summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletDynamics/Featherstone/btMultiBody.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/bullet/BulletDynamics/Featherstone/btMultiBody.cpp')
-rw-r--r--thirdparty/bullet/BulletDynamics/Featherstone/btMultiBody.cpp566
1 files changed, 370 insertions, 196 deletions
diff --git a/thirdparty/bullet/BulletDynamics/Featherstone/btMultiBody.cpp b/thirdparty/bullet/BulletDynamics/Featherstone/btMultiBody.cpp
index a1d5bb9ca8..7cb92fa3b4 100644
--- a/thirdparty/bullet/BulletDynamics/Featherstone/btMultiBody.cpp
+++ b/thirdparty/bullet/BulletDynamics/Featherstone/btMultiBody.cpp
@@ -125,7 +125,8 @@ btMultiBody::btMultiBody(int n_links,
m_posVarCnt(0),
m_useRK4(false),
m_useGlobalVelocities(false),
- m_internalNeedsJointFeedback(false)
+ m_internalNeedsJointFeedback(false),
+ m_kinematic_calculate_velocity(false)
{
m_cachedInertiaTopLeft.setValue(0, 0, 0, 0, 0, 0, 0, 0, 0);
m_cachedInertiaTopRight.setValue(0, 0, 0, 0, 0, 0, 0, 0, 0);
@@ -344,6 +345,8 @@ void btMultiBody::finalizeMultiDof()
{
m_deltaV.resize(0);
m_deltaV.resize(6 + m_dofCount);
+ m_splitV.resize(0);
+ m_splitV.resize(6 + m_dofCount);
m_realBuf.resize(6 + m_dofCount + m_dofCount * m_dofCount + 6 + m_dofCount); //m_dofCount for joint-space vels + m_dofCount^2 for "D" matrices + delta-pos vector (6 base "vels" + joint "vels")
m_vectorBuf.resize(2 * m_dofCount); //two 3-vectors (i.e. one six-vector) for each system dof ("h" matrices)
m_matrixBuf.resize(m_links.size() + 1);
@@ -671,6 +674,30 @@ btScalar *btMultiBody::getJointTorqueMultiDof(int i)
return &m_links[i].m_jointTorque[0];
}
+bool btMultiBody::hasFixedBase() const
+{
+ return m_fixedBase || (getBaseCollider() && getBaseCollider()->isStaticObject());
+}
+
+bool btMultiBody::isBaseStaticOrKinematic() const
+{
+ return m_fixedBase || (getBaseCollider() && getBaseCollider()->isStaticOrKinematicObject());
+}
+
+bool btMultiBody::isBaseKinematic() const
+{
+ return getBaseCollider() && getBaseCollider()->isKinematicObject();
+}
+
+void btMultiBody::setBaseDynamicType(int dynamicType)
+{
+ if(getBaseCollider()) {
+ int oldFlags = getBaseCollider()->getCollisionFlags();
+ oldFlags &= ~(btCollisionObject::CF_STATIC_OBJECT | btCollisionObject::CF_KINEMATIC_OBJECT);
+ getBaseCollider()->setCollisionFlags(oldFlags | dynamicType);
+ }
+}
+
inline btMatrix3x3 outerProduct(const btVector3 &v0, const btVector3 &v1) //renamed it from vecMulVecTranspose (http://en.wikipedia.org/wiki/Outer_product); maybe it should be moved to btVector3 like dot and cross?
