 1e30;
-
- for (int i=0;i<dimension;i++)
- {
- x[i] = solution[i+dimension];
- volatile btScalar check = x[i];
- if (x[i] != check)
+ if (0 == dimension)
+ return true;
+
+ // printf("================ solving using Lemke/Newton/Fixpoint\n");
+
+ btVectorXu q;
+ q.resize(dimension);
+ for (int row = 0; row < dimension; row++)
{
- x.setZero();
- return false;
+ q[row] = -b[row];
}
-
- //this is some hack/safety mechanism, to discard invalid solutions from the Lemke solver
- //we need to figure out why it happens, and fix it, or detect it properly)
- if (x[i]>m_maxValue)
+
+ btLemkeAlgorithm lemke(A, q, m_debugLevel);
+
+ lemke.setSystem(A, q);
+
+ btVectorXu solution = lemke.solve(m_maxLoops);
+
+ //check solution
+
+ bool fail = false;
+ int errorIndexMax = -1;
+ int errorIndexMin = -1;
+ float errorValueMax = -1e30;
+ float errorValueMin = 1e30;
+
+ for (int i = 0; i < dimension; i++)
{
- if (x[i]> errorValueMax)
+ x[i] = solution[i + dimension];
+ volatile btScalar check = x[i];
+ if (x[i] != check)
{
- fail = true;
- errorIndexMax = i;
- errorValueMax = x[i];
+ x.setZero();
+ return false;
}
- ////printf("x[i] = %f,",x[i]);
- }
- if (x[i]<-m_maxValue)
- {
- if (x[i]<errorValueMin)
+
+ //this is some hack/safety mechanism, to discard invalid solutions from the Lemke solver
+ //we need to figure out why it happens, and fix it, or detect it properly)
+ if (x[i] > m_maxValue)
+ {
+ if (x[i] > errorValueMax)
+ {
+ fail = true;
+ errorIndexMax = i;
+ errorValueMax = x[i];
+ }
+ ////printf("x[i] = %f,",x[i]);
+ }
+ if (x[i] < -m_maxValue)
{
- errorIndexMin = i;
- errorValueMin = x[i];
- fail = true;
- //printf("x[i] = %f,",x[i]);
+ if (x[i] < errorValueMin)
+ {
+ errorIndexMin = i;
+ errorValueMin = x[i];
+ fail = true;
+ //printf("x[i] = %f,",x[i]);
+ }
}
}
- }
- if (fail)
- {
- static int errorCountTimes = 0;
- if (errorIndexMin<0)
- errorValueMin = 0.f;
- if (errorIndexMax<0)
- errorValueMax = 0.f;
- printf("Error (x[%d] = %f, x[%d] = %f), resetting %d times\n", errorIndexMin,errorValueMin, errorIndexMax, errorValueMax, errorCountTimes++);
- for (int i=0;i<dimension;i++)
+ if (fail)
{
- x[i]=0.f;
+ static int errorCountTimes = 0;
+ if (errorIndexMin < 0)
+ errorValueMin = 0.f;
+ if (errorIndexMax < 0)
+ errorValueMax = 0.f;
+ printf("Error (x[%d] = %f, x[%d] = %f), resetting %d times\n", errorIndexMin, errorValueMin, errorIndexMax, errorValueMax, errorCountTimes++);
+ for (int i = 0; i < dimension; i++)
+ {
+ x[i] = 0.f;
+ }
}
- }
-
-
- return !fail;
- }
- return true;
+ return !fail;
+ }
+ return true;
}
-
};
-#endif //BT_LEMKE_SOLVER_H
+#endif //BT_LEMKE_SOLVER_H