summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletDynamics/Dynamics/btRigidBody.h
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/bullet/BulletDynamics/Dynamics/btRigidBody.h')
-rw-r--r--thirdparty/bullet/BulletDynamics/Dynamics/btRigidBody.h504
1 files changed, 240 insertions, 264 deletions
diff --git a/thirdparty/bullet/BulletDynamics/Dynamics/btRigidBody.h b/thirdparty/bullet/BulletDynamics/Dynamics/btRigidBody.h
index 372245031b..05f270a4b8 100644
--- a/thirdparty/bullet/BulletDynamics/Dynamics/btRigidBody.h
+++ b/thirdparty/bullet/BulletDynamics/Dynamics/btRigidBody.h
@@ -25,209 +25,195 @@ class btCollisionShape;
class btMotionState;
class btTypedConstraint;
-
extern btScalar gDeactivationTime;
extern bool gDisableDeactivation;
#ifdef BT_USE_DOUBLE_PRECISION
-#define btRigidBodyData btRigidBodyDoubleData
-#define btRigidBodyDataName "btRigidBodyDoubleData"
+#define btRigidBodyData btRigidBodyDoubleData
+#define btRigidBodyDataName "btRigidBodyDoubleData"
#else
-#define btRigidBodyData btRigidBodyFloatData
-#define btRigidBodyDataName "btRigidBodyFloatData"
-#endif //BT_USE_DOUBLE_PRECISION
-
+#define btRigidBodyData btRigidBodyFloatData
+#define btRigidBodyDataName "btRigidBodyFloatData"
+#endif //BT_USE_DOUBLE_PRECISION
-enum btRigidBodyFlags
+enum btRigidBodyFlags
{
BT_DISABLE_WORLD_GRAVITY = 1,
///BT_ENABLE_GYROPSCOPIC_FORCE flags is enabled by default in Bullet 2.83 and onwards.
///and it BT_ENABLE_GYROPSCOPIC_FORCE becomes equivalent to BT_ENABLE_GYROSCOPIC_FORCE_IMPLICIT_BODY
///See Demos/GyroscopicDemo and computeGyroscopicImpulseImplicit
BT_ENABLE_GYROSCOPIC_FORCE_EXPLICIT = 2,
- BT_ENABLE_GYROSCOPIC_FORCE_IMPLICIT_WORLD=4,
- BT_ENABLE_GYROSCOPIC_FORCE_IMPLICIT_BODY=8,
+ BT_ENABLE_GYROSCOPIC_FORCE_IMPLICIT_WORLD = 4,
+ BT_ENABLE_GYROSCOPIC_FORCE_IMPLICIT_BODY = 8,
BT_ENABLE_GYROPSCOPIC_FORCE = BT_ENABLE_GYROSCOPIC_FORCE_IMPLICIT_BODY,
};
-
///The btRigidBody is the main class for rigid body objects. It is derived from btCollisionObject, so it keeps a pointer to a btCollisionShape.
///It is recommended for performance and memory use to share btCollisionShape objects whenever possible.
-///There are 3 types of rigid bodies:
+///There are 3 types of rigid bodies:
///- A) Dynamic rigid bodies, with positive mass. Motion is controlled by rigid body dynamics.
///- B) Fixed objects with zero mass. They are not moving (basically collision objects)
-///- C) Kinematic objects, which are objects without mass, but the user can move them. There is on-way interaction, and Bullet calculates a velocity based on the timestep and previous and current world transform.
+///- C) Kinematic objects, which are objects without mass, but the user can move them. There is one-way interaction, and Bullet calculates a velocity based on the timestep and previous and current world transform.
///Bullet automatically deactivates dynamic rigid bodies, when the velocity is below a threshold for a given time.
