summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/bullet/BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.cpp')
-rw-r--r--thirdparty/bullet/BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.cpp1755
1 files changed, 820 insertions, 935 deletions
diff --git a/thirdparty/bullet/BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.cpp b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.cpp
index 63174a6ec0..def3227b43 100644
--- a/thirdparty/bullet/BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.cpp
+++ b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btSequentialImpulseConstraintSolver.cpp
@@ -21,7 +21,6 @@ subject to the following restrictions:
#include "btSequentialImpulseConstraintSolver.h"
#include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h"
-
#include "LinearMath/btIDebugDraw.h"
#include "LinearMath/btCpuFeatureUtility.h"
@@ -34,9 +33,9 @@ subject to the following restrictions:
//#include "btSolverBody.h"
//#include "btSolverConstraint.h"
#include "LinearMath/btAlignedObjectArray.h"
-#include <string.h> //for memset
+#include <string.h> //for memset
-int gNumSplitImpulseRecoveries = 0;
+int gNumSplitImpulseRecoveries = 0;
#include "BulletDynamics/Dynamics/btRigidBody.h"
@@ -45,13 +44,13 @@ int gNumSplitImpulseRecoveries = 0;
///Below are optional SSE2 and SSE4/FMA3 versions. We assume most hardware has SSE2. For SSE4/FMA3 we perform a CPU feature check.
static btScalar gResolveSingleConstraintRowGeneric_scalar_reference(btSolverBody& bodyA, btSolverBody& bodyB, const btSolverConstraint& c)
{
- btScalar deltaImpulse = c.m_rhs - btScalar(c.m_appliedImpulse)*c.m_cfm;
+ btScalar deltaImpulse = c.m_rhs - btScalar(c.m_appliedImpulse) * c.m_cfm;
const btScalar deltaVel1Dotn = c.m_contactNormal1.dot(bodyA.internalGetDeltaLinearVelocity()) + c.m_relpos1CrossNormal.dot(bodyA.internalGetDeltaAngularVelocity());
const btScalar deltaVel2Dotn = c.m_contactNormal2.dot(bodyB.internalGetDeltaLinearVelocity()) + c.m_relpos2CrossNormal.dot(bodyB.internalGetDeltaAngularVelocity());
// const btScalar delta_rel_vel = deltaVel1Dotn-deltaVel2Dotn;
- deltaImpulse -= deltaVel1Dotn*c.m_jacDiagABInv;
- deltaImpulse -= deltaVel2Dotn*c.m_jacDiagABInv;
+ deltaImpulse -= deltaVel1Dotn * c.m_jacDiagABInv;
+ deltaImpulse -= deltaVel2Dotn * c.m_jacDiagABInv;
const btScalar sum = btScalar(c.m_appliedImpulse) + deltaImpulse;
if (sum < c.m_lowerLimit)
@@ -69,21 +68,20 @@ static btScalar gResolveSingleConstraintRowGeneric_scalar_reference(btSolverBody
c.m_appliedImpulse = sum;
}
- bodyA.internalApplyImpulse(c.m_contactNormal1*bodyA.internalGetInvMass(), c.m_angularComponentA, deltaImpulse);
- bodyB.internalApplyImpulse(c.m_contactNormal2*bodyB.internalGetInvMass(), c.m_angularComponentB, deltaImpulse);
+ bodyA.internalApplyImpulse(c.m_contactNormal1 * bodyA.internalGetInvMass(), c.m_angularComponentA, deltaImpulse);
+ bodyB.internalApplyImpulse(c.m_contactNormal2 * bodyB.internalGetInvMass(), c.m_angularComponentB, deltaImpulse);
- return deltaImpulse*(1./c.m_jacDiagABInv);
+ return deltaImpulse * (1. / c.m_jacDiagABInv);
}
-
static btScalar gResolveSingleConstraintRowLowerLimit_scalar_reference(btSolverBody& bodyA, btSolverBody& bodyB, const btSolverConstraint& c)
{
- btScalar deltaImpulse = c.m_rhs - btScalar(c.m_appliedImpulse)*c.m_cfm;
+ btScalar deltaImpulse = c.m_rhs - btScalar(c.m_appliedImpulse) * c.m_cfm;
const btScalar deltaVel1Dotn = c.m_contactNormal1.dot(bodyA.internalGetDeltaLinearVelocity()) + c.m_relpos1CrossNormal.dot(bodyA.internalGetDeltaAngularVelocity());
const btScalar deltaVel2Dotn = c.m_contactNormal2.dot(bodyB.internalGetDeltaLinearVelocity()) + c.m_relpos2CrossNormal.dot(bodyB.internalGetDeltaAngularVelocity());
- deltaImpulse -= deltaVel1Dotn*c.m_jacDiagABInv;
- deltaImpulse -= deltaVel2Dotn*c.m_jacDiagABInv;
+ deltaImpulse -= deltaVel1Dotn * c.m_jacDiagABInv;
+ deltaImpulse -= deltaVel2Dotn * c.m_jacDiagABInv;
const btScalar sum = btScalar(c.m_appliedImpulse) + deltaImpulse;
