summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletDynamics/Featherstone/btMultiBodyConstraint.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/bullet/BulletDynamics/Featherstone/btMultiBodyConstraint.cpp')
-rw-r--r--thirdparty/bullet/BulletDynamics/Featherstone/btMultiBodyConstraint.cpp670
1 files changed, 336 insertions, 334 deletions
diff --git a/thirdparty/bullet/BulletDynamics/Featherstone/btMultiBodyConstraint.cpp b/thirdparty/bullet/BulletDynamics/Featherstone/btMultiBodyConstraint.cpp
index 9f61874b83..e17ab94d98 100644
--- a/thirdparty/bullet/BulletDynamics/Featherstone/btMultiBodyConstraint.cpp
+++ b/thirdparty/bullet/BulletDynamics/Featherstone/btMultiBodyConstraint.cpp
@@ -1,32 +1,29 @@
#include "btMultiBodyConstraint.h"
#include "BulletDynamics/Dynamics/btRigidBody.h"
-#include "btMultiBodyPoint2Point.h" //for testing (BTMBP2PCONSTRAINT_BLOCK_ANGULAR_MOTION_TEST macro)
+#include "btMultiBodyPoint2Point.h" //for testing (BTMBP2PCONSTRAINT_BLOCK_ANGULAR_MOTION_TEST macro)
-
-
-btMultiBodyConstraint::btMultiBodyConstraint(btMultiBody* bodyA,btMultiBody* bodyB,int linkA, int linkB, int numRows, bool isUnilateral)
- :m_bodyA(bodyA),
- m_bodyB(bodyB),
- m_linkA(linkA),
- m_linkB(linkB),
- m_numRows(numRows),
- m_jacSizeA(0),
- m_jacSizeBoth(0),
- m_isUnilateral(isUnilateral),
- m_numDofsFinalized(-1),
- m_maxAppliedImpulse(100)
+btMultiBodyConstraint::btMultiBodyConstraint(btMultiBody* bodyA, btMultiBody* bodyB, int linkA, int linkB, int numRows, bool isUnilateral)
+ : m_bodyA(bodyA),
+ m_bodyB(bodyB),
+ m_linkA(linkA),
+ m_linkB(linkB),
+ m_numRows(numRows),
+ m_jacSizeA(0),
+ m_jacSizeBoth(0),
+ m_isUnilateral(isUnilateral),
+ m_numDofsFinalized(-1),
+ m_maxAppliedImpulse(100)
{
-
}
void btMultiBodyConstraint::updateJacobianSizes()
{
- if(m_bodyA)
+ if (m_bodyA)
{
m_jacSizeA = (6 + m_bodyA->getNumDofs());
}
- if(m_bodyB)
+ if (m_bodyB)
{
m_jacSizeBoth = m_jacSizeA + 6 + m_bodyB->getNumDofs();
}
@@ -38,7 +35,7 @@ void btMultiBodyConstraint::allocateJacobiansMultiDof()
{
updateJacobianSizes();
- m_posOffset = ((1 + m_jacSizeBoth)*m_numRows);
+ m_posOffset = ((1 + m_jacSizeBoth) * m_numRows);
m_data.resize((2 + m_jacSizeBoth) * m_numRows);
}
@@ -46,298 +43,307 @@ btMultiBodyConstraint::~btMultiBodyConstraint()
{
}
-void btMultiBodyConstraint::applyDeltaVee(btMultiBodyJacobianData& data, btScalar* delta_vee, btScalar impulse, int velocityIndex, int ndof)
+void btMultiBodyConstraint::applyDeltaVee(btMultiBodyJacobianData& data, btScalar* delta_vee, btScalar impulse, int velocityIndex, int ndof)
{
for (int i = 0; i < ndof; ++i)
- data.m_deltaVelocities[velocityIndex+i] += delta_vee[i] * impulse;
+ data.m_deltaVelocities[velocityIndex + i] += delta_vee[i] * impulse;
}
-btScalar btMultiBodyConstraint::fillMultiBodyConstraint( btMultiBodySolverConstraint& solverConstraint,
- btMultiBodyJacobianData& data,
- btScalar* jacOrgA, btScalar* jacOrgB,
- const btVector3& constraintNormalAng,
- const btVector3& constraintNormalLin,
- const btVector3& posAworld, const btVector3& posBworld,
- btScalar posError,
- const btContactSolverInfo& infoGlobal,
- btScalar lowerLimit, btScalar upperLimit,
- bool angConstraint,
- btScalar relaxation,