///Deactivated (sleeping) rigid bodies don't take any processing time, except a minor broadphase collision detection impact (to allow active objects to activate/wake up sleeping objects)
-class btRigidBody : public btCollisionObject
+class btRigidBody : public btCollisionObject
{
-
- btMatrix3x3 m_invInertiaTensorWorld;
- btVector3 m_linearVelocity;
- btVector3 m_angularVelocity;
- btScalar m_inverseMass;
- btVector3 m_linearFactor;
-
- btVector3 m_gravity;
- btVector3 m_gravity_acceleration;
- btVector3 m_invInertiaLocal;
- btVector3 m_totalForce;
- btVector3 m_totalTorque;
-
- btScalar m_linearDamping;
- btScalar m_angularDamping;
-
- bool m_additionalDamping;
- btScalar m_additionalDampingFactor;
- btScalar m_additionalLinearDampingThresholdSqr;
- btScalar m_additionalAngularDampingThresholdSqr;
- btScalar m_additionalAngularDampingFactor;
-
-
- btScalar m_linearSleepingThreshold;
- btScalar m_angularSleepingThreshold;
+ btMatrix3x3 m_invInertiaTensorWorld;
+ btVector3 m_linearVelocity;
+ btVector3 m_angularVelocity;
+ btScalar m_inverseMass;
+ btVector3 m_linearFactor;
+
+ btVector3 m_gravity;
+ btVector3 m_gravity_acceleration;
+ btVector3 m_invInertiaLocal;
+ btVector3 m_totalForce;
+ btVector3 m_totalTorque;
+
+ btScalar m_linearDamping;
+ btScalar m_angularDamping;
+
+ bool m_additionalDamping;
+ btScalar m_additionalDampingFactor;
+ btScalar m_additionalLinearDampingThresholdSqr;
+ btScalar m_additionalAngularDampingThresholdSqr;
+ btScalar m_additionalAngularDampingFactor;
+
+ btScalar m_linearSleepingThreshold;
+ btScalar m_angularSleepingThreshold;
//m_optionalMotionState allows to automatic synchronize the world transform for active objects
- btMotionState* m_optionalMotionState;
+ btMotionState* m_optionalMotionState;
//keep track of typed constraints referencing this rigid body, to disable collision between linked bodies
btAlignedObjectArray<btTypedConstraint*> m_constraintRefs;
- int m_rigidbodyFlags;
-
- int m_debugBodyId;
-
+ int m_rigidbodyFlags;
-protected:
-
- ATTRIBUTE_ALIGNED16(btVector3 m_deltaLinearVelocity);
- btVector3 m_deltaAngularVelocity;
- btVector3 m_angularFactor;
- btVector3 m_invMass;
- btVector3 m_pushVelocity;
- btVector3 m_turnVelocity;
+ int m_debugBodyId;
+protected:
+ ATTRIBUTE_ALIGNED16(btVector3 m_deltaLinearVelocity);
+ btVector3 m_deltaAngularVelocity;
+ btVector3 m_angularFactor;
+ btVector3 m_invMass;
+ btVector3 m_pushVelocity;
+ btVector3 m_turnVelocity;
public:
-
-
///The btRigidBodyConstructionInfo structure provides information to create a rigid body. Setting mass to zero creates a fixed (non-dynamic) rigid body.
///For dynamic objects, you can use the collision shape to approximate the local inertia tensor, otherwise use the zero vector (default argument)
- ///You can use the motion state to synchronize the world transform between physics and graphics objects.
+ ///You can use the motion state to synchronize the world transform between physics and graphics objects.
///And if the motion state is provided, the rigid body will initialize its initial world transform from the motion state,
///m_startWorldTransform is only used when you don't provide a motion state.
- struct btRigidBodyConstructionInfo
+ struct btRigidBodyConstructionInfo
{
- btScalar m_mass;
+ btScalar m_mass;
///When a motionState is provided, the rigid body will initialize its world transform from the motion state
///In this case, m_startWorldTransform is ignored.