{
btVector3 row0 = btVector3(
@@ -796,7 +823,7 @@ void btMultiBody::computeAccelerationsArticulatedBodyAlgorithmMultiDof(btScalar
//create the vector of spatial velocity of the base by transforming global-coor linear and angular velocities into base-local coordinates
spatVel[0].setVector(rot_from_parent[0] * base_omega, rot_from_parent[0] * base_vel);
- if (m_fixedBase)
+ if (isBaseStaticOrKinematic())
{
zeroAccSpatFrc[0].setZero();
}
@@ -872,31 +899,53 @@ void btMultiBody::computeAccelerationsArticulatedBodyAlgorithmMultiDof(btScalar
// calculate zhat_i^A
//
- //external forces
- btVector3 linkAppliedForce = isConstraintPass ? m_links[i].m_appliedConstraintForce : m_links[i].m_appliedForce;
- btVector3 linkAppliedTorque = isConstraintPass ? m_links[i].m_appliedConstraintTorque : m_links[i].m_appliedTorque;
+ if (isLinkAndAllAncestorsKinematic(i))
+ {
+ zeroAccSpatFrc[i].setZero();
+ }
+ else{
+ //external forces
+ btVector3 linkAppliedForce = isConstraintPass ? m_links[i].m_appliedConstraintForce : m_links[i].m_appliedForce;
+ btVector3 linkAppliedTorque = isConstraintPass ? m_links[i].m_appliedConstraintTorque : m_links[i].m_appliedTorque;
- zeroAccSpatFrc[i + 1].setVector(-(rot_from_world[i + 1] * linkAppliedTorque), -(rot_from_world[i + 1] * linkAppliedForce));
+ zeroAccSpatFrc[i + 1].setVector(-(rot_from_world[i + 1] * linkAppliedTorque), -(rot_from_world[i + 1] * linkAppliedForce));
#if 0
- {
+ {
- b3Printf("stepVelocitiesMultiDof zeroAccSpatFrc[%d] linear:%f,%f,%f, angular:%f,%f,%f",
- i+1,
- zeroAccSpatFrc[i+1].m_topVec[0],
- zeroAccSpatFrc[i+1].m_topVec[1],
- zeroAccSpatFrc[i+1].m_topVec[2],
+ b3Printf("stepVelocitiesMultiDof zeroAccSpatFrc[%d] linear:%f,%f,%f, angular:%f,%f,%f",
+ i+1,
+ zeroAccSpatFrc[i+1].m_topVec[0],
+ zeroAccSpatFrc[i+1].m_topVec[1],
+ zeroAccSpatFrc[i+1].m_topVec[2],
- zeroAccSpatFrc[i+1].m_bottomVec[0],
- zeroAccSpatFrc[i+1].m_bottomVec[1],
- zeroAccSpatFrc[i+1].m_bottomVec[2]);
- }
+ zeroAccSpatFrc[i+1].m_bottomVec[0],
+ zeroAccSpatFrc[i+1].m_bottomVec[1],
+ zeroAccSpatFrc[i+1].m_bottomVec[2]);
+ }
#endif
- //
- //adding damping terms (only)
- btScalar linDampMult = 1., angDampMult = 1.;
- zeroAccSpatFrc[i + 1].addVector(angDampMult * m_links[i].m_inertiaLocal * spatVel[i + 1].getAngular() * (DAMPING_K1_ANGULAR + DAMPING_K2_ANGULAR * spatVel[i + 1].getAngular().safeNorm()),
- linDampMult * m_links[i].m_mass * spatVel[i + 1].getLinear() * (DAMPING_K1_LINEAR + DAMPING_K2_LINEAR * spatVel[i + 1].getLinear().safeNorm()));
+ //
+ //adding damping terms (only)
+ btScalar linDampMult = 1., angDampMult = 1.;
+ zeroAccSpatFrc[i + 1].addVector(angDampMult * m_links[i].m_inertiaLocal * spatVel[i + 1].getAngular() * (DAMPING_K1_ANGULAR + DAMPING_K2_ANGULAR * spatVel[i + 1].getAngular().safeNorm()),
+ linDampMult * m_links[i].m_mass * spatVel[i + 1].getLinear() * (DAMPING_K1_LINEAR + DAMPING_K2_LINEAR * spatVel[i + 1].getLinear().safeNorm()));
+ //p += vhat x Ihat vhat - done in a simpler way
+ if (m_useGyroTerm)
+ zeroAccSpatFrc[i + 1].addAngular(spatVel[i + 1].getAngular().cross(m_links[i].m_inertiaLocal * spatVel[i + 1].getAngular()));
+ //
+ zeroAccSpatFrc[i + 1].addLinear(m_links[i].m_mass * spatVel[i + 1].getAngular().cross(spatVel[i + 1].getLinear()));
+ //
+ //btVector3 temp = m_links[i].m_mass * spatVel[i+1].getAngular().cross(spatVel[i+1].getLinear());
+ ////clamp parent's omega
+ //btScalar parOmegaMod = temp.length();
+ //btScalar parOmegaModMax = 1000;
+ //if(parOmegaMod > parOmegaModMax)
+ // temp *= parOmegaModMax / parOmegaMod;
+ //zeroAccSpatFrc[i+1].addLinear(temp);
+ //printf("|zeroAccSpatFrc[%d]| = %.4f\n", i+1, temp.length());
+ //temp = spatCoriolisAcc[i].getLinear();
+ //printf("|spatCoriolisAcc[%d]| = %.4f\n", i+1, temp.length());
+ }
// calculate Ihat_i^A
//init the spatial AB inertia (it has the simple form thanks to choosing local body frames origins at their COMs)
