diff options
Diffstat (limited to 'thirdparty/bullet/BulletDynamics/Dynamics')
12 files changed, 4760 insertions, 0 deletions
diff --git a/thirdparty/bullet/BulletDynamics/Dynamics/btActionInterface.h b/thirdparty/bullet/BulletDynamics/Dynamics/btActionInterface.h new file mode 100644 index 0000000000..e1fea3a49c --- /dev/null +++ b/thirdparty/bullet/BulletDynamics/Dynamics/btActionInterface.h @@ -0,0 +1,46 @@ +/* +Bullet Continuous Collision Detection and Physics Library +Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ + +This software is provided 'as-is', without any express or implied warranty. +In no event will the authors be held liable for any damages arising from the use of this software. +Permission is granted to anyone to use this software for any purpose, +including commercial applications, and to alter it and redistribute it freely, +subject to the following restrictions: + +1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. +2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. +3. This notice may not be removed or altered from any source distribution. +*/ + +#ifndef _BT_ACTION_INTERFACE_H +#define _BT_ACTION_INTERFACE_H + +class btIDebugDraw; +class btCollisionWorld; + +#include "LinearMath/btScalar.h" +#include "btRigidBody.h" + +///Basic interface to allow actions such as vehicles and characters to be updated inside a btDynamicsWorld +class btActionInterface +{ +protected: + + static btRigidBody& getFixedBody(); + + +public: + + virtual ~btActionInterface() + { + } + + virtual void updateAction( btCollisionWorld* collisionWorld, btScalar deltaTimeStep)=0; + + virtual void debugDraw(btIDebugDraw* debugDrawer) = 0; + +}; + +#endif //_BT_ACTION_INTERFACE_H + diff --git a/thirdparty/bullet/BulletDynamics/Dynamics/btDiscreteDynamicsWorld.cpp b/thirdparty/bullet/BulletDynamics/Dynamics/btDiscreteDynamicsWorld.cpp new file mode 100644 index 0000000000..a196d4522e --- /dev/null +++ b/thirdparty/bullet/BulletDynamics/Dynamics/btDiscreteDynamicsWorld.cpp @@ -0,0 +1,1538 @@ +/* +Bullet Continuous Collision Detection and Physics Library +Copyright (c) 2003-2009 Erwin Coumans http://bulletphysics.org + +This software is provided 'as-is', without any express or implied warranty. +In no event will the authors be held liable for any damages arising from the use of this software. +Permission is granted to anyone to use this software for any purpose, +including commercial applications, and to alter it and redistribute it freely, +subject to the following restrictions: + +1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. +2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. +3. This notice may not be removed or altered from any source distribution. +*/ + + +#include "btDiscreteDynamicsWorld.h" + +//collision detection +#include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h" +#include "BulletCollision/BroadphaseCollision/btSimpleBroadphase.h" +#include "BulletCollision/BroadphaseCollision/btCollisionAlgorithm.h" +#include "BulletCollision/CollisionShapes/btCollisionShape.h" +#include "BulletCollision/CollisionDispatch/btSimulationIslandManager.h" +#include "LinearMath/btTransformUtil.h" +#include "LinearMath/btQuickprof.h" + +//rigidbody & constraints +#include "BulletDynamics/Dynamics/btRigidBody.h" +#include "BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h" +#include "BulletDynamics/ConstraintSolver/btContactSolverInfo.h" +#include "BulletDynamics/ConstraintSolver/btTypedConstraint.h" +#include "BulletDynamics/ConstraintSolver/btPoint2PointConstraint.h" +#include "BulletDynamics/ConstraintSolver/btHingeConstraint.h" +#include "BulletDynamics/ConstraintSolver/btConeTwistConstraint.h" +#include "BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.h" +#include "BulletDynamics/ConstraintSolver/btGeneric6DofSpring2Constraint.h" +#include "BulletDynamics/ConstraintSolver/btSliderConstraint.h" +#include "BulletDynamics/ConstraintSolver/btContactConstraint.h" + + +#include "LinearMath/btIDebugDraw.h" +#include "BulletCollision/CollisionShapes/btSphereShape.h" + + +#include "BulletDynamics/Dynamics/btActionInterface.h" +#include "LinearMath/btQuickprof.h" +#include "LinearMath/btMotionState.h" + +#include "LinearMath/btSerializer.h" + +#if 0 +btAlignedObjectArray<btVector3> debugContacts; +btAlignedObjectArray<btVector3> debugNormals; +int startHit=2; +int firstHit=startHit; +#endif + +SIMD_FORCE_INLINE int btGetConstraintIslandId(const btTypedConstraint* lhs) +{ + int islandId; + + const btCollisionObject& rcolObj0 = lhs->getRigidBodyA(); + const btCollisionObject& rcolObj1 = lhs->getRigidBodyB(); + islandId= rcolObj0.getIslandTag()>=0?rcolObj0.getIslandTag():rcolObj1.getIslandTag(); + return islandId; + +} + + +class btSortConstraintOnIslandPredicate +{ + public: + + bool operator() ( const btTypedConstraint* lhs, const btTypedConstraint* rhs ) const + { + int rIslandId0,lIslandId0; + rIslandId0 = btGetConstraintIslandId(rhs); + lIslandId0 = btGetConstraintIslandId(lhs); + return lIslandId0 < rIslandId0; + } +}; + +struct InplaceSolverIslandCallback : public btSimulationIslandManager::IslandCallback +{ + btContactSolverInfo* m_solverInfo; + btConstraintSolver* m_solver; + btTypedConstraint** m_sortedConstraints; + int m_numConstraints; + btIDebugDraw* m_debugDrawer; + btDispatcher* m_dispatcher; + + btAlignedObjectArray<btCollisionObject*> m_bodies; + btAlignedObjectArray<btPersistentManifold*> m_manifolds; + btAlignedObjectArray<btTypedConstraint*> m_constraints; + + + InplaceSolverIslandCallback( + btConstraintSolver* solver, + btStackAlloc* stackAlloc, + btDispatcher* dispatcher) + :m_solverInfo(NULL), + m_solver(solver), + m_sortedConstraints(NULL), + m_numConstraints(0), + m_debugDrawer(NULL), + m_dispatcher(dispatcher) + { + + } + + InplaceSolverIslandCallback& operator=(InplaceSolverIslandCallback& other) + { + btAssert(0); + (void)other; + return *this; + } + + SIMD_FORCE_INLINE void setup ( btContactSolverInfo* solverInfo, btTypedConstraint** sortedConstraints, int numConstraints, btIDebugDraw* debugDrawer) + { + btAssert(solverInfo); + m_solverInfo = solverInfo; + m_sortedConstraints = sortedConstraints; + m_numConstraints = numConstraints; + m_debugDrawer = debugDrawer; + m_bodies.resize (0); + m_manifolds.resize (0); + m_constraints.resize (0); + } + + + virtual void processIsland(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifolds,int numManifolds, int islandId) + { + if (islandId<0) + { + ///we don't split islands, so all constraints/contact manifolds/bodies are passed into the solver regardless the island id + m_solver->solveGroup( bodies,numBodies,manifolds, numManifolds,&m_sortedConstraints[0],m_numConstraints,*m_solverInfo,m_debugDrawer,m_dispatcher); + } else + { + //also add all non-contact constraints/joints for this island + btTypedConstraint** startConstraint = 0; + int numCurConstraints = 0; + int i; + + //find the first constraint for this island + for (i=0;i<m_numConstraints;i++) + { + if (btGetConstraintIslandId(m_sortedConstraints[i]) == islandId) + { + startConstraint = &m_sortedConstraints[i]; + break; + } + } + //count the number of constraints in this island + for (;i<m_numConstraints;i++) + { + if (btGetConstraintIslandId(m_sortedConstraints[i]) == islandId) + { + numCurConstraints++; + } + } + + if (m_solverInfo->m_minimumSolverBatchSize<=1) + { + m_solver->solveGroup( bodies,numBodies,manifolds, numManifolds,startConstraint,numCurConstraints,*m_solverInfo,m_debugDrawer,m_dispatcher); + } else + { + + for (i=0;i<numBodies;i++) + m_bodies.push_back(bodies[i]); + for (i=0;i<numManifolds;i++) + m_manifolds.push_back(manifolds[i]); + for (i=0;i<numCurConstraints;i++) + m_constraints.push_back(startConstraint[i]); + if ((m_constraints.size()+m_manifolds.size())>m_solverInfo->m_minimumSolverBatchSize) + { + processConstraints(); + } else + { + //printf("deferred\n"); + } + } + } + } + void processConstraints() + { + + btCollisionObject** bodies = m_bodies.size()? &m_bodies[0]:0; + btPersistentManifold** manifold = m_manifolds.size()?&m_manifolds[0]:0; + btTypedConstraint** constraints = m_constraints.size()?&m_constraints[0]:0; + + m_solver->solveGroup( bodies,m_bodies.size(),manifold, m_manifolds.size(),constraints, m_constraints.size() ,*m_solverInfo,m_debugDrawer,m_dispatcher); + m_bodies.resize(0); + m_manifolds.resize(0); + m_constraints.resize(0); + + } + +}; + + + +btDiscreteDynamicsWorld::btDiscreteDynamicsWorld(btDispatcher* dispatcher,btBroadphaseInterface* pairCache,btConstraintSolver* constraintSolver, btCollisionConfiguration* collisionConfiguration) +:btDynamicsWorld(dispatcher,pairCache,collisionConfiguration), +m_sortedConstraints (), +m_solverIslandCallback ( NULL ), +m_constraintSolver(constraintSolver), +m_gravity(0,-10,0), +m_localTime(0), +m_fixedTimeStep(0), +m_synchronizeAllMotionStates(false), +m_applySpeculativeContactRestitution(false), +m_profileTimings(0), +m_latencyMotionStateInterpolation(true) + +{ + if (!m_constraintSolver) + { + void* mem = btAlignedAlloc(sizeof(btSequentialImpulseConstraintSolver),16); + m_constraintSolver = new (mem) btSequentialImpulseConstraintSolver; + m_ownsConstraintSolver = true; + } else + { + m_ownsConstraintSolver = false; + } + + { + void* mem = btAlignedAlloc(sizeof(btSimulationIslandManager),16); + m_islandManager = new (mem) btSimulationIslandManager(); + } + + m_ownsIslandManager = true; + + { + void* mem = btAlignedAlloc(sizeof(InplaceSolverIslandCallback),16); + m_solverIslandCallback = new (mem) InplaceSolverIslandCallback (m_constraintSolver, 0, dispatcher); + } +} + + +btDiscreteDynamicsWorld::~btDiscreteDynamicsWorld() +{ + //only delete it when we created it + if (m_ownsIslandManager) + { + m_islandManager->~btSimulationIslandManager(); + btAlignedFree( m_islandManager); + } + if (m_solverIslandCallback) + { + m_solverIslandCallback->~InplaceSolverIslandCallback(); + btAlignedFree(m_solverIslandCallback); + } + if (m_ownsConstraintSolver) + { + + m_constraintSolver->~btConstraintSolver(); + btAlignedFree(m_constraintSolver); + } +} + +void btDiscreteDynamicsWorld::saveKinematicState(btScalar timeStep) +{ +///would like to iterate over m_nonStaticRigidBodies, but unfortunately old API allows +///to switch status _after_ adding kinematic objects to the world +///fix it for Bullet 3.x release + for (int i=0;i<m_collisionObjects.size();i++) + { + btCollisionObject* colObj = m_collisionObjects[i]; + btRigidBody* body = btRigidBody::upcast(colObj); + if (body && body->getActivationState() != ISLAND_SLEEPING) + { + if (body->isKinematicObject()) + { + //to calculate velocities next frame + body->saveKinematicState(timeStep); + } + } + } + +} + +void btDiscreteDynamicsWorld::debugDrawWorld() +{ + BT_PROFILE("debugDrawWorld"); + + btCollisionWorld::debugDrawWorld(); + + bool drawConstraints = false; + if (getDebugDrawer()) + { + int mode = getDebugDrawer()->getDebugMode(); + if(mode & (btIDebugDraw::DBG_DrawConstraints | btIDebugDraw::DBG_DrawConstraintLimits)) + { + drawConstraints = true; + } + } + if(drawConstraints) + { + for(int i = getNumConstraints()-1; i>=0 ;i--) + { + btTypedConstraint* constraint = getConstraint(i); + debugDrawConstraint(constraint); + } + } + + + + if (getDebugDrawer() && (getDebugDrawer()->getDebugMode() & (btIDebugDraw::DBG_DrawWireframe | btIDebugDraw::DBG_DrawAabb | btIDebugDraw::DBG_DrawNormals))) + { + int i; + + if (getDebugDrawer() && getDebugDrawer()->getDebugMode()) + { + for (i=0;i<m_actions.size();i++) + { + m_actions[i]->debugDraw(m_debugDrawer); + } + } + } + if (getDebugDrawer()) + getDebugDrawer()->flushLines(); + +} + +void btDiscreteDynamicsWorld::clearForces() +{ + ///@todo: iterate over awake simulation islands! + for ( int i=0;i<m_nonStaticRigidBodies.size();i++) + { + btRigidBody* body = m_nonStaticRigidBodies[i]; + //need to check if next line is ok + //it might break backward compatibility (people applying forces on sleeping objects get never cleared and accumulate on wake-up + body->clearForces(); + } +} + +///apply gravity, call this once per timestep +void btDiscreteDynamicsWorld::applyGravity() +{ + ///@todo: iterate over awake simulation islands! + for ( int i=0;i<m_nonStaticRigidBodies.size();i++) + { + btRigidBody* body = m_nonStaticRigidBodies[i]; + if (body->isActive()) + { + body->applyGravity(); + } + } +} + + +void btDiscreteDynamicsWorld::synchronizeSingleMotionState(btRigidBody* body) +{ + btAssert(body); + + if (body->getMotionState() && !body->isStaticOrKinematicObject()) + { + //we need to call the update at least once, even for sleeping objects + //otherwise the 'graphics' transform never updates properly + ///@todo: add 'dirty' flag + //if (body->getActivationState() != ISLAND_SLEEPING) + { + btTransform interpolatedTransform; + btTransformUtil::integrateTransform(body->getInterpolationWorldTransform(), + body->getInterpolationLinearVelocity(),body->getInterpolationAngularVelocity(), + (m_latencyMotionStateInterpolation && m_fixedTimeStep) ? m_localTime - m_fixedTimeStep : m_localTime*body->getHitFraction(), + interpolatedTransform); + body->getMotionState()->setWorldTransform(interpolatedTransform); + } + } +} + + +void btDiscreteDynamicsWorld::synchronizeMotionStates() +{ +// BT_PROFILE("synchronizeMotionStates"); + if (m_synchronizeAllMotionStates) + { + //iterate over all collision objects + for ( int i=0;i<m_collisionObjects.size();i++) + { + btCollisionObject* colObj = m_collisionObjects[i]; + btRigidBody* body = btRigidBody::upcast(colObj); + if (body) + synchronizeSingleMotionState(body); + } + } else + { + //iterate over all active rigid bodies + for ( int i=0;i<m_nonStaticRigidBodies.size();i++) + { + btRigidBody* body = m_nonStaticRigidBodies[i]; + if (body->isActive()) + synchronizeSingleMotionState(body); + } + } +} + + +int btDiscreteDynamicsWorld::stepSimulation( btScalar timeStep,int maxSubSteps, btScalar fixedTimeStep) +{ + startProfiling(timeStep); + + + int numSimulationSubSteps = 0; + + if (maxSubSteps) + { + //fixed timestep with interpolation + m_fixedTimeStep = fixedTimeStep; + m_localTime += timeStep; + if (m_localTime >= fixedTimeStep) + { + numSimulationSubSteps = int( m_localTime / fixedTimeStep); + m_localTime -= numSimulationSubSteps * fixedTimeStep; + } + } else + { + //variable timestep + fixedTimeStep = timeStep; + m_localTime = m_latencyMotionStateInterpolation ? 0 : timeStep; + m_fixedTimeStep = 0; + if (btFuzzyZero(timeStep)) + { + numSimulationSubSteps = 0; + maxSubSteps = 0; + } else + { + numSimulationSubSteps = 1; + maxSubSteps = 1; + } + } + + //process some debugging flags + if (getDebugDrawer()) + { + btIDebugDraw* debugDrawer = getDebugDrawer (); + gDisableDeactivation = (debugDrawer->getDebugMode() & btIDebugDraw::DBG_NoDeactivation) != 0; + } + if (numSimulationSubSteps) + { + + //clamp the number of substeps, to prevent simulation grinding spiralling down to a halt + int clampedSimulationSteps = (numSimulationSubSteps > maxSubSteps)? maxSubSteps : numSimulationSubSteps; + + saveKinematicState(fixedTimeStep*clampedSimulationSteps); + + applyGravity(); + + + + for (int i=0;i<clampedSimulationSteps;i++) + { + internalSingleStepSimulation(fixedTimeStep); + synchronizeMotionStates(); + } + + } else + { + synchronizeMotionStates(); + } + + clearForces(); + +#ifndef BT_NO_PROFILE + CProfileManager::Increment_Frame_Counter(); +#endif //BT_NO_PROFILE + + return numSimulationSubSteps; +} + +void btDiscreteDynamicsWorld::internalSingleStepSimulation(btScalar timeStep) +{ + + BT_PROFILE("internalSingleStepSimulation"); + + if(0 != m_internalPreTickCallback) { + (*m_internalPreTickCallback)(this, timeStep); + } + + ///apply gravity, predict motion + predictUnconstraintMotion(timeStep); + + btDispatcherInfo& dispatchInfo = getDispatchInfo(); + + dispatchInfo.m_timeStep = timeStep; + dispatchInfo.m_stepCount = 0; + dispatchInfo.m_debugDraw = getDebugDrawer(); + + + createPredictiveContacts(timeStep); + + ///perform collision detection + performDiscreteCollisionDetection(); + + calculateSimulationIslands(); + + + getSolverInfo().m_timeStep = timeStep; + + + + ///solve contact and other joint constraints + solveConstraints(getSolverInfo()); + + ///CallbackTriggers(); + + ///integrate transforms + + integrateTransforms(timeStep); + + ///update vehicle simulation + updateActions(timeStep); + + updateActivationState( timeStep ); + + if(0 != m_internalTickCallback) { + (*m_internalTickCallback)(this, timeStep); + } +} + +void btDiscreteDynamicsWorld::setGravity(const btVector3& gravity) +{ + m_gravity = gravity; + for ( int i=0;i<m_nonStaticRigidBodies.size();i++) + { + btRigidBody* body = m_nonStaticRigidBodies[i]; + if (body->isActive() && !(body->getFlags() &BT_DISABLE_WORLD_GRAVITY)) + { + body->setGravity(gravity); + } + } +} + +btVector3 btDiscreteDynamicsWorld::getGravity () const +{ + return m_gravity; +} + +void btDiscreteDynamicsWorld::addCollisionObject(btCollisionObject* collisionObject, int collisionFilterGroup, int collisionFilterMask) +{ + btCollisionWorld::addCollisionObject(collisionObject,collisionFilterGroup,collisionFilterMask); +} + +void btDiscreteDynamicsWorld::removeCollisionObject(btCollisionObject* collisionObject) +{ + btRigidBody* body = btRigidBody::upcast(collisionObject); + if (body) + removeRigidBody(body); + else + btCollisionWorld::removeCollisionObject(collisionObject); +} + +void btDiscreteDynamicsWorld::removeRigidBody(btRigidBody* body) +{ + m_nonStaticRigidBodies.remove(body); + btCollisionWorld::removeCollisionObject(body); +} + + +void btDiscreteDynamicsWorld::addRigidBody(btRigidBody* body) +{ + if (!body->isStaticOrKinematicObject() && !(body->getFlags() &BT_DISABLE_WORLD_GRAVITY)) + { + body->setGravity(m_gravity); + } + + if (body->getCollisionShape()) + { + if (!body->isStaticObject()) + { + m_nonStaticRigidBodies.push_back(body); + } else + { + body->setActivationState(ISLAND_SLEEPING); + } + + bool isDynamic = !(body->isStaticObject() || body->isKinematicObject()); + int collisionFilterGroup = isDynamic? int(btBroadphaseProxy::DefaultFilter) : int(btBroadphaseProxy::StaticFilter); + int collisionFilterMask = isDynamic? int(btBroadphaseProxy::AllFilter) : int(btBroadphaseProxy::AllFilter ^ btBroadphaseProxy::StaticFilter); + + addCollisionObject(body,collisionFilterGroup,collisionFilterMask); + } +} + +void btDiscreteDynamicsWorld::addRigidBody(btRigidBody* body, int group, int mask) +{ + if (!body->isStaticOrKinematicObject() && !