- btMotionState* m_motionState;
- btTransform m_startWorldTransform;
+ btMotionState* m_motionState;
+ btTransform m_startWorldTransform;
- btCollisionShape* m_collisionShape;
- btVector3 m_localInertia;
- btScalar m_linearDamping;
- btScalar m_angularDamping;
+ btCollisionShape* m_collisionShape;
+ btVector3 m_localInertia;
+ btScalar m_linearDamping;
+ btScalar m_angularDamping;
///best simulation results when friction is non-zero
- btScalar m_friction;
+ btScalar m_friction;
///the m_rollingFriction prevents rounded shapes, such as spheres, cylinders and capsules from rolling forever.
///See Bullet/Demos/RollingFrictionDemo for usage
- btScalar m_rollingFriction;
- btScalar m_spinningFriction;//torsional friction around contact normal
-
+ btScalar m_rollingFriction;
+ btScalar m_spinningFriction; //torsional friction around contact normal
+
///best simulation results using zero restitution.
- btScalar m_restitution;
+ btScalar m_restitution;
- btScalar m_linearSleepingThreshold;
- btScalar m_angularSleepingThreshold;
+ btScalar m_linearSleepingThreshold;
+ btScalar m_angularSleepingThreshold;
//Additional damping can help avoiding lowpass jitter motion, help stability for ragdolls etc.
//Such damping is undesirable, so once the overall simulation quality of the rigid body dynamics system has improved, this should become obsolete
- bool m_additionalDamping;
- btScalar m_additionalDampingFactor;
- btScalar m_additionalLinearDampingThresholdSqr;
- btScalar m_additionalAngularDampingThresholdSqr;
- btScalar m_additionalAngularDampingFactor;
-
- btRigidBodyConstructionInfo( btScalar mass, btMotionState* motionState, btCollisionShape* collisionShape, const btVector3& localInertia=btVector3(0,0,0)):
- m_mass(mass),
- m_motionState(motionState),
- m_collisionShape(collisionShape),
- m_localInertia(localInertia),
- m_linearDamping(btScalar(0.)),
- m_angularDamping(btScalar(0.)),
- m_friction(btScalar(0.5)),
- m_rollingFriction(btScalar(0)),
- m_spinningFriction(btScalar(0)),
- m_restitution(btScalar(0.)),
- m_linearSleepingThreshold(btScalar(0.8)),
- m_angularSleepingThreshold(btScalar(1.f)),
- m_additionalDamping(false),
- m_additionalDampingFactor(btScalar(0.005)),
- m_additionalLinearDampingThresholdSqr(btScalar(0.01)),
- m_additionalAngularDampingThresholdSqr(btScalar(0.01)),
- m_additionalAngularDampingFactor(btScalar(0.01))
+ bool m_additionalDamping;
+ btScalar m_additionalDampingFactor;
+ btScalar m_additionalLinearDampingThresholdSqr;
+ btScalar m_additionalAngularDampingThresholdSqr;
+ btScalar m_additionalAngularDampingFactor;
+
+ btRigidBodyConstructionInfo(btScalar mass, btMotionState* motionState, btCollisionShape* collisionShape, const btVector3& localInertia = btVector3(0, 0, 0)) : m_mass(mass),
+ m_motionState(motionState),
+ m_collisionShape(collisionShape),
+ m_localInertia(localInertia),
+ m_linearDamping(btScalar(0.)),
+ m_angularDamping(btScalar(0.)),
+ m_friction(btScalar(0.5)),
+ m_rollingFriction(btScalar(0)),
+ m_spinningFriction(btScalar(0)),
+ m_restitution(btScalar(0.)),
+ m_linearSleepingThreshold(btScalar(0.8)),
+ m_angularSleepingThreshold(btScalar(1.f)),
+ m_additionalDamping(false),
+ m_additionalDampingFactor(btScalar(0.005)),
+ m_additionalLinearDampingThresholdSqr(btScalar(0.01)),
+ m_additionalAngularDampingThresholdSqr(btScalar(0.01)),
+ m_additionalAngularDampingFactor(btScalar(0.01))
{
m_startWorldTransform.setIdentity();
}
};
///btRigidBody constructor using construction info
- btRigidBody( const btRigidBodyConstructionInfo& constructionInfo);
+ btRigidBody(const btRigidBodyConstructionInfo& constructionInfo);
- ///btRigidBody constructor for backwards compatibility.