@@ -909,22 +958,6 @@ void btMultiBody::computeAccelerationsArticulatedBodyAlgorithmMultiDof(btScalar
btMatrix3x3(m_links[i].m_inertiaLocal[0], 0, 0,
0, m_links[i].m_inertiaLocal[1], 0,
0, 0, m_links[i].m_inertiaLocal[2]));
- //
- //p += vhat x Ihat vhat - done in a simpler way
- if (m_useGyroTerm)
- zeroAccSpatFrc[i + 1].addAngular(spatVel[i + 1].getAngular().cross(m_links[i].m_inertiaLocal * spatVel[i + 1].getAngular()));
- //
- zeroAccSpatFrc[i + 1].addLinear(m_links[i].m_mass * spatVel[i + 1].getAngular().cross(spatVel[i + 1].getLinear()));
- //btVector3 temp = m_links[i].m_mass * spatVel[i+1].getAngular().cross(spatVel[i+1].getLinear());
- ////clamp parent's omega
- //btScalar parOmegaMod = temp.length();
- //btScalar parOmegaModMax = 1000;
- //if(parOmegaMod > parOmegaModMax)
- // temp *= parOmegaModMax / parOmegaMod;
- //zeroAccSpatFrc[i+1].addLinear(temp);
- //printf("|zeroAccSpatFrc[%d]| = %.4f\n", i+1, temp.length());
- //temp = spatCoriolisAcc[i].getLinear();
- //printf("|spatCoriolisAcc[%d]| = %.4f\n", i+1, temp.length());
//printf("w[%d] = [%.4f %.4f %.4f]\n", i, vel_top_angular[i+1].x(), vel_top_angular[i+1].y(), vel_top_angular[i+1].z());
//printf("v[%d] = [%.4f %.4f %.4f]\n", i, vel_bottom_linear[i+1].x(), vel_bottom_linear[i+1].y(), vel_bottom_linear[i+1].z());
@@ -935,6 +968,8 @@ void btMultiBody::computeAccelerationsArticulatedBodyAlgorithmMultiDof(btScalar
// (part of TreeForwardDynamics in Mirtich.)
for (int i = num_links - 1; i >= 0; --i)
{
+ if(isLinkAndAllAncestorsKinematic(i))
+ continue;
const int parent = m_links[i].m_parent;
fromParent.m_rotMat = rot_from_parent[i + 1];
fromParent.m_trnVec = m_links[i].m_cachedRVector;
@@ -1047,7 +1082,7 @@ void btMultiBody::computeAccelerationsArticulatedBodyAlgorithmMultiDof(btScalar
// Second 'upward' loop
// (part of TreeForwardDynamics in Mirtich)
- if (m_fixedBase)
+ if (isBaseStaticOrKinematic())
{
spatAcc[0].setZero();
}
@@ -1081,21 +1116,23 @@ void btMultiBody::computeAccelerationsArticulatedBodyAlgorithmMultiDof(btScalar
fromParent.transform(spatAcc[parent + 1], spatAcc[i + 1]);
- for (int dof = 0; dof < m_links[i].m_dofCount; ++dof)
+ if(!isLinkAndAllAncestorsKinematic(i))
{
- const btSpatialForceVector &hDof = h[m_links[i].m_dofOffset + dof];
- //
- Y_minus_hT_a[dof] = Y[m_links[i].m_dofOffset + dof] - spatAcc[i + 1].dot(hDof);
- }
-
- btScalar *invDi = &invD[m_links[i].m_dofOffset * m_links[i].m_dofOffset];
- //D^{-1} * (Y - h^{T}*apar)
- mulMatrix(invDi, Y_minus_hT_a, m_links[i].m_dofCount, m_links[i].m_dofCount, m_links[i].m_dofCount, 1, &joint_accel[m_links[i].m_dofOffset]);
+ for (int dof = 0; dof < m_links[i].m_dofCount; ++dof)
+ {
+ const btSpatialForceVector &hDof = h[m_links[i].m_dofOffset + dof];
+ //
+ Y_minus_hT_a[dof] = Y[m_links[i].m_dofOffset + dof] - spatAcc[i + 1].dot(hDof);
+ }
+ btScalar *invDi = &invD[m_links[i].m_dofOffset * m_links[i].m_dofOffset];
+ //D^{-1} * (Y - h^{T}*apar)
+ mulMatrix(invDi, Y_minus_hT_a, m_links[i].m_dofCount, m_links[i].m_dofCount, m_links[i].m_dofCount, 1, &joint_accel[m_links[i].m_dofOffset]);
- spatAcc[i + 1] += spatCoriolisAcc[i];
+ spatAcc[i + 1] += spatCoriolisAcc[i];
- for (int dof = 0; dof < m_links[i].m_dofCount; ++dof)
- spatAcc[i + 1] += m_links[i].m_axes[dof] * joint_accel[m_links[i].m_dofOffset + dof];
+ for (int dof = 0; dof < m_links[i].m_dofCount; ++dof)
+ spatAcc[i + 1] += m_links[i].m_axes[dof] * joint_accel[m_links[i].m_dofOffset + dof];
+ }
if (m_links[i].m_jointFeedback)
{
@@ -1432,7 +1469,7 @@ void btMultiBody::calcAccelerationDeltasMultiDof(const btScalar *force, btScalar
// Fill in zero_acc
// -- set to force/torque on the base, zero otherwise
- if (m_fixedBase)
+ if (isBaseStaticOrKinematic())
{
zeroAccSpatFrc[0].setZero();
}
@@ -1451,6 +1488,8 @@ void btMultiBody::calcAccelerationDeltasMultiDof(const btScalar *force, btScalar
// (part of TreeForwardDynamics in Mirtich.)