if (sum < c.m_lowerLimit)
{
@@ -94,58 +92,55 @@ static btScalar gResolveSingleConstraintRowLowerLimit_scalar_reference(btSolverB
{
c.m_appliedImpulse = sum;
}
- bodyA.internalApplyImpulse(c.m_contactNormal1*bodyA.internalGetInvMass(), c.m_angularComponentA, deltaImpulse);
- bodyB.internalApplyImpulse(c.m_contactNormal2*bodyB.internalGetInvMass(), c.m_angularComponentB, deltaImpulse);
+ bodyA.internalApplyImpulse(c.m_contactNormal1 * bodyA.internalGetInvMass(), c.m_angularComponentA, deltaImpulse);
+ bodyB.internalApplyImpulse(c.m_contactNormal2 * bodyB.internalGetInvMass(), c.m_angularComponentB, deltaImpulse);
- return deltaImpulse*(1./c.m_jacDiagABInv);
+ return deltaImpulse * (1. / c.m_jacDiagABInv);
}
-
-
#ifdef USE_SIMD
#include <emmintrin.h>
-
-#define btVecSplat(x, e) _mm_shuffle_ps(x, x, _MM_SHUFFLE(e,e,e,e))
-static inline __m128 btSimdDot3( __m128 vec0, __m128 vec1 )
+#define btVecSplat(x, e) _mm_shuffle_ps(x, x, _MM_SHUFFLE(e, e, e, e))
+static inline __m128 btSimdDot3(__m128 vec0, __m128 vec1)
{
- __m128 result = _mm_mul_ps( vec0, vec1);
- return _mm_add_ps( btVecSplat( result, 0 ), _mm_add_ps( btVecSplat( result, 1 ), btVecSplat( result, 2 ) ) );
+ __m128 result = _mm_mul_ps(vec0, vec1);
+ return _mm_add_ps(btVecSplat(result, 0), _mm_add_ps(btVecSplat(result, 1), btVecSplat(result, 2)));
}
-#if defined (BT_ALLOW_SSE4)
+#if defined(BT_ALLOW_SSE4)
#include <intrin.h>
-#define USE_FMA 1
-#define USE_FMA3_INSTEAD_FMA4 1
-#define USE_SSE4_DOT 1
+#define USE_FMA 1
+#define USE_FMA3_INSTEAD_FMA4 1
+#define USE_SSE4_DOT 1
-#define SSE4_DP(a, b) _mm_dp_ps(a, b, 0x7f)
-#define SSE4_DP_FP(a, b) _mm_cvtss_f32(_mm_dp_ps(a, b, 0x7f))
+#define SSE4_DP(a, b) _mm_dp_ps(a, b, 0x7f)
+#define SSE4_DP_FP(a, b) _mm_cvtss_f32(_mm_dp_ps(a, b, 0x7f))
#if USE_SSE4_DOT
-#define DOT_PRODUCT(a, b) SSE4_DP(a, b)
+#define DOT_PRODUCT(a, b) SSE4_DP(a, b)
#else
-#define DOT_PRODUCT(a, b) btSimdDot3(a, b)
+#define DOT_PRODUCT(a, b) btSimdDot3(a, b)
#endif
#if USE_FMA
#if USE_FMA3_INSTEAD_FMA4
// a*b + c
-#define FMADD(a, b, c) _mm_fmadd_ps(a, b, c)
+#define FMADD(a, b, c) _mm_fmadd_ps(a, b, c)
// -(a*b) + c
-#define FMNADD(a, b, c) _mm_fnmadd_ps(a, b, c)
-#else // USE_FMA3
+#define FMNADD(a, b, c) _mm_fnmadd_ps(a, b, c)
+#else // USE_FMA3
// a*b + c
-#define FMADD(a, b, c) _mm_macc_ps(a, b, c)
+#define FMADD(a, b, c) _mm_macc_ps(a, b, c)
// -(a*b) + c
-#define FMNADD(a, b, c) _mm_nmacc_ps(a, b, c)
+#define FMNADD(a, b, c) _mm_nmacc_ps(a, b, c)
#endif
-#else // USE_FMA
+#else // USE_FMA
// c + a*b
-#define FMADD(a, b, c) _mm_add_ps(c, _mm_mul_ps(a, b))
+#define FMADD(a, b, c) _mm_add_ps(c, _mm_mul_ps(a, b))
// c - a*b
-#define FMNADD(a, b, c) _mm_sub_ps(c, _mm_mul_ps(a, b))
+#define FMNADD(a, b, c) _mm_sub_ps(c, _mm_mul_ps(a, b))
#endif
#endif
@@ -153,8 +148,8 @@ static inline __m128 btSimdDot3( __m128 vec0, __m128 vec1 )
static btScalar gResolveSingleConstraintRowGeneric_sse2(btSolverBody& bodyA, btSolverBody& bodyB, const btSolverConstraint& c)
{
__m128 cpAppliedImp = _mm_set1_ps(c.m_appliedImpulse);
- __m128 lowerLimit1 = _mm_set1_ps(c.m_lowerLimit);
- __m128 upperLimit1 = _mm_set1_ps(c.m_upperLimit);
+ __m128 lowerLimit1 = _mm_set1_ps(c.m_lowerLimit);
+ __m128 upperLimit1 = _mm_set1_ps(c.m_upperLimit);
btSimdScalar deltaImpulse = _mm_sub_ps(_mm_set1_ps(c.m_rhs), _mm_mul_ps(_mm_set1_ps(c.m_appliedImpulse), _mm_set1_ps(c.m_cfm)));
__m128 deltaVel1Dotn = _mm_add_ps(btSimdDot3(c.m_contactNormal1.mVec128, bodyA.internalGetDeltaLinearVelocity().mVec128), btSimdDot3(c.m_relpos1CrossNormal.mVec128, bodyA.internalGetDeltaAngularVelocity().mVec128));
__m128 deltaVel2Dotn = _mm_add_ps(btSimdDot3(c.m_contactNormal2.mVec128, bodyB.internalGetDeltaLinearVelocity().mVec128), btSimdDot3(c.m_relpos2CrossNormal.mVec128, bodyB.internalGetDeltaAngularVelocity().mVec128));
@@ -170,52 +165,49 @@ static btScalar gResolveSingleConstraintRowGeneric_sse2(btSolverBody& bodyA, btS
