diff options
Diffstat (limited to 'thirdparty/bullet/BulletDynamics/MLCPSolvers/btDantzigLCP.cpp')
-rw-r--r-- | thirdparty/bullet/BulletDynamics/MLCPSolvers/btDantzigLCP.cpp | 2158 |
1 files changed, 0 insertions, 2158 deletions
diff --git a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btDantzigLCP.cpp b/thirdparty/bullet/BulletDynamics/MLCPSolvers/btDantzigLCP.cpp deleted file mode 100644 index 98ecdc0794..0000000000 --- a/thirdparty/bullet/BulletDynamics/MLCPSolvers/btDantzigLCP.cpp +++ /dev/null @@ -1,2158 +0,0 @@ -/************************************************************************* -* * -* Open Dynamics Engine, Copyright (C) 2001,2002 Russell L. Smith. * -* All rights reserved. Email: russ@q12.org Web: www.q12.org * -* * -* This library is free software; you can redistribute it and/or * -* modify it under the terms of EITHER: * -* (1) The GNU Lesser General Public License as published by the Free * -* Software Foundation; either version 2.1 of the License, or (at * -* your option) any later version. The text of the GNU Lesser * -* General Public License is included with this library in the * -* file LICENSE.TXT. * -* (2) The BSD-style license that is included with this library in * -* the file LICENSE-BSD.TXT. * -* * -* This library is distributed in the hope that it will be useful, * -* but WITHOUT ANY WARRANTY; without even the implied warranty of * -* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files * -* LICENSE.TXT and LICENSE-BSD.TXT for more details. * -* * -*************************************************************************/ - -/* - - -THE ALGORITHM -------------- - -solve A*x = b+w, with x and w subject to certain LCP conditions. -each x(i),w(i) must lie on one of the three line segments in the following -diagram. each line segment corresponds to one index set : - - w(i) - /|\ | : - | | : - | |i in N : - w>0 | |state[i]=0 : - | | : - | | : i in C - w=0 + +-----------------------+ - | : | - | : | - w<0 | : |i in N - | : |state[i]=1 - | : | - | : | - +-------|-----------|-----------|----------> x(i) - lo 0 hi - -the Dantzig algorithm proceeds as follows: - for i=1:n - * if (x(i),w(i)) is not on the line, push x(i) and w(i) positive or - negative towards the line. as this is done, the other (x(j),w(j)) - for j<i are constrained to be on the line. if any (x,w) reaches the - end of a line segment then it is switched between index sets. - * i is added to the appropriate index set depending on what line segment - it hits. - -we restrict lo(i) <= 0 and hi(i) >= 0. this makes the algorithm a bit -simpler, because the starting point for x(i),w(i) is always on the dotted -line x=0 and x will only ever increase in one direction, so it can only hit -two out of the three line segments. - - -NOTES ------ - -this is an implementation of "lcp_dantzig2_ldlt.m" and "lcp_dantzig_lohi.m". -the implementation is split into an LCP problem object (btLCP) and an LCP -driver function. most optimization occurs in the btLCP object. - -a naive implementation of the algorithm requires either a lot of data motion -or a lot of permutation-array lookup, because we are constantly re-ordering -rows and columns. to avoid this and make a more optimized algorithm, a -non-trivial data structure is used to represent the matrix A (this is -implemented in the fast version of the btLCP object). - -during execution of this algorithm, some indexes in A are clamped (set C), -some are non-clamped (set N), and some are "don't care" (where x=0). -A,x,b,w (and other problem vectors) are permuted such that the clamped -indexes are first, the unclamped indexes are next, and the don't-care -indexes are last. this permutation is recorded in the array `p'. -initially p = 0..n-1, and as the rows and columns of A,x,b,w are swapped, -the corresponding elements of p are swapped. - -because the C and N elements are grouped together in the rows of A, we can do -lots of work with a fast dot product function. if A,x,etc were not permuted -and we only had a permutation array, then those dot products would be much -slower as we would have a permutation array lookup in some inner loops. - -A is accessed through an array of row pointers, so that element (i,j) of the -permuted matrix is A[i][j]. this makes row swapping fast. for column swapping -we still have to actually move the data. - -during execution of this algorithm we maintain an L*D*L' factorization of -the clamped submatrix of A (call it `AC') which is the top left nC*nC -submatrix of A. there are two ways we could arrange the rows/columns in AC. - -(1) AC is always permuted such that L*D*L' = AC. this causes a problem -when a row/column is removed from C, because then all the rows/columns of A -between the deleted index and the end of C need to be rotated downward. -this results in a lot of data motion and slows things down. -(2) L*D*L' is actually a factorization of a *permutation* of AC (which is -itself a permutation of the underlying A). this is what we do - the -permutation is recorded in the vector C. call this permutation A[C,C]. -when a row/column is removed from C, all we have to do is swap two -rows/columns and manipulate C. - -*/ - -#include "btDantzigLCP.h" - -#include <string.h> //memcpy - -bool s_error = false; - -//*************************************************************************** -// code generation parameters - -#define btLCP_FAST // use fast btLCP object - -// option 1 : matrix row pointers (less data copying) -#define BTROWPTRS -#define BTATYPE btScalar ** -#define BTAROW(i) (m_A[i]) - -// option 2 : no matrix row pointers (slightly faster inner loops) -//#define NOROWPTRS -//#define BTATYPE btScalar * -//#define BTAROW(i) (m_A+(i)*m_nskip) - -#define BTNUB_OPTIMIZATIONS - -/* solve L*X=B, with B containing 1 right hand sides. - * L is an n*n lower triangular matrix with ones on the diagonal. - * L is stored by rows and its leading dimension is lskip. - * B is an n*1 matrix that contains the right hand sides. - * B is stored by columns and its leading dimension is also lskip. - * B is overwritten with X. - * this processes blocks of 2*2. - * if this is in the factorizer source file, n must be a multiple of 2. - */ - -static void btSolveL1_1(const btScalar *L, btScalar *B, int n, int lskip1) -{ - /* declare variables - Z matrix, p and q vectors, etc */ - btScalar Z11, m11, Z21, m21, p1, q1, p2, *ex; - const btScalar *ell; - int i, j; - /* compute all 2 x 1 blocks of X */ - for (i = 0; i < n; i += 2) - { - /* compute all 2 x 1 block of X, from rows i..i+2-1 */ - /* set the Z matrix to 0 */ - Z11 = 0; - Z21 = 0; - ell = L + i * lskip1; - ex = B; - /* the inner loop that computes outer products and adds them to Z */ - for (j = i - 2; j >= 0; j -= 2) - { - /* compute outer product and add it to the Z matrix */ - p1 = ell[0]; - q1 = ex[0]; - m11 = p1 * q1; - p2 = ell[lskip1]; - m21 = p2 * q1; - Z11 += m11; - Z21 += m21; - /* compute outer product and add it to the Z matrix */ - p1 = ell[1]; - q1 = ex[1]; - m11 = p1 * q1; - p2 = ell[1 + lskip1]; - m21 = p2 * q1; - /* advance pointers */ - ell += 2; - ex += 2; - Z11 += m11; - Z21 += m21; - /* end of inner loop */ - } - /* compute left-over iterations */ - j += 2; - for (; j > 0; j--) - { - /* compute outer product and add it to the Z matrix */ - p1 = ell[0]; - q1 = ex[0]; - m11 = p1 * q1; - p2 = ell[lskip1]; - m21 = p2 * q1; - /* advance pointers */ - ell += 1; - ex += 1; - Z11 += m11; - Z21 += m21; - } - /* finish computing the X(i) block */ - Z11 = ex[0] - Z11; - ex[0] = Z11; - p1 = ell[lskip1]; - Z21 = ex[1] - Z21 - p1 * Z11; - ex[1] = Z21; - /* end of outer loop */ - } -} - -/* solve L*X=B, with B containing 2 right hand sides. - * L is an n*n lower triangular matrix with ones on the diagonal. - * L is stored by rows and its leading dimension is lskip. - * B is an n*2 matrix that contains the right hand sides. - * B is stored by columns and its leading dimension is also lskip. - * B is overwritten with X. - * this processes blocks of 2*2. - * if this is in the factorizer source file, n must be a multiple of 2. - */ - -static void btSolveL1_2(const btScalar *L, btScalar *B, int n, int lskip1) -{ - /* declare variables - Z matrix, p and q vectors, etc */ - btScalar Z11, m11, Z12, m12, Z21, m21, Z22, m22, p1, q1, p2, q2, *ex; - const btScalar *ell; - int i, j; - /* compute all 2 x 2 blocks of X */ - for (i = 0; i < n; i += 2) - { - /* compute all 2 x 2 block of X, from rows i..i+2-1 */ - /* set the Z matrix to 0 */ - Z11 = 0; - Z12 = 0; - Z21 = 0; - Z22 = 0; - ell = L + i * lskip1; - ex = B; - /* the inner loop that computes outer products and adds them to Z */ - for (j = i - 2; j >= 0; j -= 2) - { - /* compute outer product and add it to the Z matrix */ - p1 = ell[0]; - q1 = ex[0]; - m11 = p1 * q1; - q2 = ex[lskip1]; - m12 = p1 * q2; - p2 = ell[lskip1]; - m21 = p2 * q1; - m22 = p2 * q2; - Z11 += m11; - Z12 += m12; - Z21 += m21; - Z22 += m22; - /* compute outer product and add it to the Z matrix */ - p1 = ell[1]; - q1 = ex[1]; - m11 = p1 * q1; - q2 = ex[1 + lskip1]; - m12 = p1 * q2; - p2 = ell[1 + lskip1]; - m21 = p2 * q1; - m22 = p2 * q2; - /* advance pointers */ - ell += 2; - ex += 2; - Z11 += m11; - Z12 += m12; - Z21 += m21; - Z22 += m22; - /* end of inner loop */ - } - /* compute left-over iterations */ - j += 2; - for (; j > 0; j--) - { - /* compute outer product and add it to the Z matrix */ - p1 = ell[0]; - q1 = ex[0]; - m11 = p1 * q1; - q2 = ex[lskip1]; - m12 = p1 * q2; - p2 = ell[lskip1]; - m21 = p2 * q1; - m22 = p2 * q2; - /* advance pointers */ - ell += 1; - ex += 1; - Z11 += m11; - Z12 += m12; - Z21 += m21; - Z22 += m22; - } - /* finish computing the X(i) block */ - Z11 = ex[0] - Z11; - ex[0] = Z11; - Z12 = ex[lskip1] - Z12; - ex[lskip1] = Z12; - p1 = ell[lskip1]; - Z21 = ex[1] - Z21 - p1 * Z11; - ex[1] = Z21; - Z22 = ex[1 + lskip1] - Z22 - p1 * Z12; - ex[1 + lskip1] = Z22; - /* end of outer loop */ - } -} - -void btFactorLDLT(btScalar *A, btScalar *d, int n, int nskip1) -{ - int i, j; - btScalar sum, *ell, *dee, dd, p1, p2, q1, q2, Z11, m11, Z21, m21, Z22, m22; - if (n < 1) return; - - for (i = 0; i <= n - 2; i += 2) - { - /* solve L*(D*l)=a, l is scaled elements in 2 x i block at A(i,0) */ - btSolveL1_2(A, A + i * nskip1, i, nskip1); - /* scale the elements in a 2 x i block at A(i,0), and also */ - /* compute Z = the outer product matrix that we'll need. */ - Z11 = 0; - Z21 = 0; - Z22 = 0; - ell = A + i * nskip1; - dee = d; - for (j = i - 6; j >= 0; j -= 6) - { - p1 = ell[0]; - p2 = ell[nskip1]; - dd = dee[0]; - q1 = p1 * dd; - q2 = p2 * dd; - ell[0] = q1; - ell[nskip1] = q2; - m11 = p1 * q1; - m21 = p2 * q1; - m22 = p2 * q2; - Z11 += m11; - Z21 += m21; - Z22 += m22; - p1 = ell[1]; - p2 = ell[1 + nskip1]; - dd = dee[1]; - q1 = p1 * dd; - q2 = p2 * dd; - ell[1] = q1; - ell[1 + nskip1] = q2; - m11 = p1 * q1; - m21 = p2 * q1; - m22 = p2 * q2; - Z11 += m11; - Z21 += m21; - Z22 += m22; - p1 = ell[2]; - p2 = ell[2 + nskip1]; - dd = dee[2]; - q1 = p1 * dd; - q2 = p2 * dd; - ell[2] = q1; - ell[2 + nskip1] = q2; - m11 = p1 * q1; - m21 = p2 * q1; - m22 = p2 * q2; - Z11 += m11; - Z21 += m21; - Z22 += m22; - p1 = ell[3]; - p2 = ell[3 + nskip1]; - dd = dee[3]; - q1 = p1 * dd; - q2 = p2 * dd; - ell[3] = q1; - ell[3 + nskip1] = q2; - m11 = p1 * q1; - m21 = p2 * q1; - m22 = p2 * q2; - Z11 += m11; - Z21 += m21; - Z22 += m22; - p1 = ell[4]; - p2 = ell[4 + nskip1]; - dd = dee[4]; - q1 = p1 * dd; - q2 = p2 * dd; - ell[4] = q1; - ell[4 + nskip1] = q2; - m11 = p1 * q1; - m21 = p2 * q1; - m22 = p2 * q2; - Z11 += m11; - Z21 += m21; - Z22 += m22; - p1 = ell[5]; - p2 = ell[5 + nskip1]; - dd = dee[5]; - q1 = p1 * dd; - q2 = p2 * dd; - ell[5] = q1; - ell[5 + nskip1] = q2; - m11 = p1 * q1; - m21 = p2 * q1; - m22 = p2 * q2; - Z11 += m11; - Z21 += m21; - Z22 += m22; - ell += 6; - dee += 6; - } - /* compute left-over iterations */ - j += 6; - for (; j > 0; j--) - { - p1 = ell[0]; - p2 = ell[nskip1]; - dd = dee[0]; - q1 = p1 * dd; - q2 = p2 * dd; - ell[0] = q1; - ell[nskip1] = q2; - m11 = p1 * q1; - m21 = p2 * q1; - m22 = p2 * q2; - Z11 += m11; - Z21 += m21; - Z22 += m22; - ell++; - dee++; - } - /* solve for diagonal 2 x 2 block at A(i,i) */ - Z11 = ell[0] - Z11; - Z21 = ell[nskip1] - Z21; - Z22 = ell[1 + nskip1] - Z22; - dee = d + i; - /* factorize 2 x 2 block Z,dee */ - /* factorize row 1 */ - dee[0] = btRecip(Z11); - /* factorize row 2 */ - sum = 0; - q1 = Z21; - q2 = q1 * dee[0]; - Z21 = q2; - sum += q1 * q2; - dee[1] = btRecip(Z22 - sum); - /* done factorizing 2 x 2 block */ - ell[nskip1] = Z21; - } - /* compute the (less than 2) rows at the bottom */ - switch (n - i) - { - case 0: - break; - - case 1: - btSolveL1_1(A, A + i * nskip1, i, nskip1); - /* scale the elements in a 1 x i block at A(i,0), and also */ - /* compute Z = the outer product matrix that we'll need. */ - Z11 = 0; - ell = A + i * nskip1; - dee = d; - for (j = i - 6; j >= 0; j -= 6) - { - p1 = ell[0]; - dd = dee[0]; - q1 = p1 * dd; - ell[0] = q1; - m11 = p1 * q1; - Z11 += m11; - p1 = ell[1]; - dd = dee[1]; - q1 = p1 * dd; - ell[1] = q1; - m11 = p1 * q1; - Z11 += m11; - p1 = ell[2]; - dd = dee[2]; - q1 = p1 * dd; - ell[2] = q1; - m11 = p1 * q1; - Z11 += m11; - p1 = ell[3]; - dd = dee[3]; - q1 = p1 * dd; - ell[3] = q1; - m11 = p1 * q1; - Z11 += m11; - p1 = ell[4]; - dd = dee[4]; - q1 = p1 * dd; - ell[4] = q1; - m11 = p1 * q1; - Z11 += m11; - p1 = ell[5]; - dd = dee[5]; - q1 = p1 * dd; - ell[5] = q1; - m11 = p1 * q1; - Z11 += m11; - ell += 6; - dee += 6; - } - /* compute left-over iterations */ - j += 6; - for (; j > 0; j--) - { - p1 = ell[0]; - dd = dee[0]; - q1 = p1 * dd; - ell[0] = q1; - m11 = p1 * q1; - Z11 += m11; - ell++; - dee++; - } - /* solve for diagonal 1 x 1 block at A(i,i) */ - Z11 = ell[0] - Z11; - dee = d + i; - /* factorize 1 x 1 block Z,dee */ - /* factorize row 1 */ - dee[0] = btRecip(Z11); - /* done factorizing 1 x 1 block */ - break; - - //default: *((char*)0)=0; /* this should never happen! */ - } -} - -/* solve L*X=B, with B containing 1 right hand sides. - * L is an n*n lower triangular matrix with ones on the diagonal. - * L is stored by rows and its leading dimension is lskip. - * B is an n*1 matrix that contains the right hand sides. - * B is stored by columns and its leading dimension is also lskip. - * B is overwritten with X. - * this processes blocks of 4*4. - * if this is in the factorizer source file, n must be a multiple of 4. - */ - -void btSolveL1(const btScalar *L, btScalar *B, int n, int lskip1) -{ - /* declare variables - Z matrix, p and q vectors, etc */ - btScalar Z11, Z21, Z31, Z41, p1, q1, p2, p3, p4, *ex; - const btScalar *ell; - int lskip2, lskip3, i, j; - /* compute lskip values */ - lskip2 = 2 * lskip1; - lskip3 = 3 * lskip1; - /* compute all 4 x 1 blocks of X */ - for (i = 0; i <= n - 4; i += 4) - { - /* compute all 4 x 1 block of X, from rows i..i+4-1 */ - /* set the Z matrix to 0 */ - Z11 = 0; - Z21 = 0; - Z31 = 0; - Z41 = 0; - ell = L + i * lskip1; - ex = B; - /* the inner loop that computes outer products and adds them to Z */ - for (j = i - 12; j >= 0; j -= 12) - { - /* load p and q values */ - p1 = ell[0]; - q1 = ex[0]; - p2 = ell[lskip1]; - p3 = ell[lskip2]; - p4 = ell[lskip3]; - /* compute outer product and add it to the Z matrix */ - Z11 += p1 * q1; - Z21 += p2 * q1; - Z31 += p3 * q1; - Z41 += p4 * q1; - /* load p and q values */ - p1 = ell[1]; - q1 = ex[1]; - p2 = ell[1 + lskip1]; - p3 = ell[1 + lskip2]; - p4 = ell[1 + lskip3]; - /* compute outer product and add it to the Z matrix */ - Z11 += p1 * q1; - Z21 += p2 * q1; - Z31 += p3 * q1; - Z41 += p4 * q1; - /* load p and q values */ - p1 = ell[2]; - q1 = ex[2]; - p2 = ell[2 + lskip1]; - p3 = ell[2 + lskip2]; - p4 = ell[2 + lskip3]; - /* compute outer product and add it to the Z matrix */ - Z11 += p1 * q1; - Z21 += p2 * q1; - Z31 += p3 * q1; - Z41 += p4 * q1; - /* load p and q values */ - p1 = ell[3]; - q1 = ex[3]; - p2 = ell[3 + lskip1]; - p3 = ell[3 + lskip2]; - p4 = ell[3 + lskip3]; - /* compute outer product and add it to the Z matrix */ - Z11 += p1 * q1; - Z21 += p2 * q1; - Z31 += p3 * q1; - Z41 += p4 * q1; - /* load p and q values */ - p1 = ell[4]; - q1 = ex[4]; - p2 = ell[4 + lskip1]; - p3 = ell[4 + lskip2]; - p4 = ell[4 + lskip3]; - /* compute outer product and add it to the Z matrix */ - Z11 += p1 * q1; - Z21 += p2 * q1; - Z31 += p3 * q1; - Z41 += p4 * q1; - /* load p and q values */ - p1 = ell[5]; - q1 = ex[5]; - p2 = ell[5 + lskip1]; - p3 = ell[5 + lskip2]; - p4 = ell[5 + lskip3]; - /* compute outer product and add it to the Z matrix */ - Z11 += p1 * q1; - Z21 += p2 * q1; - Z31 += p3 * q1; - Z41 += p4 * q1; - /* load p and q values */ - p1 = ell[6]; - q1 = ex[6]; - p2 = ell[6 + lskip1]; - p3 = ell[6 + lskip2]; - p4 = ell[6 + lskip3]; - /* compute outer product and add it to the Z matrix */ - Z11 += p1 * q1; - Z21 += p2 * q1; - Z31 += p3 * q1; - Z41 += p4 * q1; - /* load p and q values */ - p1 = ell[7]; - q1 = ex[7]; - p2 = ell[7 + lskip1]; - p3 = ell[7 + lskip2]; - p4 = ell[7 + lskip3]; - /* compute outer product and add it to the Z matrix */ - Z11 += p1 * q1; - Z21 += p2 * q1; - Z31 += p3 * q1; - Z41 += p4 * q1; - /* load p and q values */ - p1 = ell[8]; - q1 = ex[8]; - p2 = ell[8 + lskip1]; - p3 = ell[8 + lskip2]; - p4 = ell[8 + lskip3]; - /* compute outer product and add it to the Z matrix */ - Z11 += p1 * q1; - Z21 += p2 * q1; - Z31 += p3 * q1; - Z41 += p4 * q1; - /* load p and q values */ - p1 = ell[9]; - q1 = ex[9]; - p2 = ell[9 + lskip1]; - p3 = ell[9 + lskip2]; - p4 = ell[9 + lskip3]; - /* compute outer product and add it to the Z matrix */ - Z11 += p1 * q1; - Z21 += p2 * q1; - Z31 += p3 * q1; - Z41 += p4 * q1; - /* load p and q values */ - p1 = ell[10]; - q1 = ex[10]; - p2 = ell[10 + lskip1]; - p3 = ell[10 + lskip2]; - p4 = ell[10 + lskip3]; - /* compute outer product and add it to the Z matrix */ - Z11 += p1 * q1; - Z21 += p2 * q1; - Z31 += p3 * q1; - Z41 += p4 * q1; - /* load p and q values */ - p1 = ell[11]; - q1 = ex[11]; - p2 = ell[11 + lskip1]; - p3 = ell[11 + lskip2]; - p4 = ell[11 + lskip3]; - /* compute outer product and add it to the Z matrix */ - Z11 += p1 * q1; - Z21 += p2 * q1; - Z31 += p3 * q1; - Z41 += p4 * q1; - /* advance pointers */ - ell += 12; - ex += 12; - /* end of inner loop */ - } - /* compute left-over iterations */ - j += 12; - for (; j > 0; j--) - { - /* load p and q values */ - p1 = ell[0]; - q1 = ex[0]; - p2 = ell[lskip1]; - p3 = ell[lskip2]; - p4 = ell[lskip3]; - /* compute outer product and add it to the Z matrix */ - Z11 += p1 * q1; - Z21 += p2 * q1; - Z31 += p3 * q1; - Z41 += p4 * q1; - /* advance pointers */ - ell += 1; - ex += 1; - } - /* finish computing the X(i) block */ - Z11 = ex[0] - Z11; - ex[0] = Z11; - p1 = ell[lskip1]; - Z21 = ex[1] - Z21 - p1 * Z11; - ex[1] = Z21; - p1 = ell[lskip2]; - p2 = ell[1 + lskip2]; - Z31 = ex[2] - Z31 - p1 * Z11 - p2 * Z21; - ex[2] = Z31; - p1 = ell[lskip3]; - p2 = ell[1 + lskip3]; - p3 = ell[2 + lskip3]; - Z41 = ex[3] - Z41 - p1 * Z11 - p2 * Z21 - p3 * Z31; - ex[3] = Z41; - /* end of outer loop */ - } - /* compute rows at end that are not a multiple of block size */ - for (; i < n; i++) - { - /* compute all 1 x 1 block of X, from rows i..i+1-1 */ - /* set the Z matrix to 0 */ - Z11 = 0; - ell = L + i * lskip1; - ex = B; - /* the inner loop that computes outer products and adds them to Z */ - for (j = i - 12; j >= 0; j -= 12) - { - /* load p and q values */ - p1 = ell[0]; - q1 = ex[0]; - /* compute outer product and add it to the Z matrix */ - Z11 += p1 * q1; - /* load p and q values */ - p1 = ell[1]; - q1 = ex[1]; - /* compute outer product and add it to the Z matrix */ - Z11 += p1 * q1; - /* load p and q values */ - p1 = ell[2]; - q1 = ex[2]; - /* compute outer product and add it to the Z matrix */ - Z11 += p1 * q1; - /* load p and q values */ - p1 = ell[3]; - q1 = ex[3]; - /* compute outer product and add it to the Z matrix */ - Z11 += p1 * q1; - /* load p and q values */ - p1 = ell[4]; - q1 = ex[4]; - /* compute outer product and add it to the Z matrix */ - Z11 += p1 * q1; - /* load p and q values */ - p1 = ell[5]; - q1 = ex[5]; - /* compute outer product and add it to the Z matrix */ - Z11 += p1 * q1; - /* load p and q values */ - p1 = ell[6]; - q1 = ex[6]; - /* compute outer product and add it to the Z matrix */ - Z11 += p1 * q1; - /* load p and q values */ - p1 = ell[7]; - q1 = ex[7]; - /* compute outer product and add it to the Z matrix */ - Z11 += p1 * q1; - /* load p and q values */ - p1 = ell[8]; - q1 = ex[8]; - /* compute outer product and add it to the Z matrix */ - Z11 += p1 * q1; - /* load p and q values */ - p1 = ell[9]; - q1 = ex[9]; - /* compute outer product and add it to the Z matrix */ - Z11 += p1 * q1; - /* load p and q values */ - p1 = ell[10]; - q1 = ex[10]; - /* compute outer product and add it to the Z matrix */ - Z11 += p1 * q1; - /* load p and q values */ - p1 = ell[11]; - q1 = ex[11]; - /* compute outer product and add