for (int i = num_links - 1; i >= 0; --i)
{
+ if(isLinkAndAllAncestorsKinematic(i))
+ continue;
const int parent = m_links[i].m_parent;
fromParent.m_rotMat = rot_from_parent[i + 1];
fromParent.m_trnVec = m_links[i].m_cachedRVector;
@@ -1494,7 +1533,7 @@ void btMultiBody::calcAccelerationDeltasMultiDof(const btScalar *force, btScalar
// Second 'upward' loop
// (part of TreeForwardDynamics in Mirtich)
- if (m_fixedBase)
+ if (isBaseStaticOrKinematic())
{
spatAcc[0].setZero();
}
@@ -1507,6 +1546,8 @@ void btMultiBody::calcAccelerationDeltasMultiDof(const btScalar *force, btScalar
// now do the loop over the m_links
for (int i = 0; i < num_links; ++i)
{
+ if(isLinkAndAllAncestorsKinematic(i))
+ continue;
const int parent = m_links[i].m_parent;
fromParent.m_rotMat = rot_from_parent[i + 1];
fromParent.m_trnVec = m_links[i].m_cachedRVector;
@@ -1550,23 +1591,26 @@ void btMultiBody::calcAccelerationDeltasMultiDof(const btScalar *force, btScalar
void btMultiBody::predictPositionsMultiDof(btScalar dt)
{
int num_links = getNumLinks();
- // step position by adding dt * velocity
- //btVector3 v = getBaseVel();
- //m_basePos += dt * v;
- //
- btScalar *pBasePos;
- btScalar *pBaseVel = &m_realBuf[3]; //note: the !pqd case assumes m_realBuf holds with base velocity at 3,4,5 (should be wrapped for safety)
-
- // reset to current position
- for (int i = 0; i < 3; ++i)
- {
- m_basePos_interpolate[i] = m_basePos[i];
- }
- pBasePos = m_basePos_interpolate;
+ if(!isBaseKinematic())
+ {
+ // step position by adding dt * velocity
+ //btVector3 v = getBaseVel();
+ //m_basePos += dt * v;
+ //
+ btScalar *pBasePos;
+ btScalar *pBaseVel = &m_realBuf[3]; //note: the !pqd case assumes m_realBuf holds with base velocity at 3,4,5 (should be wrapped for safety)
- pBasePos[0] += dt * pBaseVel[0];
- pBasePos[1] += dt * pBaseVel[1];
- pBasePos[2] += dt * pBaseVel[2];
+ // reset to current position
+ for (int i = 0; i < 3; ++i)
+ {
+ m_basePos_interpolate[i] = m_basePos[i];
+ }
+ pBasePos = m_basePos_interpolate;
+
+ pBasePos[0] += dt * pBaseVel[0];
+ pBasePos[1] += dt * pBaseVel[1];
+ pBasePos[2] += dt * pBaseVel[2];
+ }
///////////////////////////////
//local functor for quaternion integration (to avoid error prone redundancy)
@@ -1617,26 +1661,29 @@ void btMultiBody::predictPositionsMultiDof(btScalar dt)
//pQuatUpdateFun(getBaseOmega(), m_baseQuat, true, dt);
//
- btScalar *pBaseQuat;
-
- // reset to current orientation
- for (int i = 0; i < 4; ++i)
- {
- m_baseQuat_interpolate[i] = m_baseQuat[i];
- }
- pBaseQuat = m_baseQuat_interpolate;
+ if(!isBaseKinematic())
+ {
+ btScalar *pBaseQuat;
- btScalar *pBaseOmega = &m_realBuf[0]; //note: the !pqd case assumes m_realBuf starts with base omega (should be wrapped for safety)
- //
- btQuaternion baseQuat;
- baseQuat.setValue(pBaseQuat[0], pBaseQuat[1], pBaseQuat[2], pBaseQuat[3]);
- btVector3 baseOmega;
- baseOmega.setValue(pBaseOmega[0], pBaseOmega[1], pBaseOmega[2]);
- pQuatUpdateFun(baseOmega, baseQuat, true, dt);
- pBaseQuat[0] = baseQuat.x();
- pBaseQuat[1] = baseQuat.y();
- pBaseQuat[2] = baseQuat.z();
- pBaseQuat[3] = baseQuat.w();
+ // reset to current orientation
+ for (int i = 0; i < 4; ++i)
+ {