- bool isFriction, btScalar desiredVelocity, btScalar cfmSlip)
+btScalar btMultiBodyConstraint::fillMultiBodyConstraint(btMultiBodySolverConstraint& solverConstraint,
+ btMultiBodyJacobianData& data,
+ btScalar* jacOrgA, btScalar* jacOrgB,
+ const btVector3& constraintNormalAng,
+ const btVector3& constraintNormalLin,
+ const btVector3& posAworld, const btVector3& posBworld,
+ btScalar posError,
+ const btContactSolverInfo& infoGlobal,
+ btScalar lowerLimit, btScalar upperLimit,
+ bool angConstraint,
+ btScalar relaxation,
+ bool isFriction, btScalar desiredVelocity, btScalar cfmSlip)
{
- solverConstraint.m_multiBodyA = m_bodyA;
- solverConstraint.m_multiBodyB = m_bodyB;
- solverConstraint.m_linkA = m_linkA;
- solverConstraint.m_linkB = m_linkB;
-
- btMultiBody* multiBodyA = solverConstraint.m_multiBodyA;
- btMultiBody* multiBodyB = solverConstraint.m_multiBodyB;
-
- btSolverBody* bodyA = multiBodyA ? 0 : &data.m_solverBodyPool->at(solverConstraint.m_solverBodyIdA);
- btSolverBody* bodyB = multiBodyB ? 0 : &data.m_solverBodyPool->at(solverConstraint.m_solverBodyIdB);
-
- btRigidBody* rb0 = multiBodyA ? 0 : bodyA->m_originalBody;
- btRigidBody* rb1 = multiBodyB ? 0 : bodyB->m_originalBody;
-
- btVector3 rel_pos1, rel_pos2; //these two used to be inited to posAworld and posBworld (respectively) but it does not seem necessary
- if (bodyA)
- rel_pos1 = posAworld - bodyA->getWorldTransform().getOrigin();
- if (bodyB)
- rel_pos2 = posBworld - bodyB->getWorldTransform().getOrigin();
-
- if (multiBodyA)
- {
- if (solverConstraint.m_linkA<0)
- {
- rel_pos1 = posAworld - multiBodyA->getBasePos();
- } else
- {
- rel_pos1 = posAworld - multiBodyA->getLink(solverConstraint.m_linkA).m_cachedWorldTransform.getOrigin();
- }
-
- const int ndofA = multiBodyA->getNumDofs() + 6;
-
- solverConstraint.m_deltaVelAindex = multiBodyA->getCompanionId();
-
- if (solverConstraint.m_deltaVelAindex <0)
- {
- solverConstraint.m_deltaVelAindex = data.m_deltaVelocities.size();
- multiBodyA->setCompanionId(solverConstraint.m_deltaVelAindex);
- data.m_deltaVelocities.resize(data.m_deltaVelocities.size()+ndofA);
- } else
- {
- btAssert(data.m_deltaVelocities.size() >= solverConstraint.m_deltaVelAindex+ndofA);
- }
-
- //determine jacobian of this 1D constraint in terms of multibodyA's degrees of freedom
- //resize..
- solverConstraint.m_jacAindex = data.m_jacobians.size();
- data.m_jacobians.resize(data.m_jacobians.size()+ndofA);
- //copy/determine
- if(jacOrgA)
- {
- for (int i=0;i<ndofA;i++)
- data.m_jacobians[solverConstraint.m_jacAindex+i] = jacOrgA[i];
- }
- else
- {
- btScalar* jac1=&data.m_jacobians[solverConstraint.m_jacAindex];
- //multiBodyA->fillContactJacobianMultiDof(solverConstraint.m_linkA, posAworld, constraintNormalLin, jac1, data.scratch_r, data.scratch_v, data.scratch_m);
- multiBodyA->fillConstraintJacobianMultiDof(solverConstraint.m_linkA, posAworld, constraintNormalAng, constraintNormalLin, jac1, data.scratch_r, data.scratch_v, data.scratch_m);
- }
-
- //determine the velocity response of multibodyA to reaction impulses of this constraint (i.e. A[i,i] for i=1,...n_con: multibody's inverse inertia with respect to this 1D constraint)
- //resize..