__m128 upperMinApplied = _mm_sub_ps(upperLimit1, cpAppliedImp);
deltaImpulse = _mm_or_ps(_mm_and_ps(resultUpperLess, deltaImpulse), _mm_andnot_ps(resultUpperLess, upperMinApplied));
c.m_appliedImpulse = _mm_or_ps(_mm_and_ps(resultUpperLess, c.m_appliedImpulse), _mm_andnot_ps(resultUpperLess, upperLimit1));
- __m128 linearComponentA = _mm_mul_ps(c.m_contactNormal1.mVec128, bodyA.internalGetInvMass().mVec128);
- __m128 linearComponentB = _mm_mul_ps((c.m_contactNormal2).mVec128, bodyB.internalGetInvMass().mVec128);
+ __m128 linearComponentA = _mm_mul_ps(c.m_contactNormal1.mVec128, bodyA.internalGetInvMass().mVec128);
+ __m128 linearComponentB = _mm_mul_ps((c.m_contactNormal2).mVec128, bodyB.internalGetInvMass().mVec128);
__m128 impulseMagnitude = deltaImpulse;
bodyA.internalGetDeltaLinearVelocity().mVec128 = _mm_add_ps(bodyA.internalGetDeltaLinearVelocity().mVec128, _mm_mul_ps(linearComponentA, impulseMagnitude));
bodyA.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(bodyA.internalGetDeltaAngularVelocity().mVec128, _mm_mul_ps(c.m_angularComponentA.mVec128, impulseMagnitude));
bodyB.internalGetDeltaLinearVelocity().mVec128 = _mm_add_ps(bodyB.internalGetDeltaLinearVelocity().mVec128, _mm_mul_ps(linearComponentB, impulseMagnitude));
bodyB.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(bodyB.internalGetDeltaAngularVelocity().mVec128, _mm_mul_ps(c.m_angularComponentB.mVec128, impulseMagnitude));
- return deltaImpulse.m_floats[0]/c.m_jacDiagABInv;
+ return deltaImpulse.m_floats[0] / c.m_jacDiagABInv;
}
-
// Enhanced version of gResolveSingleConstraintRowGeneric_sse2 with SSE4.1 and FMA3
static btScalar gResolveSingleConstraintRowGeneric_sse4_1_fma3(btSolverBody& bodyA, btSolverBody& bodyB, const btSolverConstraint& c)
{
-#if defined (BT_ALLOW_SSE4)
- __m128 tmp = _mm_set_ps1(c.m_jacDiagABInv);
- __m128 deltaImpulse = _mm_set_ps1(c.m_rhs - btScalar(c.m_appliedImpulse)*c.m_cfm);
- const __m128 lowerLimit = _mm_set_ps1(c.m_lowerLimit);
- const __m128 upperLimit = _mm_set_ps1(c.m_upperLimit);
- const __m128 deltaVel1Dotn = _mm_add_ps(DOT_PRODUCT(c.m_contactNormal1.mVec128, bodyA.internalGetDeltaLinearVelocity().mVec128), DOT_PRODUCT(c.m_relpos1CrossNormal.mVec128, bodyA.internalGetDeltaAngularVelocity().mVec128));
- const __m128 deltaVel2Dotn = _mm_add_ps(DOT_PRODUCT(c.m_contactNormal2.mVec128, bodyB.internalGetDeltaLinearVelocity().mVec128), DOT_PRODUCT(c.m_relpos2CrossNormal.mVec128, bodyB.internalGetDeltaAngularVelocity().mVec128));
- deltaImpulse = FMNADD(deltaVel1Dotn, tmp, deltaImpulse);
- deltaImpulse = FMNADD(deltaVel2Dotn, tmp, deltaImpulse);
- tmp = _mm_add_ps(c.m_appliedImpulse, deltaImpulse); // sum
- const __m128 maskLower = _mm_cmpgt_ps(tmp, lowerLimit);
- const __m128 maskUpper = _mm_cmpgt_ps(upperLimit, tmp);
- deltaImpulse = _mm_blendv_ps(_mm_sub_ps(lowerLimit, c.m_appliedImpulse), _mm_blendv_ps(_mm_sub_ps(upperLimit, c.m_appliedImpulse), deltaImpulse, maskUpper), maskLower);
- c.m_appliedImpulse = _mm_blendv_ps(lowerLimit, _mm_blendv_ps(upperLimit, tmp, maskUpper), maskLower);
- bodyA.internalGetDeltaLinearVelocity().mVec128 = FMADD(_mm_mul_ps(c.m_contactNormal1.mVec128, bodyA.internalGetInvMass().mVec128), deltaImpulse, bodyA.internalGetDeltaLinearVelocity().mVec128);
+#if defined(BT_ALLOW_SSE4)
+ __m128 tmp = _mm_set_ps1(c.m_jacDiagABInv);
+ __m128 deltaImpulse = _mm_set_ps1(c.m_rhs - btScalar(c.m_appliedImpulse) * c.m_cfm);
+ const __m128 lowerLimit = _mm_set_ps1(c.m_lowerLimit);
+ const __m128 upperLimit = _mm_set_ps1(c.m_upperLimit);
+ const __m128 deltaVel1Dotn = _mm_add_ps(DOT_PRODUCT(c.m_contactNormal1.mVec128, bodyA.internalGetDeltaLinearVelocity().mVec128), DOT_PRODUCT(c.m_relpos1CrossNormal.mVec128, bodyA.internalGetDeltaAngularVelocity().mVec128));
+ const __m128 deltaVel2Dotn = _mm_add_ps(DOT_PRODUCT(c.m_contactNormal2.mVec128, bodyB.internalGetDeltaLinearVelocity().mVec128), DOT_PRODUCT(c.m_relpos2CrossNormal.mVec128, bodyB.internalGetDeltaAngularVelocity().mVec128));
