summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletDynamics/Dynamics/btRigidBody.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/bullet/BulletDynamics/Dynamics/btRigidBody.cpp')
-rw-r--r--thirdparty/bullet/BulletDynamics/Dynamics/btRigidBody.cpp527
1 files changed, 527 insertions, 0 deletions
diff --git a/thirdparty/bullet/BulletDynamics/Dynamics/btRigidBody.cpp b/thirdparty/bullet/BulletDynamics/Dynamics/btRigidBody.cpp
new file mode 100644
index 0000000000..ca0714fcfa
--- /dev/null
+++ b/thirdparty/bullet/BulletDynamics/Dynamics/btRigidBody.cpp
@@ -0,0 +1,527 @@
+/*
+Bullet Continuous Collision Detection and Physics Library
+Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
+
+This software is provided 'as-is', without any express or implied warranty.
+In no event will the authors be held liable for any damages arising from the use of this software.
+Permission is granted to anyone to use this software for any purpose,
+including commercial applications, and to alter it and redistribute it freely,
+subject to the following restrictions:
+
+1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
+2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
+3. This notice may not be removed or altered from any source distribution.
+*/
+
+#include "btRigidBody.h"
+#include "BulletCollision/CollisionShapes/btConvexShape.h"
+#include "LinearMath/btMinMax.h"
+#include "LinearMath/btTransformUtil.h"
+#include "LinearMath/btMotionState.h"
+#include "BulletDynamics/ConstraintSolver/btTypedConstraint.h"
+#include "LinearMath/btSerializer.h"
+
+//'temporarily' global variables
+btScalar gDeactivationTime = btScalar(2.);
+bool gDisableDeactivation = false;
+static int uniqueId = 0;
+
+
+btRigidBody::btRigidBody(const btRigidBody::btRigidBodyConstructionInfo& constructionInfo)
+{
+ setupRigidBody(constructionInfo);
+}
+
+btRigidBody::btRigidBody(btScalar mass, btMotionState *motionState, btCollisionShape *collisionShape, const btVector3 &localInertia)
+{
+ btRigidBodyConstructionInfo cinfo(mass,motionState,collisionShape,localInertia);
+ setupRigidBody(cinfo);
+}
+
+void btRigidBody::setupRigidBody(const btRigidBody::btRigidBodyConstructionInfo& constructionInfo)
+{
+
+ m_internalType=CO_RIGID_BODY;
+
+ m_linearVelocity.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0));
+ m_angularVelocity.setValue(btScalar(0.),btScalar(0.),btScalar(0.));
+ m_angularFactor.setValue(1,1,1);
+ m_linearFactor.setValue(1,1,1);
+ m_gravity.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0));
+ m_gravity_acceleration.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0));
+ m_totalForce.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0));
+ m_totalTorque.setValue(btScalar(0.0), btScalar(0.0), btScalar(0.0)),
+ setDamping(constructionInfo.m_linearDamping, constructionInfo.m_angularDamping);
+
+ m_linearSleepingThreshold = constructionInfo.m_linearSleepingThreshold;
+ m_angularSleepingThreshold = constructionInfo.m_angularSleepingThreshold;
+ m_optionalMotionState = constructionInfo.m_motionState;
+ m_contactSolverType = 0;
+ m_frictionSolverType = 0;
+ m_additionalDamping = constructionInfo.m_additionalDamping;
+ m_additionalDampingFactor = constructionInfo.m_additionalDampingFactor;
+ m_additionalLinearDampingThresholdSqr = constructionInfo.m_additionalLinearDampingThresholdSqr;
+ m_additionalAngularDampingThresholdSqr = constructionInfo.m_additionalAngularDampingThresholdSqr;
+ m_additionalAngularDampingFactor = constructionInfo.m_additionalAngularDampingFactor;
+
+ if (m_optionalMotionState)
+ {
+ m_optionalMotionState->getWorldTransform(m_worldTransform);
+ } else
+ {
+ m_worldTransform = constructionInfo.m_startWorldTransform;
+ }
+
+ m_interpolationWorldTransform = m_worldTransform;
+ m_interpolationLinearVelocity.setValue(0,0,0);
+ m_interpolationAngularVelocity.setValue(0,0,0);
+
+ //moved to btCollisionObject
+ m_friction = constructionInfo.m_friction;
+ m_rollingFriction = constructionInfo.m_rollingFriction;
+ m_spinningFriction = constructionInfo.m_spinningFriction;
+
+ m_restitution = constructionInfo.m_restitution;
+
+ setCollisionShape( constructionInfo.m_collisionShape );
+ m_debugBodyId = uniqueId++;
+
+ setMassProps(constructionInfo.m_mass, constructionInfo.m_localInertia);
+ updateInertiaTensor();
+
+ m_rigidbodyFlags = BT_ENABLE_GYROSCOPIC_FORCE_IMPLICIT_BODY;
+
+
+ m_deltaLinearVelocity.setZero();
+ m_deltaAngularVelocity.setZero();
+ m_invMass = m_inverseMass*m_linearFactor;
+ m_pushVelocity.setZero();
+ m_turnVelocity.setZero();
+
+
+
+}
+
+
+void btRigidBody::predictIntegratedTransform(btScalar timeStep,btTransform& predictedTransform)
+{
+ btTransformUtil::integrateTransform(m_worldTransform,m_linearVelocity,m_angularVelocity,timeStep,predictedTransform);
+}
+
+void btRigidBody::saveKinematicState(btScalar timeStep)
+{
+ //todo: clamp to some (user definable) safe minimum timestep, to limit maximum angular/linear velocities
+ if (timeStep != btScalar(0.))