it to the Z matrix */ - Z11 += p1 * q1; - /* advance pointers */ - ell += 12; - ex += 12; - /* end of inner loop */ - } - /* compute left-over iterations */ - j += 12; - for (; j > 0; j--) - { - /* load p and q values */ - p1 = ell[0]; - q1 = ex[0]; - /* compute outer product and add it to the Z matrix */ - Z11 += p1 * q1; - /* advance pointers */ - ell += 1; - ex += 1; - } - /* finish computing the X(i) block */ - Z11 = ex[0] - Z11; - ex[0] = Z11; - } -} - -/* solve L^T * x=b, with b containing 1 right hand side. - * L is an n*n lower triangular matrix with ones on the diagonal. - * L is stored by rows and its leading dimension is lskip. - * b is an n*1 matrix that contains the right hand side. - * b is overwritten with x. - * this processes blocks of 4. - */ - -void btSolveL1T(const btScalar *L, btScalar *B, int n, int lskip1) -{ - /* declare variables - Z matrix, p and q vectors, etc */ - btScalar Z11, m11, Z21, m21, Z31, m31, Z41, m41, p1, q1, p2, p3, p4, *ex; - const btScalar *ell; - int lskip2, i, j; - // int lskip3; - /* special handling for L and B because we're solving L1 *transpose* */ - L = L + (n - 1) * (lskip1 + 1); - B = B + n - 1; - lskip1 = -lskip1; - /* compute lskip values */ - lskip2 = 2 * lskip1; - //lskip3 = 3*lskip1; - /* compute all 4 x 1 blocks of X */ - for (i = 0; i <= n - 4; i += 4) - { - /* compute all 4 x 1 block of X, from rows i..i+4-1 */ - /* set the Z matrix to 0 */ - Z11 = 0; - Z21 = 0; - Z31 = 0; - Z41 = 0; - ell = L - i; - ex = B; - /* the inner loop that computes outer products and adds them to Z */ - for (j = i - 4; j >= 0; j -= 4) - { - /* load p and q values */ - p1 = ell[0]; - q1 = ex[0]; - p2 = ell[-1]; - p3 = ell[-2]; - p4 = ell[-3]; - /* compute outer product and add it to the Z matrix */ - m11 = p1 * q1; - m21 = p2 * q1; - m31 = p3 * q1; - m41 = p4 * q1; - ell += lskip1; - Z11 += m11; - Z21 += m21; - Z31 += m31; - Z41 += m41; - /* load p and q values */ - p1 = ell[0]; - q1 = ex[-1]; - p2 = ell[-1]; - p3 = ell[-2]; - p4 = ell[-3]; - /* compute outer product and add it to the Z matrix */ - m11 = p1 * q1; - m21 = p2 * q1; - m31 = p3 * q1; - m41 = p4 * q1; - ell += lskip1; - Z11 += m11; - Z21 += m21; - Z31 += m31; - Z41 += m41; - /* load p and q values */ - p1 = ell[0]; - q1 = ex[-2]; - p2 = ell[-1]; - p3 = ell[-2]; - p4 = ell[-3]; - /* compute outer product and add it to the Z matrix */ - m11 = p1 * q1; - m21 = p2 * q1; - m31 = p3 * q1; - m41 = p4 * q1; - ell += lskip1; - Z11 += m11; - Z21 += m21; - Z31 += m31; - Z41 += m41; - /* load p and q values */ - p1 = ell[0]; - q1 = ex[-3]; - p2 = ell[-1]; - p3 = ell[-2]; - p4 = ell[-3]; - /* compute outer product and add it to the Z matrix */ - m11 = p1 * q1; - m21 = p2 * q1; - m31 = p3 * q1; - m41 = p4 * q1; - ell += lskip1; - ex -= 4; - Z11 += m11; - Z21 += m21; - Z31 += m31; - Z41 += m41; - /* end of inner loop */ - } - /* compute left-over iterations */ - j += 4; - for (; j > 0; j--) - { - /* load p and q values */ - p1 = ell[0]; - q1 = ex[0]; - p2 = ell[-1]; - p3 = ell[-2]; - p4 = ell[-3]; - /* compute outer product and add it to the Z matrix */ - m11 = p1 * q1; - m21 = p2 * q1; - m31 = p3 * q1; - m41 = p4 * q1; - ell += lskip1; - ex -= 1; - Z11 += m11; - Z21 += m21; - Z31 += m31; - Z41 += m41; - } - /* finish computing the X(i) block */ - Z11 = ex[0] - Z11; - ex[0] = Z11; - p1 = ell[-1]; - Z21 = ex[-1] - Z21 - p1 * Z11; - ex[-1] = Z21; - p1 = ell[-2]; - p2 = ell[-2 + lskip1]; - Z31 = ex[-2] - Z31 - p1 * Z11 - p2 * Z21; - ex[-2] = Z31; - p1 = ell[-3]; - p2 = ell[-3 + lskip1]; - p3 = ell[-3 + lskip2]; - Z41 = ex[-3] - Z41 - p1 * Z11 - p2 * Z21 - p3 * Z31; - ex[-3] = Z41; - /* end of outer loop */ - } - /* compute rows at end that are not a multiple of block size */ - for (; i < n; i++) - { - /* compute all 1 x 1 block of X, from rows i..i+1-1 */ - /* set the Z matrix to 0 */ - Z11 = 0; - ell = L - i; - ex = B; - /* the inner loop that computes outer products and adds them to Z */ - for (j = i - 4; j >= 0; j -= 4) - { - /* load p and q values */ - p1 = ell[0]; - q1 = ex[0]; - /* compute outer product and add it to the Z matrix */ - m11 = p1 * q1; - ell += lskip1; - Z11 += m11; - /* load p and q values */ - p1 = ell[0]; - q1 = ex[-1]; - /* compute outer product and add it to the Z matrix */ - m11 = p1 * q1; - ell += lskip1; - Z11 += m11; - /* load p and q values */ - p1 = ell[0]; - q1 = ex[-2]; - /* compute outer product and add it to the Z matrix */ - m11 = p1 * q1; - ell += lskip1; - Z11 += m11; - /* load p and q values */ - p1 = ell[0]; - q1 = ex[-3]; - /* compute outer product and add it to the Z matrix */ - m11 = p1 * q1; - ell += lskip1; - ex -= 4; - Z11 += m11; - /* end of inner loop */ - } - /* compute left-over iterations */ - j += 4; - for (; j > 0; j--) - { - /* load p and q values */ - p1 = ell[0]; - q1 = ex[0]; - /* compute outer product and add it to the Z matrix */ - m11 = p1 * q1; - ell += lskip1; - ex -= 1; - Z11 += m11; - } - /* finish computing the X(i) block */ - Z11 = ex[0] - Z11; - ex[0] = Z11; - } -} - -void btVectorScale(btScalar *a, const btScalar *d, int n) -{ - btAssert(a && d && n >= 0); - for (int i = 0; i < n; i++) - { - a[i] *= d[i]; - } -} - -void btSolveLDLT(const btScalar *L, const btScalar *d, btScalar *b, int n, int nskip) -{ - btAssert(L && d && b && n > 0 && nskip >= n); - btSolveL1(L, b, n, nskip); - btVectorScale(b, d, n); - btSolveL1T(L, b, n, nskip); -} - -//*************************************************************************** - -// swap row/column i1 with i2 in the n*n matrix A. the leading dimension of -// A is nskip. this only references and swaps the lower triangle. -// if `do_fast_row_swaps' is nonzero and row pointers are being used, then -// rows will be swapped by exchanging row pointers. otherwise the data will -// be copied. - -static void btSwapRowsAndCols(BTATYPE A, int n, int i1, int i2, int nskip, - int do_fast_row_swaps) -{ - btAssert(A && n > 0 && i1 >= 0 && i2 >= 0 && i1 < n && i2 < n && - nskip >= n && i1 < i2); - -#ifdef BTROWPTRS - btScalar *A_i1 = A[i1]; - btScalar *A_i2 = A[i2]; - for (int i = i1 + 1; i < i2; ++i) - { - btScalar *A_i_i1 = A[i] + i1; - A_i1[i] = *A_i_i1; - *A_i_i1 = A_i2[i]; - } - A_i1[i2] = A_i1[i1]; - A_i1[i1] = A_i2[i1]; - A_i2[i1] = A_i2[i2]; - // swap rows, by swapping row pointers - if (do_fast_row_swaps) - { - A[i1] = A_i2; - A[i2] = A_i1; - } - else - { - // Only swap till i2 column to match A plain storage variant. - for (int k = 0; k <= i2; ++k) - { - btScalar tmp = A_i1[k]; - A_i1[k] = A_i2[k]; - A_i2[k] = tmp; - } - } - // swap columns the hard way - for (int j = i2 + 1; j < n; ++j) - { - btScalar *A_j = A[j]; - btScalar tmp = A_j[i1]; - A_j[i1] = A_j[i2]; - A_j[i2] = tmp; - } -#else - btScalar *A_i1 = A + i1 * nskip; - btScalar *A_i2 = A + i2 * nskip; - for (int k = 0; k < i1; ++k) - { - btScalar tmp = A_i1[k]; - A_i1[k] = A_i2[k]; - A_i2[k] = tmp; - } - btScalar *A_i = A_i1 + nskip; - for (int i = i1 + 1; i < i2; A_i += nskip, ++i) - { - btScalar