+ deltaImpulse = FMNADD(deltaVel1Dotn, tmp, deltaImpulse);
+ deltaImpulse = FMNADD(deltaVel2Dotn, tmp, deltaImpulse);
+ tmp = _mm_add_ps(c.m_appliedImpulse, deltaImpulse); // sum
+ const __m128 maskLower = _mm_cmpgt_ps(tmp, lowerLimit);
+ const __m128 maskUpper = _mm_cmpgt_ps(upperLimit, tmp);
+ deltaImpulse = _mm_blendv_ps(_mm_sub_ps(lowerLimit, c.m_appliedImpulse), _mm_blendv_ps(_mm_sub_ps(upperLimit, c.m_appliedImpulse), deltaImpulse, maskUpper), maskLower);
+ c.m_appliedImpulse = _mm_blendv_ps(lowerLimit, _mm_blendv_ps(upperLimit, tmp, maskUpper), maskLower);
+ bodyA.internalGetDeltaLinearVelocity().mVec128 = FMADD(_mm_mul_ps(c.m_contactNormal1.mVec128, bodyA.internalGetInvMass().mVec128), deltaImpulse, bodyA.internalGetDeltaLinearVelocity().mVec128);
bodyA.internalGetDeltaAngularVelocity().mVec128 = FMADD(c.m_angularComponentA.mVec128, deltaImpulse, bodyA.internalGetDeltaAngularVelocity().mVec128);
- bodyB.internalGetDeltaLinearVelocity().mVec128 = FMADD(_mm_mul_ps(c.m_contactNormal2.mVec128, bodyB.internalGetInvMass().mVec128), deltaImpulse, bodyB.internalGetDeltaLinearVelocity().mVec128);
+ bodyB.internalGetDeltaLinearVelocity().mVec128 = FMADD(_mm_mul_ps(c.m_contactNormal2.mVec128, bodyB.internalGetInvMass().mVec128), deltaImpulse, bodyB.internalGetDeltaLinearVelocity().mVec128);
bodyB.internalGetDeltaAngularVelocity().mVec128 = FMADD(c.m_angularComponentB.mVec128, deltaImpulse, bodyB.internalGetDeltaAngularVelocity().mVec128);
btSimdScalar deltaImp = deltaImpulse;
- return deltaImp.m_floats[0]*(1./c.m_jacDiagABInv);
+ return deltaImp.m_floats[0] * (1. / c.m_jacDiagABInv);
#else
- return gResolveSingleConstraintRowGeneric_sse2(bodyA,bodyB,c);
+ return gResolveSingleConstraintRowGeneric_sse2(bodyA, bodyB, c);
#endif
}
-
-
static btScalar gResolveSingleConstraintRowLowerLimit_sse2(btSolverBody& bodyA, btSolverBody& bodyB, const btSolverConstraint& c)
{
__m128 cpAppliedImp = _mm_set1_ps(c.m_appliedImpulse);
- __m128 lowerLimit1 = _mm_set1_ps(c.m_lowerLimit);
- __m128 upperLimit1 = _mm_set1_ps(c.m_upperLimit);
+ __m128 lowerLimit1 = _mm_set1_ps(c.m_lowerLimit);
+ __m128 upperLimit1 = _mm_set1_ps(c.m_upperLimit);
btSimdScalar deltaImpulse = _mm_sub_ps(_mm_set1_ps(c.m_rhs), _mm_mul_ps(_mm_set1_ps(c.m_appliedImpulse), _mm_set1_ps(c.m_cfm)));
__m128 deltaVel1Dotn = _mm_add_ps(btSimdDot3(c.m_contactNormal1.mVec128, bodyA.internalGetDeltaLinearVelocity().mVec128), btSimdDot3(c.m_relpos1CrossNormal.mVec128, bodyA.internalGetDeltaAngularVelocity().mVec128));
__m128 deltaVel2Dotn = _mm_add_ps(btSimdDot3(c.m_contactNormal2.mVec128, bodyB.internalGetDeltaLinearVelocity().mVec128), btSimdDot3(c.m_relpos2CrossNormal.mVec128, bodyB.internalGetDeltaAngularVelocity().mVec128));
@@ -228,104 +220,98 @@ static btScalar gResolveSingleConstraintRowLowerLimit_sse2(btSolverBody& bodyA,
__m128 lowMinApplied = _mm_sub_ps(lowerLimit1, cpAppliedImp);
deltaImpulse = _mm_or_ps(_mm_and_ps(resultLowerLess, lowMinApplied), _mm_andnot_ps(resultLowerLess, deltaImpulse));
c.m_appliedImpulse = _mm_or_ps(_mm_and_ps(resultLowerLess, lowerLimit1), _mm_andnot_ps(resultLowerLess, sum));
- __m128 linearComponentA = _mm_mul_ps(c.m_contactNormal1.mVec128, bodyA.internalGetInvMass().mVec128);
- __m128 linearComponentB = _mm_mul_ps(c.m_contactNormal2.mVec128, bodyB.internalGetInvMass().mVec128);
+ __m128 linearComponentA = _mm_mul_ps(c.m_contactNormal1.mVec128, bodyA.internalGetInvMass().mVec128);
+ __m128 linearComponentB = _mm_mul_ps(c.m_contactNormal2.mVec128, bodyB.internalGetInvMass().mVec128);
__m128 impulseMagnitude = deltaImpulse;
bodyA.internalGetDeltaLinearVelocity().mVec128 = _mm_add_ps(bodyA.internalGetDeltaLinearVelocity().mVec128, _mm_mul_ps(linearComponentA, impulseMagnitude));
bodyA.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(bodyA.internalGetDeltaAngularVelocity().mVec128, _mm_mul_ps(c.m_angularComponentA.mVec128, impulseMagnitude));