+ m_baseQuat_interpolate[i] = m_baseQuat[i];
+ }
+ pBaseQuat = m_baseQuat_interpolate;
+
+ btScalar *pBaseOmega = &m_realBuf[0]; //note: the !pqd case assumes m_realBuf starts with base omega (should be wrapped for safety)
+ //
+ btQuaternion baseQuat;
+ baseQuat.setValue(pBaseQuat[0], pBaseQuat[1], pBaseQuat[2], pBaseQuat[3]);
+ btVector3 baseOmega;
+ baseOmega.setValue(pBaseOmega[0], pBaseOmega[1], pBaseOmega[2]);
+ pQuatUpdateFun(baseOmega, baseQuat, true, dt);
+ pBaseQuat[0] = baseQuat.x();
+ pBaseQuat[1] = baseQuat.y();
+ pBaseQuat[2] = baseQuat.z();
+ pBaseQuat[3] = baseQuat.w();
+ }
// Finally we can update m_jointPos for each of the m_links
for (int i = 0; i < num_links; ++i)
@@ -1644,55 +1691,88 @@ void btMultiBody::predictPositionsMultiDof(btScalar dt)
btScalar *pJointPos;
pJointPos = &m_links[i].m_jointPos_interpolate[0];
- btScalar *pJointVel = getJointVelMultiDof(i);
-
- switch (m_links[i].m_jointType)
- {
- case btMultibodyLink::ePrismatic:
- case btMultibodyLink::eRevolute:
- {
- //reset to current pos
- pJointPos[0] = m_links[i].m_jointPos[0];
- btScalar jointVel = pJointVel[0];
- pJointPos[0] += dt * jointVel;
- break;
- }
- case btMultibodyLink::eSpherical:
- {
- //reset to current pos
-
- for (int j = 0; j < 4; ++j)
+ if (m_links[i].m_collider && m_links[i].m_collider->isStaticOrKinematic())
+ {
+ switch (m_links[i].m_jointType)
+ {
+ case btMultibodyLink::ePrismatic:
+ case btMultibodyLink::eRevolute:
{
- pJointPos[j] = m_links[i].m_jointPos[j];
+ pJointPos[0] = m_links[i].m_jointPos[0];
+ break;
}
-
- btVector3 jointVel;
- jointVel.setValue(pJointVel[0], pJointVel[1], pJointVel[2]);
- btQuaternion jointOri;
- jointOri.setValue(pJointPos[0], pJointPos[1], pJointPos[2], pJointPos[3]);
- pQuatUpdateFun(jointVel, jointOri, false, dt);
- pJointPos[0] = jointOri.x();
- pJointPos[1] = jointOri.y();
- pJointPos[2] = jointOri.z();
- pJointPos[3] = jointOri.w();
- break;
- }
- case btMultibodyLink::ePlanar:
- {
- for (int j = 0; j < 3; ++j)
+ case btMultibodyLink::eSpherical:
{
- pJointPos[j] = m_links[i].m_jointPos[j];
+ for (int j = 0; j < 4; ++j)
+ {
+ pJointPos[j] = m_links[i].m_jointPos[j];
+ }
+ break;
}
- pJointPos[0] += dt * getJointVelMultiDof(i)[0];
-
- btVector3 q0_coors_qd1qd2 = getJointVelMultiDof(i)[1] * m_links[i].getAxisBottom(1) + getJointVelMultiDof(i)[2] * m_links[i].getAxisBottom(2);
- btVector3 no_q0_coors_qd1qd2 = quatRotate(btQuaternion(m_links[i].getAxisTop(0), pJointPos[0]), q0_coors_qd1qd2);
- pJointPos[1] += m_links[i].getAxisBottom(1).dot(no_q0_coors_qd1qd2) * dt;
- pJointPos[2] += m_links[i].getAxisBottom(2).dot(no_q0_coors_qd1qd2) * dt;
- break;
+ case btMultibodyLink::ePlanar:
+ {
+ for (int j = 0; j < 3; ++j)
+ {
+ pJointPos[j] = m_links[i].m_jointPos[j];
+ }
+ break;
+ }
+ default:
+ break;
}
- default:
+ }
+ else
+ {
+ btScalar *pJointVel = getJointVelMultiDof(i);
+
+ switch (m_links[i].m_jointType)
{
+ case btMultibodyLink::ePrismatic:
+ case btMultibodyLink::eRevolute:
+ {
+ //reset to current pos
+ pJointPos[0] = m_links[i].m_jointPos[0];
+ btScalar jointVel = pJointVel[0];
+ pJointPos[0] += dt * jointVel;
+ break;
+ }
+ case btMultibodyLink::eSpherical:
+ {
+ //reset to current pos