(body->getFlags() &BT_DISABLE_WORLD_GRAVITY)) + { + body->setGravity(m_gravity); + } + + if (body->getCollisionShape()) + { + if (!body->isStaticObject()) + { + m_nonStaticRigidBodies.push_back(body); + } + else + { + body->setActivationState(ISLAND_SLEEPING); + } + addCollisionObject(body,group,mask); + } +} + + +void btDiscreteDynamicsWorld::updateActions(btScalar timeStep) +{ + BT_PROFILE("updateActions"); + + for ( int i=0;i<m_actions.size();i++) + { + m_actions[i]->updateAction( this, timeStep); + } +} + + +void btDiscreteDynamicsWorld::updateActivationState(btScalar timeStep) +{ + BT_PROFILE("updateActivationState"); + + for ( int i=0;i<m_nonStaticRigidBodies.size();i++) + { + btRigidBody* body = m_nonStaticRigidBodies[i]; + if (body) + { + body->updateDeactivation(timeStep); + + if (body->wantsSleeping()) + { + if (body->isStaticOrKinematicObject()) + { + body->setActivationState(ISLAND_SLEEPING); + } else + { + if (body->getActivationState() == ACTIVE_TAG) + body->setActivationState( WANTS_DEACTIVATION ); + if (body->getActivationState() == ISLAND_SLEEPING) + { + body->setAngularVelocity(btVector3(0,0,0)); + body->setLinearVelocity(btVector3(0,0,0)); + } + + } + } else + { + if (body->getActivationState() != DISABLE_DEACTIVATION) + body->setActivationState( ACTIVE_TAG ); + } + } + } +} + +void btDiscreteDynamicsWorld::addConstraint(btTypedConstraint* constraint,bool disableCollisionsBetweenLinkedBodies) +{ + m_constraints.push_back(constraint); + //Make sure the two bodies of a type constraint are different (possibly add this to the btTypedConstraint constructor?) + btAssert(&constraint->getRigidBodyA()!=&constraint->getRigidBodyB()); + + if (disableCollisionsBetweenLinkedBodies) + { + constraint->getRigidBodyA().addConstraintRef(constraint); + constraint->getRigidBodyB().addConstraintRef(constraint); + } +} + +void btDiscreteDynamicsWorld::removeConstraint(btTypedConstraint* constraint) +{ + m_constraints.remove(constraint); + constraint->getRigidBodyA().removeConstraintRef(constraint); + constraint->getRigidBodyB().removeConstraintRef(constraint); +} + +void btDiscreteDynamicsWorld::addAction(btActionInterface* action) +{ + m_actions.push_back(action); +} + +void btDiscreteDynamicsWorld::removeAction(btActionInterface* action) +{ + m_actions.remove(action); +} + + +void btDiscreteDynamicsWorld::addVehicle(btActionInterface* vehicle) +{ + addAction(vehicle); +} + +void btDiscreteDynamicsWorld::removeVehicle(btActionInterface* vehicle) +{ + removeAction(vehicle); +} + +void btDiscreteDynamicsWorld::addCharacter(btActionInterface* character) +{ + addAction(character); +} + +void btDiscreteDynamicsWorld::removeCharacter(btActionInterface* character) +{ + removeAction(character); +} + + + + +void btDiscreteDynamicsWorld::solveConstraints(btContactSolverInfo& solverInfo) +{ + BT_PROFILE("solveConstraints"); + + m_sortedConstraints.resize( m_constraints.size()); + int i; + for (i=0;i<getNumConstraints();i++) + { + m_sortedConstraints[i] = m_constraints[i]; + } + +// btAssert(0); + + + + m_sortedConstraints.quickSort(btSortConstraintOnIslandPredicate()); + + btTypedConstraint** constraintsPtr = getNumConstraints() ? &m_sortedConstraints[0] : 0; + + m_solverIslandCallback->setup(&solverInfo,constraintsPtr,m_sortedConstraints.size(),getDebugDrawer()); + m_constraintSolver->prepareSolve(getCollisionWorld()->getNumCollisionObjects(), getCollisionWorld()->getDispatcher()->getNumManifolds()); + + /// solve all the constraints for this island + m_islandManager->buildAndProcessIslands(getCollisionWorld()->getDispatcher(),getCollisionWorld(),m_solverIslandCallback); + + m_solverIslandCallback->processConstraints(); + + m_constraintSolver->allSolved(solverInfo, m_debugDrawer); +} + + +void btDiscreteDynamicsWorld::calculateSimulationIslands() +{ + BT_PROFILE("calculateSimulationIslands"); + + getSimulationIslandManager()->updateActivationState(getCollisionWorld(),getCollisionWorld()->getDispatcher()); + + { + //merge islands based on speculative contact manifolds too + for (int i=0;i<this->m_predictiveManifolds.size();i++) + { + btPersistentManifold* manifold = m_predictiveManifolds[i]; + + const btCollisionObject* colObj0 = manifold->getBody0(); + const btCollisionObject* colObj1 = manifold->getBody1(); + + if (((colObj0) && (!(colObj0)->isStaticOrKinematicObject())) && + ((colObj1) && (!(colObj1)->isStaticOrKinematicObject()))) + { + getSimulationIslandManager()->getUnionFind().unite((colObj0)->getIslandTag(),(colObj1)->getIslandTag()); + } + } + } + + { + int i; + int numConstraints = int(m_constraints.size()); + for (i=0;i< numConstraints ; i++ ) + { + btTypedConstraint* constraint = m_constraints[i]; + if (constraint->isEnabled()) + { + const btRigidBody* colObj0 = &constraint->getRigidBodyA(); + const btRigidBody* colObj1 = &constraint->getRigidBodyB(); + + if (((colObj0) && (!(colObj0)->isStaticOrKinematicObject())) && + ((colObj1) && (!(colObj1)->isStaticOrKinematicObject()))) + { + getSimulationIslandManager()->getUnionFind().unite((colObj0)->getIslandTag(),(colObj1)->getIslandTag()); + } + } + } + } + + //Store the island id in each body + getSimulationIslandManager()->storeIslandActivationState(getCollisionWorld()); + + +} + + + + +class btClosestNotMeConvexResultCallback : public btCollisionWorld::ClosestConvexResultCallback +{ +public: + + btCollisionObject* m_me; + btScalar m_allowedPenetration; + btOverlappingPairCache* m_pairCache; + btDispatcher* m_dispatcher; + +public: + btClosestNotMeConvexResultCallback (btCollisionObject* me,const btVector3& fromA,const btVector3& toA,btOverlappingPairCache* pairCache,btDispatcher* dispatcher) : + btCollisionWorld::ClosestConvexResultCallback(fromA,toA), + m_me(me), + m_allowedPenetration(0.0f), + m_pairCache(pairCache), + m_dispatcher(dispatcher) + { + } + + virtual btScalar addSingleResult(btCollisionWorld::LocalConvexResult& convexResult,bool normalInWorldSpace) + { + if (convexResult.m_hitCollisionObject == m_me) + return 1.0f; + + //ignore result if there is no contact response + if(!convexResult.m_hitCollisionObject->hasContactResponse()) + return 1.0f; + + btVector3 linVelA,linVelB; + linVelA = m_convexToWorld-m_convexFromWorld; + linVelB = btVector3(0,0,0);//toB.getOrigin()-fromB.getOrigin(); + + btVector3 relativeVelocity = (linVelA-linVelB); + //don't report time of impact for motion away from the contact normal (or causes minor penetration) + if (convexResult.m_hitNormalLocal.dot(relativeVelocity)>=-m_allowedPenetration) + return 1.f; + + return ClosestConvexResultCallback::addSingleResult (convexResult, normalInWorldSpace); + } + + virtual bool needsCollision(btBroadphaseProxy* proxy0) const + { + //don't collide with itself + if (proxy0->m_clientObject == m_me) + return false; + + ///don't do CCD when the collision filters are not matching + if (!ClosestConvexResultCallback::needsCollision(proxy0)) + return false; + + btCollisionObject* otherObj = (btCollisionObject*) proxy0->m_clientObject; + + //call needsResponse, see http://code.google.com/p/bullet/issues/detail?id=179 + if (m_dispatcher->needsResponse(m_me,otherObj)) + { +#if 0 + ///don't do CCD when there are already contact points (touching contact/penetration) + btAlignedObjectArray<btPersistentManifold*> manifoldArray; + btBroadphasePair* collisionPair = m_pairCache->findPair(m_me->getBroadphaseHandle(),proxy0); + if (collisionPair) + { + if (collisionPair->m_algorithm) + { + manifoldArray.resize(0); + collisionPair->m_algorithm->getAllContactManifolds(manifoldArray); + for (int j=0;j<manifoldArray.size();j++) + { + btPersistentManifold* manifold = manifoldArray[j]; + if (manifold->getNumContacts()>0) + return false; + } + } + } +#endif + return true; + } + + return false; + } + + +}; + +///internal debugging variable. this value shouldn't be too high +int gNumClampedCcdMotions=0; + + +void btDiscreteDynamicsWorld::createPredictiveContactsInternal( btRigidBody** bodies, int numBodies, btScalar timeStep) +{ + btTransform predictedTrans; + for ( int i=0;i<numBodies;i++) + { + btRigidBody* body = bodies[i]; + body->setHitFraction(1.f); + + if (body->isActive() && (!body->isStaticOrKinematicObject())) + { + + body->predictIntegratedTransform(timeStep, predictedTrans); + + btScalar squareMotion = (predictedTrans.getOrigin()-body->getWorldTransform().getOrigin()).length2(); + + if (getDispatchInfo().m_useContinuous && body->getCcdSquareMotionThreshold() && body->getCcdSquareMotionThreshold() < squareMotion) + { + BT_PROFILE("predictive convexSweepTest"); + if (body->getCollisionShape()->isConvex()) + { + gNumClampedCcdMotions++; +#ifdef PREDICTIVE_CONTACT_USE_STATIC_ONLY + class StaticOnlyCallback : public btClosestNotMeConvexResultCallback + { + public: + + StaticOnlyCallback (btCollisionObject* me,const btVector3& fromA,const btVector3& toA,btOverlappingPairCache* pairCache,btDispatcher* dispatcher) : + btClosestNotMeConvexResultCallback(me,fromA,toA,pairCache,dispatcher) + { + } + + virtual bool needsCollision(btBroadphaseProxy* proxy0) const + { + btCollisionObject* otherObj = (btCollisionObject*) proxy0->m_clientObject; + if (!otherObj->isStaticOrKinematicObject()) + return false; + return btClosestNotMeConvexResultCallback::needsCollision(proxy0); + } + }; + + StaticOnlyCallback sweepResults(body,body->getWorldTransform().getOrigin(),predictedTrans.getOrigin(),getBroadphase()->getOverlappingPairCache(),getDispatcher()); +#else + btClosestNotMeConvexResultCallback sweepResults(body,body->getWorldTransform().getOrigin(),predictedTrans.getOrigin(),getBroadphase()->getOverlappingPairCache(),getDispatcher()); +#endif + //btConvexShape* convexShape = static_cast<btConvexShape*>(body->getCollisionShape()); + btSphereShape tmpSphere(body->getCcdSweptSphereRadius());//btConvexShape* convexShape = static_cast<btConvexShape*>(body->getCollisionShape()); + sweepResults.m_allowedPenetration=getDispatchInfo().m_allowedCcdPenetration; + + sweepResults.m_collisionFilterGroup = body->getBroadphaseProxy()->m_collisionFilterGroup; + sweepResults.m_collisionFilterMask = body->getBroadphaseProxy()->m_collisionFilterMask; + btTransform modifiedPredictedTrans = predictedTrans; + modifiedPredictedTrans.setBasis(body->getWorldTransform().getBasis()); + + convexSweepTest(&tmpSphere,body->getWorldTransform(),modifiedPredictedTrans,sweepResults); + if (sweepResults.hasHit() && (sweepResults.m_closestHitFraction < 1.f)) + { + + btVector3 distVec = (predictedTrans.getOrigin()-body->getWorldTransform().getOrigin())*sweepResults.m_closestHitFraction; + btScalar distance = distVec.dot(-sweepResults.m_hitNormalWorld); + + + btPersistentManifold* manifold = m_dispatcher1->getNewManifold(body,sweepResults.m_hitCollisionObject); + btMutexLock( &m_predictiveManifoldsMutex ); + m_predictiveManifolds.push_back(manifold); + btMutexUnlock( &m_predictiveManifoldsMutex ); + + btVector3 worldPointB = body->getWorldTransform().getOrigin()+distVec; + btVector3 localPointB = sweepResults.m_hitCollisionObject->getWorldTransform().inverse()*worldPointB; + + btManifoldPoint newPoint(btVector3(0,0,0), localPointB,sweepResults.m_hitNormalWorld,distance); + + bool isPredictive = true; + int index = manifold->addManifoldPoint(newPoint, isPredictive); + btManifoldPoint& pt = manifold->getContactPoint(index); + pt.m_combinedRestitution = 0; + pt.m_combinedFriction = gCalculateCombinedFrictionCallback(body,sweepResults.m_hitCollisionObject); + pt.m_positionWorldOnA = body->getWorldTransform().getOrigin(); + pt.m_positionWorldOnB = worldPointB; + + } + } + } + } + } +} + +void btDiscreteDynamicsWorld::releasePredictiveContacts() +{ + BT_PROFILE( "release predictive contact manifolds" ); + + for ( int i = 0; i < m_predictiveManifolds.size(); i++ ) + { + btPersistentManifold* manifold = m_predictiveManifolds[ i ]; + this->m_dispatcher1->releaseManifold( manifold ); + } + m_predictiveManifolds.clear(); +} + +void btDiscreteDynamicsWorld::createPredictiveContacts(btScalar timeStep) +{ + BT_PROFILE("createPredictiveContacts"); + releasePredictiveContacts(); + if (m_nonStaticRigidBodies.size() > 0) + { + createPredictiveContactsInternal( &m_nonStaticRigidBodies[ 0 ], m_nonStaticRigidBodies.size(), timeStep ); + } +} + +void btDiscreteDynamicsWorld::integrateTransformsInternal( btRigidBody** bodies, int numBodies, btScalar timeStep ) +{ + btTransform predictedTrans; + for (int i=0;i<numBodies;i++) + { + btRigidBody* body = bodies[i]; + body->setHitFraction(1.f); + + if (body->isActive() && (!body->isStaticOrKinematicObject())) + { + + body->predictIntegratedTransform(timeStep, predictedTrans); + + btScalar squareMotion = (predictedTrans.getOrigin()-body->getWorldTransform().getOrigin()).length2(); + + + + if (getDispatchInfo().m_useContinuous && body->getCcdSquareMotionThreshold() && body->getCcdSquareMotionThreshold() < squareMotion) + { + BT_PROFILE("CCD motion clamping"); + if (body->getCollisionShape()->isConvex()) + { + gNumClampedCcdMotions++; +#ifdef USE_STATIC_ONLY + class StaticOnlyCallback : public btClosestNotMeConvexResultCallback + { + public: + + StaticOnlyCallback (btCollisionObject* me,const btVector3& fromA,const btVector3& toA,btOverlappingPairCache* pairCache,btDispatcher* dispatcher) : + btClosestNotMeConvexResultCallback(me,fromA,toA,pairCache,dispatcher) + { + } + + virtual bool needsCollision(btBroadphaseProxy* proxy0) const + { + btCollisionObject* otherObj = (btCollisionObject*) proxy0->m_clientObject; + if (!otherObj->isStaticOrKinematicObject()) + return false; + return btClosestNotMeConvexResultCallback::needsCollision(proxy0); + } + }; + + StaticOnlyCallback sweepResults(body,body->getWorldTransform().getOrigin(),predictedTrans.getOrigin(),getBroadphase()->getOverlappingPairCache(),getDispatcher()); +#else + btClosestNotMeConvexResultCallback sweepResults(body,body->getWorldTransform().getOrigin(),predictedTrans.getOrigin(),getBroadphase()->getOverlappingPairCache(),getDispatcher()); +#endif + //btConvexShape* convexShape = static_cast<btConvexShape*>(body->getCollisionShape()); + btSphereShape tmpSphere(body->getCcdSweptSphereRadius());//btConvexShape* convexShape = static_cast<btConvexShape*>(body->getCollisionShape()); + sweepResults.m_allowedPenetration=getDispatchInfo().m_allowedCcdPenetration; + + sweepResults.m_collisionFilterGroup = body->getBroadphaseProxy()->m_collisionFilterGroup; + sweepResults.m_collisionFilterMask = body->getBroadphaseProxy()->m_collisionFilterMask; + btTransform modifiedPredictedTrans = predictedTrans; + modifiedPredictedTrans.setBasis(body->getWorldTransform().getBasis()); + + convexSweepTest(&tmpSphere,body->getWorldTransform(),modifiedPredictedTrans,sweepResults); + if (sweepResults.hasHit() && (sweepResults.m_closestHitFraction < 1.f)) + { + + //printf("clamped integration to hit fraction = %f\n",fraction); + body->setHitFraction(sweepResults.m_closestHitFraction); + body->predictIntegratedTransform(timeStep*body->getHitFraction(), predictedTrans); + body->setHitFraction(0.f); + body->proceedToTransform( predictedTrans); + +#if 0 + btVector3 linVel = body->getLinearVelocity(); + + btScalar maxSpeed = body->getCcdMotionThreshold()/getSolverInfo().m_timeStep; + btScalar maxSpeedSqr = maxSpeed*maxSpeed; + if (linVel.length2()>maxSpeedSqr) + { + linVel.normalize(); + linVel*= maxSpeed; + body->setLinearVelocity(linVel); + btScalar ms2 = body->getLinearVelocity().length2(); + body->predictIntegratedTransform(timeStep, predictedTrans); + + btScalar sm2 = (predictedTrans.getOrigin()-body->getWorldTransform().getOrigin()).length2(); + btScalar smt = body->getCcdSquareMotionThreshold(); + printf("sm2=%f\n",sm2); + } +#else + + //don't apply the collision response right now, it will happen next frame + //if you really need to, you can uncomment next 3 lines. Note that is uses zero restitution. + //btScalar appliedImpulse = 0.f; + //btScalar depth = 0.f; + //appliedImpulse = resolveSingleCollision(body,(btCollisionObject*)sweepResults.m_hitCollisionObject,sweepResults.m_hitPointWorld,sweepResults.m_hitNormalWorld,getSolverInfo(), depth); + + +#endif + + continue; + } + } + } + + + body->proceedToTransform( predictedTrans); + + } + + } + +} + +void btDiscreteDynamicsWorld::integrateTransforms(btScalar timeStep) +{ + BT_PROFILE("integrateTransforms"); + if (m_nonStaticRigidBodies.size() > 0) + { + integrateTransformsInternal(&m_nonStaticRigidBodies[0], m_nonStaticRigidBodies.size(), timeStep); + } + + ///this should probably be switched on by default, but it is not well tested yet + if (m_applySpeculativeContactRestitution) + { + BT_PROFILE("apply speculative contact restitution"); + for (int i=0;i<m_predictiveManifolds.size();i++) + { + btPersistentManifold* manifold = m_predictiveManifolds[i]; + btRigidBody* body0 = btRigidBody::upcast((btCollisionObject*)manifold->getBody0()); + btRigidBody* body1 = btRigidBody::upcast((btCollisionObject*)manifold->getBody1()); + + for (int p=0;p<manifold->getNumContacts();p++) + { + const btManifoldPoint& pt = manifold->getContactPoint(p); + btScalar combinedRestitution = gCalculateCombinedRestitutionCallback(body0, body1); + + if (combinedRestitution>0 && pt.m_appliedImpulse != 0.f) + //if (pt.getDistance()>0 && combinedRestitution>0 && pt.m_appliedImpulse != 0.f) + { + btVector3 imp = -pt.m_normalWorldOnB * pt.m_appliedImpulse* combinedRestitution; + + const btVector3& pos1 = pt.getPositionWorldOnA(); + const btVector3& pos2 = pt.getPositionWorldOnB(); + + btVector3 rel_pos0 = pos1 - body0->getWorldTransform().getOrigin(); + btVector3 rel_pos1 = pos2 - body1->getWorldTransform().getOrigin(); + + if (body0) + body0->applyImpulse(imp,rel_pos0); + if (body1) + body1->applyImpulse(-imp,rel_pos1); + } + } + } + } +} + + + + + +void btDiscreteDynamicsWorld::predictUnconstraintMotion(btScalar timeStep) +{ + BT_PROFILE("predictUnconstraintMotion"); + for ( int i=0;i<m_nonStaticRigidBodies.size();i++) + { + btRigidBody* body = m_nonStaticRigidBodies[i]; + if (!body->isStaticOrKinematicObject()) + { + //don't integrate/update velocities here, it happens in the constraint solver + + body->applyDamping(timeStep); + + body->predictIntegratedTransform(timeStep,body->getInterpolationWorldTransform()); + } + } +} + + +void btDiscreteDynamicsWorld::startProfiling(btScalar timeStep) +{ + (void)timeStep; + +#ifndef BT_NO_PROFILE + CProfileManager::Reset(); +#endif //BT_NO_PROFILE + +} + + + + + + +void btDiscreteDynamicsWorld::debugDrawConstraint(btTypedConstraint* constraint) +{ + bool drawFrames = (getDebugDrawer()->getDebugMode() & btIDebugDraw::DBG_DrawConstraints) != 0; + bool drawLimits = (getDebugDrawer()->getDebugMode() & btIDebugDraw::DBG_DrawConstraintLimits) != 0; + btScalar dbgDrawSize = constraint->getDbgDrawSize(); + if(dbgDrawSize <= btScalar(0.f)) + { + return; + } + + switch(constraint->getConstraintType()) + { + case POINT2POINT_CONSTRAINT_TYPE: + { + btPoint2PointConstraint* p2pC = (btPoint2PointConstraint*)constraint; + btTransform tr; + tr.setIdentity(); + btVector3 pivot = p2pC->getPivotInA(); + pivot = p2pC->getRigidBodyA().getCenterOfMassTransform() * pivot; + tr.setOrigin(pivot); + getDebugDrawer()->drawTransform(tr, dbgDrawSize); + // that ideally should draw the same frame + pivot = p2pC->getPivotInB(); + pivot = p2pC->getRigidBodyB().getCenterOfMassTransform() * pivot; + tr.setOrigin(pivot); + if(drawFrames) getDebugDrawer()->drawTransform(tr, dbgDrawSize); + } + break; + case HINGE_CONSTRAINT_TYPE: + { + btHingeConstraint* pHinge = (btHingeConstraint*)constraint; + btTransform tr = pHinge->getRigidBodyA().getCenterOfMassTransform() * pHinge->getAFrame(); + if(drawFrames) getDebugDrawer()->drawTransform(tr, dbgDrawSize); + tr = pHinge->getRigidBodyB().getCenterOfMassTransform() * pHinge->getBFrame(); + if(drawFrames) getDebugDrawer()->drawTransform(tr, dbgDrawSize); + btScalar minAng = pHinge->getLowerLimit(); + btScalar maxAng = pHinge->getUpperLimit(); + if(minAng == maxAng) + { + break; + } + bool drawSect = true; + if(!pHinge->hasLimit()) + { + minAng = btScalar(0.f); + maxAng = SIMD_2_PI; + drawSect = false; + } + if(drawLimits) + { + btVector3& center = tr.getOrigin(); + btVector3 normal = tr.getBasis().getColumn(2); + btVector3 axis = tr.getBasis().getColumn(0); + getDebugDrawer()->drawArc(center, normal, axis, dbgDrawSize, dbgDrawSize, minAng, maxAng, btVector3(0,0,0), drawSect); + } + } + break; + case CONETWIST_CONSTRAINT_TYPE: + { + btConeTwistConstraint* pCT = (btConeTwistConstraint*)constraint; + btTransform tr = pCT->getRigidBodyA().getCenterOfMassTransform() * pCT->getAFrame(); + if(drawFrames) getDebugDrawer()->drawTransform(tr, dbgDrawSize); + tr = pCT->getRigidBodyB().getCenterOfMassTransform() * pCT->getBFrame(); + if(drawFrames) getDebugDrawer()->drawTransform(tr, dbgDrawSize); + if(drawLimits) + { + //const btScalar length = btScalar(5); + const btScalar length = dbgDrawSize; + static int nSegments = 8*4; + btScalar fAngleInRadians = btScalar(2.