- data.m_deltaVelocitiesUnitImpulse.resize(data.m_deltaVelocitiesUnitImpulse.size()+ndofA); //=> each constraint row has the constrained tree dofs allocated in m_deltaVelocitiesUnitImpulse
- btAssert(data.m_jacobians.size() == data.m_deltaVelocitiesUnitImpulse.size());
- btScalar* delta = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
- //determine..
- multiBodyA->calcAccelerationDeltasMultiDof(&data.m_jacobians[solverConstraint.m_jacAindex],delta,data.scratch_r, data.scratch_v);
-
- btVector3 torqueAxis0;
- if (angConstraint) {
- torqueAxis0 = constraintNormalAng;
- }
- else {
- torqueAxis0 = rel_pos1.cross(constraintNormalLin);
-
- }
- solverConstraint.m_relpos1CrossNormal = torqueAxis0;
- solverConstraint.m_contactNormal1 = constraintNormalLin;
- }
- else //if(rb0)
- {
- btVector3 torqueAxis0;
- if (angConstraint) {
- torqueAxis0 = constraintNormalAng;
- }
- else {
- torqueAxis0 = rel_pos1.cross(constraintNormalLin);
- }
- solverConstraint.m_angularComponentA = rb0 ? rb0->getInvInertiaTensorWorld()*torqueAxis0*rb0->getAngularFactor() : btVector3(0,0,0);
- solverConstraint.m_relpos1CrossNormal = torqueAxis0;
- solverConstraint.m_contactNormal1 = constraintNormalLin;
- }
-
- if (multiBodyB)
- {
- if (solverConstraint.m_linkB<0)
- {
- rel_pos2 = posBworld - multiBodyB->getBasePos();
- } else
- {
- rel_pos2 = posBworld - multiBodyB->getLink(solverConstraint.m_linkB).m_cachedWorldTransform.getOrigin();
- }
-
- const int ndofB = multiBodyB->getNumDofs() + 6;
-
- solverConstraint.m_deltaVelBindex = multiBodyB->getCompanionId();
- if (solverConstraint.m_deltaVelBindex <0)
- {
- solverConstraint.m_deltaVelBindex = data.m_deltaVelocities.size();
- multiBodyB->setCompanionId(solverConstraint.m_deltaVelBindex);
- data.m_deltaVelocities.resize(data.m_deltaVelocities.size()+ndofB);
- }
-
- //determine jacobian of this 1D constraint in terms of multibodyB's degrees of freedom
- //resize..
- solverConstraint.m_jacBindex = data.m_jacobians.size();
- data.m_jacobians.resize(data.m_jacobians.size()+ndofB);
- //copy/determine..
- if(jacOrgB)
- {
- for (int i=0;i<ndofB;i++)
- data.m_jacobians[solverConstraint.m_jacBindex+i] = jacOrgB[i];
- }
- else
- {
- //multiBodyB->fillContactJacobianMultiDof(solverConstraint.m_linkB, posBworld, -constraintNormalLin, &data.m_jacobians[solverConstraint.m_jacBindex], data.scratch_r, data.scratch_v, data.scratch_m);
- multiBodyB->fillConstraintJacobianMultiDof(solverConstraint.m_linkB, posBworld, -constraintNormalAng, -constraintNormalLin, &data.m_jacobians[solverConstraint.m_jacBindex], data.scratch_r, data.scratch_v, data.scratch_m);
- }
-
- //determine velocity response of multibodyB to reaction impulses of this constraint (i.e. A[i,i] for i=1,...n_con: multibody's inverse inertia with respect to this 1D constraint)
- //resize..