+
+ for (int j = 0; j < 4; ++j)
+ {
+ pJointPos[j] = m_links[i].m_jointPos[j];
+ }
+
+ btVector3 jointVel;
+ jointVel.setValue(pJointVel[0], pJointVel[1], pJointVel[2]);
+ btQuaternion jointOri;
+ jointOri.setValue(pJointPos[0], pJointPos[1], pJointPos[2], pJointPos[3]);
+ pQuatUpdateFun(jointVel, jointOri, false, dt);
+ pJointPos[0] = jointOri.x();
+ pJointPos[1] = jointOri.y();
+ pJointPos[2] = jointOri.z();
+ pJointPos[3] = jointOri.w();
+ break;
+ }
+ case btMultibodyLink::ePlanar:
+ {
+ for (int j = 0; j < 3; ++j)
+ {
+ pJointPos[j] = m_links[i].m_jointPos[j];
+ }
+ pJointPos[0] += dt * getJointVelMultiDof(i)[0];
+
+ btVector3 q0_coors_qd1qd2 = getJointVelMultiDof(i)[1] * m_links[i].getAxisBottom(1) + getJointVelMultiDof(i)[2] * m_links[i].getAxisBottom(2);
+ btVector3 no_q0_coors_qd1qd2 = quatRotate(btQuaternion(m_links[i].getAxisTop(0), pJointPos[0]), q0_coors_qd1qd2);
+ pJointPos[1] += m_links[i].getAxisBottom(1).dot(no_q0_coors_qd1qd2) * dt;
+ pJointPos[2] += m_links[i].getAxisBottom(2).dot(no_q0_coors_qd1qd2) * dt;
+ break;
+ }
+ default:
+ {
+ }
}
}
@@ -1703,16 +1783,19 @@ void btMultiBody::predictPositionsMultiDof(btScalar dt)
void btMultiBody::stepPositionsMultiDof(btScalar dt, btScalar *pq, btScalar *pqd)
{
int num_links = getNumLinks();
- // step position by adding dt * velocity
- //btVector3 v = getBaseVel();
- //m_basePos += dt * v;
- //
- btScalar *pBasePos = (pq ? &pq[4] : m_basePos);
- btScalar *pBaseVel = (pqd ? &pqd[3] : &m_realBuf[3]); //note: the !pqd case assumes m_realBuf holds with base velocity at 3,4,5 (should be wrapped for safety)
-
- pBasePos[0] += dt * pBaseVel[0];
- pBasePos[1] += dt * pBaseVel[1];
- pBasePos[2] += dt * pBaseVel[2];
+ if(!isBaseKinematic())
+ {
+ // step position by adding dt * velocity
+ //btVector3 v = getBaseVel();
+ //m_basePos += dt * v;
+ //
+ btScalar *pBasePos = (pq ? &pq[4] : m_basePos);
+ btScalar *pBaseVel = (pqd ? &pqd[3] : &m_realBuf[3]); //note: the !pqd case assumes m_realBuf holds with base velocity at 3,4,5 (should be wrapped for safety)
+
+ pBasePos[0] += dt * pBaseVel[0];
+ pBasePos[1] += dt * pBaseVel[1];
+ pBasePos[2] += dt * pBaseVel[2];
+ }
///////////////////////////////
//local functor for quaternion integration (to avoid error prone redundancy)
@@ -1763,22 +1846,25 @@ void btMultiBody::stepPositionsMultiDof(btScalar dt, btScalar *pq, btScalar *pqd
//pQuatUpdateFun(getBaseOmega(), m_baseQuat, true, dt);
//
- btScalar *pBaseQuat = pq ? pq : m_baseQuat;
- btScalar *pBaseOmega = pqd ? pqd : &m_realBuf[0]; //note: the !pqd case assumes m_realBuf starts with base omega (should be wrapped for safety)
- //
- btQuaternion baseQuat;
- baseQuat.setValue(pBaseQuat[0], pBaseQuat[1], pBaseQuat[2], pBaseQuat[3]);
- btVector3 baseOmega;
- baseOmega.setValue(pBaseOmega[0], pBaseOmega[1], pBaseOmega[2]);
- pQuatUpdateFun(baseOmega, baseQuat, true, dt);
- pBaseQuat[0] = baseQuat.x();
- pBaseQuat[1] = baseQuat.y();
- pBaseQuat[2] = baseQuat.z();
- pBaseQuat[3] = baseQuat.w();
-
- //printf("pBaseOmega = %.4f %.4f %.4f\n", pBaseOmega->x(), pBaseOmega->y(), pBaseOmega->z());
- //printf("pBaseVel = %.4f %.4f %.4f\n", pBaseVel->x(), pBaseVel->y(), pBaseVel->z());