+ ///btRigidBody constructor for backwards compatibility.
///To specify friction (etc) during rigid body construction, please use the other constructor (using btRigidBodyConstructionInfo)
- btRigidBody( btScalar mass, btMotionState* motionState, btCollisionShape* collisionShape, const btVector3& localInertia=btVector3(0,0,0));
-
+ btRigidBody(btScalar mass, btMotionState* motionState, btCollisionShape* collisionShape, const btVector3& localInertia = btVector3(0, 0, 0));
virtual ~btRigidBody()
- {
- //No constraints should point to this rigidbody
- //Remove constraints from the dynamics world before you delete the related rigidbodies.
- btAssert(m_constraintRefs.size()==0);
- }
+ {
+ //No constraints should point to this rigidbody
+ //Remove constraints from the dynamics world before you delete the related rigidbodies.
+ btAssert(m_constraintRefs.size() == 0);
+ }
protected:
-
///setupRigidBody is only used internally by the constructor
- void setupRigidBody(const btRigidBodyConstructionInfo& constructionInfo);
+ void setupRigidBody(const btRigidBodyConstructionInfo& constructionInfo);
public:
+ void proceedToTransform(const btTransform& newTrans);
- void proceedToTransform(const btTransform& newTrans);
-
///to keep collision detection and dynamics separate we don't store a rigidbody pointer
///but a rigidbody is derived from btCollisionObject, so we can safely perform an upcast
- static const btRigidBody* upcast(const btCollisionObject* colObj)
+ static const btRigidBody* upcast(const btCollisionObject* colObj)
{
- if (colObj->getInternalType()&btCollisionObject::CO_RIGID_BODY)
+ if (colObj->getInternalType() & btCollisionObject::CO_RIGID_BODY)
return (const btRigidBody*)colObj;
return 0;
}
- static btRigidBody* upcast(btCollisionObject* colObj)
+ static btRigidBody* upcast(btCollisionObject* colObj)
{
- if (colObj->getInternalType()&btCollisionObject::CO_RIGID_BODY)
+ if (colObj->getInternalType() & btCollisionObject::CO_RIGID_BODY)
return (btRigidBody*)colObj;
return 0;
}
-
+
/// continuous collision detection needs prediction
- void predictIntegratedTransform(btScalar step, btTransform& predictedTransform) ;
-
- void saveKinematicState(btScalar step);
-
- void applyGravity();
-
- void setGravity(const btVector3& acceleration);
+ void predictIntegratedTransform(btScalar step, btTransform& predictedTransform);
+
+ void saveKinematicState(btScalar step);
+
+ void applyGravity();
+
+ void setGravity(const btVector3& acceleration);
- const btVector3& getGravity() const
+ const btVector3& getGravity() const
{
return m_gravity_acceleration;
}
- void setDamping(btScalar lin_damping, btScalar ang_damping);
+ void setDamping(btScalar lin_damping, btScalar ang_damping);
btScalar getLinearDamping() const
{
@@ -249,18 +235,20 @@ public:
return m_angularSleepingThreshold;
}
- void applyDamping(btScalar timeStep);
+ void applyDamping(btScalar timeStep);
- SIMD_FORCE_INLINE const btCollisionShape* getCollisionShape() const {