- data.m_deltaVelocitiesUnitImpulse.resize(data.m_deltaVelocitiesUnitImpulse.size()+ndofB);
- btAssert(data.m_jacobians.size() == data.m_deltaVelocitiesUnitImpulse.size());
- btScalar* delta = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
- //determine..
- multiBodyB->calcAccelerationDeltasMultiDof(&data.m_jacobians[solverConstraint.m_jacBindex],delta,data.scratch_r, data.scratch_v);
-
- btVector3 torqueAxis1;
- if (angConstraint) {
- torqueAxis1 = constraintNormalAng;
- }
- else {
- torqueAxis1 = rel_pos2.cross(constraintNormalLin);
- }
- solverConstraint.m_relpos2CrossNormal = -torqueAxis1;
- solverConstraint.m_contactNormal2 = -constraintNormalLin;
- }
- else //if(rb1)
- {
- btVector3 torqueAxis1;
- if (angConstraint) {
- torqueAxis1 = constraintNormalAng;
- }
- else {
- torqueAxis1 = rel_pos2.cross(constraintNormalLin);
- }
- solverConstraint.m_angularComponentB = rb1 ? rb1->getInvInertiaTensorWorld()*-torqueAxis1*rb1->getAngularFactor() : btVector3(0,0,0);
- solverConstraint.m_relpos2CrossNormal = -torqueAxis1;
- solverConstraint.m_contactNormal2 = -constraintNormalLin;
- }
- {
-
- btVector3 vec;
- btScalar denom0 = 0.f;
- btScalar denom1 = 0.f;
- btScalar* jacB = 0;
- btScalar* jacA = 0;
- btScalar* deltaVelA = 0;
- btScalar* deltaVelB = 0;
- int ndofA = 0;
- //determine the "effective mass" of the constrained multibodyA with respect to this 1D constraint (i.e. 1/A[i,i])
- if (multiBodyA)
- {
- ndofA = multiBodyA->getNumDofs() + 6;
- jacA = &data.m_jacobians[solverConstraint.m_jacAindex];
- deltaVelA = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
- for (int i = 0; i < ndofA; ++i)
- {
- btScalar j = jacA[i] ;
- btScalar l = deltaVelA[i];
- denom0 += j*l;
- }
- }
- else if(rb0)
- {
- vec = ( solverConstraint.m_angularComponentA).cross(rel_pos1);
- if (angConstraint) {
+ solverConstraint.m_multiBodyA = m_bodyA;
+ solverConstraint.m_multiBodyB = m_bodyB;
+ solverConstraint.m_linkA = m_linkA;
+ solverConstraint.m_linkB = m_linkB;
+
+ btMultiBody* multiBodyA = solverConstraint.m_multiBodyA;
+ btMultiBody* multiBodyB = solverConstraint.m_multiBodyB;
+
+ btSolverBody* bodyA = multiBodyA ? 0 : &data.m_solverBodyPool->at(solverConstraint.m_solverBodyIdA);
+ btSolverBody* bodyB = multiBodyB ? 0 : &data.m_solverBodyPool->at(solverConstraint.m_solverBodyIdB);
+
+ btRigidBody* rb0 = multiBodyA ? 0 : bodyA->m_originalBody;
+ btRigidBody* rb1 = multiBodyB ? 0 : bodyB->m_originalBody;
+
+ btVector3 rel_pos1, rel_pos2; //these two used to be inited to posAworld and posBworld (respectively) but it does not seem necessary
+ if (bodyA)
+ rel_pos1 = posAworld - bodyA->getWorldTransform().getOrigin();
+ if (bodyB)
+ rel_pos2 = posBworld - bodyB->getWorldTransform().getOrigin();
+
+ if (multiBodyA)
+ {
+ if (solverConstraint.m_linkA < 0)
+ {
+ rel_pos1 = posAworld - multiBodyA->getBasePos();
+ }
+ else
+ {
+ rel_pos1 = posAworld - multiBodyA->getLink(solverConstraint.m_linkA).m_cachedWorldTransform.getOrigin();
+ }
+
+ const int ndofA = multiBodyA->getNumDofs() + 6;
+
+ solverConstraint.m_deltaVelAindex = multiBodyA->getCompanionId();
+
+ if (solverConstraint.m_deltaVelAindex < 0)
+ {
+ solverConstraint.m_deltaVelAindex = data.m_deltaVelocities.size();
+ multiBodyA->setCompanionId(solverConstraint.m_deltaVelAindex);
+ data.m_deltaVelocities.resize(data.m_deltaVelocities.size() + ndofA);
+ }
+ else
+ {
+ btAssert(data.m_deltaVelocities.size() >= solverConstraint.m_deltaVelAindex + ndofA);
+ }
+
+ //determine jacobian of this 1D constraint in terms of multibodyA's degrees of freedom
+ //resize..