*3.1415926) * (btScalar)(nSegments-1)/btScalar(nSegments); + btVector3 pPrev = pCT->GetPointForAngle(fAngleInRadians, length); + pPrev = tr * pPrev; + for (int i=0; i<nSegments; i++) + { + fAngleInRadians = btScalar(2.*3.1415926) * (btScalar)i/btScalar(nSegments); + btVector3 pCur = pCT->GetPointForAngle(fAngleInRadians, length); + pCur = tr * pCur; + getDebugDrawer()->drawLine(pPrev, pCur, btVector3(0,0,0)); + + if (i%(nSegments/8) == 0) + getDebugDrawer()->drawLine(tr.getOrigin(), pCur, btVector3(0,0,0)); + + pPrev = pCur; + } + btScalar tws = pCT->getTwistSpan(); + btScalar twa = pCT->getTwistAngle(); + bool useFrameB = (pCT->getRigidBodyB().getInvMass() > btScalar(0.f)); + if(useFrameB) + { + tr = pCT->getRigidBodyB().getCenterOfMassTransform() * pCT->getBFrame(); + } + else + { + tr = pCT->getRigidBodyA().getCenterOfMassTransform() * pCT->getAFrame(); + } + btVector3 pivot = tr.getOrigin(); + btVector3 normal = tr.getBasis().getColumn(0); + btVector3 axis1 = tr.getBasis().getColumn(1); + getDebugDrawer()->drawArc(pivot, normal, axis1, dbgDrawSize, dbgDrawSize, -twa-tws, -twa+tws, btVector3(0,0,0), true); + + } + } + break; + case D6_SPRING_CONSTRAINT_TYPE: + case D6_CONSTRAINT_TYPE: + { + btGeneric6DofConstraint* p6DOF = (btGeneric6DofConstraint*)constraint; + btTransform tr = p6DOF->getCalculatedTransformA(); + if(drawFrames) getDebugDrawer()->drawTransform(tr, dbgDrawSize); + tr = p6DOF->getCalculatedTransformB(); + if(drawFrames) getDebugDrawer()->drawTransform(tr, dbgDrawSize); + if(drawLimits) + { + tr = p6DOF->getCalculatedTransformA(); + const btVector3& center = p6DOF->getCalculatedTransformB().getOrigin(); + btVector3 up = tr.getBasis().getColumn(2); + btVector3 axis = tr.getBasis().getColumn(0); + btScalar minTh = p6DOF->getRotationalLimitMotor(1)->m_loLimit; + btScalar maxTh = p6DOF->getRotationalLimitMotor(1)->m_hiLimit; + btScalar minPs = p6DOF->getRotationalLimitMotor(2)->m_loLimit; + btScalar maxPs = p6DOF->getRotationalLimitMotor(2)->m_hiLimit; + getDebugDrawer()->drawSpherePatch(center, up, axis, dbgDrawSize * btScalar(.9f), minTh, maxTh, minPs, maxPs, btVector3(0,0,0)); + axis = tr.getBasis().getColumn(1); + btScalar ay = p6DOF->getAngle(1); + btScalar az = p6DOF->getAngle(2); + btScalar cy = btCos(ay); + btScalar sy = btSin(ay); + btScalar cz = btCos(az); + btScalar sz = btSin(az); + btVector3 ref; + ref[0] = cy*cz*axis[0] + cy*sz*axis[1] - sy*axis[2]; + ref[1] = -sz*axis[0] + cz*axis[1]; + ref[2] = cz*sy*axis[0] + sz*sy*axis[1] + cy*axis[2]; + tr = p6DOF->getCalculatedTransformB(); + btVector3 normal = -tr.getBasis().getColumn(0); + btScalar minFi = p6DOF->getRotationalLimitMotor(0)->m_loLimit; + btScalar maxFi = p6DOF->getRotationalLimitMotor(0)->m_hiLimit; + if(minFi > maxFi) + { + getDebugDrawer()->drawArc(center, normal, ref, dbgDrawSize, dbgDrawSize, -SIMD_PI, SIMD_PI, btVector3(0,0,0), false); + } + else if(minFi < maxFi) + { + getDebugDrawer()->drawArc(center, normal, ref, dbgDrawSize, dbgDrawSize, minFi, maxFi, btVector3(0,0,0), true); + } + tr = p6DOF->getCalculatedTransformA(); + btVector3 bbMin = p6DOF->getTranslationalLimitMotor()->m_lowerLimit; + btVector3 bbMax = p6DOF->getTranslationalLimitMotor()->m_upperLimit; + getDebugDrawer()->drawBox(bbMin, bbMax, tr, btVector3(0,0,0)); + } + } + break; + ///note: the code for D6_SPRING_2_CONSTRAINT_TYPE is identical to D6_CONSTRAINT_TYPE, the D6_CONSTRAINT_TYPE+D6_SPRING_CONSTRAINT_TYPE will likely become obsolete/deprecated at some stage + case D6_SPRING_2_CONSTRAINT_TYPE: + { + { + btGeneric6DofSpring2Constraint* p6DOF = (btGeneric6DofSpring2Constraint*)constraint; + btTransform tr = p6DOF->getCalculatedTransformA(); + if (drawFrames) getDebugDrawer()->drawTransform(tr, dbgDrawSize); + tr = p6DOF->getCalculatedTransformB(); + if (drawFrames) getDebugDrawer()->drawTransform(tr, dbgDrawSize); + if (drawLimits) + { + tr = p6DOF->getCalculatedTransformA(); + const btVector3& center = p6DOF->getCalculatedTransformB().getOrigin(); + btVector3 up = tr.getBasis().getColumn(2); + btVector3 axis = tr.getBasis().getColumn(0); + btScalar minTh = p6DOF->getRotationalLimitMotor(1)->m_loLimit; + btScalar maxTh = p6DOF->getRotationalLimitMotor(1)->m_hiLimit; + btScalar minPs = p6DOF->getRotationalLimitMotor(2)->m_loLimit; + btScalar maxPs = p6DOF->getRotationalLimitMotor(2)->m_hiLimit; + getDebugDrawer()->drawSpherePatch(center, up, axis, dbgDrawSize * btScalar(.9f), minTh, maxTh, minPs, maxPs, btVector3(0, 0, 0)); + axis = tr.getBasis().getColumn(1); + btScalar ay = p6DOF->getAngle(1); + btScalar az = p6DOF->getAngle(2); + btScalar cy = btCos(ay); + btScalar sy = btSin(ay); + btScalar cz = btCos(az); + btScalar sz = btSin(az); + btVector3 ref; + ref[0] = cy*cz*axis[0] + cy*sz*axis[1] - sy*axis[2]; + ref[1] = -sz*axis[0] + cz*axis[1]; + ref[2] = cz*sy*axis[0] + sz*sy*axis[1] + cy*axis[2]; + tr = p6DOF->getCalculatedTransformB(); + btVector3 normal = -tr.getBasis().getColumn(0); + btScalar minFi = p6DOF->getRotationalLimitMotor(0)->m_loLimit; + btScalar maxFi = p6DOF->getRotationalLimitMotor(0)->m_hiLimit; + if (minFi > maxFi) + { + getDebugDrawer()->drawArc(center, normal, ref, dbgDrawSize, dbgDrawSize, -SIMD_PI, SIMD_PI, btVector3(0, 0, 0), false); + } + else if (minFi < maxFi) + { + getDebugDrawer()->drawArc(center, normal, ref, dbgDrawSize, dbgDrawSize, minFi, maxFi, btVector3(0, 0, 0), true); + } + tr = p6DOF->getCalculatedTransformA(); + btVector3 bbMin = p6DOF->getTranslationalLimitMotor()->m_lowerLimit; + btVector3 bbMax = p6DOF->getTranslationalLimitMotor()->m_upperLimit; + getDebugDrawer()->drawBox(bbMin, bbMax, tr, btVector3(0, 0, 0)); + } + } + break; + } + case SLIDER_CONSTRAINT_TYPE: + { + btSliderConstraint* pSlider = (btSliderConstraint*)constraint; + btTransform tr = pSlider->getCalculatedTransformA(); + if(drawFrames) getDebugDrawer()->drawTransform(tr, dbgDrawSize); + tr = pSlider->getCalculatedTransformB(); + if(drawFrames) getDebugDrawer()->drawTransform(tr, dbgDrawSize); + if(drawLimits) + { + btTransform tr = pSlider->getUseLinearReferenceFrameA() ? pSlider->getCalculatedTransformA() : pSlider->getCalculatedTransformB(); + btVector3 li_min = tr * btVector3(pSlider->getLowerLinLimit(), 0.f, 0.f); + btVector3 li_max = tr * btVector3(pSlider->getUpperLinLimit(), 0.f, 0.f); + getDebugDrawer()->drawLine(li_min, li_max, btVector3(0, 0, 0)); + btVector3 normal = tr.getBasis().getColumn(0); + btVector3 axis = tr.getBasis().getColumn(1); + btScalar a_min = pSlider->getLowerAngLimit(); + btScalar a_max = pSlider->getUpperAngLimit(); + const btVector3& center = pSlider->getCalculatedTransformB().getOrigin(); + getDebugDrawer()->drawArc(center, normal, axis, dbgDrawSize, dbgDrawSize, a_min, a_max, btVector3(0,0,0), true); + } + } + break; + default : + break; + } + return; +} + + + + + +void btDiscreteDynamicsWorld::setConstraintSolver(btConstraintSolver* solver) +{ + if (m_ownsConstraintSolver) + { + btAlignedFree( m_constraintSolver); + } + m_ownsConstraintSolver = false; + m_constraintSolver = solver; + m_solverIslandCallback->m_solver = solver; +} + +btConstraintSolver* btDiscreteDynamicsWorld::getConstraintSolver() +{ + return m_constraintSolver; +} + + +int btDiscreteDynamicsWorld::getNumConstraints() const +{ + return int(m_constraints.size()); +} +btTypedConstraint* btDiscreteDynamicsWorld::getConstraint(int index) +{ + return m_constraints[index]; +} +const btTypedConstraint* btDiscreteDynamicsWorld::getConstraint(int index) const +{ + return m_constraints[index]; +} + + + +void btDiscreteDynamicsWorld::serializeRigidBodies(btSerializer* serializer) +{ + int i; + //serialize all collision objects + for (i=0;i<m_collisionObjects.size();i++) + { + btCollisionObject* colObj = m_collisionObjects[i]; + if (colObj->getInternalType() & btCollisionObject::CO_RIGID_BODY) + { + int len = colObj->calculateSerializeBufferSize(); + btChunk* chunk = serializer->allocate(len,1); + const char* structType = colObj->serialize(chunk->m_oldPtr, serializer); + serializer->finalizeChunk(chunk,structType,BT_RIGIDBODY_CODE,colObj); + } + } + + for (i=0;i<m_constraints.size();i++) + { + btTypedConstraint* constraint = m_constraints[i]; + int size = constraint->calculateSerializeBufferSize(); + btChunk* chunk = serializer->allocate(size,1); + const char* structType = constraint->serialize(chunk->m_oldPtr,serializer); + serializer->finalizeChunk(chunk,structType,BT_CONSTRAINT_CODE,constraint); + } +} + + + + +void btDiscreteDynamicsWorld::serializeDynamicsWorldInfo(btSerializer* serializer) +{ +#ifdef BT_USE_DOUBLE_PRECISION + int len = sizeof(btDynamicsWorldDoubleData); + btChunk* chunk = serializer->allocate(len,1); + btDynamicsWorldDoubleData* worldInfo = (btDynamicsWorldDoubleData*)chunk->m_oldPtr; +#else//BT_USE_DOUBLE_PRECISION + int len = sizeof(btDynamicsWorldFloatData); + btChunk* chunk = serializer->allocate(len,1); + btDynamicsWorldFloatData* worldInfo = (btDynamicsWorldFloatData*)chunk->m_oldPtr; +#endif//BT_USE_DOUBLE_PRECISION + + memset(worldInfo ,0x00,len); + + m_gravity.serialize(worldInfo->m_gravity); + worldInfo->m_solverInfo.m_tau = getSolverInfo().m_tau; + worldInfo->m_solverInfo.m_damping = getSolverInfo().m_damping; + worldInfo->m_solverInfo.m_friction = getSolverInfo().m_friction; + worldInfo->m_solverInfo.m_timeStep = getSolverInfo().m_timeStep; + + worldInfo->m_solverInfo.m_restitution = getSolverInfo().m_restitution; + worldInfo->m_solverInfo.m_maxErrorReduction = getSolverInfo().m_maxErrorReduction; + worldInfo->m_solverInfo.m_sor = getSolverInfo().m_sor; + worldInfo->m_solverInfo.m_erp = getSolverInfo().m_erp; + + worldInfo->m_solverInfo.m_erp2 = getSolverInfo().m_erp2; + worldInfo->m_solverInfo.m_globalCfm = getSolverInfo().m_globalCfm; + worldInfo->m_solverInfo.m_splitImpulsePenetrationThreshold = getSolverInfo().m_splitImpulsePenetrationThreshold; + worldInfo->m_solverInfo.m_splitImpulseTurnErp = getSolverInfo().m_splitImpulseTurnErp; + + worldInfo->m_solverInfo.m_linearSlop = getSolverInfo().m_linearSlop; + worldInfo->m_solverInfo.m_warmstartingFactor = getSolverInfo().m_warmstartingFactor; + worldInfo->m_solverInfo.m_maxGyroscopicForce = getSolverInfo().m_maxGyroscopicForce; + worldInfo->m_solverInfo.m_singleAxisRollingFrictionThreshold = getSolverInfo().m_singleAxisRollingFrictionThreshold; + + worldInfo->m_solverInfo.m_numIterations = getSolverInfo().m_numIterations; + worldInfo->m_solverInfo.m_solverMode = getSolverInfo().m_solverMode; + worldInfo->m_solverInfo.m_restingContactRestitutionThreshold = getSolverInfo().m_restingContactRestitutionThreshold; + worldInfo->m_solverInfo.m_minimumSolverBatchSize = getSolverInfo().m_minimumSolverBatchSize; + + worldInfo->m_solverInfo.m_splitImpulse = getSolverInfo().m_splitImpulse; + + // Fill padding with zeros to appease msan. + memset(worldInfo->m_solverInfo.m_padding, 0, sizeof(worldInfo->m_solverInfo.m_padding)); + +#ifdef BT_USE_DOUBLE_PRECISION + const char* structType = "btDynamicsWorldDoubleData"; +#else//BT_USE_DOUBLE_PRECISION + const char* structType = "btDynamicsWorldFloatData"; +#endif//BT_USE_DOUBLE_PRECISION + serializer->finalizeChunk(chunk,structType,BT_DYNAMICSWORLD_CODE,worldInfo); +} + +void btDiscreteDynamicsWorld::serialize(btSerializer* serializer) +{ + + serializer->startSerialization(); + + serializeDynamicsWorldInfo(serializer); + + serializeCollisionObjects(serializer); + + serializeRigidBodies(serializer); + + serializer->finishSerialization(); +} + diff --git a/thirdparty/bullet/BulletDynamics/Dynamics/btDiscreteDynamicsWorld.h b/thirdparty/bullet/BulletDynamics/Dynamics/btDiscreteDynamicsWorld.h new file mode 100644 index 0000000000..b0d19f48a3 --- /dev/null +++ b/thirdparty/bullet/BulletDynamics/Dynamics/btDiscreteDynamicsWorld.h @@ -0,0 +1,239 @@ +/* +Bullet Continuous Collision Detection and Physics Library +Copyright (c) 2003-2009 Erwin Coumans http://bulletphysics.org + +This software is provided 'as-is', without any express or implied warranty. +In no event will the authors be held liable for any damages arising from the use of this software. +Permission is granted to anyone to use this software for any purpose, +including commercial applications, and to alter it and redistribute it freely, +subject to the following restrictions: + +1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. +2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. +3. This notice may not be removed or altered from any source distribution. +*/ + + +#ifndef BT_DISCRETE_DYNAMICS_WORLD_H +#define BT_DISCRETE_DYNAMICS_WORLD_H + +#include "btDynamicsWorld.h" + +class btDispatcher; +class btOverlappingPairCache; +class btConstraintSolver; +class btSimulationIslandManager; +class btTypedConstraint; +class btActionInterface; +class btPersistentManifold; +class btIDebugDraw; +struct InplaceSolverIslandCallback; + +#include "LinearMath/btAlignedObjectArray.h" +#include "LinearMath/btThreads.h" + + +///btDiscreteDynamicsWorld provides discrete rigid body simulation +///those classes replace the obsolete CcdPhysicsEnvironment/CcdPhysicsController +ATTRIBUTE_ALIGNED16(class) btDiscreteDynamicsWorld : public btDynamicsWorld +{ +protected: + + btAlignedObjectArray<btTypedConstraint*> m_sortedConstraints; + InplaceSolverIslandCallback* m_solverIslandCallback; + + btConstraintSolver* m_constraintSolver; + + btSimulationIslandManager* m_islandManager; + + btAlignedObjectArray<btTypedConstraint*> m_constraints; + + btAlignedObjectArray<btRigidBody*> m_nonStaticRigidBodies; + + btVector3 m_gravity; + + //for variable timesteps + btScalar m_localTime; + btScalar m_fixedTimeStep; + //for variable timesteps + + bool m_ownsIslandManager; + bool m_ownsConstraintSolver; + bool m_synchronizeAllMotionStates; + bool m_applySpeculativeContactRestitution; + + btAlignedObjectArray<btActionInterface*> m_actions; + + int m_profileTimings; + + bool m_latencyMotionStateInterpolation; + + btAlignedObjectArray<btPersistentManifold*> m_predictiveManifolds; + btSpinMutex m_predictiveManifoldsMutex; // used to synchronize threads creating predictive contacts + + virtual void predictUnconstraintMotion(btScalar timeStep); + + void integrateTransformsInternal( btRigidBody** bodies, int numBodies, btScalar timeStep ); // can be called in parallel + virtual void integrateTransforms(btScalar timeStep); + + virtual void calculateSimulationIslands(); + + virtual void solveConstraints(btContactSolverInfo& solverInfo); + + virtual void updateActivationState(btScalar timeStep); + + void updateActions(btScalar timeStep); + + void startProfiling(btScalar timeStep); + + virtual void internalSingleStepSimulation( btScalar timeStep); + + void releasePredictiveContacts(); + void createPredictiveContactsInternal( btRigidBody** bodies, int numBodies, btScalar timeStep ); // can be called in parallel + virtual void createPredictiveContacts(btScalar timeStep); + + virtual void saveKinematicState(btScalar timeStep); + + void serializeRigidBodies(btSerializer* serializer); + + void serializeDynamicsWorldInfo(btSerializer* serializer); + +public: + + + BT_DECLARE_ALIGNED_ALLOCATOR(); + + ///this btDiscreteDynamicsWorld constructor gets created objects from the user, and will not delete those + btDiscreteDynamicsWorld(btDispatcher* dispatcher,btBroadphaseInterface* pairCache,btConstraintSolver* constraintSolver,btCollisionConfiguration* collisionConfiguration); + + virtual ~btDiscreteDynamicsWorld(); + + ///if maxSubSteps > 0, it will interpolate motion between fixedTimeStep's + virtual int stepSimulation( btScalar timeStep,int maxSubSteps=1, btScalar fixedTimeStep=btScalar(1.)