+ SIMD_FORCE_INLINE const btCollisionShape* getCollisionShape() const
+ {
return m_collisionShape;
}
- SIMD_FORCE_INLINE btCollisionShape* getCollisionShape() {
- return m_collisionShape;
+ SIMD_FORCE_INLINE btCollisionShape* getCollisionShape()
+ {
+ return m_collisionShape;
}
-
- void setMassProps(btScalar mass, const btVector3& inertia);
-
+
+ void setMassProps(btScalar mass, const btVector3& inertia);
+
const btVector3& getLinearFactor() const
{
return m_linearFactor;
@@ -268,20 +256,21 @@ public:
void setLinearFactor(const btVector3& linearFactor)
{
m_linearFactor = linearFactor;
- m_invMass = m_linearFactor*m_inverseMass;
+ m_invMass = m_linearFactor * m_inverseMass;
}
- btScalar getInvMass() const { return m_inverseMass; }
- const btMatrix3x3& getInvInertiaTensorWorld() const {
- return m_invInertiaTensorWorld;
+ btScalar getInvMass() const { return m_inverseMass; }
+ const btMatrix3x3& getInvInertiaTensorWorld() const
+ {
+ return m_invInertiaTensorWorld;
}
-
- void integrateVelocities(btScalar step);
- void setCenterOfMassTransform(const btTransform& xform);
+ void integrateVelocities(btScalar step);
+
+ void setCenterOfMassTransform(const btTransform& xform);
- void applyCentralForce(const btVector3& force)
+ void applyCentralForce(const btVector3& force)
{
- m_totalForce += force*m_linearFactor;
+ m_totalForce += force * m_linearFactor;
}
const btVector3& getTotalForce() const
@@ -293,90 +282,93 @@ public:
{
return m_totalTorque;
};
-
+
const btVector3& getInvInertiaDiagLocal() const
{
return m_invInertiaLocal;
};
- void setInvInertiaDiagLocal(const btVector3& diagInvInertia)
+ void setInvInertiaDiagLocal(const btVector3& diagInvInertia)
{
m_invInertiaLocal = diagInvInertia;
}
- void setSleepingThresholds(btScalar linear,btScalar angular)
+ void setSleepingThresholds(btScalar linear, btScalar angular)
{
m_linearSleepingThreshold = linear;
m_angularSleepingThreshold = angular;
}
- void applyTorque(const btVector3& torque)
+ void applyTorque(const btVector3& torque)
{
- m_totalTorque += torque*m_angularFactor;
+ m_totalTorque += torque * m_angularFactor;
}
-
- void applyForce(const btVector3& force, const btVector3& rel_pos)
+
+ void applyForce(const btVector3& force, const btVector3& rel_pos)
{
applyCentralForce(force);
- applyTorque(rel_pos.cross(force*m_linearFactor));
+ applyTorque(rel_pos.cross(force * m_linearFactor));
}
-
+
void applyCentralImpulse(const btVector3& impulse)
{
- m_linearVelocity += impulse *m_linearFactor * m_inverseMass;
+ m_linearVelocity += impulse * m_linearFactor * m_inverseMass;
}
-
- void applyTorqueImpulse(const btVector3& torque)
+
+ void applyTorqueImpulse(const btVector3& torque)
{
- m_angularVelocity += m_invInertiaTensorWorld * torque * m_angularFactor;
+ m_angularVelocity += m_invInertiaTensorWorld * torque * m_angularFactor;
}
-
- void applyImpulse(const btVector3& impulse, const btVector3& rel_pos)
+
+ void applyImpulse(const btVector3& impulse, const btVector3& rel_pos)
{
if (m_inverseMass != btScalar(0.))