+ solverConstraint.m_jacAindex = data.m_jacobians.size();
+ data.m_jacobians.resize(data.m_jacobians.size() + ndofA);
+ //copy/determine
+ if (jacOrgA)
+ {
+ for (int i = 0; i < ndofA; i++)
+ data.m_jacobians[solverConstraint.m_jacAindex + i] = jacOrgA[i];
+ }
+ else
+ {
+ btScalar* jac1 = &data.m_jacobians[solverConstraint.m_jacAindex];
+ //multiBodyA->fillContactJacobianMultiDof(solverConstraint.m_linkA, posAworld, constraintNormalLin, jac1, data.scratch_r, data.scratch_v, data.scratch_m);
+ multiBodyA->fillConstraintJacobianMultiDof(solverConstraint.m_linkA, posAworld, constraintNormalAng, constraintNormalLin, jac1, data.scratch_r, data.scratch_v, data.scratch_m);
+ }
+
+ //determine the velocity response of multibodyA to reaction impulses of this constraint (i.e. A[i,i] for i=1,...n_con: multibody's inverse inertia with respect to this 1D constraint)
+ //resize..
+ data.m_deltaVelocitiesUnitImpulse.resize(data.m_deltaVelocitiesUnitImpulse.size() + ndofA); //=> each constraint row has the constrained tree dofs allocated in m_deltaVelocitiesUnitImpulse
+ btAssert(data.m_jacobians.size() == data.m_deltaVelocitiesUnitImpulse.size());
+ btScalar* delta = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
+ //determine..
+ multiBodyA->calcAccelerationDeltasMultiDof(&data.m_jacobians[solverConstraint.m_jacAindex], delta, data.scratch_r, data.scratch_v);
+
+ btVector3 torqueAxis0;
+ if (angConstraint)
+ {
+ torqueAxis0 = constraintNormalAng;
+ }
+ else
+ {
+ torqueAxis0 = rel_pos1.cross(constraintNormalLin);
+ }
+ solverConstraint.m_relpos1CrossNormal = torqueAxis0;
+ solverConstraint.m_contactNormal1 = constraintNormalLin;
+ }
+ else //if(rb0)
+ {
+ btVector3 torqueAxis0;
+ if (angConstraint)
+ {
+ torqueAxis0 = constraintNormalAng;
+ }
+ else
+ {
+ torqueAxis0 = rel_pos1.cross(constraintNormalLin);
+ }
+ solverConstraint.m_angularComponentA = rb0 ? rb0->getInvInertiaTensorWorld() * torqueAxis0 * rb0->getAngularFactor() : btVector3(0, 0, 0);
+ solverConstraint.m_relpos1CrossNormal = torqueAxis0;
+ solverConstraint.m_contactNormal1 = constraintNormalLin;
+ }
+
+ if (multiBodyB)
+ {
+ if (solverConstraint.m_linkB < 0)
+ {
+ rel_pos2 = posBworld - multiBodyB->getBasePos();
+ }
+ else
+ {
+ rel_pos2 = posBworld - multiBodyB->getLink(solverConstraint.m_linkB).m_cachedWorldTransform.getOrigin();
+ }
+
+ const int ndofB = multiBodyB->getNumDofs() + 6;
+
+ solverConstraint.m_deltaVelBindex = multiBodyB->getCompanionId();
+ if (solverConstraint.m_deltaVelBindex < 0)
+ {
+ solverConstraint.m_deltaVelBindex = data.m_deltaVelocities.size();
+ multiBodyB->setCompanionId(solverConstraint.m_deltaVelBindex);
+ data.m_deltaVelocities.resize(data.m_deltaVelocities.size() + ndofB);
+ }
+
+ //determine jacobian of this 1D constraint in terms of multibodyB's degrees of freedom
+ //resize..