bodyB.internalGetDeltaLinearVelocity().mVec128 = _mm_add_ps(bodyB.internalGetDeltaLinearVelocity().mVec128, _mm_mul_ps(linearComponentB, impulseMagnitude));
bodyB.internalGetDeltaAngularVelocity().mVec128 = _mm_add_ps(bodyB.internalGetDeltaAngularVelocity().mVec128, _mm_mul_ps(c.m_angularComponentB.mVec128, impulseMagnitude));
- return deltaImpulse.m_floats[0]/c.m_jacDiagABInv;
+ return deltaImpulse.m_floats[0] / c.m_jacDiagABInv;
}
-
// Enhanced version of gResolveSingleConstraintRowGeneric_sse2 with SSE4.1 and FMA3
static btScalar gResolveSingleConstraintRowLowerLimit_sse4_1_fma3(btSolverBody& bodyA, btSolverBody& bodyB, const btSolverConstraint& c)
{
#ifdef BT_ALLOW_SSE4
- __m128 tmp = _mm_set_ps1(c.m_jacDiagABInv);
- __m128 deltaImpulse = _mm_set_ps1(c.m_rhs - btScalar(c.m_appliedImpulse)*c.m_cfm);
- const __m128 lowerLimit = _mm_set_ps1(c.m_lowerLimit);
- const __m128 deltaVel1Dotn = _mm_add_ps(DOT_PRODUCT(c.m_contactNormal1.mVec128, bodyA.internalGetDeltaLinearVelocity().mVec128), DOT_PRODUCT(c.m_relpos1CrossNormal.mVec128, bodyA.internalGetDeltaAngularVelocity().mVec128));
- const __m128 deltaVel2Dotn = _mm_add_ps(DOT_PRODUCT(c.m_contactNormal2.mVec128, bodyB.internalGetDeltaLinearVelocity().mVec128), DOT_PRODUCT(c.m_relpos2CrossNormal.mVec128, bodyB.internalGetDeltaAngularVelocity().mVec128));
- deltaImpulse = FMNADD(deltaVel1Dotn, tmp, deltaImpulse);
- deltaImpulse = FMNADD(deltaVel2Dotn, tmp, deltaImpulse);
- tmp = _mm_add_ps(c.m_appliedImpulse, deltaImpulse);
- const __m128 mask = _mm_cmpgt_ps(tmp, lowerLimit);
- deltaImpulse = _mm_blendv_ps(_mm_sub_ps(lowerLimit, c.m_appliedImpulse), deltaImpulse, mask);
- c.m_appliedImpulse = _mm_blendv_ps(lowerLimit, tmp, mask);
- bodyA.internalGetDeltaLinearVelocity().mVec128 = FMADD(_mm_mul_ps(c.m_contactNormal1.mVec128, bodyA.internalGetInvMass().mVec128), deltaImpulse, bodyA.internalGetDeltaLinearVelocity().mVec128);
+ __m128 tmp = _mm_set_ps1(c.m_jacDiagABInv);
+ __m128 deltaImpulse = _mm_set_ps1(c.m_rhs - btScalar(c.m_appliedImpulse) * c.m_cfm);
+ const __m128 lowerLimit = _mm_set_ps1(c.m_lowerLimit);
+ const __m128 deltaVel1Dotn = _mm_add_ps(DOT_PRODUCT(c.m_contactNormal1.mVec128, bodyA.internalGetDeltaLinearVelocity().mVec128), DOT_PRODUCT(c.m_relpos1CrossNormal.mVec128, bodyA.internalGetDeltaAngularVelocity().mVec128));
+ const __m128 deltaVel2Dotn = _mm_add_ps(DOT_PRODUCT(c.m_contactNormal2.mVec128, bodyB.internalGetDeltaLinearVelocity().mVec128), DOT_PRODUCT(c.m_relpos2CrossNormal.mVec128, bodyB.internalGetDeltaAngularVelocity().mVec128));
+ deltaImpulse = FMNADD(deltaVel1Dotn, tmp, deltaImpulse);
+ deltaImpulse = FMNADD(deltaVel2Dotn, tmp, deltaImpulse);
+ tmp = _mm_add_ps(c.m_appliedImpulse, deltaImpulse);
+ const __m128 mask = _mm_cmpgt_ps(tmp, lowerLimit);
+ deltaImpulse = _mm_blendv_ps(_mm_sub_ps(lowerLimit, c.m_appliedImpulse), deltaImpulse, mask);
+ c.m_appliedImpulse = _mm_blendv_ps(lowerLimit, tmp, mask);
+ bodyA.internalGetDeltaLinearVelocity().mVec128 = FMADD(_mm_mul_ps(c.m_contactNormal1.mVec128, bodyA.internalGetInvMass().mVec128), deltaImpulse, bodyA.internalGetDeltaLinearVelocity().mVec128);
bodyA.internalGetDeltaAngularVelocity().mVec128 = FMADD(c.m_angularComponentA.mVec128, deltaImpulse, bodyA.internalGetDeltaAngularVelocity().mVec128);
- bodyB.internalGetDeltaLinearVelocity().mVec128 = FMADD(_mm_mul_ps(c.m_contactNormal2.mVec128, bodyB.internalGetInvMass().mVec128), deltaImpulse, bodyB.internalGetDeltaLinearVelocity().mVec128);
+ bodyB.internalGetDeltaLinearVelocity().mVec128 = FMADD(_mm_mul_ps(c.m_contactNormal2.mVec128, bodyB.internalGetInvMass().mVec128), deltaImpulse, bodyB.internalGetDeltaLinearVelocity().mVec128);
bodyB.internalGetDeltaAngularVelocity().mVec128 = FMADD(c.m_angularComponentB.mVec128, deltaImpulse, bodyB.internalGetDeltaAngularVelocity().mVec128);
btSimdScalar deltaImp = deltaImpulse;
- return deltaImp.m_floats[0]*(1./c.m_jacDiagABInv);
+ return deltaImp.m_floats[0] * (1. / c.m_jacDiagABInv);
#else
- return gResolveSingleConstraintRowLowerLimit_sse2(bodyA,bodyB,c);