+ {
+ //if we use motionstate to synchronize world transforms, get the new kinematic/animated world transform
+ if (getMotionState())
+ getMotionState()->getWorldTransform(m_worldTransform);
+ btVector3 linVel,angVel;
+
+ btTransformUtil::calculateVelocity(m_interpolationWorldTransform,m_worldTransform,timeStep,m_linearVelocity,m_angularVelocity);
+ m_interpolationLinearVelocity = m_linearVelocity;
+ m_interpolationAngularVelocity = m_angularVelocity;
+ m_interpolationWorldTransform = m_worldTransform;
+ //printf("angular = %f %f %f\n",m_angularVelocity.getX(),m_angularVelocity.getY(),m_angularVelocity.getZ());
+ }
+}
+
+void btRigidBody::getAabb(btVector3& aabbMin,btVector3& aabbMax) const
+{
+ getCollisionShape()->getAabb(m_worldTransform,aabbMin,aabbMax);
+}
+
+
+
+
+void btRigidBody::setGravity(const btVector3& acceleration)
+{
+ if (m_inverseMass != btScalar(0.0))
+ {
+ m_gravity = acceleration * (btScalar(1.0) / m_inverseMass);
+ }
+ m_gravity_acceleration = acceleration;
+}
+
+
+
+
+
+
+void btRigidBody::setDamping(btScalar lin_damping, btScalar ang_damping)
+{
+ m_linearDamping = btClamped(lin_damping, (btScalar)btScalar(0.0), (btScalar)btScalar(1.0));
+ m_angularDamping = btClamped(ang_damping, (btScalar)btScalar(0.0), (btScalar)btScalar(1.0));
+}
+
+
+
+
+///applyDamping damps the velocity, using the given m_linearDamping and m_angularDamping
+void btRigidBody::applyDamping(btScalar timeStep)
+{
+ //On new damping: see discussion/issue report here: http://code.google.com/p/bullet/issues/detail?id=74
+ //todo: do some performance comparisons (but other parts of the engine are probably bottleneck anyway
+
+//#define USE_OLD_DAMPING_METHOD 1
+#ifdef USE_OLD_DAMPING_METHOD
+ m_linearVelocity *= GEN_clamped((btScalar(1.) - timeStep * m_linearDamping), (btScalar)btScalar(0.0), (btScalar)btScalar(1.0));
+ m_angularVelocity *= GEN_clamped((btScalar(1.) - timeStep * m_angularDamping), (btScalar)btScalar(0.0), (btScalar)btScalar(1.0));
+#else
+ m_linearVelocity *= btPow(btScalar(1)-m_linearDamping, timeStep);
+ m_angularVelocity *= btPow(btScalar(1)-m_angularDamping, timeStep);
+#endif
+
+ if (m_additionalDamping)
+ {
+ //Additional damping can help avoiding lowpass jitter motion, help stability for ragdolls etc.