{
applyCentralImpulse(impulse);
if (m_angularFactor)
{
- applyTorqueImpulse(rel_pos.cross(impulse*m_linearFactor));
+ applyTorqueImpulse(rel_pos.cross(impulse * m_linearFactor));
}
}
}
- void clearForces()
+ void clearForces()
{
m_totalForce.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0));
m_totalTorque.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0));
}
-
- void updateInertiaTensor();
-
- const btVector3& getCenterOfMassPosition() const {
- return m_worldTransform.getOrigin();
+
+ void updateInertiaTensor();
+
+ const btVector3& getCenterOfMassPosition() const
+ {
+ return m_worldTransform.getOrigin();
}
btQuaternion getOrientation() const;
-
- const btTransform& getCenterOfMassTransform() const {
- return m_worldTransform;
+
+ const btTransform& getCenterOfMassTransform() const
+ {
+ return m_worldTransform;
}
- const btVector3& getLinearVelocity() const {
- return m_linearVelocity;
+ const btVector3& getLinearVelocity() const
+ {
+ return m_linearVelocity;
}
- const btVector3& getAngularVelocity() const {
- return m_angularVelocity;
+ const btVector3& getAngularVelocity() const
+ {
+ return m_angularVelocity;
}
-
inline void setLinearVelocity(const btVector3& lin_vel)
- {
+ {
m_updateRevision++;
- m_linearVelocity = lin_vel;
+ m_linearVelocity = lin_vel;
}
- inline void setAngularVelocity(const btVector3& ang_vel)
- {
+ inline void setAngularVelocity(const btVector3& ang_vel)
+ {
m_updateRevision++;
- m_angularVelocity = ang_vel;
+ m_angularVelocity = ang_vel;
}
btVector3 getVelocityInLocalPoint(const btVector3& rel_pos) const
@@ -388,18 +380,13 @@ public:
// return (m_worldTransform(rel_pos) - m_interpolationWorldTransform(rel_pos)) / m_kinematicTimeStep;
}
- void translate(const btVector3& v)
+ void translate(const btVector3& v)
{
- m_worldTransform.getOrigin() += v;
+ m_worldTransform.getOrigin() += v;
}
-
- void getAabb(btVector3& aabbMin,btVector3& aabbMax) const;
-
+ void getAabb(btVector3& aabbMin, btVector3& aabbMax) const;
-
-
-
SIMD_FORCE_INLINE btScalar computeImpulseDenominator(const btVector3& pos, const btVector3& normal) const
{
btVector3 r0 = pos - getCenterOfMassPosition();
@@ -409,7 +396,6 @@ public:
btVector3 vec = (c0 * getInvInertiaTensorWorld()).cross(r0);
return m_inverseMass + normal.dot(vec);
-
}
SIMD_FORCE_INLINE btScalar computeAngularImpulseDenominator(const btVector3& axis) const
@@ -418,26 +404,25 @@ public:
return axis.dot(vec);
}
- SIMD_FORCE_INLINE void updateDeactivation(btScalar timeStep)
+ SIMD_FORCE_INLINE void updateDeactivation(btScalar timeStep)
{
- if ( (getActivationState() == ISLAND_SLEEPING) || (getActivationState() == DISABLE_DEACTIVATION))
+ if ((getActivationState() == ISLAND_SLEEPING) || (getActivationState() == DISABLE_DEACTIVATION))
return;
- if ((getLinearVelocity().length2() < m_linearSleepingThreshold*m_linearSleepingThreshold) &&
- (getAngularVelocity().length2() < m_angularSleepingThreshold*m_angularSleepingThreshold))
+ if ((getLinearVelocity().length2() < m_linearSleepingThreshold * m_linearSleepingThreshold) &&
+ (getAngularVelocity().length2() < m_angularSleepingThreshold * m_angularSleepingThreshold))
{
m_deactivationTime += timeStep;
- } else
+ }
+ else
{
- m_deactivationTime=btScalar(0.);
+ m_deactivationTime = btScalar(0.);
setActivationState(0);
}
-
}
- SIMD_FORCE_INLINE bool wantsSleeping()
+ SIMD_FORCE_INLINE bool wantsSleeping()
{
-
if (getActivationState() == DISABLE_DEACTIVATION)
return false;
@@ -445,41 +430,39 @@ public:
if (gDisableDeactivation || (gDeactivationTime == btScalar(0.)))