/btScalar(60.)); + + + virtual void synchronizeMotionStates(); + + ///this can be useful to synchronize a single rigid body -> graphics object + void synchronizeSingleMotionState(btRigidBody* body); + + virtual void addConstraint(btTypedConstraint* constraint, bool disableCollisionsBetweenLinkedBodies=false); + + virtual void removeConstraint(btTypedConstraint* constraint); + + virtual void addAction(btActionInterface*); + + virtual void removeAction(btActionInterface*); + + btSimulationIslandManager* getSimulationIslandManager() + { + return m_islandManager; + } + + const btSimulationIslandManager* getSimulationIslandManager() const + { + return m_islandManager; + } + + btCollisionWorld* getCollisionWorld() + { + return this; + } + + virtual void setGravity(const btVector3& gravity); + + virtual btVector3 getGravity () const; + + virtual void addCollisionObject(btCollisionObject* collisionObject, int collisionFilterGroup=btBroadphaseProxy::StaticFilter, int collisionFilterMask=btBroadphaseProxy::AllFilter ^ btBroadphaseProxy::StaticFilter); + + virtual void addRigidBody(btRigidBody* body); + + virtual void addRigidBody(btRigidBody* body, int group, int mask); + + virtual void removeRigidBody(btRigidBody* body); + + ///removeCollisionObject will first check if it is a rigid body, if so call removeRigidBody otherwise call btCollisionWorld::removeCollisionObject + virtual void removeCollisionObject(btCollisionObject* collisionObject); + + + virtual void debugDrawConstraint(btTypedConstraint* constraint); + + virtual void debugDrawWorld(); + + virtual void setConstraintSolver(btConstraintSolver* solver); + + virtual btConstraintSolver* getConstraintSolver(); + + virtual int getNumConstraints() const; + + virtual btTypedConstraint* getConstraint(int index) ; + + virtual const btTypedConstraint* getConstraint(int index) const; + + + virtual btDynamicsWorldType getWorldType() const + { + return BT_DISCRETE_DYNAMICS_WORLD; + } + + ///the forces on each rigidbody is accumulating together with gravity. clear this after each timestep. + virtual void clearForces(); + + ///apply gravity, call this once per timestep + virtual void applyGravity(); + + virtual void setNumTasks(int numTasks) + { + (void) numTasks; + } + + ///obsolete, use updateActions instead + virtual void updateVehicles(btScalar timeStep) + { + updateActions(timeStep); + } + + ///obsolete, use addAction instead + virtual void addVehicle(btActionInterface* vehicle); + ///obsolete, use removeAction instead + virtual void removeVehicle(btActionInterface* vehicle); + ///obsolete, use addAction instead + virtual void addCharacter(btActionInterface* character); + ///obsolete, use removeAction instead + virtual void removeCharacter(btActionInterface* character); + + void setSynchronizeAllMotionStates(bool synchronizeAll) + { + m_synchronizeAllMotionStates = synchronizeAll; + } + bool getSynchronizeAllMotionStates() const + { + return m_synchronizeAllMotionStates; + } + + void setApplySpeculativeContactRestitution(bool enable) + { + m_applySpeculativeContactRestitution = enable; + } + + bool getApplySpeculativeContactRestitution() const + { + return m_applySpeculativeContactRestitution; + } + + ///Preliminary serialization test for Bullet 2.76. Loading those files requires a separate parser (see Bullet/Demos/SerializeDemo) + virtual void serialize(btSerializer* serializer); + + ///Interpolate motion state between previous and current transform, instead of current and next transform. + ///This can relieve discontinuities in the rendering, due to penetrations + void setLatencyMotionStateInterpolation(bool latencyInterpolation ) + { + m_latencyMotionStateInterpolation = latencyInterpolation; + } + bool getLatencyMotionStateInterpolation() const + { + return m_latencyMotionStateInterpolation; + } +}; + +#endif //BT_DISCRETE_DYNAMICS_WORLD_H diff --git a/thirdparty/bullet/BulletDynamics/Dynamics/btDiscreteDynamicsWorldMt.cpp b/thirdparty/bullet/BulletDynamics/Dynamics/btDiscreteDynamicsWorldMt.cpp new file mode 100644 index 0000000000..1d10bad922 --- /dev/null +++ b/thirdparty/bullet/BulletDynamics/Dynamics/btDiscreteDynamicsWorldMt.cpp @@ -0,0 +1,327 @@ +/* +Bullet Continuous Collision Detection and Physics Library +Copyright (c) 2003-2009 Erwin Coumans http://bulletphysics.org + +This software is provided 'as-is', without any express or implied warranty. +In no event will the authors be held liable for any damages arising from the use of this software. +Permission is granted to anyone to use this software for any purpose, +including commercial applications, and to alter it and redistribute it freely, +subject to the following restrictions: + +1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. +2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. +3. This notice may not be removed or altered from any source distribution. +*/ + + +#include "btDiscreteDynamicsWorldMt.h" + +//collision detection +#include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h" +#include "BulletCollision/BroadphaseCollision/btSimpleBroadphase.h" +#include "BulletCollision/BroadphaseCollision/btCollisionAlgorithm.h" +#include "BulletCollision/CollisionShapes/btCollisionShape.h" +#include "btSimulationIslandManagerMt.h" +#include "LinearMath/btTransformUtil.h" +#include "LinearMath/btQuickprof.h" + +//rigidbody & constraints +#include "BulletDynamics/Dynamics/btRigidBody.h" +#include "BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h" +#include "BulletDynamics/ConstraintSolver/btContactSolverInfo.h" +#include "BulletDynamics/ConstraintSolver/btTypedConstraint.h" +#include "BulletDynamics/ConstraintSolver/btPoint2PointConstraint.h" +#include "BulletDynamics/ConstraintSolver/btHingeConstraint.h" +#include "BulletDynamics/ConstraintSolver/btConeTwistConstraint.h" +#include "BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.h" +#include "BulletDynamics/ConstraintSolver/btGeneric6DofSpring2Constraint.h" +#include "BulletDynamics/ConstraintSolver/btSliderConstraint.h" +#include "BulletDynamics/ConstraintSolver/btContactConstraint.h" + + +#include "LinearMath/btIDebugDraw.h" +#include "BulletCollision/CollisionShapes/btSphereShape.h" + + +#include "BulletDynamics/Dynamics/btActionInterface.h" +#include "LinearMath/btQuickprof.h" +#include "LinearMath/btMotionState.h" + +#include "LinearMath/btSerializer.h" + + +struct InplaceSolverIslandCallbackMt : public btSimulationIslandManagerMt::IslandCallback +{ + btContactSolverInfo* m_solverInfo; + btConstraintSolver* m_solver; + btIDebugDraw* m_debugDrawer; + btDispatcher* m_dispatcher; + + InplaceSolverIslandCallbackMt( + btConstraintSolver* solver, + btStackAlloc* stackAlloc, + btDispatcher* dispatcher) + :m_solverInfo(NULL), + m_solver(solver), + m_debugDrawer(NULL), + m_dispatcher(dispatcher) + { + + } + + InplaceSolverIslandCallbackMt& operator=(InplaceSolverIslandCallbackMt& other) + { + btAssert(0); + (void)other; + return *this; + } + + SIMD_FORCE_INLINE void setup ( btContactSolverInfo* solverInfo, btIDebugDraw* debugDrawer) + { + btAssert(solverInfo); + m_solverInfo = solverInfo; + m_debugDrawer = debugDrawer; + } + + + virtual void processIsland( btCollisionObject** bodies, + int numBodies, + btPersistentManifold** manifolds, + int numManifolds, + btTypedConstraint** constraints, + int numConstraints, + int islandId + ) + { + m_solver->solveGroup( bodies, + numBodies, + manifolds, + numManifolds, + constraints, + numConstraints, + *m_solverInfo, + m_debugDrawer, + m_dispatcher + ); + } + +}; + + +/// +/// btConstraintSolverPoolMt +/// + +btConstraintSolverPoolMt::ThreadSolver* btConstraintSolverPoolMt::getAndLockThreadSolver() +{ + int i = 0; +#if BT_THREADSAFE + i = btGetCurrentThreadIndex() % m_solvers.size(); +#endif // #if BT_THREADSAFE + while ( true ) + { + ThreadSolver& solver = m_solvers[ i ]; + if ( solver.mutex.tryLock() ) + { + return &solver; + } + // failed, try the next one + i = ( i + 1 ) % m_solvers.size(); + } + return NULL; +} + +void btConstraintSolverPoolMt::init( btConstraintSolver** solvers, int numSolvers ) +{ + m_solverType = BT_SEQUENTIAL_IMPULSE_SOLVER; + m_solvers.resize( numSolvers ); + for ( int i = 0; i < numSolvers; ++i ) + { + m_solvers[ i ].solver = solvers[ i ]; + } + if ( numSolvers > 0 ) + { + m_solverType = solvers[ 0 ]->getSolverType(); + } +} + +// create the solvers for me +btConstraintSolverPoolMt::btConstraintSolverPoolMt( int numSolvers ) +{ + btAlignedObjectArray<btConstraintSolver*> solvers; + solvers.reserve( numSolvers ); + for ( int i = 0; i < numSolvers; ++i ) + { + btConstraintSolver* solver = new btSequentialImpulseConstraintSolver(); + solvers.push_back( solver ); + } + init( &solvers[ 0 ], numSolvers ); +} + +// pass in fully constructed solvers (destructor will delete them) +btConstraintSolverPoolMt::btConstraintSolverPoolMt( btConstraintSolver** solvers, int numSolvers ) +{ + init( solvers, numSolvers ); +} + +btConstraintSolverPoolMt::~btConstraintSolverPoolMt() +{ + // delete all solvers + for ( int i = 0; i < m_solvers.size(); ++i ) + { + ThreadSolver& solver = m_solvers[ i ]; + delete solver.solver; + solver.solver = NULL; + } +} + +///solve a group of constraints +btScalar btConstraintSolverPoolMt::solveGroup( btCollisionObject** bodies, + int numBodies, + btPersistentManifold** manifolds, + int numManifolds, + btTypedConstraint** constraints, + int numConstraints, + const btContactSolverInfo& info, + btIDebugDraw* debugDrawer, + btDispatcher* dispatcher +) +{ + ThreadSolver* ts = getAndLockThreadSolver(); + ts->solver->solveGroup( bodies, numBodies, manifolds, numManifolds, constraints, numConstraints, info, debugDrawer, dispatcher ); + ts->mutex.unlock(); + return 0.0f; +} + +void btConstraintSolverPoolMt::reset() +{ + for ( int i = 0; i < m_solvers.size(); ++i ) + { + ThreadSolver& solver = m_solvers[ i ]; + solver.mutex.lock(); + solver.solver->reset(); + solver.mutex.unlock(); + } +} + + +/// +/// btDiscreteDynamicsWorldMt +/// + +btDiscreteDynamicsWorldMt::btDiscreteDynamicsWorldMt(btDispatcher* dispatcher, btBroadphaseInterface* pairCache, btConstraintSolverPoolMt* constraintSolver, btCollisionConfiguration* collisionConfiguration) +: btDiscreteDynamicsWorld(dispatcher,pairCache,constraintSolver,collisionConfiguration) +{ + if (m_ownsIslandManager) + { + m_islandManager->~btSimulationIslandManager(); + btAlignedFree( m_islandManager); + } + { + void* mem = btAlignedAlloc(sizeof(InplaceSolverIslandCallbackMt),16); + m_solverIslandCallbackMt = new (mem) InplaceSolverIslandCallbackMt (m_constraintSolver, 0, dispatcher); + } + { + void* mem = btAlignedAlloc(sizeof(btSimulationIslandManagerMt),16); + btSimulationIslandManagerMt* im = new (mem) btSimulationIslandManagerMt(); + im->setMinimumSolverBatchSize( m_solverInfo.m_minimumSolverBatchSize ); + m_islandManager = im; + } +} + + +btDiscreteDynamicsWorldMt::~btDiscreteDynamicsWorldMt() +{ + if (m_solverIslandCallbackMt) + { + m_solverIslandCallbackMt->~InplaceSolverIslandCallbackMt(); + btAlignedFree(m_solverIslandCallbackMt); + } + if (m_ownsConstraintSolver) + { + m_constraintSolver->~btConstraintSolver(); + btAlignedFree(m_constraintSolver); + } +} + + +void btDiscreteDynamicsWorldMt::solveConstraints(btContactSolverInfo& solverInfo) +{ + BT_PROFILE("solveConstraints"); + + m_solverIslandCallbackMt->setup(&solverInfo, getDebugDrawer()); + m_constraintSolver->prepareSolve(getCollisionWorld()->getNumCollisionObjects(), getCollisionWorld()->getDispatcher()->getNumManifolds()); + + /// solve all the constraints for this island + btSimulationIslandManagerMt* im = static_cast<btSimulationIslandManagerMt*>(m_islandManager); + im->buildAndProcessIslands( getCollisionWorld()->getDispatcher(), getCollisionWorld(), m_constraints, m_solverIslandCallbackMt ); + + m_constraintSolver->allSolved(solverInfo, m_debugDrawer); +} + + +struct UpdaterUnconstrainedMotion : public btIParallelForBody +{ + btScalar timeStep; + btRigidBody** rigidBodies; + + void forLoop( int iBegin, int iEnd ) const BT_OVERRIDE + { + for ( int i = iBegin; i < iEnd; ++i ) + { + btRigidBody* body = rigidBodies[ i ]; + if ( !body->isStaticOrKinematicObject() ) + { + //don't integrate/update velocities here, it happens in the constraint solver + body->applyDamping( timeStep ); + body->predictIntegratedTransform( timeStep, body->getInterpolationWorldTransform() ); + } + } + } +}; + + +void btDiscreteDynamicsWorldMt::predictUnconstraintMotion( btScalar timeStep ) +{ + BT_PROFILE( "predictUnconstraintMotion" ); + if ( m_nonStaticRigidBodies.size() > 0 ) + { + UpdaterUnconstrainedMotion update; + update.timeStep = timeStep; + update.rigidBodies = &m_nonStaticRigidBodies[ 0 ]; + int grainSize = 50; // num of iterations per task for task scheduler + btParallelFor( 0, m_nonStaticRigidBodies.size(), grainSize, update ); + } +} + + +void btDiscreteDynamicsWorldMt::createPredictiveContacts( btScalar timeStep ) +{ + BT_PROFILE( "createPredictiveContacts" ); + releasePredictiveContacts(); + if ( m_nonStaticRigidBodies.size() > 0 ) + { + UpdaterCreatePredictiveContacts update; + update.world = this; + update.timeStep = timeStep; + update.rigidBodies = &m_nonStaticRigidBodies[ 0 ]; + int grainSize = 50; // num of iterations per task for task scheduler + btParallelFor( 0, m_nonStaticRigidBodies.size(), grainSize, update ); + } +} + + +void btDiscreteDynamicsWorldMt::integrateTransforms( btScalar timeStep ) +{ + BT_PROFILE( "integrateTransforms" ); + if ( m_nonStaticRigidBodies.size() > 0 ) + { + UpdaterIntegrateTransforms update; + update.world = this; + update.timeStep = timeStep; + update.rigidBodies = &m_nonStaticRigidBodies[ 0 ]; + int grainSize = 50; // num of iterations per task for task scheduler + btParallelFor( 0, m_nonStaticRigidBodies.size(), grainSize, update ); + } +} + diff --git a/thirdparty/bullet/BulletDynamics/Dynamics/btDiscreteDynamicsWorldMt.h b/thirdparty/bullet/BulletDynamics/Dynamics/btDiscreteDynamicsWorldMt.h new file mode 100644 index 0000000000..2f144cdda4 --- /dev/null +++ b/thirdparty/bullet/BulletDynamics/Dynamics/btDiscreteDynamicsWorldMt.h @@ -0,0 +1,134 @@ +/* +Bullet Continuous Collision Detection and Physics Library +Copyright (c) 2003-2009 Erwin Coumans http://bulletphysics.org + +This software is provided 'as-is', without any express or implied warranty. +In no event will the authors be held liable for any damages arising from the use of this software. +Permission is granted to anyone to use this software for any purpose, +including commercial applications, and to alter it and redistribute it freely, +subject to the following restrictions: + +1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. +2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. +3. This notice may not be removed or altered from any source distribution. +*/ + + +#ifndef BT_DISCRETE_DYNAMICS_WORLD_MT_H +#define BT_DISCRETE_DYNAMICS_WORLD_MT_H + +#include "btDiscreteDynamicsWorld.h" +#include "btSimulationIslandManagerMt.h" +#include "BulletDynamics/ConstraintSolver/btConstraintSolver.h" + +struct InplaceSolverIslandCallbackMt; + +/// +/// btConstraintSolverPoolMt - masquerades as a constraint solver, but really it is a threadsafe pool of them. +/// +/// Each solver in the pool is protected by a mutex. When solveGroup is called from a thread, +/// the pool looks for a solver that isn't being used by another thread, locks it, and dispatches the +/// call to the solver. +/// So long as there are at least as many solvers as there are hardware threads, it should never need to +/// spin wait. +/// +class btConstraintSolverPoolMt : public btConstraintSolver +{ +public: + // create the solvers for me + explicit btConstraintSolverPoolMt( int numSolvers ); + + // pass in fully constructed solvers (destructor will delete them) + btConstraintSolverPoolMt( btConstraintSolver** solvers, int numSolvers ); + + virtual ~btConstraintSolverPoolMt(); + + ///solve a group of constraints + virtual btScalar solveGroup( btCollisionObject** bodies, + int numBodies, + btPersistentManifold** manifolds, + int numManifolds, + btTypedConstraint** constraints, + int numConstraints, + const btContactSolverInfo& info, + btIDebugDraw* debugDrawer, + btDispatcher* dispatcher + ) BT_OVERRIDE; + + virtual void reset() BT_OVERRIDE; + virtual btConstraintSolverType getSolverType() const BT_OVERRIDE { return m_solverType; } + +private: + const static size_t kCacheLineSize = 128; + struct ThreadSolver + { + btConstraintSolver* solver; + btSpinMutex mutex; + char _cachelinePadding[ kCacheLineSize - sizeof( btSpinMutex ) - sizeof( void* ) ]; // keep mutexes from sharing a cache line + }; + btAlignedObjectArray<ThreadSolver> m_solvers; + btConstraintSolverType m_solverType; + + ThreadSolver* getAndLockThreadSolver(); + void init( btConstraintSolver** solvers, int numSolvers ); +}; + + + +/// +/// btDiscreteDynamicsWorldMt -- a version of DiscreteDynamicsWorld with some minor changes to support +/// solving simulation islands on multiple threads. +/// +/// Should function exactly like btDiscreteDynamicsWorld. +/// Also 3 methods that iterate over all of the rigidbodies can run in parallel: +/// - predictUnconstraintMotion +/// - integrateTransforms +/// - createPredictiveContacts +/// +ATTRIBUTE_ALIGNED16(class) btDiscreteDynamicsWorldMt : public btDiscreteDynamicsWorld +{ +protected: + InplaceSolverIslandCallbackMt* m_solverIslandCallbackMt; + + virtual void solveConstraints(btContactSolverInfo& solverInfo) BT_OVERRIDE; + + virtual void predictUnconstraintMotion( btScalar timeStep ) BT_OVERRIDE; + + struct UpdaterCreatePredictiveContacts : public btIParallelForBody + { + btScalar timeStep; + btRigidBody** rigidBodies; + btDiscreteDynamicsWorldMt* world; + + void forLoop( int iBegin, int iEnd ) const BT_OVERRIDE + { + world->createPredictiveContactsInternal( &rigidBodies[ iBegin ], iEnd - iBegin, timeStep ); + } + }; + virtual void createPredictiveContacts( btScalar timeStep ) BT_OVERRIDE; + + struct UpdaterIntegrateTransforms : public btIParallelForBody + { + btScalar timeStep; + btRigidBody** rigidBodies; + btDiscreteDynamicsWorldMt* world; + + void forLoop( int iBegin, int iEnd ) const BT_OVERRIDE + { + world->integrateTransformsInternal( &rigidBodies[ iBegin ], iEnd - iBegin, timeStep ); + } + }; + virtual void integrateTransforms( btScalar timeStep ) BT_OVERRIDE; + +public: + BT_DECLARE_ALIGNED_ALLOCATOR(); + + btDiscreteDynamicsWorldMt(btDispatcher* dispatcher, + btBroadphaseInterface* pairCache, + btConstraintSolverPoolMt* constraintSolver, // Note this should be a solver-pool for multi-threading + btCollisionConfiguration* collisionConfiguration + ); + virtual ~btDiscreteDynamicsWorldMt(); +}; + +#endif //BT_DISCRETE_DYNAMICS_WORLD_H diff --git a/thirdparty/bullet/BulletDynamics/Dynamics/btDynamicsWorld.h b/thirdparty/bullet/BulletDynamics/Dynamics/btDynamicsWorld.h new file mode 100644 index 0000000000..42d8fc0de3 --- /dev/null +++ b/thirdparty/bullet/BulletDynamics/Dynamics/btDynamicsWorld.h @@ -0,0 +1,173 @@ +/* +Bullet Continuous Collision Detection and Physics Library +Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ + +This software is provided 'as-is', without any express or implied warranty. +In no event will the authors be held liable for any damages arising from the use of this software. +Permission is granted to anyone to use this software for any purpose, +including commercial applications, and to alter it and redistribute it freely, +subject to the following restrictions: + +1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. +2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. +3. This notice may not be removed or altered from any source distribution. +*/ + +#ifndef BT_DYNAMICS_WORLD_H +#define BT_DYNAMICS_WORLD_H + +#include "BulletCollision/CollisionDispatch/btCollisionWorld.h" +#include "BulletDynamics/ConstraintSolver/btContactSolverInfo.h" + +class btTypedConstraint; +class btActionInterface; +class btConstraintSolver; +class btDynamicsWorld; + + +/// Type for the callback for each tick +typedef void (*btInternalTickCallback)(btDynamicsWorld *world, btScalar timeStep); + +enum btDynamicsWorldType +{ + BT_SIMPLE_DYNAMICS_WORLD=1, + BT_DISCRETE_DYNAMICS_WORLD=2, + BT_CONTINUOUS_DYNAMICS_WORLD=3, + BT_SOFT_RIGID_DYNAMICS_WORLD=4, + BT_GPU_DYNAMICS_WORLD=5, + BT_SOFT_MULTIBODY_DYNAMICS_WORLD=6 +}; + +///The btDynamicsWorld is the interface class for several dynamics implementation, basic, discrete, parallel, and continuous etc. +class btDynamicsWorld : public btCollisionWorld +{ + +protected: + btInternalTickCallback m_internalTickCallback; + btInternalTickCallback m_internalPreTickCallback; + void* m_worldUserInfo; + + btContactSolverInfo m_solverInfo; + +public: + + + btDynamicsWorld(btDispatcher* dispatcher,btBroadphaseInterface* broadphase,btCollisionConfiguration* collisionConfiguration) + :btCollisionWorld(dispatcher,broadphase,collisionConfiguration), m_internalTickCallback(0),m_internalPreTickCallback(0), m_worldUserInfo(0) + { + } + + virtual ~btDynamicsWorld() + { + } + + ///stepSimulation proceeds the simulation over 'timeStep', units in preferably in seconds. + ///By default, Bullet will subdivide the timestep in constant substeps of each 'fixedTimeStep'. + ///in order to keep the simulation real-time, the maximum number of substeps can be clamped to 'maxSubSteps'. + ///You can disable subdividing the timestep/substepping by passing maxSubSteps=0 as second argument to stepSimulation, but in that case you have to keep the timeStep constant. + virtual int stepSimulation( btScalar timeStep,int maxSubSteps=1, btScalar fixedTimeStep=btScalar(1.)