+ //Such damping is undesirable, so once the overall simulation quality of the rigid body dynamics system has improved, this should become obsolete
+ if ((m_angularVelocity.length2() < m_additionalAngularDampingThresholdSqr) &&
+ (m_linearVelocity.length2() < m_additionalLinearDampingThresholdSqr))
+ {
+ m_angularVelocity *= m_additionalDampingFactor;
+ m_linearVelocity *= m_additionalDampingFactor;
+ }
+
+
+ btScalar speed = m_linearVelocity.length();
+ if (speed < m_linearDamping)
+ {
+ btScalar dampVel = btScalar(0.005);
+ if (speed > dampVel)
+ {
+ btVector3 dir = m_linearVelocity.normalized();
+ m_linearVelocity -= dir * dampVel;
+ } else
+ {
+ m_linearVelocity.setValue(btScalar(0.),btScalar(0.),btScalar(0.));
+ }
+ }
+
+ btScalar angSpeed = m_angularVelocity.length();
+ if (angSpeed < m_angularDamping)
+ {
+ btScalar angDampVel = btScalar(0.005);
+ if (angSpeed > angDampVel)
+ {
+ btVector3 dir = m_angularVelocity.normalized();
+ m_angularVelocity -= dir * angDampVel;
+ } else
+ {
+ m_angularVelocity.setValue(btScalar(0.),btScalar(0.),btScalar(0.));
+ }
+ }
+ }
+}
+
+
+void btRigidBody::applyGravity()
+{
+ if (isStaticOrKinematicObject())
+ return;
+
+ applyCentralForce(m_gravity);
+
+}
+
+void btRigidBody::proceedToTransform(const btTransform& newTrans)
+{
+ setCenterOfMassTransform( newTrans );
+}
+
+
+void btRigidBody::setMassProps(btScalar mass, const btVector3& inertia)
+{
+ if (mass == btScalar(0.))
+ {
+ m_collisionFlags |= btCollisionObject::CF_STATIC_OBJECT;
+ m_inverseMass = btScalar(0.);
+ } else
+ {
+ m_collisionFlags &= (~btCollisionObject::CF_STATIC_OBJECT);
+ m_inverseMass = btScalar(1.0) / mass;
+ }
+
+ //Fg = m * a
+ m_gravity = mass * m_gravity_acceleration;
+
+ m_invInertiaLocal.setValue(inertia.x() != btScalar(0.0) ? btScalar(1.0) / inertia.x(): btScalar(0.0),
+ inertia.y() != btScalar(0.0) ? btScalar(1.0) / inertia.y(): btScalar(0.0),
+ inertia.z() != btScalar(0.0) ? btScalar(1.0) / inertia.z(): btScalar(0.0));
+
+ m_invMass = m_linearFactor*m_inverseMass;
+}
+
+
+void btRigidBody::updateInertiaTensor()
+{
+ m_invInertiaTensorWorld = m_worldTransform.getBasis().scaled(m_invInertiaLocal) * m_worldTransform.getBasis().transpose();
+}
+
+
+
+btVector3 btRigidBody::getLocalInertia() const
+{
+
+ btVector3 inertiaLocal;
+ const btVector3 inertia = m_invInertiaLocal;
+ inertiaLocal.setValue(inertia.x() != btScalar(0.0) ? btScalar(1.0) / inertia.x() : btScalar(0.0),
+ inertia.y() != btScalar(0.0) ? btScalar(1.0) / inertia.y() : btScalar(0.0),
+ inertia.z() != btScalar(0.0) ? btScalar(1.0) / inertia.z() : btScalar(0.0));
+ return inertiaLocal;
+}
+
+inline btVector3 evalEulerEqn(const btVector3& w1, const btVector3& w0, const btVector3& T, const btScalar dt,
+ const btMatrix3x3 &I)
+{
+ const btVector3 w2 = I*w1 + w1.cross(I*w1)*dt - (T*dt + I*w0);
+ return w2;
+}
+
+inline btMatrix3x3 evalEulerEqnDeriv(const btVector3& w1, const btVector3& w0, const btScalar dt,
+ const btMatrix3x3 &I)
+{
+
+ btMatrix3x3 w1x, Iw1x;
+ const btVector3 Iwi = (I*w1);
+ w1.getSkewSymmetricMatrix(&w1x[0], &w1x[1], &w1x[2]);
+ Iwi.getSkewSymmetricMatrix(&Iw1x[0], &Iw1x[1], &Iw1x[2]);
+
+ const btMatrix3x3 dfw1 = I + (w1x*I - Iw1x)*dt;
+ return dfw1;
+}
+
+btVector3 btRigidBody::computeGyroscopicForceExplicit(btScalar maxGyroscopicForce) const
+{
+ btVector3 inertiaLocal = getLocalInertia();