return false;
- if ( (getActivationState() == ISLAND_SLEEPING) || (getActivationState() == WANTS_DEACTIVATION))
+ if ((getActivationState() == ISLAND_SLEEPING) || (getActivationState() == WANTS_DEACTIVATION))
return true;
- if (m_deactivationTime> gDeactivationTime)
+ if (m_deactivationTime > gDeactivationTime)
{
return true;
}
return false;
}
-
-
- const btBroadphaseProxy* getBroadphaseProxy() const
+ const btBroadphaseProxy* getBroadphaseProxy() const
{
return m_broadphaseHandle;
}
- btBroadphaseProxy* getBroadphaseProxy()
+ btBroadphaseProxy* getBroadphaseProxy()
{
return m_broadphaseHandle;
}
- void setNewBroadphaseProxy(btBroadphaseProxy* broadphaseProxy)
+ void setNewBroadphaseProxy(btBroadphaseProxy* broadphaseProxy)
{
m_broadphaseHandle = broadphaseProxy;
}
//btMotionState allows to automatic synchronize the world transform for active objects
- btMotionState* getMotionState()
+ btMotionState* getMotionState()
{
return m_optionalMotionState;
}
- const btMotionState* getMotionState() const
+ const btMotionState* getMotionState() const
{
return m_optionalMotionState;
}
- void setMotionState(btMotionState* motionState)
+ void setMotionState(btMotionState* motionState)
{
m_optionalMotionState = motionState;
if (m_optionalMotionState)
@@ -487,27 +470,27 @@ public:
}
//for experimental overriding of friction/contact solver func
- int m_contactSolverType;
- int m_frictionSolverType;
+ int m_contactSolverType;
+ int m_frictionSolverType;
- void setAngularFactor(const btVector3& angFac)
+ void setAngularFactor(const btVector3& angFac)
{
m_updateRevision++;
m_angularFactor = angFac;
}
- void setAngularFactor(btScalar angFac)
+ void setAngularFactor(btScalar angFac)
{
m_updateRevision++;
- m_angularFactor.setValue(angFac,angFac,angFac);
+ m_angularFactor.setValue(angFac, angFac, angFac);
}
- const btVector3& getAngularFactor() const
+ const btVector3& getAngularFactor() const
{
return m_angularFactor;
}
//is this rigidbody added to a btCollisionWorld/btDynamicsWorld/btBroadphase?
- bool isInWorld() const
+ bool isInWorld() const
{
return (getBroadphaseProxy() != 0);
}
@@ -525,7 +508,7 @@ public:
return m_constraintRefs.size();
}
- void setFlags(int flags)
+ void setFlags(int flags)
{
m_rigidbodyFlags = flags;
}
@@ -535,12 +518,9 @@ public:
return m_rigidbodyFlags;
}
-
-
-
///perform implicit force computation in world space
btVector3 computeGyroscopicImpulseImplicit_World(btScalar dt) const;
-
+
///perform implicit force computation in body space (inertial frame)
btVector3 computeGyroscopicImpulseImplicit_Body(btScalar step) const;
@@ -550,70 +530,66 @@ public:
///////////////////////////////////////////////
- virtual int calculateSerializeBufferSize() const;
+ virtual int calculateSerializeBufferSize() const;
///fills the dataBuffer and returns the struct name (and 0 on failure)
- virtual const char* serialize(void* dataBuffer, class btSerializer* serializer) const;
+ virtual const char* serialize(void* dataBuffer, class btSerializer* serializer) const;
virtual void serializeSingleObject(class btSerializer* serializer) const;
-
};
//@todo add m_optionalMotionState and m_constraintRefs to btRigidBodyData
///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
-struct btRigidBodyFloatData
+struct btRigidBodyFloatData
{
- btCollisionObjectFloatData m_collisionObjectData;
- btMatrix3x3FloatData m_invInertiaTensorWorld;