tmp = A_i2[i]; - A_i2[i] = A_i[i1]; - A_i[i1] = tmp; - } - { - btScalar tmp = A_i1[i1]; - A_i1[i1] = A_i2[i2]; - A_i2[i2] = tmp; - } - btScalar *A_j = A_i2 + nskip; - for (int j = i2 + 1; j < n; A_j += nskip, ++j) - { - btScalar tmp = A_j[i1]; - A_j[i1] = A_j[i2]; - A_j[i2] = tmp; - } -#endif -} - -// swap two indexes in the n*n LCP problem. i1 must be <= i2. - -static void btSwapProblem(BTATYPE A, btScalar *x, btScalar *b, btScalar *w, btScalar *lo, - btScalar *hi, int *p, bool *state, int *findex, - int n, int i1, int i2, int nskip, - int do_fast_row_swaps) -{ - btScalar tmpr; - int tmpi; - bool tmpb; - btAssert(n > 0 && i1 >= 0 && i2 >= 0 && i1 < n && i2 < n && nskip >= n && i1 <= i2); - if (i1 == i2) return; - - btSwapRowsAndCols(A, n, i1, i2, nskip, do_fast_row_swaps); - - tmpr = x[i1]; - x[i1] = x[i2]; - x[i2] = tmpr; - - tmpr = b[i1]; - b[i1] = b[i2]; - b[i2] = tmpr; - - tmpr = w[i1]; - w[i1] = w[i2]; - w[i2] = tmpr; - - tmpr = lo[i1]; - lo[i1] = lo[i2]; - lo[i2] = tmpr; - - tmpr = hi[i1]; - hi[i1] = hi[i2]; - hi[i2] = tmpr; - - tmpi = p[i1]; - p[i1] = p[i2]; - p[i2] = tmpi; - - tmpb = state[i1]; - state[i1] = state[i2]; - state[i2] = tmpb; - - if (findex) - { - tmpi = findex[i1]; - findex[i1] = findex[i2]; - findex[i2] = tmpi; - } -} - -//*************************************************************************** -// btLCP manipulator object. this represents an n*n LCP problem. -// -// two index sets C and N are kept. each set holds a subset of -// the variable indexes 0..n-1. an index can only be in one set. -// initially both sets are empty. -// -// the index set C is special: solutions to A(C,C)\A(C,i) can be generated. - -//*************************************************************************** -// fast implementation of btLCP. see the above definition of btLCP for -// interface comments. -// -// `p' records the permutation of A,x,b,w,etc. p is initially 1:n and is -// permuted as the other vectors/matrices are permuted. -// -// A,x,b,w,lo,hi,state,findex,p,c are permuted such that sets C,N have -// contiguous indexes. the don't-care indexes follow N. -// -// an L*D*L' factorization is maintained of A(C,C), and whenever indexes are -// added or removed from the set C the factorization is updated. -// thus L*D*L'=A[C,C], i.e. a permuted top left nC*nC submatrix of A. -// the leading dimension of the matrix L is always `nskip'. -// -// at the start there may be other indexes that are unbounded but are not -// included in `nub'. btLCP will permute the matrix so that absolutely all -// unbounded vectors are at the start. thus there may be some initial -// permutation. -// -// the algorithms here assume certain patterns, particularly with respect to -// index transfer. - -#ifdef btLCP_FAST - -struct btLCP -{ - const int m_n; - const int m_nskip; - int m_nub; - int m_nC, m_nN; // size of each index set - BTATYPE const m_A; // A rows - btScalar *const m_x, *const m_b, *const m_w, *const m_lo, *const m_hi; // permuted LCP problem data - btScalar *const m_L, *const m_d; // L*D*L' factorization of set C - btScalar *const m_Dell, *const m_ell, *const m_tmp; - bool *const m_state; - int *const m_findex, *const m_p, *const m_C; - - btLCP(int _n, int _nskip, int _nub, btScalar *_Adata, btScalar *_x, btScalar *_b, btScalar *_w, - btScalar *_lo, btScalar *_hi, btScalar *l, btScalar *_d, - btScalar *_Dell, btScalar *_ell, btScalar *_tmp, - bool *_state, int *_findex, int *p, int *c, btScalar **Arows); - int getNub() const { return m_nub; } - void transfer_i_to_C(int i); - void transfer_i_to_N(int i) { m_nN++; } // because we can assume C and N span 1:i-1 - void transfer_i_from_N_to_C(int i); - void transfer_i_from_C_to_N(int i, btAlignedObjectArray<btScalar> &scratch); - int numC() const { return m_nC; } - int numN() const { return m_nN; } - int indexC(int i) const { return i; } - int indexN(int i) const { return i + m_nC; } - btScalar Aii(int i) const { return BTAROW(i)[i]; } - btScalar AiC_times_qC(int i, btScalar *q) const { return btLargeDot(BTAROW(i), q, m_nC); } - btScalar AiN_times_qN(int i, btScalar *q) const { return btLargeDot(BTAROW(i) + m_nC, q + m_nC, m_nN); } - void pN_equals_ANC_times_qC(btScalar *p, btScalar *q); - void pN_plusequals_ANi(btScalar *p, int i, int sign = 1); - void pC_plusequals_s_times_qC(btScalar *p, btScalar s, btScalar *q); - void pN_plusequals_s_times_qN(btScalar *p, btScalar s, btScalar *q); - void solve1(btScalar *a, int i, int dir = 1, int only_transfer = 0); - void unpermute(); -}; - -btLCP::btLCP(int _n, int _nskip, int _nub, btScalar *_Adata, btScalar *_x, btScalar *_b, btScalar *_w, - btScalar *_lo, btScalar *_hi, btScalar *l, btScalar *_d, - btScalar *_Dell, btScalar *_ell, btScalar *_tmp, - bool *_state, int *_findex, int *p, int *c, btScalar **Arows) : m_n(_n), m_nskip(_nskip), m_nub(_nub), m_nC(0), m_nN(0), -#ifdef BTROWPTRS - m_A(Arows), -#else - m_A(_Adata), -#endif - m_x(_x), - m_b(_b), - m_w(_w), - m_lo(_lo), - m_hi(_hi), - m_L(l), - m_d(_d), - m_Dell(_Dell), - m_ell(_ell), - m_tmp(_tmp), - m_state(_state), - m_findex(_findex), - m_p(p), - m_C(c) -{ - { - btSetZero(m_x, m_n); - } - - { -#ifdef BTROWPTRS - // make matrix row pointers - btScalar *aptr = _Adata; - BTATYPE A = m_A; - const int n = m_n, nskip = m_nskip; - for (int k = 0; k < n; aptr += nskip, ++k) A[k] = aptr; -#endif - } - - { - int *p = m_p; - const int n = m_n; - for (int k = 0; k < n; ++k) p[k] = k; // initially unpermuted - } - - /* - // for testing, we can do some random swaps in the area i > nub - { - const int n = m_n; - const int nub = m_nub; - if (nub < n) { - for (int k=0; k<100; k++) { - int i1,i2; - do { - i1 = dRandInt(n-nub)+nub; - i2 = dRandInt(n-nub)+nub; - } - while (i1 > i2); - //printf ("--> %d %d\n",i1,i2); - btSwapProblem (m_A,m_x,m_b,m_w,m_lo,m_hi,m_p,m_state,m_findex,n,i1,i2,m_nskip,0); - } - } - */ - - // permute the problem so that *all* the unbounded variables are at the - // start, i.e. look for unbounded variables not included in `nub'. we can - // potentially push up `nub' this way and get a bigger initial factorization. - // note that when we swap rows/cols here we must not just swap row pointers, - // as the initial factorization relies on the data being all in one chunk. - // variables that have findex >= 0 are *not* considered to be unbounded even - // if lo=-inf and hi=inf - this is because these limits may change during the - // solution process. - - { - int *findex = m_findex; - btScalar *lo = m_lo, *hi = m_hi; - const int n = m_n; - for (int k = m_nub; k < n; ++k) - { - if (findex && findex[k] >= 0) continue; - if (lo[k] == -BT_INFINITY && hi[k] == BT_INFINITY) - { - btSwapProblem(m_A, m_x, m_b, m_w, lo, hi, m_p, m_state, findex, n, m_nub, k, m_nskip, 0); - m_nub++; - } - } - } - - // if there are unbounded variables at the start, factorize A up to that - // point and solve for x. this puts all indexes 0..nub-1 into C. - if (m_nub > 0) - { - const int nub = m_nub; - { - btScalar *Lrow = m_L; - const int nskip = m_nskip; - for (int j = 0; j < nub; Lrow += nskip, ++j) memcpy(Lrow, BTAROW(j), (j + 1) * sizeof(btScalar)); - } - btFactorLDLT(m_L, m_d, nub, m_nskip); - memcpy(m_x, m_b, nub * sizeof(btScalar)); - btSolveLDLT(m_L, m_d, m_x, nub, m_nskip); - btSetZero(m_w, nub); - { - int *C = m_C; - for (int k = 0; k < nub; ++k) C[k] = k; - } - m_nC = nub; - } - - // permute the indexes > nub such that all findex variables are at the end - if (m_findex) - { - const int nub = m_nub; - int *findex = m_findex; - int num_at_end = 0; - for (int k = m_n - 1; k >= nub; k--) - { - if (findex[k] >= 0) - { - btSwapProblem(m_A, m_x, m_b, m_w, m_lo, m_hi, m_p, m_state, findex, m_n, k, m_n - 1 - num_at_end, m_nskip, 1); - num_at_end++; - } - } - } - - // print info about indexes - /* - { - const int n = m_n; - const int nub = m_nub; - for (int k=0; k<n; k++) { - if (k<nub) printf ("C"); - else if (m_lo[k]==-BT_INFINITY && m_hi[k]==BT_INFINITY) printf ("c"); - else printf ("."); - } - printf ("\n"); - } - */ -} - -void btLCP::transfer_i_to_C(int i) -{ - { - if (m_nC > 0) - { - // ell,Dell were computed by solve1(). note, ell = D \ L1solve (L,A(i,C)) - { - const int nC = m_nC; - btScalar *const Ltgt = m_L + nC * m_nskip, *ell = m_ell; - for (int j = 0; j < nC; ++j) Ltgt[j] = ell[j]; - } - const int nC = m_nC; - m_d[nC] = btRecip(BTAROW(i)[i] - btLargeDot(m_ell, m_Dell, nC)); - } - else - { - m_d[0] = btRecip(BTAROW(i)[i]); - } - - btSwapProblem(m_A, m_x, m_b, m_w, m_lo, m_hi, m_p, m_state, m_findex, m_n, m_nC, i, m_nskip, 1); - - const int nC = m_nC; - m_C[nC] = nC; - m_nC = nC + 1; // nC value is outdated after this line - } -} - -void btLCP::transfer_i_from_N_to_C(int i) -{ - { - if (m_nC > 0) - { - { - btScalar *const aptr = BTAROW(i); - btScalar *Dell = m_Dell; - const int *C = m_C; -#ifdef BTNUB_OPTIMIZATIONS - // if nub>0, initial part of aptr unpermuted - const int nub = m_nub; - int j = 0; - for (; j < nub; ++j) Dell[j] = aptr[j]; - const int nC = m_nC; - for (; j < nC; ++j) Dell[j] = aptr[C[j]]; -#else - const int nC = m_nC; - for (int j = 0; j < nC; ++j) Dell[j] = aptr[C[j]]; -#endif - } - btSolveL1(m_L, m_Dell, m_nC, m_nskip); - { - const int nC = m_nC; - btScalar *const Ltgt = m_L + nC * m_nskip; - btScalar *ell = m_ell, *Dell = m_Dell, *d = m_d; - for (int j = 0; j < nC; ++j) Ltgt[j] = ell[j] = Dell[j] * d[j]; - } - const int nC = m_nC; - m_d[nC] = btRecip(BTAROW(i)[i] - btLargeDot(m_ell, m_Dell, nC)); - } - else - { - m_d[0] = btRecip(BTAROW(i)[i]); - } - - btSwapProblem(m_A, m_x, m_b, m_w, m_lo, m_hi, m_p, m_state, m_findex, m_n, m_nC, i, m_nskip, 1); - - const int nC = m_nC; - m_C[nC] = nC; - m_nN--; - m_nC = nC + 1; // nC value is outdated after this line - } - - // @@@ TO DO LATER - // if we just finish here then we'll go back and re-solve for - // delta_x. but actually we can be more efficient and incrementally - // update delta_x here. but if we do this, we wont have ell and Dell - // to use in updating the factorization later. -} - -void btRemoveRowCol(btScalar *A, int n, int nskip, int r) -{ - btAssert(A && n > 0 && nskip >= n && r >= 0 && r < n); - if (r >= n - 1) return; - if (r > 0) - { - { - const size_t move_size = (n - r - 1) * sizeof(btScalar); - btScalar *Adst = A + r; - for (int i = 0; i < r; Adst += nskip, ++i) - { - btScalar *Asrc = Adst + 1; - memmove(Adst, Asrc, move_size); - } - } - { - const size_t cpy_size = r * sizeof(btScalar); - btScalar *Adst = A + r * nskip; - for (int i = r; i < (n - 1); ++i) - { - btScalar *Asrc = Adst + nskip; - memcpy(Adst, Asrc, cpy_size); - Adst = Asrc; - } - } - } - { - const size_t cpy_size = (n - r - 1) * sizeof(btScalar); - btScalar *Adst = A + r * (nskip + 1); - for (int i = r; i < (n - 1); ++i) - { - btScalar *Asrc = Adst + (nskip + 1); - memcpy(Adst, Asrc, cpy_size); - Adst = Asrc - 1; - } - } -} - -void btLDLTAddTL(btScalar *L, btScalar *d, const btScalar *a, int n, int nskip, btAlignedObjectArray<btScalar> &scratch) -{ - btAssert(L && d && a && n > 0 && nskip >= n); - - if (n < 2) return; - scratch.resize(2 * nskip); - btScalar *W1 = &scratch[0]; - - btScalar *W2 = W1 + nskip; - - W1[0] = btScalar(0.0); - W2[0] = btScalar(0.0); - for (int j = 1; j < n; ++j) - { - W1[j] = W2[j] = (btScalar)(a[j] * SIMDSQRT12); - } - btScalar W11 = (btScalar)((btScalar(0.5) * a[0] + 1) * SIMDSQRT12); - btScalar W21 = (btScalar)((btScalar(0.5) * a[0] - 1) * SIMDSQRT12); - - btScalar alpha1 = btScalar(1.0); - btScalar alpha2 = btScalar(1.0); - - { - btScalar dee = d[0]; - btScalar alphanew = alpha1 + (W11 * W11) * dee; - btAssert(alphanew != btScalar(0.0)); - dee /= alphanew; - btScalar gamma1 = W11 * dee; - dee *= alpha1; - alpha1 = alphanew; - alphanew = alpha2 - (W21 * W21) * dee; - dee /= alphanew; - //btScalar gamma2 = W21 * dee; - alpha2 = alphanew; - btScalar k1 = btScalar(1.0) - W21 * gamma1; - btScalar k2 = W21 * gamma1 * W11 - W21; - btScalar *ll = L + nskip; - for (int p = 1; p < n; ll += nskip, ++p) - { - btScalar Wp = W1[p]; - btScalar ell = *ll; - W1[p] = Wp - W11 * ell; - W2[p] = k1 * Wp + k2 * ell; - } - } - - btScalar *ll = L + (nskip + 1); - for (int j = 1; j < n; ll += nskip + 1, ++j) - { - btScalar k1 = W1[j]; - btScalar k2 = W2[j]; - - btScalar dee = d[j]; - btScalar alphanew = alpha1 + (k1 * k1) * dee; - btAssert(alphanew != btScalar(0.0)); - dee /= alphanew; - btScalar gamma1 = k1 * dee; - dee *= alpha1; - alpha1 = alphanew; - alphanew = alpha2 - (k2 * k2) * dee; - dee /= alphanew; - btScalar gamma2 = k2 * dee; - dee *= alpha2; - d[j] = dee; - alpha2 = alphanew; - - btScalar *l = ll + nskip; - for (int p = j + 1; p < n; l += nskip, ++p) - { - btScalar ell = *l; - btScalar Wp = W1[p] - k1 * ell; - ell += gamma1 * Wp; - W1[p] = Wp; - Wp = W2[p] - k2 * ell; - ell -= gamma2 * Wp; - W2[p] = Wp; - *l = ell; - } - } -} - -#define _BTGETA(i, j) (A[i][j]) -//#define _GETA(i,j) (A[(i)*nskip+(j)]) -#define BTGETA(i, j) ((i > j) ? _BTGETA(i, j) : _BTGETA(j, i)) - -inline size_t btEstimateLDLTAddTLTmpbufSize(int nskip) -{ - return nskip * 2 * sizeof(btScalar); -} - -void btLDLTRemove(btScalar **A, const int *p, btScalar *L, btScalar *d, - int n1, int n2, int r, int nskip, btAlignedObjectArray<btScalar> &scratch) -{ - btAssert(A && p && L && d && n1 > 0 && n2 > 0 && r >= 0 && r < n2 && - n1 >= n2 && nskip >= n1); -#ifdef BT_DEBUG - for (int i = 0; i < n2; ++i) - btAssert(p[i] >= 0 && p[i] < n1); -#endif - - if (r == n2 - 1) - { - return; // deleting last row/col is easy - } - else - { - size_t LDLTAddTL_size = btEstimateLDLTAddTLTmpbufSize(nskip); - btAssert(LDLTAddTL_size % sizeof(btScalar) == 0); - scratch.resize(nskip * 2 + n2); - btScalar *tmp = &scratch[0]; - if (r == 0) - { - btScalar *a = (btScalar *)((char *)tmp + LDLTAddTL_size); - const int p_0 = p[0]; - for (int i = 0; i < n2; ++i) - { - a[i] = -BTGETA(p[i], p_0); - } - a[0] += btScalar(1.0); - btLDLTAddTL(L, d, a, n2, nskip, scratch); - } - else - { - btScalar *t = (btScalar *)((char *)tmp + LDLTAddTL_size); - { - btScalar *Lcurr = L + r * nskip; - for (int i = 0; i < r; ++Lcurr, ++i) - { - btAssert(d[i] != btScalar(0.0)); - t[i] = *Lcurr / d[i]; - } - } - btScalar *a = t + r; - { - btScalar *Lcurr = L + r * nskip; - const int *pp_r = p + r, p_r = *pp_r; - const int n2_minus_r = n2 - r; - for (int i = 0; i < n2_minus_r; Lcurr += nskip, ++i) - { - a[i] = btLargeDot(Lcurr, t, r) - BTGETA(pp_r[i], p_r); - } - } - a[0] += btScalar(1.0); - btLDLTAddTL(L + r * nskip + r, d + r, a, n2 - r, nskip, scratch); - } - } - - // snip out row/column r from L and d - btRemoveRowCol(L, n2, nskip, r); - if (r < (n2 - 1)) memmove(d + r, d + r + 1, (n2 - r - 1) * sizeof(btScalar)); -} - -void btLCP::transfer_i_from_C_to_N(int i, btAlignedObjectArray<btScalar> &scratch) -{ - { - int *C = m_C; - // remove a row/column from the factorization, and adjust the - // indexes (black magic!) - int last_idx = -1; - const int nC = m_nC; - int j = 0; - for (; j < nC; ++j) - { - if (C[j] == nC - 1) - { - last_idx = j; - } - if (C[j] == i) - { - btLDLTRemove(m_A, C, m_L, m_d, m_n, nC, j, m_nskip, scratch); - int k; - if (last_idx == -1) - { - for (k = j + 1; k < nC; ++k) - { - if (C[k] == nC - 1) - { - break; - } - } - btAssert(k < nC); - } - else - { - k = last_idx; - } - C[k] = C[j]; - if (j < (nC - 1)) memmove(C + j, C + j + 1, (nC - j - 1) * sizeof(int)); - break; - } - } - btAssert(j < nC); - - btSwapProblem(m_A, m_x, m_b, m_w, m_lo, m_hi, m_p, m_state, m_findex, m_n, i, nC - 1, m_nskip, 1); - - m_nN++; - m_nC = nC - 1; // nC value is outdated after this line - } -} - -void btLCP::pN_equals_ANC_times_qC(btScalar *p, btScalar *q) -{ - // we could try to make this matrix-vector multiplication faster using - // outer product matrix tricks, e.g. with the dMultidotX() functions. - // but i tried it and it actually made things slower on random 100x100 - // problems because of the overhead involved. so we'll stick with the - // simple method for now. - const int nC = m_nC; - btScalar *ptgt = p + nC; - const int nN = m_nN; - for (int i = 0; i < nN; ++i) - { - ptgt[i] = btLargeDot(BTAROW(i + nC), q, nC); - } -} - -void btLCP::pN_plusequals_ANi(btScalar *p, int i, int sign) -{ - const int nC = m_nC; - btScalar *aptr = BTAROW(i) + nC; - btScalar *ptgt = p + nC; - if (sign > 0) - { - const int nN = m_nN; - for (int j = 0; j < nN; ++j) ptgt[j] += aptr[j]; - } - else - { - const int nN = m_nN; - for (int j = 0; j < nN; ++j) ptgt[j] -= aptr[j]; - } -} - -void btLCP::pC_plusequals_s_times_qC(btScalar *p, btScalar s, btScalar *q) -{ - const int nC = m_nC; - for (int i = 0; i < nC; ++i) - { - p[i] += s * q[i]; - } -} - -void btLCP::pN_plusequals_s_times_qN(btScalar *p, btScalar s, btScalar *q) -{ - const int nC = m_nC; - btScalar *ptgt = p + nC, *qsrc = q + nC; - const int nN = m_nN; - for (int i = 0; i < nN; ++i) - { - ptgt[i] += s * qsrc[i]; - } -} - -void btLCP::solve1(btScalar *a, int i, int dir, int only_transfer) -{ - // the `Dell' and `ell' that are computed here are saved. if index i is - // later added to the factorization then they can be reused. - // - // @@@ question: do we need to solve for entire delta_x??? yes, but - // only if an x goes below 0 during the step. - - if (m_nC > 0) - { - { - btScalar *Dell = m_Dell; - int *C = m_C; - btScalar *aptr = BTAROW(i); -#ifdef BTNUB_OPTIMIZATIONS - // if nub>0, initial part of aptr[] is guaranteed unpermuted - const int nub = m_nub; - int j = 0; - for (; j < nub; ++j) Dell[j] = aptr[j]; - const int nC = m_nC; - for (; j < nC; ++j) Dell[j] = aptr[C[j]]; -#else - const int nC = m_nC; - for (int j = 0; j < nC; ++j) Dell[j] = aptr[C[j]]; -#endif - } - btSolveL1(m_L, m_Dell, m_nC, m_nskip); - { - btScalar *ell = m_ell, *Dell = m_Dell, *d = m_d; - const int nC = m_nC; - for (int j = 0; j < nC; ++j) ell[j] = Dell[j] * d[j]; - } - - if (!only_transfer) - { - btScalar *tmp = m_tmp, *ell = m_ell; - { - const int nC = m_nC; - for (int j = 0; j < nC; ++j) tmp[j] = ell[j]; - } - btSolveL1T(m_L, tmp, m_nC, m_nskip); - if (dir > 0) - { - int *C = m_C; - btScalar *tmp = m_tmp; - const int nC = m_nC; - for (int j = 0; j < nC; ++j) a[C[j]] = -tmp[j]; - } - else - { - int *C = m_C; - btScalar *tmp = m_tmp; - const int nC = m_nC; - for (int j = 0; j < nC; ++j) a[C[j]] = tmp[j]; - } - } - } -} - -void btLCP::unpermute() -{ - // now we have to un-permute x and w - { - memcpy(m_tmp, m_x, m_n * sizeof(btScalar)); - btScalar *x = m_x, *tmp = m_tmp; - const int *p = m_p; - const int n = m_n; - for (int j = 0; j < n; ++j) x[p[j]] = tmp[j]; - } - { - memcpy(m_tmp, m_w, m_n * sizeof(btScalar)); - btScalar *w = m_w, *tmp = m_tmp; - const int *p = m_p; - const int n = m_n; - for (int j = 0; j < n; ++j) w[p[j]] = tmp[j]; - } -} - -#endif // btLCP_FAST - -//*************************************************************************** -// an optimized Dantzig LCP driver routine for the lo-hi LCP problem. - -bool btSolveDantzigLCP(int n, btScalar *A, btScalar *x, btScalar *b, - btScalar *outer_w, int nub, btScalar *lo, btScalar *hi, int *findex, btDantzigScratchMemory &scratchMem) -{ - s_error = false; - - // printf("btSolveDantzigLCP n=%d\n",n); - btAssert(n > 0 && A && x && b && lo && hi && nub >= 0 && nub <= n); - btAssert(outer_w); - -#ifdef BT_DEBUG - { - // check restrictions on lo and hi - for (int k = 0; k < n; ++k) - btAssert(lo[k] <= 0 && hi[k] >= 0); - } -#endif - - // if all the variables are unbounded then we can just factor, solve, - // and return - if (nub >= n) - { - int nskip = (n); - btFactorLDLT(A, outer_w, n, nskip); - btSolveLDLT(A, outer_w, b, n, nskip); - memcpy(x, b, n * sizeof(btScalar)); - - return !s_error; - } - - const int nskip = (n); - scratchMem.L.resize(n * nskip); - - scratchMem.d.resize(n); - - btScalar *w = outer_w; - scratchMem.delta_w.resize(n); - scratchMem.delta_x.resize(n); - scratchMem.Dell.resize(n); - scratchMem.ell.resize(n); - scratchMem.Arows.resize(n); - scratchMem.p.resize(n); - scratchMem.C.resize(n); - - // for i in N, state[i] is 0 if x(i)==lo(i) or 1 if x(i)==hi(i) - scratchMem.state.resize(n); - - // create LCP object. note that tmp is set to delta_w to save space, this - // optimization relies on knowledge of how tmp is used, so be careful! - btLCP lcp(n, nskip, nub, A, x, b, w, lo, hi, &scratchMem.L[0], &scratchMem.d[0], &scratchMem.Dell[0], &scratchMem.ell[0], &scratchMem.delta_w[0], &scratchMem.state[0], findex, &scratchMem.p[0], &scratchMem.C[0], &scratchMem.Arows[0]); - int adj_nub = lcp.getNub(); - - // loop over all indexes adj_nub..n-1. for index i, if x(i),w(i) satisfy the - // LCP conditions then i is added to the appropriate index set. otherwise - // x(i),w(i) is driven either +ve or -ve to force it to the valid region. - // as we drive x(i), x(C) is also adjusted to keep w(C) at zero. - // while driving x(i) we maintain the LCP conditions on the other variables - // 0..i-1. we do this by watching out for other x(i),w(i) values going - // outside the valid region, and then switching them between index sets - // when that happens. - - bool hit_first_friction_index = false; - for (int i = adj_nub; i < n; ++i) - { - s_error = false; - // the index i is the driving index and indexes i+1..n-1 are "dont care", - // i.e. when we make changes to the system those x's will be zero and we - // don't care what happens to those w's. in other words, we only consider - // an (i+1)*(i+1) sub-problem of A*x=b+w. - - // if we've hit the first friction index, we have to compute the lo and - // hi values based on the values of x already computed. we have been - // permuting the indexes, so the values stored in the findex vector are - // no longer valid. thus we have to temporarily unpermute the x vector. - // for the purposes of this computation, 0*infinity = 0 ... so if the - // contact constraint's normal force is 0, there should be no tangential - // force applied. - - if (!hit_first_friction_index && findex && findex[i] >= 0) - { - // un-permute x into delta_w, which is not being used at the moment - for (int j = 0; j < n; ++j) scratchMem.delta_w[scratchMem.p[j]] = x[j]; - - // set lo and hi values - for (int k = i; k < n; ++k) - { - btScalar wfk = scratchMem.delta_w[findex[k]]; - if (wfk == 0) - { - hi[k] = 0; - lo[k] = 0; - } - else - { - hi[k] = btFabs(hi[k] * wfk); - lo[k] = -hi[k]; - } - } - hit_first_friction_index = true; - } - - // thus far we have not even been computing the w values for indexes - // greater than i, so compute w[i] now. - w[i] = lcp.AiC_times_qC(i, x) + lcp.AiN_times_qN(i, x) - b[i]; - - // if lo=hi=0 (which can happen for tangential friction when normals are - // 0) then the index will be assigned to set N with some state. however, - // set C's line has zero size, so the index will always remain in set N. - // with the "normal" switching logic, if w changed sign then the index - // would have to switch to set C and then back to set N with an inverted - // state. this is pointless, and also computationally expensive. to - // prevent this from happening, we use the rule that indexes with lo=hi=0 - // will never be checked for set changes. this means that the state for - // these indexes may be incorrect, but that doesn't matter. - - // see if x(i),w(i) is in a valid region - if (lo[i] == 0 && w[i] >= 0) - { - lcp.transfer_i_to_N(i); - scratchMem.state[i] = false; - } - else if (hi[i] == 0 && w[i] <= 0) - { - lcp.transfer_i_to_N(i); - scratchMem.state[i] = true; - } - else if (w[i] == 0) - { - // this is a degenerate case. by the time we get to this test we know - // that lo != 0, which means that lo < 0 as lo is not allowed to be +ve, - // and similarly that hi > 0. this means that the line segment - // corresponding to set C is at least finite in extent, and we are on it. - // NOTE: we must call lcp.solve1() before lcp.transfer_i_to_C() - lcp.solve1(&scratchMem.delta_x[0], i, 0, 1); - - lcp.transfer_i_to_C(i); - } - else - { - // we must push x(i) and w(i) - for (;;) - { - int dir; - btScalar dirf; - // find direction to push on x(i) - if (w[i] <= 0) - { - dir = 1; - dirf = btScalar(1.0); - } - else - { - dir = -1; - dirf = btScalar(-1.0); - } - - // compute: delta_x(C) = -dir*A(C,C)\A(C,i) - lcp.solve1(&scratchMem.delta_x[0], i, dir); - - // note that delta_x[i] = dirf, but we wont bother to set it - - // compute: delta_w = A*delta_x ... note we only care about - // delta_w(N) and delta_w(i), the rest is ignored - lcp.pN_equals_ANC_times_qC(&scratchMem.delta_w[0], &scratchMem.delta_x[0]); - lcp.pN_plusequals_ANi(&scratchMem.delta_w[0], i, dir); - scratchMem.delta_w[i] = lcp.AiC_times_qC(i, &scratchMem.delta_x[0]) + lcp.Aii(i) * dirf; - - // find largest step we can take (size=s), either to drive x(i),w(i) - // to the valid LCP region or to drive an already-valid variable - // outside the valid region. - - int cmd = 1; // index switching command - int si = 0; // si = index to switch if cmd>3 - btScalar s = -w[i] / scratchMem.delta_w[i]; - if (dir > 0) - { - if (hi[i] < BT_INFINITY) - { - btScalar s2 = (hi[i] - x[i]) * dirf; // was (hi[i]-x[i])/dirf // step to x(i)=hi(i) - if (s2 < s) - { - s = s2; - cmd = 3; - } - } - } - else - { - if (lo[i] > -BT_INFINITY) - { - btScalar s2 = (lo[i] - x[i]) * dirf; // was (lo[i]-x[i])/dirf // step to x(i)=lo(i) - if (s2 < s) - { - s = s2; - cmd = 2; - } - } - } - - { - const int numN = lcp.numN(); - for (int k = 0; k < numN; ++k) - { - const int indexN_k = lcp.indexN(k); - if (!scratchMem.state[indexN_k] ? scratchMem.delta_w[indexN_k] < 0 : scratchMem.delta_w[indexN_k] > 0) - { - // don't bother checking if lo=hi=0 - if (lo[indexN_k] == 0 && hi[indexN_k] == 0) continue; - btScalar s2 = -w[indexN_k] / scratchMem.delta_w[indexN_k]; - if (s2 < s) - { - s = s2; - cmd = 4; - si = indexN_k; - } - } - } - } - - { - const int numC = lcp.numC(); - for (int k = adj_nub; k < numC; ++k) - { - const int indexC_k = lcp.indexC(k); - if (scratchMem.delta_x[indexC_k] < 0 && lo[indexC_k] > -BT_INFINITY) - { - btScalar s2 = (lo[indexC_k] - x[indexC_k]) / scratchMem.delta_x[indexC_k]; - if (s2 < s) - { - s = s2; - cmd = 5; - si = indexC_k; - } - } - if (scratchMem.delta_x[indexC_k] > 0 && hi[indexC_k] < BT_INFINITY) - { - btScalar s2 = (hi[indexC_k] - x[indexC_k]) / scratchMem.delta_x[indexC_k]; - if (s2 < s) - { - s = s2; - cmd = 6; - si = indexC_k; - } - } - } - } - - //static char* cmdstring[8] = {0,"->C","->NL","->NH","N->C", - // "C->NL","C->NH"}; - //printf ("cmd=%d (%s), si=%d\n",cmd,cmdstring[cmd],(cmd>3) ? si : i); - - // if s <= 0 then we've got a problem. if we just keep going then - // we're going to get stuck in an infinite loop. instead, just cross - // our fingers and exit with the current solution. - if (s <= btScalar(0.0)) - { - // printf("LCP internal error, s <= 0 (s=%.4e)",(double)s); - if (i < n) - { - btSetZero(x + i, n - i); - btSetZero(w + i, n - i); - } - s_error = true; - break; - } - - // apply x = x + s * delta_x - lcp.pC_plusequals_s_times_qC(x, s, &scratchMem.delta_x[0]); - x[i] += s * dirf; - - // apply w = w + s * delta_w - lcp.pN_plusequals_s_times_qN(w, s, &scratchMem.delta_w[0]); - w[i] += s * scratchMem.delta_w[i]; - - // void *tmpbuf; - // switch indexes between sets if necessary - switch (cmd) - { - case 1: // done - w[i] = 0; - lcp.transfer_i_to_C(i); - break; - case 2: // done - x[i] = lo[i]; - scratchMem.state[i] = false; - lcp.transfer_i_to_N(i); - break; - case 3: // done - x[i] = hi[i]; - scratchMem.state[i] = true; - lcp.transfer_i_to_N(i); - break; - case 4: // keep going - w[si] = 0; - lcp.transfer_i_from_N_to_C(si); - break; - case 5: // keep going - x[si] = lo[si]; - scratchMem.state[si] = false; - lcp.transfer_i_from_C_to_N(si, scratchMem.m_scratch); - break; - case 6: // keep going - x[si] = hi[si]; - scratchMem.state[si] = true; - lcp.transfer_i_from_C_to_N(si, scratchMem.m_scratch); - break; - } - - if (cmd <= 3) break; - } // for (;;) - } // else - - if (s_error) - { - break; - } - } // for (int i=adj_nub; i<n; ++i) - - lcp.unpermute(); - - return !s_error; -} |