+ btMatrix3x3 inertiaTensorWorld = getWorldTransform().getBasis().scaled(inertiaLocal) * getWorldTransform().getBasis().transpose();
+ btVector3 tmp = inertiaTensorWorld*getAngularVelocity();
+ btVector3 gf = getAngularVelocity().cross(tmp);
+ btScalar l2 = gf.length2();
+ if (l2>maxGyroscopicForce*maxGyroscopicForce)
+ {
+ gf *= btScalar(1.)/btSqrt(l2)*maxGyroscopicForce;
+ }
+ return gf;
+}
+
+
+btVector3 btRigidBody::computeGyroscopicImpulseImplicit_Body(btScalar step) const
+{
+ btVector3 idl = getLocalInertia();
+ btVector3 omega1 = getAngularVelocity();
+ btQuaternion q = getWorldTransform().getRotation();
+
+ // Convert to body coordinates
+ btVector3 omegab = quatRotate(q.inverse(), omega1);
+ btMatrix3x3 Ib;
+ Ib.setValue(idl.x(),0,0,
+ 0,idl.y(),0,
+ 0,0,idl.z());
+
+ btVector3 ibo = Ib*omegab;
+
+ // Residual vector
+ btVector3 f = step * omegab.cross(ibo);
+
+ btMatrix3x3 skew0;
+ omegab.getSkewSymmetricMatrix(&skew0[0], &skew0[1], &skew0[2]);
+ btVector3 om = Ib*omegab;
+ btMatrix3x3 skew1;
+ om.getSkewSymmetricMatrix(&skew1[0],&skew1[1],&skew1[2]);
+
+ // Jacobian
+ btMatrix3x3 J = Ib + (skew0*Ib - skew1)*step;
+
+// btMatrix3x3 Jinv = J.inverse();
+// btVector3 omega_div = Jinv*f;
+ btVector3 omega_div = J.solve33(f);
+
+ // Single Newton-Raphson update
+ omegab = omegab - omega_div;//Solve33(J, f);
+ // Back to world coordinates
+ btVector3 omega2 = quatRotate(q,omegab);
+ btVector3 gf = omega2-omega1;
+ return gf;
+}
+
+
+
+btVector3 btRigidBody::computeGyroscopicImpulseImplicit_World(btScalar step) const
+{
+ // use full newton-euler equations. common practice to drop the wxIw term. want it for better tumbling behavior.
+ // calculate using implicit euler step so it's stable.
+
+ const btVector3 inertiaLocal = getLocalInertia();
+ const btVector3 w0 = getAngularVelocity();
+
+ btMatrix3x3 I;
+
+ I = m_worldTransform.getBasis().scaled(inertiaLocal) *
+ m_worldTransform.getBasis().transpose();
+
+ // use newtons method to find implicit solution for new angular velocity (w')
+ // f(w') = -(T*step + Iw) + Iw' + w' + w'xIw'*step = 0
+ // df/dw' = I + 1xIw'*step + w'xI*step
+
+ btVector3 w1 = w0;
+
+ // one step of newton's method
+ {
+ const btVector3 fw = evalEulerEqn(w1, w0, btVector3(0, 0, 0), step, I);
+ const btMatrix3x3 dfw = evalEulerEqnDeriv(w1, w0, step, I);
+
+ btVector3 dw;
+ dw = dfw.solve33(fw);
+ //const btMatrix3x3 dfw_inv = dfw.inverse();
+ //dw = dfw_inv*fw;
+
+ w1 -= dw;
+ }
+
+ btVector3 gf = (w1 - w0);
+ return gf;
+}
+
+
+void btRigidBody::integrateVelocities(btScalar step)
+{
+ if (isStaticOrKinematicObject())
+ return;
+
+ m_linearVelocity += m_totalForce * (m_inverseMass * step);
+ m_angularVelocity += m_invInertiaTensorWorld * m_totalTorque * step;
+
+#define MAX_ANGVEL SIMD_HALF_PI
+ /// clamp angular velocity. collision calculations will fail on higher angular velocities
+ btScalar angvel = m_angularVelocity.length();
+ if (angvel*step > MAX_ANGVEL)
+ {
+ m_angularVelocity *= (MAX_ANGVEL/step) /angvel;
+ }
+
+}
+
+btQuaternion btRigidBody::getOrientation() const
+{
+ btQuaternion orn;
+ m_worldTransform.getBasis().getRotation(orn);
+ return orn;
+}
+
+
+void btRigidBody::setCenterOfMassTransform(const btTransform& xform)
+{
+
+ if (isKinematicObject())
+ {
+ m_interpolationWorldTransform = m_worldTransform;
+ } else
+ {
+ m_interpolationWorldTransform = xform;