/btScalar(60.))=0; + + virtual void debugDrawWorld() = 0; + + virtual void addConstraint(btTypedConstraint* constraint, bool disableCollisionsBetweenLinkedBodies=false) + { + (void)constraint; (void)disableCollisionsBetweenLinkedBodies; + } + + virtual void removeConstraint(btTypedConstraint* constraint) {(void)constraint;} + + virtual void addAction(btActionInterface* action) = 0; + + virtual void removeAction(btActionInterface* action) = 0; + + //once a rigidbody is added to the dynamics world, it will get this gravity assigned + //existing rigidbodies in the world get gravity assigned too, during this method + virtual void setGravity(const btVector3& gravity) = 0; + virtual btVector3 getGravity () const = 0; + + virtual void synchronizeMotionStates() = 0; + + virtual void addRigidBody(btRigidBody* body) = 0; + + virtual void addRigidBody(btRigidBody* body, int group, int mask) = 0; + + virtual void removeRigidBody(btRigidBody* body) = 0; + + virtual void setConstraintSolver(btConstraintSolver* solver) = 0; + + virtual btConstraintSolver* getConstraintSolver() = 0; + + virtual int getNumConstraints() const { return 0; } + + virtual btTypedConstraint* getConstraint(int index) { (void)index; return 0; } + + virtual const btTypedConstraint* getConstraint(int index) const { (void)index; return 0; } + + virtual btDynamicsWorldType getWorldType() const=0; + + virtual void clearForces() = 0; + + /// Set the callback for when an internal tick (simulation substep) happens, optional user info + void setInternalTickCallback(btInternalTickCallback cb, void* worldUserInfo=0,bool isPreTick=false) + { + if (isPreTick) + { + m_internalPreTickCallback = cb; + } else + { + m_internalTickCallback = cb; + } + m_worldUserInfo = worldUserInfo; + } + + void setWorldUserInfo(void* worldUserInfo) + { + m_worldUserInfo = worldUserInfo; + } + + void* getWorldUserInfo() const + { + return m_worldUserInfo; + } + + btContactSolverInfo& getSolverInfo() + { + return m_solverInfo; + } + + const btContactSolverInfo& getSolverInfo() const + { + return m_solverInfo; + } + + + ///obsolete, use addAction instead. + virtual void addVehicle(btActionInterface* vehicle) {(void)vehicle;} + ///obsolete, use removeAction instead + virtual void removeVehicle(btActionInterface* vehicle) {(void)vehicle;} + ///obsolete, use addAction instead. + virtual void addCharacter(btActionInterface* character) {(void)character;} + ///obsolete, use removeAction instead + virtual void removeCharacter(btActionInterface* character) {(void)character;} + + +}; + +///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64 +struct btDynamicsWorldDoubleData +{ + btContactSolverInfoDoubleData m_solverInfo; + btVector3DoubleData m_gravity; +}; + +///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64 +struct btDynamicsWorldFloatData +{ + btContactSolverInfoFloatData m_solverInfo; + btVector3FloatData m_gravity; +}; + + +#endif //BT_DYNAMICS_WORLD_H + + diff --git a/thirdparty/bullet/BulletDynamics/Dynamics/btRigidBody.cpp b/thirdparty/bullet/BulletDynamics/Dynamics/btRigidBody.cpp new file mode 100644 index 0000000000..ca0714fcfa --- /dev/null +++ b/thirdparty/bullet/BulletDynamics/Dynamics/btRigidBody.cpp @@ -0,0 +1,527 @@ +/* +Bullet Continuous Collision Detection and Physics Library +Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ + +This software is provided 'as-is', without any express or implied warranty. +In no event will the authors be held liable for any damages arising from the use of this software. +Permission is granted to anyone to use this software for any purpose, +including commercial applications, and to alter it and redistribute it freely, +subject to the following restrictions: + +1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. +2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. +3. This notice may not be removed or altered from any source distribution. +*/ + +#include "btRigidBody.h" +#include "BulletCollision/CollisionShapes/btConvexShape.h" +#include "LinearMath/btMinMax.h" +#include "LinearMath/btTransformUtil.h" +#include "LinearMath/btMotionState.h" +#include "BulletDynamics/ConstraintSolver/btTypedConstraint.h" +#include "LinearMath/btSerializer.h" + +//'temporarily' global variables +btScalar gDeactivationTime = btScalar(2.); +bool gDisableDeactivation = false; +static int uniqueId = 0; + + +btRigidBody::btRigidBody(const btRigidBody::btRigidBodyConstructionInfo& constructionInfo) +{ + setupRigidBody(constructionInfo); +} + +btRigidBody::btRigidBody(btScalar mass, btMotionState *motionState, btCollisionShape *collisionShape, const btVector3 &localInertia) +{ + btRigidBodyConstructionInfo cinfo(mass,motionState,collisionShape,localInertia); + setupRigidBody(cinfo); +} + +void btRigidBody::setupRigidBody(const btRigidBody::btRigidBodyConstructionInfo& constructionInfo) +{ + + m_internalType=CO_RIGID_BODY; + + m_linearVelocity.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0)); + m_angularVelocity.setValue(btScalar(0.),btScalar(0.),btScalar(0.)); + m_angularFactor.setValue(1,1,1); + m_linearFactor.setValue(1,1,1); + m_gravity.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0)); + m_gravity_acceleration.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0)); + m_totalForce.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0)); + m_totalTorque.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0)), + setDamping(constructionInfo.m_linearDamping, constructionInfo.m_angularDamping); + + m_linearSleepingThreshold = constructionInfo.m_linearSleepingThreshold; + m_angularSleepingThreshold = constructionInfo.m_angularSleepingThreshold; + m_optionalMotionState = constructionInfo.m_motionState; + m_contactSolverType = 0; + m_frictionSolverType = 0; + m_additionalDamping = constructionInfo.m_additionalDamping; + m_additionalDampingFactor = constructionInfo.m_additionalDampingFactor; + m_additionalLinearDampingThresholdSqr = constructionInfo.m_additionalLinearDampingThresholdSqr; + m_additionalAngularDampingThresholdSqr = constructionInfo.m_additionalAngularDampingThresholdSqr; + m_additionalAngularDampingFactor = constructionInfo.m_additionalAngularDampingFactor; + + if (m_optionalMotionState) + { + m_optionalMotionState->getWorldTransform(m_worldTransform); + } else + { + m_worldTransform = constructionInfo.m_startWorldTransform; + } + + m_interpolationWorldTransform = m_worldTransform; + m_interpolationLinearVelocity.setValue(0,0,0); + m_interpolationAngularVelocity.setValue(0,0,0); + + //moved to btCollisionObject + m_friction = constructionInfo.m_friction; + m_rollingFriction = constructionInfo.m_rollingFriction; + m_spinningFriction = constructionInfo.m_spinningFriction; + + m_restitution = constructionInfo.m_restitution; + + setCollisionShape( constructionInfo.m_collisionShape ); + m_debugBodyId = uniqueId++; + + setMassProps(constructionInfo.m_mass, constructionInfo.m_localInertia); + updateInertiaTensor(); + + m_rigidbodyFlags = BT_ENABLE_GYROSCOPIC_FORCE_IMPLICIT_BODY; + + + m_deltaLinearVelocity.setZero(); + m_deltaAngularVelocity.setZero(); + m_invMass = m_inverseMass*m_linearFactor; + m_pushVelocity.setZero(); + m_turnVelocity.setZero(); + + + +} + + +void btRigidBody::predictIntegratedTransform(btScalar timeStep,btTransform& predictedTransform) +{ + btTransformUtil::integrateTransform(m_worldTransform,m_linearVelocity,m_angularVelocity,timeStep,predictedTransform); +} + +void btRigidBody::saveKinematicState(btScalar timeStep) +{ + //todo: clamp to some (user definable) safe minimum timestep, to limit maximum angular/linear velocities + if (timeStep != btScalar(0.)) + { + //if we use motionstate to synchronize world transforms, get the new kinematic/animated world transform + if (getMotionState()) + getMotionState()->getWorldTransform(m_worldTransform); + btVector3 linVel,angVel; + + btTransformUtil::calculateVelocity(m_interpolationWorldTransform,m_worldTransform,timeStep,m_linearVelocity,m_angularVelocity); + m_interpolationLinearVelocity = m_linearVelocity; + m_interpolationAngularVelocity = m_angularVelocity; + m_interpolationWorldTransform = m_worldTransform; + //printf("angular = %f %f %f\n",m_angularVelocity.getX(),m_angularVelocity.getY(),m_angularVelocity.getZ()); + } +} + +void btRigidBody::getAabb(btVector3& aabbMin,btVector3& aabbMax) const +{ + getCollisionShape()->getAabb(m_worldTransform,aabbMin,aabbMax); +} + + + + +void btRigidBody::setGravity(const btVector3& acceleration) +{ + if (m_inverseMass != btScalar(0.0)) + { + m_gravity = acceleration * (btScalar(1.0) / m_inverseMass); + } + m_gravity_acceleration = acceleration; +} + + + + + + +void btRigidBody::setDamping(btScalar lin_damping, btScalar ang_damping) +{ + m_linearDamping = btClamped(lin_damping, (btScalar)btScalar(0.0), (btScalar)btScalar(1.0)); + m_angularDamping = btClamped(ang_damping, (btScalar)btScalar(0.0), (btScalar)btScalar(1.0)); +} + + + + +///applyDamping damps the velocity, using the given m_linearDamping and m_angularDamping +void btRigidBody::applyDamping(btScalar timeStep) +{ + //On new damping: see discussion/issue report here: http://code.google.com/p/bullet/issues/detail?id=74 + //todo: do some performance comparisons (but other parts of the engine are probably bottleneck anyway + +//#define USE_OLD_DAMPING_METHOD 1 +#ifdef USE_OLD_DAMPING_METHOD + m_linearVelocity *= GEN_clamped((btScalar(1.) - timeStep * m_linearDamping), (btScalar)btScalar(0.0), (btScalar)btScalar(1.0)); + m_angularVelocity *= GEN_clamped((btScalar(1.) - timeStep * m_angularDamping), (btScalar)btScalar(0.0), (btScalar)btScalar(1.0)); +#else + m_linearVelocity *= btPow(btScalar(1)-m_linearDamping, timeStep); + m_angularVelocity *= btPow(btScalar(1)-m_angularDamping, timeStep); +#endif + + if (m_additionalDamping) + { + //Additional damping can help avoiding lowpass jitter motion, help stability for ragdolls etc. + //Such damping is undesirable, so once the overall simulation quality of the rigid body dynamics system has improved, this should become obsolete + if ((m_angularVelocity.length2() < m_additionalAngularDampingThresholdSqr) && + (m_linearVelocity.length2() < m_additionalLinearDampingThresholdSqr)) + { + m_angularVelocity *= m_additionalDampingFactor; + m_linearVelocity *= m_additionalDampingFactor; + } + + + btScalar speed = m_linearVelocity.length(); + if (speed < m_linearDamping) + { + btScalar dampVel = btScalar(0.005); + if (speed > dampVel) + { + btVector3 dir = m_linearVelocity.normalized(); + m_linearVelocity -= dir * dampVel; + } else + { + m_linearVelocity.setValue(btScalar(0.),btScalar(0.),btScalar(0.)); + } + } + + btScalar angSpeed = m_angularVelocity.length(); + if (angSpeed < m_angularDamping) + { + btScalar angDampVel = btScalar(0.005); + if (angSpeed > angDampVel) + { + btVector3 dir = m_angularVelocity.normalized(); + m_angularVelocity -= dir * angDampVel; + } else + { + m_angularVelocity.setValue(btScalar(0.),btScalar(0.),btScalar(0.)); + } + } + } +} + + +void btRigidBody::applyGravity() +{ + if (isStaticOrKinematicObject()) + return; + + applyCentralForce(m_gravity); + +} + +void btRigidBody::proceedToTransform(const btTransform& newTrans) +{ + setCenterOfMassTransform( newTrans ); +} + + +void btRigidBody::setMassProps(btScalar mass, const btVector3& inertia) +{ + if (mass == btScalar(0.)) + { + m_collisionFlags |= btCollisionObject::CF_STATIC_OBJECT; + m_inverseMass = btScalar(0.); + } else + { + m_collisionFlags &= (~btCollisionObject::CF_STATIC_OBJECT); + m_inverseMass = btScalar(1.0) / mass; + } + + //Fg = m * a + m_gravity = mass * m_gravity_acceleration; + + m_invInertiaLocal.setValue(inertia.x() != btScalar(0.0) ? btScalar(1.0) / inertia.x(): btScalar(0.0), + inertia.y() != btScalar(0.0) ? btScalar(1.0) / inertia.y(): btScalar(0.0), + inertia.z() != btScalar(0.0) ? btScalar(1.0) / inertia.z(): btScalar(0.0)); + + m_invMass = m_linearFactor*m_inverseMass; +} + + +void btRigidBody::updateInertiaTensor() +{ + m_invInertiaTensorWorld = m_worldTransform.getBasis().scaled(m_invInertiaLocal) * m_worldTransform.getBasis().transpose(); +} + + + +btVector3 btRigidBody::getLocalInertia() const +{ + + btVector3 inertiaLocal; + const btVector3 inertia = m_invInertiaLocal; + inertiaLocal.setValue(inertia.x() != btScalar(0.0) ? btScalar(1.0) / inertia.x() : btScalar(0.0), + inertia.y() != btScalar(0.0) ? btScalar(1.0) / inertia.y() : btScalar(0.0), + inertia.z() != btScalar(0.0) ? btScalar(1.0) / inertia.z() : btScalar(0.0)); + return inertiaLocal; +} + +inline btVector3 evalEulerEqn(const btVector3& w1, const btVector3& w0, const btVector3& T, const btScalar dt, + const btMatrix3x3 &I) +{ + const btVector3 w2 = I*w1 + w1.cross(I*w1)*dt - (T*dt + I*w0); + return w2; +} + +inline btMatrix3x3 evalEulerEqnDeriv(const btVector3& w1, const btVector3& w0, const btScalar dt, + const btMatrix3x3 &I) +{ + + btMatrix3x3 w1x, Iw1x; + const btVector3 Iwi = (I*w1); + w1.getSkewSymmetricMatrix(&w1x[0], &w1x[1], &w1x[2]); + Iwi.getSkewSymmetricMatrix(&Iw1x[0], &Iw1x[1], &Iw1x[2]); + + const btMatrix3x3 dfw1 = I + (w1x*I - Iw1x)*dt; + return dfw1; +} + +btVector3 btRigidBody::computeGyroscopicForceExplicit(btScalar maxGyroscopicForce) const +{ + btVector3 inertiaLocal = getLocalInertia(); + btMatrix3x3 inertiaTensorWorld = getWorldTransform().getBasis().scaled(inertiaLocal) * getWorldTransform().getBasis().transpose(); + btVector3 tmp = inertiaTensorWorld*getAngularVelocity(); + btVector3 gf = getAngularVelocity().cross(tmp); + btScalar l2 = gf.length2(); + if (l2>maxGyroscopicForce*maxGyroscopicForce) + { + gf *= btScalar(1.)/btSqrt(l2)*maxGyroscopicForce; + } + return gf; +} + + +btVector3 btRigidBody::computeGyroscopicImpulseImplicit_Body(btScalar step) const +{ + btVector3 idl = getLocalInertia(); + btVector3 omega1 = getAngularVelocity(); + btQuaternion q = getWorldTransform().getRotation(); + + // Convert to body coordinates + btVector3 omegab = quatRotate(q.inverse(), omega1); + btMatrix3x3 Ib; + Ib.setValue(idl.x(),0,0, + 0,idl.y(),0, + 0,0,idl.z()); + + btVector3 ibo = Ib*omegab; + + // Residual vector + btVector3 f = step * omegab.cross(ibo); + + btMatrix3x3 skew0; + omegab.getSkewSymmetricMatrix(&skew0[0], &skew0[1], &skew0[2]); + btVector3 om = Ib*omegab; + btMatrix3x3 skew1; + om.getSkewSymmetricMatrix(&skew1[0],&skew1[1],&skew1[2]); + + // Jacobian + btMatrix3x3 J = Ib + (skew0*Ib - skew1)*step; + +// btMatrix3x3 Jinv = J.inverse(); +// btVector3 omega_div = Jinv*f; + btVector3 omega_div = J.solve33(f); + + // Single Newton-Raphson update + omegab = omegab - omega_div;//Solve33(J, f); + // Back to world coordinates + btVector3 omega2 = quatRotate(q,omegab); + btVector3 gf = omega2-omega1; + return gf; +} + + + +btVector3 btRigidBody::computeGyroscopicImpulseImplicit_World(btScalar step) const +{ + // use full newton-euler equations. common practice to drop the wxIw term. want it for better tumbling behavior. + // calculate using implicit euler step so it's stable. + + const btVector3 inertiaLocal = getLocalInertia(); + const btVector3 w0 = getAngularVelocity(); + + btMatrix3x3 I; + + I = m_worldTransform.getBasis().scaled(inertiaLocal) * + m_worldTransform.getBasis().transpose(); + + // use newtons method to find implicit solution for new angular velocity (w') + // f(w') = -(T*step + Iw) + Iw' + w' + w'xIw'*step = 0 + // df/dw' = I + 1xIw'*step + w'xI*step + + btVector3 w1 = w0; + + // one step of newton's method + { + const btVector3 fw = evalEulerEqn(w1, w0, btVector3(0, 0, 0), step, I); + const btMatrix3x3 dfw = evalEulerEqnDeriv(w1, w0, step, I); + + btVector3 dw; + dw = dfw.solve33(fw); + //const btMatrix3x3 dfw_inv = dfw.inverse(); + //dw = dfw_inv*fw; + + w1 -= dw; + } + + btVector3 gf = (w1 - w0); + return gf; +} + + +void btRigidBody::integrateVelocities(btScalar step) +{ + if (isStaticOrKinematicObject()) + return; + + m_linearVelocity += m_totalForce * (m_inverseMass * step); + m_angularVelocity += m_invInertiaTensorWorld * m_totalTorque * step; + +#define MAX_ANGVEL SIMD_HALF_PI + /// clamp angular velocity. collision calculations will fail on higher angular velocities + btScalar angvel = m_angularVelocity.length(); + if (angvel*step > MAX_ANGVEL) + { + m_angularVelocity *= (MAX_ANGVEL/step) /angvel; + } + +} + +btQuaternion btRigidBody::getOrientation() const +{ + btQuaternion orn; + m_worldTransform.getBasis().getRotation(orn); + return orn; +} + + +void btRigidBody::setCenterOfMassTransform(const btTransform& xform) +{ + + if (isKinematicObject()) + { + m_interpolationWorldTransform = m_worldTransform; + } else + { + m_interpolationWorldTransform = xform; + } + m_interpolationLinearVelocity = getLinearVelocity(); + m_interpolationAngularVelocity = getAngularVelocity(); + m_worldTransform = xform; + updateInertiaTensor(); +} + + + + + +void btRigidBody::addConstraintRef(btTypedConstraint* c) +{ + ///disable collision with the 'other' body + + int index = m_constraintRefs.findLinearSearch(c); + //don't add constraints that are already referenced + //btAssert(index == m_constraintRefs.size()); + if (index == m_constraintRefs.size()) + { + m_constraintRefs.push_back(c); + btCollisionObject* colObjA = &c->getRigidBodyA(); + btCollisionObject* colObjB = &c->getRigidBodyB(); + if (colObjA == this) + { + colObjA->setIgnoreCollisionCheck(colObjB, true); + } + else + { + colObjB->setIgnoreCollisionCheck(colObjA, true); + } + } +} + +void btRigidBody::removeConstraintRef(btTypedConstraint* c) +{ + int index = m_constraintRefs.findLinearSearch(c); + //don't remove constraints that are not referenced + if(index < m_constraintRefs.size()) + { + m_constraintRefs.remove(c); + btCollisionObject* colObjA = &c->getRigidBodyA(); + btCollisionObject* colObjB = &c->getRigidBodyB(); + if (colObjA == this) + { + colObjA->setIgnoreCollisionCheck(colObjB, false); + } + else + { + colObjB->setIgnoreCollisionCheck(colObjA, false); + } + } +} + +int btRigidBody::calculateSerializeBufferSize() const +{ + int sz = sizeof(btRigidBodyData); + return sz; +} + + ///fills the dataBuffer and returns the struct name (and 0 on failure) +const char* btRigidBody::serialize(void* dataBuffer, class btSerializer* serializer) const +{ + btRigidBodyData* rbd = (btRigidBodyData*) dataBuffer; + + btCollisionObject::serialize(&rbd->m_collisionObjectData, serializer); + + m_invInertiaTensorWorld.serialize(rbd->m_invInertiaTensorWorld); + m_linearVelocity.serialize(rbd->m_linearVelocity); + m_angularVelocity.serialize(rbd->m_angularVelocity); + rbd->m_inverseMass = m_inverseMass; + m_angularFactor.serialize(rbd->m_angularFactor); + m_linearFactor.serialize(rbd->m_linearFactor); + m_gravity.serialize(rbd->m_gravity); + m_gravity_acceleration.serialize(rbd->m_gravity_acceleration); + m_invInertiaLocal.serialize(rbd->m_invInertiaLocal); + m_totalForce.serialize(rbd->m_totalForce); + m_totalTorque.serialize(rbd->m_totalTorque); + rbd->m_linearDamping = m_linearDamping; + rbd->m_angularDamping = m_angularDamping; + rbd->m_additionalDamping = m_additionalDamping; + rbd->m_additionalDampingFactor = m_additionalDampingFactor; + rbd->m_additionalLinearDampingThresholdSqr = m_additionalLinearDampingThresholdSqr; + rbd->m_additionalAngularDampingThresholdSqr = m_additionalAngularDampingThresholdSqr; + rbd->m_additionalAngularDampingFactor = m_additionalAngularDampingFactor; + rbd->m_linearSleepingThreshold=m_linearSleepingThreshold; + rbd->m_angularSleepingThreshold = m_angularSleepingThreshold; + + // Fill padding with zeros to appease msan. +#ifdef BT_USE_DOUBLE_PRECISION + memset(rbd->m_padding, 0, sizeof(rbd->m_padding)); +#endif + + return btRigidBodyDataName; +} + + + +void btRigidBody::serializeSingleObject(class btSerializer* serializer) const +{ + btChunk* chunk = serializer->allocate(calculateSerializeBufferSize(),1); + const char* structType = serialize(chunk->m_oldPtr, serializer); + serializer->finalizeChunk(chunk,structType,BT_RIGIDBODY_CODE,(void*)this); +} + + diff --git a/thirdparty/bullet/BulletDynamics/Dynamics/btRigidBody.h b/thirdparty/bullet/BulletDynamics/Dynamics/btRigidBody.h new file mode 100644 index 0000000000..372245031b --- /dev/null +++ b/thirdparty/bullet/BulletDynamics/Dynamics/btRigidBody.h @@ -0,0 +1,619 @@ +/* +Bullet Continuous Collision Detection and Physics Library +Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ + +This software is provided 'as-is', without any express or implied warranty. +In no event will the authors be held liable for any damages arising from the use of this software. +Permission is granted to anyone to use this software for any purpose, +including commercial applications, and to alter it and redistribute it freely, +subject to the following restrictions: + +1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. +2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. +3. This notice may not be removed or altered from any source distribution. +*/ + +#ifndef BT_RIGIDBODY_H +#define BT_RIGIDBODY_H + +#include "LinearMath/btAlignedObjectArray.h" +#include "LinearMath/btTransform.h" +#include "BulletCollision/BroadphaseCollision/btBroadphaseProxy.h" +#include "BulletCollision/CollisionDispatch/btCollisionObject.h" + +class btCollisionShape; +class btMotionState; +class btTypedConstraint; + + +extern btScalar gDeactivationTime; +extern bool gDisableDeactivation; + +#ifdef BT_USE_DOUBLE_PRECISION +#define btRigidBodyData btRigidBodyDoubleData +#define btRigidBodyDataName "btRigidBodyDoubleData" +#else +#define btRigidBodyData btRigidBodyFloatData +#define btRigidBodyDataName "btRigidBodyFloatData" +#endif //BT_USE_DOUBLE_PRECISION + + +enum btRigidBodyFlags +{ + BT_DISABLE_WORLD_GRAVITY = 1, + ///BT_ENABLE_GYROPSCOPIC_FORCE flags is enabled by default in Bullet 2.83 and onwards. + ///and it BT_ENABLE_GYROPSCOPIC_FORCE becomes equivalent to BT_ENABLE_GYROSCOPIC_FORCE_IMPLICIT_BODY + ///See Demos/GyroscopicDemo and computeGyroscopicImpulseImplicit + BT_ENABLE_GYROSCOPIC_FORCE_EXPLICIT = 2, + BT_ENABLE_GYROSCOPIC_FORCE_IMPLICIT_WORLD=4, + BT_ENABLE_GYROSCOPIC_FORCE_IMPLICIT_BODY=8, + BT_ENABLE_GYROPSCOPIC_FORCE = BT_ENABLE_GYROSCOPIC_FORCE_IMPLICIT_BODY, +}; + + +///The btRigidBody is the main class for rigid body objects. It is derived from btCollisionObject, so it keeps a pointer to a btCollisionShape. +///It is recommended for performance and memory use to share btCollisionShape objects whenever possible. +///There are 3 types of rigid bodies: +///- A) Dynamic rigid bodies, with positive mass. Motion is controlled by rigid body dynamics. +///- B) Fixed objects with zero mass. They are not moving (basically collision objects) +///- C) Kinematic objects, which are objects without mass, but the user can move them. There is on-way interaction, and Bullet calculates a velocity based on the timestep and previous and current world transform. +///Bullet automatically deactivates dynamic rigid bodies, when the velocity is below a threshold for a given time. +///Deactivated (sleeping) rigid bodies don't take any processing time, except a minor broadphase collision detection impact (to allow active objects to activate/wake up sleeping objects) +class btRigidBody : public btCollisionObject +{ + + btMatrix3x3 m_invInertiaTensorWorld; + btVector3 m_linearVelocity; + btVector3 m_angularVelocity; + btScalar m_inverseMass; + btVector3 m_linearFactor; + + btVector3 m_gravity; + btVector3 m_gravity_acceleration; + btVector3 m_invInertiaLocal; + btVector3 m_totalForce; + btVector3 m_totalTorque; + + btScalar m_linearDamping; + btScalar m_angularDamping; + + bool m_additionalDamping; + btScalar m_additionalDampingFactor; + btScalar m_additionalLinearDampingThresholdSqr; + btScalar m_additionalAngularDampingThresholdSqr; + btScalar m_additionalAngularDampingFactor; + + + btScalar m_linearSleepingThreshold; + btScalar m_angularSleepingThreshold; + + //m_optionalMotionState allows to automatic synchronize the world transform for active objects + btMotionState* m_optionalMotionState; + + //keep track of typed constraints referencing this rigid body, to disable collision between linked bodies + btAlignedObjectArray<btTypedConstraint*> m_constraintRefs; + + int m_rigidbodyFlags; + + int m_debugBodyId; + + +protected: + + ATTRIBUTE_ALIGNED16(btVector3 m_deltaLinearVelocity); + btVector3 m_deltaAngularVelocity; + btVector3 m_angularFactor; + btVector3 m_invMass; + btVector3 m_pushVelocity; + btVector3 m_turnVelocity; + + +public: + + + ///The btRigidBodyConstructionInfo structure provides information to create a rigid body. Setting mass to zero creates a fixed (non-dynamic) rigid body. + ///For dynamic objects, you can use the collision shape to approximate the local inertia tensor, otherwise use the zero vector (default argument) + ///You can use the motion state to synchronize the world transform between physics and graphics objects. + ///And if the motion state is provided, the rigid body will initialize its initial world transform from the motion state, + ///m_startWorldTransform is only used when you don't provide a motion state. + struct btRigidBodyConstructionInfo + { + btScalar m_mass; + + ///When a motionState is provided, the rigid body will initialize its world transform from the motion state + ///In this case, m_startWorldTransform is ignored. + btMotionState* m_motionState; + btTransform m_startWorldTransform; + + btCollisionShape* m_collisionShape; + btVector3 m_localInertia; + btScalar m_linearDamping; + btScalar m_angularDamping; + + ///best simulation results when friction is non-zero + btScalar m_friction; + ///the m_rollingFriction prevents rounded shapes, such as spheres, cylinders and capsules from rolling forever. + ///See Bullet/Demos/RollingFrictionDemo for usage + btScalar m_rollingFriction; + btScalar m_spinningFriction;//torsional friction around contact normal + + ///best simulation results using zero restitution. + btScalar m_restitution; + + btScalar m_linearSleepingThreshold; + btScalar m_angularSleepingThreshold; + + //Additional damping can help avoiding lowpass jitter motion, help stability for ragdolls etc. + //Such damping is undesirable, so once the overall simulation quality of the rigid body dynamics system has improved, this should become obsolete + bool m_additionalDamping; + btScalar m_additionalDampingFactor; + btScalar m_additionalLinearDampingThresholdSqr; + btScalar m_additionalAngularDampingThresholdSqr; + btScalar m_additionalAngularDampingFactor; + + btRigidBodyConstructionInfo( btScalar mass, btMotionState* motionState, btCollisionShape* collisionShape, const btVector3& localInertia=btVector3(0,0,0)): + m_mass(mass), + m_motionState(motionState), + m_collisionShape(collisionShape), + m_localInertia(localInertia), + m_linearDamping(btScalar(0.)), + m_angularDamping(btScalar(0.)), + m_friction(btScalar(0.5)), + m_rollingFriction(btScalar(0)), + m_spinningFriction(btScalar(0)), + m_restitution(btScalar(0.)), + m_linearSleepingThreshold(btScalar(0.8)), + m_angularSleepingThreshold(btScalar(1.f)), + m_additionalDamping(false), + m_additionalDampingFactor(btScalar(0.005)), + m_additionalLinearDampingThresholdSqr(btScalar(0.01)), + m_additionalAngularDampingThresholdSqr(btScalar(0.01)), + m_additionalAngularDampingFactor(btScalar(0.01)) + { + m_startWorldTransform.setIdentity(); + } + }; + + ///btRigidBody constructor using construction info + btRigidBody( const btRigidBodyConstructionInfo& constructionInfo); + + ///btRigidBody constructor for backwards compatibility. + ///To specify friction (etc) during rigid body construction, please use the other constructor (using btRigidBodyConstructionInfo) + btRigidBody( btScalar mass, btMotionState* motionState, btCollisionShape* collisionShape, const btVector3& localInertia=btVector3(0,0,0)); + + + virtual ~btRigidBody() + { + //No constraints should point to this rigidbody + //Remove constraints from the dynamics world before you delete the related rigidbodies. + btAssert(m_constraintRefs.size()==0); + } + +protected: + + ///setupRigidBody is only used internally by the constructor + void setupRigidBody(const btRigidBodyConstructionInfo& constructionInfo); + +public: + + void proceedToTransform(const btTransform& newTrans); + + ///to keep collision detection and dynamics separate we don't store a rigidbody pointer + ///but a rigidbody is derived from btCollisionObject, so we can safely perform an upcast + static const btRigidBody* upcast(const btCollisionObject* colObj) + { + if (colObj->getInternalType()&btCollisionObject::CO_RIGID_BODY) + return (const btRigidBody*)colObj; + return 0; + } + static btRigidBody* upcast(btCollisionObject* colObj) + { + if (colObj->getInternalType()&btCollisionObject::CO_RIGID_BODY) + return (btRigidBody*)colObj; + return 0; + } + + /// continuous collision detection needs prediction + void predictIntegratedTransform(btScalar step, btTransform& predictedTransform) ; + + void saveKinematicState(btScalar step); + + void applyGravity(); + + void setGravity(const btVector3& acceleration); + + const btVector3& getGravity() const + { + return m_gravity_acceleration; + } + + void setDamping(btScalar lin_damping, btScalar ang_damping); + + btScalar getLinearDamping() const + { + return m_linearDamping; + } + + btScalar getAngularDamping() const + { + return m_angularDamping; + } + + btScalar getLinearSleepingThreshold() const + { + return m_linearSleepingThreshold; + } + + btScalar getAngularSleepingThreshold() const + { + return m_angularSleepingThreshold; + } + + void applyDamping(btScalar timeStep); + + SIMD_FORCE_INLINE const btCollisionShape* getCollisionShape() const { + return m_collisionShape; + } + + SIMD_FORCE_INLINE btCollisionShape* getCollisionShape() { + return m_collisionShape; + } + + void setMassProps(btScalar mass, const btVector3& inertia); + + const btVector3& getLinearFactor() const + { + return m_linearFactor; + } + void setLinearFactor(const btVector3& linearFactor) + { + m_linearFactor = linearFactor; + m_invMass = m_linearFactor*m_inverseMass; + } + btScalar getInvMass() const { return m_inverseMass; } + const btMatrix3x3& getInvInertiaTensorWorld() const { + return m_invInertiaTensorWorld; + } + + void integrateVelocities(btScalar step); + + void setCenterOfMassTransform(const btTransform& xform); + + void applyCentralForce(const btVector3& force) + { + m_totalForce += force*m_linearFactor; + } + + const btVector3& getTotalForce() const + { + return m_totalForce; + }; + + const btVector3& getTotalTorque() const + { + return m_totalTorque; + }; + + const btVector3& getInvInertiaDiagLocal() const + { + return m_invInertiaLocal; + }; + + void setInvInertiaDiagLocal(const btVector3& diagInvInertia) + { + m_invInertiaLocal = diagInvInertia; + } + + void setSleepingThresholds(btScalar linear,btScalar angular) + { + m_linearSleepingThreshold = linear; + m_angularSleepingThreshold = angular; + } + + void applyTorque(const btVector3& torque) + { + m_totalTorque += torque*m_angularFactor; + } + + void applyForce(const btVector3& force, const btVector3& rel_pos) + { + applyCentralForce(force); + applyTorque(rel_pos.cross(force*m_linearFactor)); + } + + void applyCentralImpulse(const btVector3& impulse) + { + m_linearVelocity += impulse *m_linearFactor * m_inverseMass; + } + + void applyTorqueImpulse(const btVector3& torque) + { + m_angularVelocity += m_invInertiaTensorWorld * torque * m_angularFactor; + } + + void applyImpulse(const btVector3& impulse, const btVector3& rel_pos) + { + if (m_inverseMass != btScalar(0.)) + { + applyCentralImpulse(impulse); + if (m_angularFactor) + { + applyTorqueImpulse(rel_pos.cross(impulse*m_linearFactor)); + } + } + } + + void clearForces() + { + m_totalForce.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0)); + m_totalTorque.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0)); + } + + void updateInertiaTensor(); + + const btVector3& getCenterOfMassPosition() const { + return m_worldTransform.getOrigin(); + } + btQuaternion getOrientation() const; + + const btTransform& getCenterOfMassTransform() const { + return m_worldTransform; + } + const btVector3& getLinearVelocity() const { + return m_linearVelocity; + } + const btVector3& getAngularVelocity() const { + return m_angularVelocity; + } + + + inline void setLinearVelocity(const btVector3& lin_vel) + { + m_updateRevision++; + m_linearVelocity = lin_vel; + } + + inline void setAngularVelocity(const btVector3& ang_vel) + { + m_updateRevision++; + m_angularVelocity = ang_vel; + } + + btVector3 getVelocityInLocalPoint(const btVector3& rel_pos) const + { + //we also calculate lin/ang velocity for kinematic objects + return m_linearVelocity + m_angularVelocity.cross(rel_pos); + + //for kinematic objects, we could also use use: + // return (m_worldTransform(rel_pos) - m_interpolationWorldTransform(rel_pos)) / m_kinematicTimeStep; + } + + void translate(const btVector3& v) + { + m_worldTransform.getOrigin() += v; + } + + + void getAabb(btVector3& aabbMin,btVector3& aabbMax) const; + + + + + + SIMD_FORCE_INLINE btScalar computeImpulseDenominator(const btVector3& pos, const btVector3& normal) const + { + btVector3 r0 = pos - getCenterOfMassPosition(); + + btVector3 c0 = (r0).cross(normal); + + btVector3 vec = (c0 * getInvInertiaTensorWorld()).cross(r0); + + return m_inverseMass + normal.dot(vec); + + } + + SIMD_FORCE_INLINE btScalar computeAngularImpulseDenominator(const btVector3& axis) const + { + btVector3 vec = axis * getInvInertiaTensorWorld(); + return axis.dot(vec); + } + + SIMD_FORCE_INLINE void updateDeactivation(btScalar timeStep) + { + if ( (getActivationState() == ISLAND_SLEEPING) || (getActivationState() == DISABLE_DEACTIVATION)) + return; + + if ((getLinearVelocity().length2() < m_linearSleepingThreshold*m_linearSleepingThreshold) && + (getAngularVelocity().length2() < m_angularSleepingThreshold*m_angularSleepingThreshold)) + { + m_deactivationTime += timeStep; + } else + { + m_deactivationTime=btScalar(0.); + setActivationState(0); + } + + } + + SIMD_FORCE_INLINE bool wantsSleeping() + { + + if (getActivationState() == DISABLE_DEACTIVATION) + return false; + + //disable deactivation + if (gDisableDeactivation || (gDeactivationTime == btScalar(0.))) + return false; + + if ( (getActivationState() == ISLAND_SLEEPING) || (getActivationState() == WANTS_DEACTIVATION)) + return true; + + if (m_deactivationTime> gDeactivationTime) + { + return true; + } + return false; + } + + + + const btBroadphaseProxy* getBroadphaseProxy() const + { + return m_broadphaseHandle; + } + btBroadphaseProxy* getBroadphaseProxy() + { + return m_broadphaseHandle; + } + void setNewBroadphaseProxy(btBroadphaseProxy* broadphaseProxy) + { + m_broadphaseHandle = broadphaseProxy; + } + + //btMotionState allows to automatic synchronize the world transform for active objects + btMotionState* getMotionState() + { + return m_optionalMotionState; + } + const btMotionState* getMotionState() const + { + return m_optionalMotionState; + } + void setMotionState(btMotionState* motionState) + { + m_optionalMotionState = motionState; + if (m_optionalMotionState) + motionState->getWorldTransform(m_worldTransform); + } + + //for experimental overriding of friction/contact solver func + int m_contactSolverType; + int m_frictionSolverType; + + void setAngularFactor(const btVector3& angFac) + { + m_updateRevision++; + m_angularFactor = angFac; + } + + void setAngularFactor(btScalar angFac) + { + m_updateRevision++; + m_angularFactor.setValue(angFac,angFac,angFac); + } + const btVector3& getAngularFactor() const + { + return m_angularFactor; + } + + //is this rigidbody added to a btCollisionWorld/btDynamicsWorld/btBroadphase? + bool isInWorld() const + { + return (getBroadphaseProxy() != 0); + } + + void addConstraintRef(btTypedConstraint* c); + void removeConstraintRef(btTypedConstraint* c); + + btTypedConstraint* getConstraintRef(int index) + { + return m_constraintRefs[index]; + } + + int getNumConstraintRefs() const + { + return m_constraintRefs.size(); + } + + void setFlags(int flags) + { + m_rigidbodyFlags = flags; + } + + int getFlags() const + { + return m_rigidbodyFlags; + } + + + + + ///perform implicit force computation in world space + btVector3 computeGyroscopicImpulseImplicit_World(btScalar dt) const; + + ///perform implicit force computation in body space (inertial frame) + btVector3 computeGyroscopicImpulseImplicit_Body(btScalar step) const; + + ///explicit version is best avoided, it gains energy + btVector3 computeGyroscopicForceExplicit(btScalar maxGyroscopicForce) const; + btVector3 getLocalInertia() const; + + /////////////////////////////////////////////// + + virtual int calculateSerializeBufferSize() const; + + ///fills