+ solverConstraint.m_jacBindex = data.m_jacobians.size();
+ data.m_jacobians.resize(data.m_jacobians.size() + ndofB);
+ //copy/determine..
+ if (jacOrgB)
+ {
+ for (int i = 0; i < ndofB; i++)
+ data.m_jacobians[solverConstraint.m_jacBindex + i] = jacOrgB[i];
+ }
+ else
+ {
+ //multiBodyB->fillContactJacobianMultiDof(solverConstraint.m_linkB, posBworld, -constraintNormalLin, &data.m_jacobians[solverConstraint.m_jacBindex], data.scratch_r, data.scratch_v, data.scratch_m);
+ multiBodyB->fillConstraintJacobianMultiDof(solverConstraint.m_linkB, posBworld, -constraintNormalAng, -constraintNormalLin, &data.m_jacobians[solverConstraint.m_jacBindex], data.scratch_r, data.scratch_v, data.scratch_m);
+ }
+
+ //determine velocity response of multibodyB to reaction impulses of this constraint (i.e. A[i,i] for i=1,...n_con: multibody's inverse inertia with respect to this 1D constraint)
+ //resize..
+ data.m_deltaVelocitiesUnitImpulse.resize(data.m_deltaVelocitiesUnitImpulse.size() + ndofB);
+ btAssert(data.m_jacobians.size() == data.m_deltaVelocitiesUnitImpulse.size());
+ btScalar* delta = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
+ //determine..
+ multiBodyB->calcAccelerationDeltasMultiDof(&data.m_jacobians[solverConstraint.m_jacBindex], delta, data.scratch_r, data.scratch_v);
+
+ btVector3 torqueAxis1;
+ if (angConstraint)
+ {
+ torqueAxis1 = constraintNormalAng;
+ }
+ else
+ {
+ torqueAxis1 = rel_pos2.cross(constraintNormalLin);
+ }
+ solverConstraint.m_relpos2CrossNormal = -torqueAxis1;
+ solverConstraint.m_contactNormal2 = -constraintNormalLin;
+ }
+ else //if(rb1)
+ {
+ btVector3 torqueAxis1;
+ if (angConstraint)
+ {
+ torqueAxis1 = constraintNormalAng;
+ }
+ else
+ {
+ torqueAxis1 = rel_pos2.cross(constraintNormalLin);
+ }
+ solverConstraint.m_angularComponentB = rb1 ? rb1->getInvInertiaTensorWorld() * -torqueAxis1 * rb1->getAngularFactor() : btVector3(0, 0, 0);
+ solverConstraint.m_relpos2CrossNormal = -torqueAxis1;
+ solverConstraint.m_contactNormal2 = -constraintNormalLin;
+ }
+ {
+ btVector3 vec;
+ btScalar denom0 = 0.f;
+ btScalar denom1 = 0.f;
+ btScalar* jacB = 0;
+ btScalar* jacA = 0;
+ btScalar* deltaVelA = 0;
+ btScalar* deltaVelB = 0;
+ int ndofA = 0;
+ //determine the "effective mass" of the constrained multibodyA with respect to this 1D constraint (i.e. 1/A[i,i])
+ if (multiBodyA)
+ {
+ ndofA = multiBodyA->getNumDofs() + 6;
+ jacA = &data.m_jacobians[solverConstraint.m_jacAindex];
+ deltaVelA = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
+ for (int i = 0; i < ndofA; ++i)
+ {
+ btScalar j = jacA[i];
+ btScalar l = deltaVelA[i];
+ denom0 += j * l;
+ }
+ }
+ else if (rb0)
+ {
+ vec = (solverConstraint.m_angularComponentA).cross(rel_pos1);
+ if (angConstraint)
+ {
denom0 = constraintNormalAng.dot(solverConstraint.m_angularComponentA);
- }
- else {
- denom0 = rb0->getInvMass() + constraintNormalLin.dot(vec);
- }
- }
- //
- if (multiBodyB)
- {
- const int ndofB = multiBodyB->getNumDofs() + 6;