+ }
+ m_interpolationLinearVelocity = getLinearVelocity();
+ m_interpolationAngularVelocity = getAngularVelocity();
+ m_worldTransform = xform;
+ updateInertiaTensor();
+}
+
+
+
+
+
+void btRigidBody::addConstraintRef(btTypedConstraint* c)
+{
+ ///disable collision with the 'other' body
+
+ int index = m_constraintRefs.findLinearSearch(c);
+ //don't add constraints that are already referenced
+ //btAssert(index == m_constraintRefs.size());
+ if (index == m_constraintRefs.size())
+ {
+ m_constraintRefs.push_back(c);
+ btCollisionObject* colObjA = &c->getRigidBodyA();
+ btCollisionObject* colObjB = &c->getRigidBodyB();
+ if (colObjA == this)
+ {
+ colObjA->setIgnoreCollisionCheck(colObjB, true);
+ }
+ else
+ {
+ colObjB->setIgnoreCollisionCheck(colObjA, true);
+ }
+ }
+}
+
+void btRigidBody::removeConstraintRef(btTypedConstraint* c)
+{
+ int index = m_constraintRefs.findLinearSearch(c);
+ //don't remove constraints that are not referenced
+ if(index < m_constraintRefs.size())
+ {
+ m_constraintRefs.remove(c);
+ btCollisionObject* colObjA = &c->getRigidBodyA();
+ btCollisionObject* colObjB = &c->getRigidBodyB();
+ if (colObjA == this)
+ {
+ colObjA->setIgnoreCollisionCheck(colObjB, false);
+ }
+ else
+ {
+ colObjB->setIgnoreCollisionCheck(colObjA, false);
+ }
+ }
+}
+
+int btRigidBody::calculateSerializeBufferSize() const
+{
+ int sz = sizeof(btRigidBodyData);
+ return sz;
+}
+
+ ///fills the dataBuffer and returns the struct name (and 0 on failure)
+const char* btRigidBody::serialize(void* dataBuffer, class btSerializer* serializer) const
+{
+ btRigidBodyData* rbd = (btRigidBodyData*) dataBuffer;
+
+ btCollisionObject::serialize(&rbd->m_collisionObjectData, serializer);
+
+ m_invInertiaTensorWorld.serialize(rbd->m_invInertiaTensorWorld);
+ m_linearVelocity.serialize(rbd->m_linearVelocity);
+ m_angularVelocity.serialize(rbd->m_angularVelocity);
+ rbd->m_inverseMass = m_inverseMass;
+ m_angularFactor.serialize(rbd->m_angularFactor);
+ m_linearFactor.serialize(rbd->m_linearFactor);
+ m_gravity.serialize(rbd->m_gravity);
+ m_gravity_acceleration.serialize(rbd->m_gravity_acceleration);
+ m_invInertiaLocal.serialize(rbd->m_invInertiaLocal);
+ m_totalForce.serialize(rbd->m_totalForce);
+ m_totalTorque.serialize(rbd->m_totalTorque);
+ rbd->m_linearDamping = m_linearDamping;
+ rbd->m_angularDamping = m_angularDamping;
+ rbd->m_additionalDamping = m_additionalDamping;
+ rbd->m_additionalDampingFactor = m_additionalDampingFactor;
+ rbd->m_additionalLinearDampingThresholdSqr = m_additionalLinearDampingThresholdSqr;
+ rbd->m_additionalAngularDampingThresholdSqr = m_additionalAngularDampingThresholdSqr;
+ rbd->m_additionalAngularDampingFactor = m_additionalAngularDampingFactor;
+ rbd->m_linearSleepingThreshold=m_linearSleepingThreshold;
+ rbd->m_angularSleepingThreshold = m_angularSleepingThreshold;
+
+ // Fill padding with zeros to appease msan.
+#ifdef BT_USE_DOUBLE_PRECISION
+ memset(rbd->m_padding, 0, sizeof(rbd->m_padding));
+#endif
+
+ return btRigidBodyDataName;
+}
+
+
+
+void btRigidBody::serializeSingleObject(class btSerializer* serializer) const
+{
+ btChunk* chunk = serializer->allocate(calculateSerializeBufferSize(),1);
+ const char* structType = serialize(chunk->m_oldPtr, serializer);
+ serializer->finalizeChunk(chunk,structType,BT_RIGIDBODY_CODE,(void*)this);
+}
+
+