the dataBuffer and returns the struct name (and 0 on failure) + virtual const char* serialize(void* dataBuffer, class btSerializer* serializer) const; + + virtual void serializeSingleObject(class btSerializer* serializer) const; + +}; + +//@todo add m_optionalMotionState and m_constraintRefs to btRigidBodyData +///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64 +struct btRigidBodyFloatData +{ + btCollisionObjectFloatData m_collisionObjectData; + btMatrix3x3FloatData m_invInertiaTensorWorld; + btVector3FloatData m_linearVelocity; + btVector3FloatData m_angularVelocity; + btVector3FloatData m_angularFactor; + btVector3FloatData m_linearFactor; + btVector3FloatData m_gravity; + btVector3FloatData m_gravity_acceleration; + btVector3FloatData m_invInertiaLocal; + btVector3FloatData m_totalForce; + btVector3FloatData m_totalTorque; + float m_inverseMass; + float m_linearDamping; + float m_angularDamping; + float m_additionalDampingFactor; + float m_additionalLinearDampingThresholdSqr; + float m_additionalAngularDampingThresholdSqr; + float m_additionalAngularDampingFactor; + float m_linearSleepingThreshold; + float m_angularSleepingThreshold; + int m_additionalDamping; +}; + +///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64 +struct btRigidBodyDoubleData +{ + btCollisionObjectDoubleData m_collisionObjectData; + btMatrix3x3DoubleData m_invInertiaTensorWorld; + btVector3DoubleData m_linearVelocity; + btVector3DoubleData m_angularVelocity; + btVector3DoubleData m_angularFactor; + btVector3DoubleData m_linearFactor; + btVector3DoubleData m_gravity; + btVector3DoubleData m_gravity_acceleration; + btVector3DoubleData m_invInertiaLocal; + btVector3DoubleData m_totalForce; + btVector3DoubleData m_totalTorque; + double m_inverseMass; + double m_linearDamping; + double m_angularDamping; + double m_additionalDampingFactor; + double m_additionalLinearDampingThresholdSqr; + double m_additionalAngularDampingThresholdSqr; + double m_additionalAngularDampingFactor; + double m_linearSleepingThreshold; + double m_angularSleepingThreshold; + int m_additionalDamping; + char m_padding[4]; +}; + + + +#endif //BT_RIGIDBODY_H + diff --git a/thirdparty/bullet/BulletDynamics/Dynamics/btSimpleDynamicsWorld.cpp b/thirdparty/bullet/BulletDynamics/Dynamics/btSimpleDynamicsWorld.cpp new file mode 100644 index 0000000000..6f63b87c80 --- /dev/null +++ b/thirdparty/bullet/BulletDynamics/Dynamics/btSimpleDynamicsWorld.cpp @@ -0,0 +1,280 @@ +/* +Bullet Continuous Collision Detection and Physics Library +Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ + +This software is provided 'as-is', without any express or implied warranty. +In no event will the authors be held liable for any damages arising from the use of this software. +Permission is granted to anyone to use this software for any purpose, +including commercial applications, and to alter it and redistribute it freely, +subject to the following restrictions: + +1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. +2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. +3. This notice may not be removed or altered from any source distribution. +*/ + +#include "btSimpleDynamicsWorld.h" +#include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h" +#include "BulletCollision/BroadphaseCollision/btSimpleBroadphase.h" +#include "BulletCollision/CollisionShapes/btCollisionShape.h" +#include "BulletDynamics/Dynamics/btRigidBody.h" +#include "BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.h" +#include "BulletDynamics/ConstraintSolver/btContactSolverInfo.h" + + +/* + Make sure this dummy function never changes so that it + can be used by probes that are checking whether the + library is actually installed. +*/ +extern "C" +{ + void btBulletDynamicsProbe (); + void btBulletDynamicsProbe () {} +} + + + + +btSimpleDynamicsWorld::btSimpleDynamicsWorld(btDispatcher* dispatcher,btBroadphaseInterface* pairCache,btConstraintSolver* constraintSolver,btCollisionConfiguration* collisionConfiguration) +:btDynamicsWorld(dispatcher,pairCache,collisionConfiguration), +m_constraintSolver(constraintSolver), +m_ownsConstraintSolver(false), +m_gravity(0,0,-10) +{ + +} + + +btSimpleDynamicsWorld::~btSimpleDynamicsWorld() +{ + if (m_ownsConstraintSolver) + btAlignedFree( m_constraintSolver); +} + +int btSimpleDynamicsWorld::stepSimulation( btScalar timeStep,int maxSubSteps, btScalar fixedTimeStep) +{ + (void)fixedTimeStep; + (void)maxSubSteps; + + + ///apply gravity, predict motion + predictUnconstraintMotion(timeStep); + + btDispatcherInfo& dispatchInfo = getDispatchInfo(); + dispatchInfo.m_timeStep = timeStep; + dispatchInfo.m_stepCount = 0; + dispatchInfo.m_debugDraw = getDebugDrawer(); + + ///perform collision detection + performDiscreteCollisionDetection(); + + ///solve contact constraints + int numManifolds = m_dispatcher1->getNumManifolds(); + if (numManifolds) + { + btPersistentManifold** manifoldPtr = ((btCollisionDispatcher*)m_dispatcher1)->getInternalManifoldPointer(); + + btContactSolverInfo infoGlobal; + infoGlobal.m_timeStep = timeStep; + m_constraintSolver->prepareSolve(0,numManifolds); + m_constraintSolver->solveGroup(&getCollisionObjectArray()[0],getNumCollisionObjects(),manifoldPtr, numManifolds,0,0,infoGlobal,m_debugDrawer, m_dispatcher1); + m_constraintSolver->allSolved(infoGlobal,m_debugDrawer); + } + + ///integrate transforms + integrateTransforms(timeStep); + + updateAabbs(); + + synchronizeMotionStates(); + + clearForces(); + + return 1; + +} + +void btSimpleDynamicsWorld::clearForces() +{ + ///@todo: iterate over awake simulation islands! + for ( int i=0;i<m_collisionObjects.size();i++) + { + btCollisionObject* colObj = m_collisionObjects[i]; + + btRigidBody* body = btRigidBody::upcast(colObj); + if (body) + { + body->clearForces(); + } + } +} + + +void btSimpleDynamicsWorld::setGravity(const btVector3& gravity) +{ + m_gravity = gravity; + for ( int i=0;i<m_collisionObjects.size();i++) + { + btCollisionObject* colObj = m_collisionObjects[i]; + btRigidBody* body = btRigidBody::upcast(colObj); + if (body) + { + body->setGravity(gravity); + } + } +} + +btVector3 btSimpleDynamicsWorld::getGravity () const +{ + return m_gravity; +} + +void btSimpleDynamicsWorld::removeRigidBody(btRigidBody* body) +{ + btCollisionWorld::removeCollisionObject(body); +} + +void btSimpleDynamicsWorld::removeCollisionObject(btCollisionObject* collisionObject) +{ + btRigidBody* body = btRigidBody::upcast(collisionObject); + if (body) + removeRigidBody(body); + else + btCollisionWorld::removeCollisionObject(collisionObject); +} + + +void btSimpleDynamicsWorld::addRigidBody(btRigidBody* body) +{ + body->setGravity(m_gravity); + + if (body->getCollisionShape()) + { + addCollisionObject(body); + } +} + +void btSimpleDynamicsWorld::addRigidBody(btRigidBody* body, int group, int mask) +{ + body->setGravity(m_gravity); + + if (body->getCollisionShape()) + { + addCollisionObject(body,group,mask); + } +} + + +void btSimpleDynamicsWorld::debugDrawWorld() +{ + +} + +void btSimpleDynamicsWorld::addAction(btActionInterface* action) +{ + +} + +void btSimpleDynamicsWorld::removeAction(btActionInterface* action) +{ + +} + + +void btSimpleDynamicsWorld::updateAabbs() +{ + btTransform predictedTrans; + for ( int i=0;i<m_collisionObjects.size();i++) + { + btCollisionObject* colObj = m_collisionObjects[i]; + btRigidBody* body = btRigidBody::upcast(colObj); + if (body) + { + if (body->isActive() && (!body->isStaticObject())) + { + btVector3 minAabb,maxAabb; + colObj->getCollisionShape()->getAabb(colObj->getWorldTransform(), minAabb,maxAabb); + btBroadphaseInterface* bp = getBroadphase(); + bp->setAabb(body->getBroadphaseHandle(),minAabb,maxAabb, m_dispatcher1); + } + } + } +} + +void btSimpleDynamicsWorld::integrateTransforms(btScalar timeStep) +{ + btTransform predictedTrans; + for ( int i=0;i<m_collisionObjects.size();i++) + { + btCollisionObject* colObj = m_collisionObjects[i]; + btRigidBody* body = btRigidBody::upcast(colObj); + if (body) + { + if (body->isActive() && (!body->isStaticObject())) + { + body->predictIntegratedTransform(timeStep, predictedTrans); + body->proceedToTransform( predictedTrans); + } + } + } +} + + + +void btSimpleDynamicsWorld::predictUnconstraintMotion(btScalar timeStep) +{ + for ( int i=0;i<m_collisionObjects.size();i++) + { + btCollisionObject* colObj = m_collisionObjects[i]; + btRigidBody* body = btRigidBody::upcast(colObj); + if (body) + { + if (!body->isStaticObject()) + { + if (body->isActive()) + { + body->applyGravity(); + body->integrateVelocities( timeStep); + body->applyDamping(timeStep); + body->predictIntegratedTransform(timeStep,body->getInterpolationWorldTransform()); + } + } + } + } +} + + +void btSimpleDynamicsWorld::synchronizeMotionStates() +{ + ///@todo: iterate over awake simulation islands! + for ( int i=0;i<m_collisionObjects.size();i++) + { + btCollisionObject* colObj = m_collisionObjects[i]; + btRigidBody* body = btRigidBody::upcast(colObj); + if (body && body->getMotionState()) + { + if (body->getActivationState() != ISLAND_SLEEPING) + { + body->getMotionState()->setWorldTransform(body->getWorldTransform()); + } + } + } + +} + + +void btSimpleDynamicsWorld::setConstraintSolver(btConstraintSolver* solver) +{ + if (m_ownsConstraintSolver) + { + btAlignedFree(m_constraintSolver); + } + m_ownsConstraintSolver = false; + m_constraintSolver = solver; +} + +btConstraintSolver* btSimpleDynamicsWorld::getConstraintSolver() +{ + return m_constraintSolver; +} diff --git a/thirdparty/bullet/BulletDynamics/Dynamics/btSimpleDynamicsWorld.h b/thirdparty/bullet/BulletDynamics/Dynamics/btSimpleDynamicsWorld.h new file mode 100644 index 0000000000..44b7e7fb34 --- /dev/null +++ b/thirdparty/bullet/BulletDynamics/Dynamics/btSimpleDynamicsWorld.h @@ -0,0 +1,89 @@ +/* +Bullet Continuous Collision Detection and Physics Library +Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ + +This software is provided 'as-is', without any express or implied warranty. +In no event will the authors be held liable for any damages arising from the use of this software. +Permission is granted to anyone to use this software for any purpose, +including commercial applications, and to alter it and redistribute it freely, +subject to the following restrictions: + +1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. +2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. +3. This notice may not be removed or altered from any source distribution. +*/ + +#ifndef BT_SIMPLE_DYNAMICS_WORLD_H +#define BT_SIMPLE_DYNAMICS_WORLD_H + +#include "btDynamicsWorld.h" + +class btDispatcher; +class btOverlappingPairCache; +class btConstraintSolver; + +///The btSimpleDynamicsWorld serves as unit-test and to verify more complicated and optimized dynamics worlds. +///Please use btDiscreteDynamicsWorld instead +class btSimpleDynamicsWorld : public btDynamicsWorld +{ +protected: + + btConstraintSolver* m_constraintSolver; + + bool m_ownsConstraintSolver; + + void predictUnconstraintMotion(btScalar timeStep); + + void integrateTransforms(btScalar timeStep); + + btVector3 m_gravity; + +public: + + + + ///this btSimpleDynamicsWorld constructor creates dispatcher, broadphase pairCache and constraintSolver + btSimpleDynamicsWorld(btDispatcher* dispatcher,btBroadphaseInterface* pairCache,btConstraintSolver* constraintSolver,btCollisionConfiguration* collisionConfiguration); + + virtual ~btSimpleDynamicsWorld(); + + ///maxSubSteps/fixedTimeStep for interpolation is currently ignored for btSimpleDynamicsWorld, use btDiscreteDynamicsWorld instead + virtual int stepSimulation( btScalar timeStep,int maxSubSteps=1, btScalar fixedTimeStep=btScalar(1.)/btScalar(60.)); + + virtual void setGravity(const btVector3& gravity); + + virtual btVector3 getGravity () const; + + virtual void addRigidBody(btRigidBody* body); + + virtual void addRigidBody(btRigidBody* body, int group, int mask); + + virtual void removeRigidBody(btRigidBody* body); + + virtual void debugDrawWorld(); + + virtual void addAction(btActionInterface* action); + + virtual void removeAction(btActionInterface* action); + + ///removeCollisionObject will first check if it is a rigid body, if so call removeRigidBody otherwise call btCollisionWorld::removeCollisionObject + virtual void removeCollisionObject(btCollisionObject* collisionObject); + + virtual void updateAabbs(); + + virtual void synchronizeMotionStates(); + + virtual void setConstraintSolver(btConstraintSolver* solver); + + virtual btConstraintSolver* getConstraintSolver(); + + virtual btDynamicsWorldType getWorldType() const + { + return BT_SIMPLE_DYNAMICS_WORLD; + } + + virtual void clearForces(); + +}; + +#endif //BT_SIMPLE_DYNAMICS_WORLD_H diff --git a/thirdparty/bullet/BulletDynamics/Dynamics/btSimulationIslandManagerMt.cpp b/thirdparty/bullet/BulletDynamics/Dynamics/btSimulationIslandManagerMt.cpp new file mode 100644 index 0000000000..99b34353c7 --- /dev/null +++ b/thirdparty/bullet/BulletDynamics/Dynamics/btSimulationIslandManagerMt.cpp @@ -0,0 +1,678 @@ +/* +Bullet Continuous Collision Detection and Physics Library +Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ + +This software is provided 'as-is', without any express or implied warranty. +In no event will the authors be held liable for any damages arising from the use of this software. +Permission is granted to anyone to use this software for any purpose, +including commercial applications, and to alter it and redistribute it freely, +subject to the following restrictions: + +1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. +2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. +3. This notice may not be removed or altered from any source distribution. +*/ + + +#include "LinearMath/btScalar.h" +#include "LinearMath/btThreads.h" +#include "btSimulationIslandManagerMt.h" +#include "BulletCollision/BroadphaseCollision/btDispatcher.h" +#include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h" +#include "BulletCollision/CollisionDispatch/btCollisionObject.h" +#include "BulletCollision/CollisionDispatch/btCollisionWorld.h" +#include "BulletDynamics/ConstraintSolver/btTypedConstraint.h" + +//#include <stdio.h> +#include "LinearMath/btQuickprof.h" + + +SIMD_FORCE_INLINE int calcBatchCost( int bodies, int manifolds, int constraints ) +{ + // rough estimate of the cost of a batch, used for merging + int batchCost = bodies + 8 * manifolds + 4 * constraints; + return batchCost; +} + + +SIMD_FORCE_INLINE int calcBatchCost( const btSimulationIslandManagerMt::Island* island ) +{ + return calcBatchCost( island->bodyArray.size(), island->manifoldArray.size(), island->constraintArray.size() ); +} + + +btSimulationIslandManagerMt::btSimulationIslandManagerMt() +{ + m_minimumSolverBatchSize = calcBatchCost(0, 128, 0); + m_batchIslandMinBodyCount = 32; + m_islandDispatch = parallelIslandDispatch; + m_batchIsland = NULL; +} + + +btSimulationIslandManagerMt::~btSimulationIslandManagerMt() +{ + for ( int i = 0; i < m_allocatedIslands.size(); ++i ) + { + delete m_allocatedIslands[ i ]; + } + m_allocatedIslands.resize( 0 ); + m_activeIslands.resize( 0 ); + m_freeIslands.resize( 0 ); +} + + +inline int getIslandId(const btPersistentManifold* lhs) +{ + const btCollisionObject* rcolObj0 = static_cast<const btCollisionObject*>(lhs->getBody0()); + const btCollisionObject* rcolObj1 = static_cast<const btCollisionObject*>(lhs->getBody1()); + int islandId = rcolObj0->getIslandTag() >= 0 ? rcolObj0->getIslandTag() : rcolObj1->getIslandTag(); + return islandId; +} + + +SIMD_FORCE_INLINE int btGetConstraintIslandId( const btTypedConstraint* lhs ) +{ + const btCollisionObject& rcolObj0 = lhs->getRigidBodyA(); + const btCollisionObject& rcolObj1 = lhs->getRigidBodyB(); + int islandId = rcolObj0.getIslandTag() >= 0 ? rcolObj0.getIslandTag() : rcolObj1.getIslandTag(); + return islandId; +} + +/// function object that routes calls to operator< +class IslandBatchSizeSortPredicate +{ +public: + bool operator() ( const btSimulationIslandManagerMt::Island* lhs, const btSimulationIslandManagerMt::Island* rhs ) const + { + int lCost = calcBatchCost( lhs ); + int rCost = calcBatchCost( rhs ); + return lCost > rCost; + } +}; + + +class IslandBodyCapacitySortPredicate +{ +public: + bool operator() ( const btSimulationIslandManagerMt::Island* lhs, const btSimulationIslandManagerMt::Island* rhs ) const + { + return lhs->bodyArray.capacity() > rhs->bodyArray.capacity(); + } +}; + + +void btSimulationIslandManagerMt::Island::append( const Island& other ) +{ + // append bodies + for ( int i = 0; i < other.bodyArray.size(); ++i ) + { + bodyArray.push_back( other.bodyArray[ i ] ); + } + // append manifolds + for ( int i = 0; i < other.manifoldArray.size(); ++i ) + { + manifoldArray.push_back( other.manifoldArray[ i ] ); + } + // append constraints + for ( int i = 0; i < other.constraintArray.size(); ++i ) + { + constraintArray.push_back( other.constraintArray[ i ] ); + } +} + + +bool btIsBodyInIsland( const btSimulationIslandManagerMt::Island& island, const btCollisionObject* obj ) +{ + for ( int i = 0; i < island.bodyArray.size(); ++i ) + { + if ( island.bodyArray[ i ] == obj ) + { + return true; + } + } + return false; +} + + +void btSimulationIslandManagerMt::initIslandPools() +{ + // reset island pools + int numElem = getUnionFind().getNumElements(); + m_lookupIslandFromId.resize( numElem ); + for ( int i = 0; i < m_lookupIslandFromId.size(); ++i ) + { + m_lookupIslandFromId[ i ] = NULL; + } + m_activeIslands.resize( 0 ); + m_freeIslands.resize( 0 ); + // check whether allocated islands are sorted by body capacity (largest to smallest) + int lastCapacity = 0; + bool isSorted = true; + for ( int i = 0; i < m_allocatedIslands.size(); ++i ) + { + Island* island = m_allocatedIslands[ i ]; + int cap = island->bodyArray.capacity(); + if ( cap > lastCapacity ) + { + isSorted = false; + break; + } + lastCapacity = cap; + } + if ( !isSorted ) + { + m_allocatedIslands.quickSort( IslandBodyCapacitySortPredicate() ); + } + + m_batchIsland = NULL; + // mark all islands free (but avoid deallocation) + for ( int i = 0; i < m_allocatedIslands.size(); ++i ) + { + Island* island = m_allocatedIslands[ i ]; + island->bodyArray.resize( 0 ); + island->manifoldArray.resize( 0 ); + island->constraintArray.resize( 0 ); + island->id = -1; + island->isSleeping = true; + m_freeIslands.push_back( island ); + } +} + + +btSimulationIslandManagerMt::Island* btSimulationIslandManagerMt::getIsland( int id ) +{ + Island* island = m_lookupIslandFromId[ id ]; + if ( island == NULL ) + { + // search for existing island + for ( int i = 0; i < m_activeIslands.size(); ++i ) + { + if ( m_activeIslands[ i ]->id == id ) + { + island = m_activeIslands[ i ]; + break; + } + } + m_lookupIslandFromId[ id ] = island; + } + return island; +} + + +btSimulationIslandManagerMt::Island* btSimulationIslandManagerMt::allocateIsland( int