- //printf("baseQuat = %.4f %.4f %.4f %.4f\n", pBaseQuat->x(), pBaseQuat->y(), pBaseQuat->z(), pBaseQuat->w());
+ if(!isBaseKinematic())
+ {
+ btScalar *pBaseQuat = pq ? pq : m_baseQuat;
+ btScalar *pBaseOmega = pqd ? pqd : &m_realBuf[0]; //note: the !pqd case assumes m_realBuf starts with base omega (should be wrapped for safety)
+ //
+ btQuaternion baseQuat;
+ baseQuat.setValue(pBaseQuat[0], pBaseQuat[1], pBaseQuat[2], pBaseQuat[3]);
+ btVector3 baseOmega;
+ baseOmega.setValue(pBaseOmega[0], pBaseOmega[1], pBaseOmega[2]);
+ pQuatUpdateFun(baseOmega, baseQuat, true, dt);
+ pBaseQuat[0] = baseQuat.x();
+ pBaseQuat[1] = baseQuat.y();
+ pBaseQuat[2] = baseQuat.z();
+ pBaseQuat[3] = baseQuat.w();
+
+ //printf("pBaseOmega = %.4f %.4f %.4f\n", pBaseOmega->x(), pBaseOmega->y(), pBaseOmega->z());
+ //printf("pBaseVel = %.4f %.4f %.4f\n", pBaseVel->x(), pBaseVel->y(), pBaseVel->z());
+ //printf("baseQuat = %.4f %.4f %.4f %.4f\n", pBaseQuat->x(), pBaseQuat->y(), pBaseQuat->z(), pBaseQuat->w());
+ }
if (pq)
pq += 7;
@@ -1788,48 +1874,51 @@ void btMultiBody::stepPositionsMultiDof(btScalar dt, btScalar *pq, btScalar *pqd
// Finally we can update m_jointPos for each of the m_links
for (int i = 0; i < num_links; ++i)
{
- btScalar *pJointPos;
- pJointPos= (pq ? pq : &m_links[i].m_jointPos[0]);
-
- btScalar *pJointVel = (pqd ? pqd : getJointVelMultiDof(i));
-
- switch (m_links[i].m_jointType)
+ if (!(m_links[i].m_collider && m_links[i].m_collider->isStaticOrKinematic()))
{
- case btMultibodyLink::ePrismatic:
- case btMultibodyLink::eRevolute:
- {
- //reset to current pos
- btScalar jointVel = pJointVel[0];
- pJointPos[0] += dt * jointVel;
- break;
- }
- case btMultibodyLink::eSpherical:
- {
- //reset to current pos
- btVector3 jointVel;
- jointVel.setValue(pJointVel[0], pJointVel[1], pJointVel[2]);
- btQuaternion jointOri;
- jointOri.setValue(pJointPos[0], pJointPos[1], pJointPos[2], pJointPos[3]);
- pQuatUpdateFun(jointVel, jointOri, false, dt);
- pJointPos[0] = jointOri.x();
- pJointPos[1] = jointOri.y();
- pJointPos[2] = jointOri.z();
- pJointPos[3] = jointOri.w();
- break;
- }
- case btMultibodyLink::ePlanar:
+ btScalar *pJointPos;
+ pJointPos= (pq ? pq : &m_links[i].m_jointPos[0]);
+
+ btScalar *pJointVel = (pqd ? pqd : getJointVelMultiDof(i));
+
+ switch (m_links[i].m_jointType)
{
- pJointPos[0] += dt * getJointVelMultiDof(i)[0];
+ case btMultibodyLink::ePrismatic:
+ case btMultibodyLink::eRevolute:
+ {
+ //reset to current pos
+ btScalar jointVel = pJointVel[0];
+ pJointPos[0] += dt * jointVel;
+ break;
+ }
+ case btMultibodyLink::eSpherical:
+ {
+ //reset to current pos
+ btVector3 jointVel;
+ jointVel.setValue(pJointVel[0], pJointVel[1], pJointVel[2]);
+ btQuaternion jointOri;
+ jointOri.setValue(pJointPos[0], pJointPos[1], pJointPos[2], pJointPos[3]);
+ pQuatUpdateFun(jointVel, jointOri, false, dt);
+ pJointPos[0] = jointOri.x();
+ pJointPos[1] = jointOri.y();
+ pJointPos[2] = jointOri.z();
+ pJointPos[3] = jointOri.w();
+ break;
+ }
+ case btMultibodyLink::ePlanar:
+ {
+ pJointPos[0] += dt * getJointVelMultiDof(i)[0];
- btVector3 q0_coors_qd1qd2 = getJointVelMultiDof(i)[1] * m_links[i].getAxisBottom(1) + getJointVelMultiDof(i)[2] * m_links[i].getAxisBottom(2);