- btVector3FloatData m_linearVelocity;
- btVector3FloatData m_angularVelocity;
- btVector3FloatData m_angularFactor;
- btVector3FloatData m_linearFactor;
- btVector3FloatData m_gravity;
- btVector3FloatData m_gravity_acceleration;
- btVector3FloatData m_invInertiaLocal;
- btVector3FloatData m_totalForce;
- btVector3FloatData m_totalTorque;
- float m_inverseMass;
- float m_linearDamping;
- float m_angularDamping;
- float m_additionalDampingFactor;
- float m_additionalLinearDampingThresholdSqr;
- float m_additionalAngularDampingThresholdSqr;
- float m_additionalAngularDampingFactor;
- float m_linearSleepingThreshold;
- float m_angularSleepingThreshold;
- int m_additionalDamping;
+ btCollisionObjectFloatData m_collisionObjectData;
+ btMatrix3x3FloatData m_invInertiaTensorWorld;
+ btVector3FloatData m_linearVelocity;
+ btVector3FloatData m_angularVelocity;
+ btVector3FloatData m_angularFactor;
+ btVector3FloatData m_linearFactor;
+ btVector3FloatData m_gravity;
+ btVector3FloatData m_gravity_acceleration;
+ btVector3FloatData m_invInertiaLocal;
+ btVector3FloatData m_totalForce;
+ btVector3FloatData m_totalTorque;
+ float m_inverseMass;
+ float m_linearDamping;
+ float m_angularDamping;
+ float m_additionalDampingFactor;
+ float m_additionalLinearDampingThresholdSqr;
+ float m_additionalAngularDampingThresholdSqr;
+ float m_additionalAngularDampingFactor;
+ float m_linearSleepingThreshold;
+ float m_angularSleepingThreshold;
+ int m_additionalDamping;
};
///do not change those serialization structures, it requires an updated sBulletDNAstr/sBulletDNAstr64
-struct btRigidBodyDoubleData
+struct btRigidBodyDoubleData
{
- btCollisionObjectDoubleData m_collisionObjectData;
- btMatrix3x3DoubleData m_invInertiaTensorWorld;
- btVector3DoubleData m_linearVelocity;
- btVector3DoubleData m_angularVelocity;
- btVector3DoubleData m_angularFactor;
- btVector3DoubleData m_linearFactor;
- btVector3DoubleData m_gravity;
- btVector3DoubleData m_gravity_acceleration;
- btVector3DoubleData m_invInertiaLocal;
- btVector3DoubleData m_totalForce;
- btVector3DoubleData m_totalTorque;
- double m_inverseMass;
- double m_linearDamping;
- double m_angularDamping;
- double m_additionalDampingFactor;
- double m_additionalLinearDampingThresholdSqr;
- double m_additionalAngularDampingThresholdSqr;
- double m_additionalAngularDampingFactor;
- double m_linearSleepingThreshold;
- double m_angularSleepingThreshold;
- int m_additionalDamping;
- char m_padding[4];
+ btCollisionObjectDoubleData m_collisionObjectData;
+ btMatrix3x3DoubleData m_invInertiaTensorWorld;
+ btVector3DoubleData m_linearVelocity;
+ btVector3DoubleData m_angularVelocity;
+ btVector3DoubleData m_angularFactor;
+ btVector3DoubleData m_linearFactor;
+ btVector3DoubleData m_gravity;
+ btVector3DoubleData m_gravity_acceleration;
+ btVector3DoubleData m_invInertiaLocal;
+ btVector3DoubleData m_totalForce;
+ btVector3DoubleData m_totalTorque;
+ double m_inverseMass;
+ double m_linearDamping;
+ double m_angularDamping;
+ double m_additionalDampingFactor;
+ double m_additionalLinearDampingThresholdSqr;
+ double m_additionalAngularDampingThresholdSqr;
+ double m_additionalAngularDampingFactor;
+ double m_linearSleepingThreshold;
+ double m_angularSleepingThreshold;
+ int m_additionalDamping;
+ char m_padding[4];
};
-
-
-#endif //BT_RIGIDBODY_H
-
+#endif //BT_RIGIDBODY_H