id, int numBodies ) +{ + Island* island = NULL; + int allocSize = numBodies; + if ( numBodies < m_batchIslandMinBodyCount ) + { + if ( m_batchIsland ) + { + island = m_batchIsland; + m_lookupIslandFromId[ id ] = island; + // if we've made a large enough batch, + if ( island->bodyArray.size() + numBodies >= m_batchIslandMinBodyCount ) + { + // next time start a new batch + m_batchIsland = NULL; + } + return island; + } + else + { + // need to allocate a batch island + allocSize = m_batchIslandMinBodyCount * 2; + } + } + btAlignedObjectArray<Island*>& freeIslands = m_freeIslands; + + // search for free island + if ( freeIslands.size() > 0 ) + { + // try to reuse a previously allocated island + int iFound = freeIslands.size(); + // linear search for smallest island that can hold our bodies + for ( int i = freeIslands.size() - 1; i >= 0; --i ) + { + if ( freeIslands[ i ]->bodyArray.capacity() >= allocSize ) + { + iFound = i; + island = freeIslands[ i ]; + island->id = id; + break; + } + } + // if found, shrink array while maintaining ordering + if ( island ) + { + int iDest = iFound; + int iSrc = iDest + 1; + while ( iSrc < freeIslands.size() ) + { + freeIslands[ iDest++ ] = freeIslands[ iSrc++ ]; + } + freeIslands.pop_back(); + } + } + if ( island == NULL ) + { + // no free island found, allocate + island = new Island(); // TODO: change this to use the pool allocator + island->id = id; + island->bodyArray.reserve( allocSize ); + m_allocatedIslands.push_back( island ); + } + m_lookupIslandFromId[ id ] = island; + if ( numBodies < m_batchIslandMinBodyCount ) + { + m_batchIsland = island; + } + m_activeIslands.push_back( island ); + return island; +} + + +void btSimulationIslandManagerMt::buildIslands( btDispatcher* dispatcher, btCollisionWorld* collisionWorld ) +{ + + BT_PROFILE("islandUnionFindAndQuickSort"); + + btCollisionObjectArray& collisionObjects = collisionWorld->getCollisionObjectArray(); + + //we are going to sort the unionfind array, and store the element id in the size + //afterwards, we clean unionfind, to make sure no-one uses it anymore + + getUnionFind().sortIslands(); + int numElem = getUnionFind().getNumElements(); + + int endIslandIndex=1; + int startIslandIndex; + + //update the sleeping state for bodies, if all are sleeping + for ( startIslandIndex=0;startIslandIndex<numElem;startIslandIndex = endIslandIndex) + { + int islandId = getUnionFind().getElement(startIslandIndex).m_id; + for (endIslandIndex = startIslandIndex+1;(endIslandIndex<numElem) && (getUnionFind().getElement(endIslandIndex).m_id == islandId);endIslandIndex++) + { + } + + //int numSleeping = 0; + + bool allSleeping = true; + + int idx; + for (idx=startIslandIndex;idx<endIslandIndex;idx++) + { + int i = getUnionFind().getElement(idx).m_sz; + + btCollisionObject* colObj0 = collisionObjects[i]; + if ((colObj0->getIslandTag() != islandId) && (colObj0->getIslandTag() != -1)) + { +// printf("error in island management\n"); + } + + btAssert((colObj0->getIslandTag() == islandId) || (colObj0->getIslandTag() == -1)); + if (colObj0->getIslandTag() == islandId) + { + if (colObj0->getActivationState()== ACTIVE_TAG) + { + allSleeping = false; + } + if (colObj0->getActivationState()== DISABLE_DEACTIVATION) + { + allSleeping = false; + } + } + } + + if (allSleeping) + { + int idx; + for (idx=startIslandIndex;idx<endIslandIndex;idx++) + { + int i = getUnionFind().getElement(idx).m_sz; + btCollisionObject* colObj0 = collisionObjects[i]; + if ((colObj0->getIslandTag() != islandId) && (colObj0->getIslandTag() != -1)) + { +// printf("error in island management\n"); + } + + btAssert((colObj0->getIslandTag() == islandId) || (colObj0->getIslandTag() == -1)); + + if (colObj0->getIslandTag() == islandId) + { + colObj0->setActivationState( ISLAND_SLEEPING ); + } + } + } else + { + + int idx; + for (idx=startIslandIndex;idx<endIslandIndex;idx++) + { + int i = getUnionFind().getElement(idx).m_sz; + + btCollisionObject* colObj0 = collisionObjects[i]; + if ((colObj0->getIslandTag() != islandId) && (colObj0->getIslandTag() != -1)) + { +// printf("error in island management\n"); + } + + btAssert((colObj0->getIslandTag() == islandId) || (colObj0->getIslandTag() == -1)); + + if (colObj0->getIslandTag() == islandId) + { + if ( colObj0->getActivationState() == ISLAND_SLEEPING) + { + colObj0->setActivationState( WANTS_DEACTIVATION); + colObj0->setDeactivationTime(0.f); + } + } + } + } + } +} + + +void btSimulationIslandManagerMt::addBodiesToIslands( btCollisionWorld* collisionWorld ) +{ + btCollisionObjectArray& collisionObjects = collisionWorld->getCollisionObjectArray(); + int endIslandIndex = 1; + int startIslandIndex; + int numElem = getUnionFind().getNumElements(); + + // create explicit islands and add bodies to each + for ( startIslandIndex = 0; startIslandIndex < numElem; startIslandIndex = endIslandIndex ) + { + int islandId = getUnionFind().getElement( startIslandIndex ).m_id; + + // find end index + for ( endIslandIndex = startIslandIndex; ( endIslandIndex < numElem ) && ( getUnionFind().getElement( endIslandIndex ).m_id == islandId ); endIslandIndex++ ) + { + } + // check if island is sleeping + bool islandSleeping = true; + for ( int iElem = startIslandIndex; iElem < endIslandIndex; iElem++ ) + { + int i = getUnionFind().getElement( iElem ).m_sz; + btCollisionObject* colObj = collisionObjects[ i ]; + if ( colObj->isActive() ) + { + islandSleeping = false; + } + } + if ( !islandSleeping ) + { + // want to count the number of bodies before allocating the island to optimize memory usage of the Island structures + int numBodies = endIslandIndex - startIslandIndex; + Island* island = allocateIsland( islandId, numBodies ); + island->isSleeping = false; + + // add bodies to island + for ( int iElem = startIslandIndex; iElem < endIslandIndex; iElem++ ) + { + int i = getUnionFind().getElement( iElem ).m_sz; + btCollisionObject* colObj = collisionObjects[ i ]; + island->bodyArray.push_back( colObj ); + } + } + } + +} + + +void btSimulationIslandManagerMt::addManifoldsToIslands( btDispatcher* dispatcher ) +{ + // walk all the manifolds, activating bodies touched by kinematic objects, and add each manifold to its Island + int maxNumManifolds = dispatcher->getNumManifolds(); + for ( int i = 0; i < maxNumManifolds; i++ ) + { + btPersistentManifold* manifold = dispatcher->getManifoldByIndexInternal( i ); + + const btCollisionObject* colObj0 = static_cast<const btCollisionObject*>( manifold->getBody0() ); + const btCollisionObject* colObj1 = static_cast<const btCollisionObject*>( manifold->getBody1() ); + + ///@todo: check sleeping conditions! + if ( ( ( colObj0 ) && colObj0->getActivationState() != ISLAND_SLEEPING ) || + ( ( colObj1 ) && colObj1->getActivationState() != ISLAND_SLEEPING ) ) + { + + //kinematic objects don't merge islands, but wake up all connected objects + if ( colObj0->isKinematicObject() && colObj0->getActivationState() != ISLAND_SLEEPING ) + { + if ( colObj0->hasContactResponse() ) + colObj1->activate(); + } + if ( colObj1->isKinematicObject() && colObj1->getActivationState() != ISLAND_SLEEPING ) + { + if ( colObj1->hasContactResponse() ) + colObj0->activate(); + } + //filtering for response + if ( dispatcher->needsResponse( colObj0, colObj1 ) ) + { + // scatter manifolds into various islands + int islandId = getIslandId( manifold ); + // if island not sleeping, + if ( Island* island = getIsland( islandId ) ) + { + island->manifoldArray.push_back( manifold ); + } + } + } + } +} + + +void btSimulationIslandManagerMt::addConstraintsToIslands( btAlignedObjectArray<btTypedConstraint*>& constraints ) +{ + // walk constraints + for ( int i = 0; i < constraints.size(); i++ ) + { + // scatter constraints into various islands + btTypedConstraint* constraint = constraints[ i ]; + if ( constraint->isEnabled() ) + { + int islandId = btGetConstraintIslandId( constraint ); + // if island is not sleeping, + if ( Island* island = getIsland( islandId ) ) + { + island->constraintArray.push_back( constraint ); + } + } + } +} + + +void btSimulationIslandManagerMt::mergeIslands() +{ + // sort islands in order of decreasing batch size + m_activeIslands.quickSort( IslandBatchSizeSortPredicate() ); + + // merge small islands to satisfy minimum batch size + // find first small batch island + int destIslandIndex = m_activeIslands.size(); + for ( int i = 0; i < m_activeIslands.size(); ++i ) + { + Island* island = m_activeIslands[ i ]; + int batchSize = calcBatchCost( island ); + if ( batchSize < m_minimumSolverBatchSize ) + { + destIslandIndex = i; + break; + } + } + int lastIndex = m_activeIslands.size() - 1; + while ( destIslandIndex < lastIndex ) + { + // merge islands from the back of the list + Island* island = m_activeIslands[ destIslandIndex ]; + int numBodies = island->bodyArray.size(); + int numManifolds = island->manifoldArray.size(); + int numConstraints = island->constraintArray.size(); + int firstIndex = lastIndex; + // figure out how many islands we want to merge and find out how many bodies, manifolds and constraints we will have + while ( true ) + { + Island* src = m_activeIslands[ firstIndex ]; + numBodies += src->bodyArray.size(); + numManifolds += src->manifoldArray.size(); + numConstraints += src->constraintArray.size(); + int batchCost = calcBatchCost( numBodies, numManifolds, numConstraints ); + if ( batchCost >= m_minimumSolverBatchSize ) + { + break; + } + if ( firstIndex - 1 == destIslandIndex ) + { + break; + } + firstIndex--; + } + // reserve space for these pointers to minimize reallocation + island->bodyArray.reserve( numBodies ); + island->manifoldArray.reserve( numManifolds ); + island->constraintArray.reserve( numConstraints ); + // merge islands + for ( int i = firstIndex; i <= lastIndex; ++i ) + { + island->append( *m_activeIslands[ i ] ); + } + // shrink array to exclude the islands that were merged from + m_activeIslands.resize( firstIndex ); + lastIndex = firstIndex - 1; + destIslandIndex++; + } +} + + +void btSimulationIslandManagerMt::serialIslandDispatch( btAlignedObjectArray<Island*>* islandsPtr, IslandCallback* callback ) +{ + BT_PROFILE( "serialIslandDispatch" ); + // serial dispatch + btAlignedObjectArray<Island*>& islands = *islandsPtr; + for ( int i = 0; i < islands.size(); ++i ) + { + Island* island = islands[ i ]; + btPersistentManifold** manifolds = island->manifoldArray.size() ? &island->manifoldArray[ 0 ] : NULL; + btTypedConstraint** constraintsPtr = island->constraintArray.size() ? &island->constraintArray[ 0 ] : NULL; + callback->processIsland( &island->bodyArray[ 0 ], + island->bodyArray.size(), + manifolds, + island->manifoldArray.size(), + constraintsPtr, + island->constraintArray.size(), + island->id + ); + } +} + +struct UpdateIslandDispatcher : public btIParallelForBody +{ + btAlignedObjectArray<btSimulationIslandManagerMt::Island*>* islandsPtr; + btSimulationIslandManagerMt::IslandCallback* callback; + + void forLoop( int iBegin, int iEnd ) const BT_OVERRIDE + { + for ( int i = iBegin; i < iEnd; ++i ) + { + btSimulationIslandManagerMt::Island* island = ( *islandsPtr )[ i ]; + btPersistentManifold** manifolds = island->manifoldArray.size() ? &island->manifoldArray[ 0 ] : NULL; + btTypedConstraint** constraintsPtr = island->constraintArray.size() ? &island->constraintArray[ 0 ] : NULL; + callback->processIsland( &island->bodyArray[ 0 ], + island->bodyArray.size(), + manifolds, + island->manifoldArray.size(), + constraintsPtr, + island->constraintArray.size(), + island->id + ); + } + } +}; + +void btSimulationIslandManagerMt::parallelIslandDispatch( btAlignedObjectArray<Island*>* islandsPtr, IslandCallback* callback ) +{ + BT_PROFILE( "parallelIslandDispatch" ); + int grainSize = 1; // iterations per task + UpdateIslandDispatcher dispatcher; + dispatcher.islandsPtr = islandsPtr; + dispatcher.callback = callback; + btParallelFor( 0, islandsPtr->size(), grainSize, dispatcher ); +} + + +///@todo: this is random access, it can be walked 'cache friendly'! +void btSimulationIslandManagerMt::buildAndProcessIslands( btDispatcher* dispatcher, + btCollisionWorld* collisionWorld, + btAlignedObjectArray<btTypedConstraint*>& constraints, + IslandCallback* callback + ) +{ + btCollisionObjectArray& collisionObjects = collisionWorld->getCollisionObjectArray(); + + buildIslands(dispatcher,collisionWorld); + + BT_PROFILE("processIslands"); + + if(!getSplitIslands()) + { + btPersistentManifold** manifolds = dispatcher->getInternalManifoldPointer(); + int maxNumManifolds = dispatcher->getNumManifolds(); + + for ( int i = 0; i < maxNumManifolds; i++ ) + { + btPersistentManifold* manifold = manifolds[ i ]; + + const btCollisionObject* colObj0 = static_cast<const btCollisionObject*>( manifold->getBody0() ); + const btCollisionObject* colObj1 = static_cast<const btCollisionObject*>( manifold->getBody1() ); + + ///@todo: check sleeping conditions! + if ( ( ( colObj0 ) && colObj0->getActivationState() != ISLAND_SLEEPING ) || + ( ( colObj1 ) && colObj1->getActivationState() != ISLAND_SLEEPING ) ) + { + + //kinematic objects don't merge islands, but wake up all connected objects + if ( colObj0->isKinematicObject() && colObj0->getActivationState() != ISLAND_SLEEPING ) + { + if ( colObj0->hasContactResponse() ) + colObj1->activate(); + } + if ( colObj1->isKinematicObject() && colObj1->getActivationState() != ISLAND_SLEEPING ) + { + if ( colObj1->hasContactResponse() ) + colObj0->activate(); + } + } + } + btTypedConstraint** constraintsPtr = constraints.size() ? &constraints[ 0 ] : NULL; + callback->processIsland(&collisionObjects[0], + collisionObjects.size(), + manifolds, + maxNumManifolds, + constraintsPtr, + constraints.size(), + -1 + ); + } + else + { + initIslandPools(); + + //traverse the simulation islands, and call the solver, unless all objects are sleeping/deactivated + addBodiesToIslands( collisionWorld ); + addManifoldsToIslands( dispatcher ); + addConstraintsToIslands( constraints ); + + // m_activeIslands array should now contain all non-sleeping Islands, and each Island should + // have all the necessary bodies, manifolds and constraints. + + // if we want to merge islands with small batch counts, + if ( m_minimumSolverBatchSize > 1 ) + { + mergeIslands(); + } + // dispatch islands to solver + m_islandDispatch( &m_activeIslands, callback ); + } +} diff --git a/thirdparty/bullet/BulletDynamics/Dynamics/btSimulationIslandManagerMt.h b/thirdparty/bullet/BulletDynamics/Dynamics/btSimulationIslandManagerMt.h new file mode 100644 index 0000000000..9a781aaef1 --- /dev/null +++ b/thirdparty/bullet/BulletDynamics/Dynamics/btSimulationIslandManagerMt.h @@ -0,0 +1,110 @@ +/* +Bullet Continuous Collision Detection and Physics Library +Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ + +This software is provided 'as-is', without any express or implied warranty. +In no event will the authors be held liable for any damages arising from the use of this software. +Permission is granted to anyone to use this software for any purpose, +including commercial applications, and to alter it and redistribute it freely, +subject to the following restrictions: + +1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. +2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. +3. This notice may not be removed or altered from any source distribution. +*/ + +#ifndef BT_SIMULATION_ISLAND_MANAGER_MT_H +#define BT_SIMULATION_ISLAND_MANAGER_MT_H + +#include "BulletCollision/CollisionDispatch/btSimulationIslandManager.h" + +class btTypedConstraint; + + +/// +/// SimulationIslandManagerMt -- Multithread capable version of SimulationIslandManager +/// Splits the world up into islands which can be solved in parallel. +/// In order to solve islands in parallel, an IslandDispatch function +/// must be provided which will dispatch calls to multiple threads. +/// The amount of parallelism that can be achieved depends on the number +/// of islands. If only a single island exists, then no parallelism is +/// possible. +/// +class btSimulationIslandManagerMt : public btSimulationIslandManager +{ +public: + struct Island + { + // a simulation island consisting of bodies, manifolds and constraints, + // to be passed into a constraint solver. + btAlignedObjectArray<btCollisionObject*> bodyArray; + btAlignedObjectArray<btPersistentManifold*> manifoldArray; + btAlignedObjectArray<btTypedConstraint*> constraintArray; + int id; // island id + bool isSleeping; + + void append( const Island& other ); // add bodies, manifolds, constraints to my own + }; + struct IslandCallback + { + virtual ~IslandCallback() {}; + + virtual void processIsland( btCollisionObject** bodies, + int numBodies, + btPersistentManifold** manifolds, + int numManifolds, + btTypedConstraint** constraints, + int numConstraints, + int islandId + ) = 0; + }; + typedef void( *IslandDispatchFunc ) ( btAlignedObjectArray<Island*>* islands, IslandCallback* callback ); + static void serialIslandDispatch( btAlignedObjectArray<Island*>* islandsPtr, IslandCallback* callback ); + static void parallelIslandDispatch( btAlignedObjectArray<Island*>* islandsPtr, IslandCallback* callback ); +protected: + btAlignedObjectArray<Island*> m_allocatedIslands; // owner of all Islands + btAlignedObjectArray<Island*> m_activeIslands; // islands actively in use + btAlignedObjectArray<Island*> m_freeIslands; // islands ready to be reused + btAlignedObjectArray<Island*> m_lookupIslandFromId; // big lookup table to map islandId to Island pointer + Island* m_batchIsland; + int m_minimumSolverBatchSize; + int m_batchIslandMinBodyCount; + IslandDispatchFunc m_islandDispatch; + + Island* getIsland( int id ); + virtual Island* allocateIsland( int id, int numBodies ); + virtual void initIslandPools(); + virtual void addBodiesToIslands( btCollisionWorld* collisionWorld ); + virtual void addManifoldsToIslands( btDispatcher* dispatcher ); + virtual void addConstraintsToIslands( btAlignedObjectArray<btTypedConstraint*>& constraints ); + virtual void mergeIslands(); + +public: + btSimulationIslandManagerMt(); + virtual ~btSimulationIslandManagerMt(); + + virtual void buildAndProcessIslands( btDispatcher* dispatcher, btCollisionWorld* collisionWorld, btAlignedObjectArray<btTypedConstraint*>& constraints, IslandCallback* callback ); + + virtual void buildIslands(btDispatcher* dispatcher,btCollisionWorld* colWorld); + + int getMinimumSolverBatchSize() const + { + return m_minimumSolverBatchSize; + } + void setMinimumSolverBatchSize( int sz ) + { + m_minimumSolverBatchSize = sz; + } + IslandDispatchFunc getIslandDispatchFunction() const + { + return m_islandDispatch; + } + // allow users to set their own dispatch function for multithreaded dispatch + void setIslandDispatchFunction( IslandDispatchFunc func ) + { + m_islandDispatch = func; + } +}; + +#endif //BT_SIMULATION_ISLAND_MANAGER_H + |