- btVector3 no_q0_coors_qd1qd2 = quatRotate(btQuaternion(m_links[i].getAxisTop(0), pJointPos[0]), q0_coors_qd1qd2);
- pJointPos[1] += m_links[i].getAxisBottom(1).dot(no_q0_coors_qd1qd2) * dt;
- pJointPos[2] += m_links[i].getAxisBottom(2).dot(no_q0_coors_qd1qd2) * dt;
+ btVector3 q0_coors_qd1qd2 = getJointVelMultiDof(i)[1] * m_links[i].getAxisBottom(1) + getJointVelMultiDof(i)[2] * m_links[i].getAxisBottom(2);
+ btVector3 no_q0_coors_qd1qd2 = quatRotate(btQuaternion(m_links[i].getAxisTop(0), pJointPos[0]), q0_coors_qd1qd2);
+ pJointPos[1] += m_links[i].getAxisBottom(1).dot(no_q0_coors_qd1qd2) * dt;
+ pJointPos[2] += m_links[i].getAxisBottom(2).dot(no_q0_coors_qd1qd2) * dt;
- break;
- }
- default:
- {
+ break;
+ }
+ default:
+ {
+ }
}
}
@@ -2135,8 +2224,15 @@ void btMultiBody::updateCollisionObjectInterpolationWorldTransforms(btAlignedObj
world_to_local.resize(getNumLinks() + 1);
local_origin.resize(getNumLinks() + 1);
- world_to_local[0] = getInterpolateWorldToBaseRot();
- local_origin[0] = getInterpolateBasePos();
+ if(isBaseKinematic()){
+ world_to_local[0] = getWorldToBaseRot();
+ local_origin[0] = getBasePos();
+ }
+ else
+ {
+ world_to_local[0] = getInterpolateWorldToBaseRot();
+ local_origin[0] = getInterpolateBasePos();
+ }
if (getBaseCollider())
{
@@ -2282,3 +2378,81 @@ const char *btMultiBody::serialize(void *dataBuffer, class btSerializer *seriali
return btMultiBodyDataName;
}
+
+void btMultiBody::saveKinematicState(btScalar timeStep)
+{
+ //todo: clamp to some (user definable) safe minimum timestep, to limit maximum angular/linear velocities
+ if (m_kinematic_calculate_velocity && timeStep != btScalar(0.))
+ {
+ btVector3 linearVelocity, angularVelocity;
+ btTransformUtil::calculateVelocity(getInterpolateBaseWorldTransform(), getBaseWorldTransform(), timeStep, linearVelocity, angularVelocity);
+ setBaseVel(linearVelocity);
+ setBaseOmega(angularVelocity);
+ setInterpolateBaseWorldTransform(getBaseWorldTransform());
+ }
+}
+
+void btMultiBody::setLinkDynamicType(const int i, int type)
+{
+ if (i == -1)
+ {
+ setBaseDynamicType(type);
+ }
+ else if (i >= 0 && i < getNumLinks())
+ {
+ if (m_links[i].m_collider)
+ {
+ m_links[i].m_collider->setDynamicType(type);
+ }
+ }
+}
+
+bool btMultiBody::isLinkStaticOrKinematic(const int i) const
+{
+ if (i == -1)
+ {
+ return isBaseStaticOrKinematic();
+ }
+ else
+ {
+ if (m_links[i].m_collider)
+ return m_links[i].m_collider->isStaticOrKinematic();
+ }
+ return false;
+}
+
+bool btMultiBody::isLinkKinematic(const int i) const
+{
+ if (i == -1)
+ {
+ return isBaseKinematic();
+ }
+ else
+ {
+ if (m_links[i].m_collider)
+ return m_links[i].m_collider->isKinematic();
+ }
+ return false;
+}
+
+bool btMultiBody::isLinkAndAllAncestorsStaticOrKinematic(const int i) const
+{
+ int link = i;
+ while (link != -1) {
+ if (!isLinkStaticOrKinematic(link))
+ return false;
+ link = m_links[link].m_parent;
+ }
+ return isBaseStaticOrKinematic();
+}
+
+bool btMultiBody::isLinkAndAllAncestorsKinematic(const int i) const
+{
+ int link = i;
+ while (link != -1) {
+ if (!isLinkKinematic(link))
+ return false;
+ link = m_links[link].m_parent;
+ }
+ return isBaseKinematic();
+}