- jacB = &data.m_jacobians[solverConstraint.m_jacBindex];
- deltaVelB = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
- for (int i = 0; i < ndofB; ++i)
- {
- btScalar j = jacB[i] ;
- btScalar l = deltaVelB[i];
- denom1 += j*l;
- }
-
- }
- else if(rb1)
- {
- vec = ( -solverConstraint.m_angularComponentB).cross(rel_pos2);
- if (angConstraint) {
+ }
+ else
+ {
+ denom0 = rb0->getInvMass() + constraintNormalLin.dot(vec);
+ }
+ }
+ //
+ if (multiBodyB)
+ {
+ const int ndofB = multiBodyB->getNumDofs() + 6;
+ jacB = &data.m_jacobians[solverConstraint.m_jacBindex];
+ deltaVelB = &data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
+ for (int i = 0; i < ndofB; ++i)
+ {
+ btScalar j = jacB[i];
+ btScalar l = deltaVelB[i];
+ denom1 += j * l;
+ }
+ }
+ else if (rb1)
+ {
+ vec = (-solverConstraint.m_angularComponentB).cross(rel_pos2);
+ if (angConstraint)
+ {
denom1 = constraintNormalAng.dot(-solverConstraint.m_angularComponentB);
- }
- else {
- denom1 = rb1->getInvMass() + constraintNormalLin.dot(vec);
- }
- }
-
- //
- btScalar d = denom0+denom1;
- if (d>SIMD_EPSILON)
- {
- solverConstraint.m_jacDiagABInv = relaxation/(d);
- }
- else
- {
- //disable the constraint row to handle singularity/redundant constraint
- solverConstraint.m_jacDiagABInv = 0.f;
- }
- }
-
-
- //compute rhs and remaining solverConstraint fields
- btScalar penetration = isFriction? 0 : posError;
-
- btScalar rel_vel = 0.f;
- int ndofA = 0;
- int ndofB = 0;
- {
- btVector3 vel1,vel2;
- if (multiBodyA)
- {
- ndofA = multiBodyA->getNumDofs() + 6;
- btScalar* jacA = &data.m_jacobians[solverConstraint.m_jacAindex];
- for (int i = 0; i < ndofA ; ++i)
- rel_vel += multiBodyA->getVelocityVector()[i] * jacA[i];
- }
- else if(rb0)
- {
+ }
+ else
+ {
+ denom1 = rb1->getInvMass() + constraintNormalLin.dot(vec);
+ }
+ }
+
+ //
+ btScalar d = denom0 + denom1;
+ if (d > SIMD_EPSILON)
+ {
+ solverConstraint.m_jacDiagABInv = relaxation / (d);
+ }
+ else
+ {
+ //disable the constraint row to handle singularity/redundant constraint
+ solverConstraint.m_jacDiagABInv = 0.f;
+ }
+ }
+
+ //compute rhs and remaining solverConstraint fields
+ btScalar penetration = isFriction ? 0 : posError;
+
+ btScalar rel_vel = 0.f;
+ int ndofA = 0;
+ int ndofB = 0;
+ {
+ btVector3 vel1, vel2;
+ if (multiBodyA)
+ {
+ ndofA = multiBodyA->getNumDofs() + 6;
+ btScalar* jacA = &data.m_jacobians[solverConstraint.m_jacAindex];
+ for (int i = 0; i < ndofA; ++i)
+ rel_vel += multiBodyA->getVelocityVector()[i] * jacA[i];
+ }
+ else if (rb0)
+ {
rel_vel += rb0->getLinearVelocity().dot(solverConstraint.m_contactNormal1);
rel_vel += rb0->getAngularVelocity().dot(solverConstraint.m_relpos1CrossNormal);
- }
- if (multiBodyB)
- {
- ndofB = multiBodyB->getNumDofs() + 6;
- btScalar* jacB = &data.m_jacobians[solverConstraint.m_jacBindex];
- for (int i = 0; i < ndofB ; ++i)
- rel_vel += multiBodyB->getVelocityVector()[i] * jacB[i];
-
- }
- else if(rb1)
- {
+ }
+ if (multiBodyB)
+ {
+ ndofB = multiBodyB->getNumDofs() + 6;