-#endif //BT_ALLOW_SSE4
+ return gResolveSingleConstraintRowLowerLimit_sse2(bodyA, bodyB, c);
+#endif //BT_ALLOW_SSE4
}
+#endif //USE_SIMD
-#endif //USE_SIMD
-
-
-
-btScalar btSequentialImpulseConstraintSolver::resolveSingleConstraintRowGenericSIMD(btSolverBody& bodyA,btSolverBody& bodyB,const btSolverConstraint& c)
+btScalar btSequentialImpulseConstraintSolver::resolveSingleConstraintRowGenericSIMD(btSolverBody& bodyA, btSolverBody& bodyB, const btSolverConstraint& c)
{
return m_resolveSingleConstraintRowGeneric(bodyA, bodyB, c);
}
// Project Gauss Seidel or the equivalent Sequential Impulse
-btScalar btSequentialImpulseConstraintSolver::resolveSingleConstraintRowGeneric(btSolverBody& bodyA,btSolverBody& bodyB,const btSolverConstraint& c)
+btScalar btSequentialImpulseConstraintSolver::resolveSingleConstraintRowGeneric(btSolverBody& bodyA, btSolverBody& bodyB, const btSolverConstraint& c)
{
return m_resolveSingleConstraintRowGeneric(bodyA, bodyB, c);
}
-btScalar btSequentialImpulseConstraintSolver::resolveSingleConstraintRowLowerLimitSIMD(btSolverBody& bodyA,btSolverBody& bodyB,const btSolverConstraint& c)
+btScalar btSequentialImpulseConstraintSolver::resolveSingleConstraintRowLowerLimitSIMD(btSolverBody& bodyA, btSolverBody& bodyB, const btSolverConstraint& c)
{
return m_resolveSingleConstraintRowLowerLimit(bodyA, bodyB, c);
}
-
-btScalar btSequentialImpulseConstraintSolver::resolveSingleConstraintRowLowerLimit(btSolverBody& bodyA,btSolverBody& bodyB,const btSolverConstraint& c)
+btScalar btSequentialImpulseConstraintSolver::resolveSingleConstraintRowLowerLimit(btSolverBody& bodyA, btSolverBody& bodyB, const btSolverConstraint& c)
{
return m_resolveSingleConstraintRowLowerLimit(bodyA, bodyB, c);
}
-
static btScalar gResolveSplitPenetrationImpulse_scalar_reference(
- btSolverBody& bodyA,
- btSolverBody& bodyB,
- const btSolverConstraint& c)
+ btSolverBody& bodyA,
+ btSolverBody& bodyB,
+ const btSolverConstraint& c)
{
btScalar deltaImpulse = 0.f;
- if (c.m_rhsPenetration)
- {
- gNumSplitImpulseRecoveries++;
- deltaImpulse = c.m_rhsPenetration-btScalar(c.m_appliedPushImpulse)*c.m_cfm;
- const btScalar deltaVel1Dotn = c.m_contactNormal1.dot(bodyA.internalGetPushVelocity()) + c.m_relpos1CrossNormal.dot(bodyA.internalGetTurnVelocity());
- const btScalar deltaVel2Dotn = c.m_contactNormal2.dot(bodyB.internalGetPushVelocity()) + c.m_relpos2CrossNormal.dot(bodyB.internalGetTurnVelocity());
-
- deltaImpulse -= deltaVel1Dotn*c.m_jacDiagABInv;
- deltaImpulse -= deltaVel2Dotn*c.m_jacDiagABInv;
- const btScalar sum = btScalar(c.m_appliedPushImpulse) + deltaImpulse;
- if (sum < c.m_lowerLimit)
- {
- deltaImpulse = c.m_lowerLimit-c.m_appliedPushImpulse;
- c.m_appliedPushImpulse = c.m_lowerLimit;
- }
- else
- {
- c.m_appliedPushImpulse = sum;
- }
- bodyA.internalApplyPushImpulse(c.m_contactNormal1*bodyA.internalGetInvMass(),c.m_angularComponentA,deltaImpulse);
- bodyB.internalApplyPushImpulse(c.m_contactNormal2*bodyB.internalGetInvMass(),c.m_angularComponentB,deltaImpulse);
- }
- return deltaImpulse*(1./c.m_jacDiagABInv);
+ if (c.m_rhsPenetration)
+ {
+ gNumSplitImpulseRecoveries++;
+ deltaImpulse = c.m_rhsPenetration - btScalar(c.m_appliedPushImpulse) * c.m_cfm;
+ const btScalar deltaVel1Dotn = c.m_contactNormal1.dot(bodyA.internalGetPushVelocity()) + c.m_relpos1CrossNormal.dot(bodyA.internalGetTurnVelocity());
+ const btScalar deltaVel2Dotn = c.m_contactNormal2.dot(bodyB.internalGetPushVelocity()) + c.m_relpos2CrossNormal.dot(bodyB.internalGetTurnVelocity());
+
+ deltaImpulse -= deltaVel1Dotn * c.m_jacDiagABInv;
+ deltaImpulse -= deltaVel2Dotn * c.m_jacDiagABInv;
+ const btScalar sum = btScalar(c.m_appliedPushImpulse) + deltaImpulse;
+ if (sum < c.m_lowerLimit)
+ {
+ deltaImpulse = c.m_lowerLimit - c.m_appliedPushImpulse;
+ c.m_appliedPushImpulse = c.m_lowerLimit;
+ }
+ else
+ {
+ c.m_appliedPushImpulse = sum;
+ }