+ btScalar* jacB = &data.m_jacobians[solverConstraint.m_jacBindex];
+ for (int i = 0; i < ndofB; ++i)
+ rel_vel += multiBodyB->getVelocityVector()[i] * jacB[i];
+ }
+ else if (rb1)
+ {
rel_vel += rb1->getLinearVelocity().dot(solverConstraint.m_contactNormal2);
rel_vel += rb1->getAngularVelocity().dot(solverConstraint.m_relpos2CrossNormal);
- }
-
- solverConstraint.m_friction = 0.f;//cp.m_combinedFriction;
- }
-
-
- ///warm starting (or zero if disabled)
- /*
+ }
+
+ solverConstraint.m_friction = 0.f; //cp.m_combinedFriction;
+ }
+
+ ///warm starting (or zero if disabled)
+ /*
if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
{
solverConstraint.m_appliedImpulse = isFriction ? 0 : cp.m_appliedImpulse * infoGlobal.m_warmstartingFactor;
@@ -369,38 +375,35 @@ btScalar btMultiBodyConstraint::fillMultiBodyConstraint( btMultiBodySolverConstr
}
} else
*/
-
- solverConstraint.m_appliedImpulse = 0.f;
- solverConstraint.m_appliedPushImpulse = 0.f;
-
- {
-
- btScalar positionalError = 0.f;
- btScalar velocityError = desiredVelocity - rel_vel;// * damping;
-
-
- btScalar erp = infoGlobal.m_erp2;
-
+
+ solverConstraint.m_appliedImpulse = 0.f;
+ solverConstraint.m_appliedPushImpulse = 0.f;
+
+ {
+ btScalar positionalError = 0.f;
+ btScalar velocityError = desiredVelocity - rel_vel; // * damping;
+
+ btScalar erp = infoGlobal.m_erp2;
+
//split impulse is not implemented yet for btMultiBody*
//if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
- {
- erp = infoGlobal.m_erp;
- }
-
- positionalError = -penetration * erp/infoGlobal.m_timeStep;
-
- btScalar penetrationImpulse = positionalError*solverConstraint.m_jacDiagABInv;
- btScalar velocityImpulse = velocityError *solverConstraint.m_jacDiagABInv;
-
+ {
+ erp = infoGlobal.m_erp;
+ }
+
+ positionalError = -penetration * erp / infoGlobal.m_timeStep;
+
+ btScalar penetrationImpulse = positionalError * solverConstraint.m_jacDiagABInv;
+ btScalar velocityImpulse = velocityError * solverConstraint.m_jacDiagABInv;
+
//split impulse is not implemented yet for btMultiBody*
- // if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
- {
- //combine position and velocity into rhs
- solverConstraint.m_rhs = penetrationImpulse+velocityImpulse;
- solverConstraint.m_rhsPenetration = 0.f;
-
- }
+ // if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
+ {
+ //combine position and velocity into rhs
+ solverConstraint.m_rhs = penetrationImpulse + velocityImpulse;
+ solverConstraint.m_rhsPenetration = 0.f;
+ }
/*else
{
//split position and velocity into rhs and m_rhsPenetration
@@ -409,11 +412,10 @@ btScalar btMultiBodyConstraint::fillMultiBodyConstraint( btMultiBodySolverConstr
}
*/
- solverConstraint.m_cfm = 0.f;
- solverConstraint.m_lowerLimit = lowerLimit;
- solverConstraint.m_upperLimit = upperLimit;
- }
-
- return rel_vel;
-
+ solverConstraint.m_cfm = 0.f;
+ solverConstraint.m_lowerLimit = lowerLimit;
+ solverConstraint.m_upperLimit = upperLimit;
+ }
+
+ return rel_vel;
}