+ bodyA.internalApplyPushImpulse(c.m_contactNormal1 * bodyA.internalGetInvMass(), c.m_angularComponentA, deltaImpulse);
+ bodyB.internalApplyPushImpulse(c.m_contactNormal2 * bodyB.internalGetInvMass(), c.m_angularComponentB, deltaImpulse);
+ }
+ return deltaImpulse * (1. / c.m_jacDiagABInv);
}
-static btScalar gResolveSplitPenetrationImpulse_sse2(btSolverBody& bodyA,btSolverBody& bodyB,const btSolverConstraint& c)
+static btScalar gResolveSplitPenetrationImpulse_sse2(btSolverBody& bodyA, btSolverBody& bodyB, const btSolverConstraint& c)
{
#ifdef USE_SIMD
if (!c.m_rhsPenetration)
@@ -334,113 +320,109 @@ static btScalar gResolveSplitPenetrationImpulse_sse2(btSolverBody& bodyA,btSolve
gNumSplitImpulseRecoveries++;
__m128 cpAppliedImp = _mm_set1_ps(c.m_appliedPushImpulse);
- __m128 lowerLimit1 = _mm_set1_ps(c.m_lowerLimit);
- __m128 upperLimit1 = _mm_set1_ps(c.m_upperLimit);
- __m128 deltaImpulse = _mm_sub_ps(_mm_set1_ps(c.m_rhsPenetration), _mm_mul_ps(_mm_set1_ps(c.m_appliedPushImpulse),_mm_set1_ps(c.m_cfm)));
- __m128 deltaVel1Dotn = _mm_add_ps(btSimdDot3(c.m_contactNormal1.mVec128,bodyA.internalGetPushVelocity().mVec128), btSimdDot3(c.m_relpos1CrossNormal.mVec128,bodyA.internalGetTurnVelocity().mVec128));
- __m128 deltaVel2Dotn = _mm_add_ps(btSimdDot3(c.m_contactNormal2.mVec128,bodyB.internalGetPushVelocity().mVec128), btSimdDot3(c.m_relpos2CrossNormal.mVec128,bodyB.internalGetTurnVelocity().mVec128));
- deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel1Dotn,_mm_set1_ps(c.m_jacDiagABInv)));
- deltaImpulse = _mm_sub_ps(deltaImpulse,_mm_mul_ps(deltaVel2Dotn,_mm_set1_ps(c.m_jacDiagABInv)));
- btSimdScalar sum = _mm_add_ps(cpAppliedImp,deltaImpulse);
- btSimdScalar resultLowerLess,resultUpperLess;
- resultLowerLess = _mm_cmplt_ps(sum,lowerLimit1);
- resultUpperLess = _mm_cmplt_ps(sum,upperLimit1);
- __m128 lowMinApplied = _mm_sub_ps(lowerLimit1,cpAppliedImp);
- deltaImpulse = _mm_or_ps( _mm_and_ps(resultLowerLess, lowMinApplied), _mm_andnot_ps(resultLowerLess, deltaImpulse) );
- c.m_appliedPushImpulse = _mm_or_ps( _mm_and_ps(resultLowerLess, lowerLimit1), _mm_andnot_ps(resultLowerLess, sum) );
- __m128 linearComponentA = _mm_mul_ps(c.m_contactNormal1.mVec128,bodyA.internalGetInvMass().mVec128);
- __m128 linearComponentB = _mm_mul_ps(c.m_contactNormal2.mVec128,bodyB.internalGetInvMass().mVec128);
+ __m128 lowerLimit1 = _mm_set1_ps(c.m_lowerLimit);
+ __m128 upperLimit1 = _mm_set1_ps(c.m_upperLimit);
+ __m128 deltaImpulse = _mm_sub_ps(_mm_set1_ps(c.m_rhsPenetration), _mm_mul_ps(_mm_set1_ps(c.m_appliedPushImpulse), _mm_set1_ps(c.m_cfm)));
+ __m128 deltaVel1Dotn = _mm_add_ps(btSimdDot3(c.m_contactNormal1.mVec128, bodyA.internalGetPushVelocity().mVec128), btSimdDot3(c.m_relpos1CrossNormal.mVec128, bodyA.internalGetTurnVelocity().mVec128));
+ __m128 deltaVel2Dotn = _mm_add_ps(btSimdDot3(c.m_contactNormal2.mVec128, bodyB.internalGetPushVelocity().mVec128), btSimdDot3(c.m_relpos2CrossNormal.mVec128, bodyB.internalGetTurnVelocity().mVec128));
+ deltaImpulse = _mm_sub_ps(deltaImpulse, _mm_mul_ps(deltaVel1Dotn, _mm_set1_ps(c.m_jacDiagABInv)));
+ deltaImpulse = _mm_sub_ps(deltaImpulse, _mm_mul_ps(deltaVel2Dotn, _mm_set1_ps(c.m_jacDiagABInv)));
+ btSimdScalar sum = _mm_add_ps(cpAppliedImp, deltaImpulse);
+ btSimdScalar resultLowerLess, resultUpperLess;
+ resultLowerLess = _mm_cmplt_ps(sum, lowerLimit1);
+ resultUpperLess = _mm_cmplt_ps(sum, upperLimit1);
+ __m128 lowMinApplied = _mm_sub_ps(lowerLimit1, cpAppliedImp);
+ deltaImpulse = _mm_or_ps(_mm_and_ps(resultLowerLess, lowMinApplied), _mm_andnot_ps(resultLowerLess, deltaImpulse));
+ c.m_appliedPushImpulse = _mm_or_ps(_mm_and_ps(resultLowerLess, lowerLimit1), _mm_andnot_ps(resultLowerLess, sum));
+ __m128 linearComponentA = _mm_mul_ps(c.m_contactNormal1.mVec128, bodyA.internalGetInvMass().mVec128);
+ __m128 linearComponentB = _mm_mul_ps(c.m_contactNormal2.mVec128, bodyB.internalGetInvMass().mVec128);
__m128 impulseMagnitude = deltaImpulse;
- bodyA.internalGetPushVelocity().mVec128 = _mm_add_ps(bodyA.internalGetPushVelocity().mVec128,_mm_mul_ps(linearComponentA,impulseMagnitude));
- bodyA.internalGetTurnVelocity().mVec128 = _mm_add_ps(bodyA.internalGetTurnVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentA.mVec128,impulseMagnitude));
- bodyB.internalGetPushVelocity().mVec128 = _mm_add_ps(bodyB.internalGetPushVelocity().mVec128,_mm_mul_ps(linearComponentB,impulseMagnitude));
- bodyB.internalGetTurnVelocity().mVec128 = _mm_add_ps(bodyB.internalGetTurnVelocity().mVec128 ,_mm_mul_ps(c.m_angularComponentB.mVec128,impulseMagnitude));
+ bodyA.internalGetPushVelocity().mVec128 = _mm_add_ps(bodyA.internalGetPushVelocity().mVec128, _mm_mul_ps(linearComponentA, impulseMagnitude));
+ bodyA.internalGetTurnVelocity().mVec128 = _mm_add_ps(bodyA.internalGetTurnVelocity().mVec128, _mm_mul_ps(c.m_angularComponentA.mVec128, impulseMagnitude));
+ bodyB.internalGetPushVelocity().mVec128 = _mm_add_ps(bodyB.internalGetPushVelocity().mVec128, _mm_mul_ps(linearComponentB, impulseMagnitude));
+ bodyB.internalGetTurnVelocity().mVec128 = _mm_add_ps(bodyB.internalGetTurnVelocity().mVec128, _mm_mul_ps(c.m_angularComponentB.mVec128, impulseMagnitude));
btSimdScalar deltaImp = deltaImpulse;
return deltaImp.m_floats[0] * (1. / c.m_jacDiagABInv);
#else
- return gResolveSplitPenetrationImpulse_scalar_reference(bodyA,bodyB,c);
+ return gResolveSplitPenetrationImpulse_scalar_reference(bodyA, bodyB, c);
#endif
}
-
btSequentialImpulseConstraintSolver::btSequentialImpulseConstraintSolver()
{
- m_btSeed2 = 0;
- m_cachedSolverMode = 0;
- setupSolverFunctions( false );
+ m_btSeed2 = 0;
+ m_cachedSolverMode = 0;
+ setupSolverFunctions(false);
}
-void btSequentialImpulseConstraintSolver::setupSolverFunctions( bool useSimd )
+void btSequentialImpulseConstraintSolver::setupSolverFunctions(bool useSimd)
{
- m_resolveSingleConstraintRowGeneric = gResolveSingleConstraintRowGeneric_scalar_reference;
- m_resolveSingleConstraintRowLowerLimit = gResolveSingleConstraintRowLowerLimit_scalar_reference;
- m_resolveSplitPenetrationImpulse = gResolveSplitPenetrationImpulse_scalar_reference;
+ m_resolveSingleConstraintRowGeneric = gResolveSingleConstraintRowGeneric_scalar_reference;
+ m_resolveSingleConstraintRowLowerLimit = gResolveSingleConstraintRowLowerLimit_scalar_reference;
+ m_resolveSplitPenetrationImpulse = gResolveSplitPenetrationImpulse_scalar_reference;
- if ( useSimd )
- {
+ if (useSimd)
+ {
#ifdef USE_SIMD
- m_resolveSingleConstraintRowGeneric = gResolveSingleConstraintRowGeneric_sse2;
- m_resolveSingleConstraintRowLowerLimit = gResolveSingleConstraintRowLowerLimit_sse2;
- m_resolveSplitPenetrationImpulse = gResolveSplitPenetrationImpulse_sse2;
+ m_resolveSingleConstraintRowGeneric = gResolveSingleConstraintRowGeneric_sse2;
+ m_resolveSingleConstraintRowLowerLimit = gResolveSingleConstraintRowLowerLimit_sse2;
+ m_resolveSplitPenetrationImpulse = gResolveSplitPenetrationImpulse_sse2;
#ifdef BT_ALLOW_SSE4
- int cpuFeatures = btCpuFeatureUtility::getCpuFeatures();
- if ((cpuFeatures & btCpuFeatureUtility::CPU_FEATURE_FMA3) && (cpuFeatures & btCpuFeatureUtility::CPU_FEATURE_SSE4_1))
- {
- m_resolveSingleConstraintRowGeneric = gResolveSingleConstraintRowGeneric_sse4_1_fma3;
- m_resolveSingleConstraintRowLowerLimit = gResolveSingleConstraintRowLowerLimit_sse4_1_fma3;
- }
-#endif//BT_ALLOW_SSE4
-#endif //USE_SIMD
- }
+ int cpuFeatures = btCpuFeatureUtility::getCpuFeatures();
+ if ((cpuFeatures & btCpuFeatureUtility::CPU_FEATURE_FMA3) && (cpuFeatures & btCpuFeatureUtility::CPU_FEATURE_SSE4_1))
+ {
+ m_resolveSingleConstraintRowGeneric = gResolveSingleConstraintRowGeneric_sse4_1_fma3;
+ m_resolveSingleConstraintRowLowerLimit = gResolveSingleConstraintRowLowerLimit_sse4_1_fma3;
+ }
+#endif //BT_ALLOW_SSE4
+#endif //USE_SIMD
+ }
}
- btSequentialImpulseConstraintSolver::~btSequentialImpulseConstraintSolver()
- {
- }
-
- btSingleConstraintRowSolver btSequentialImpulseConstraintSolver::getScalarConstraintRowSolverGeneric()
- {
- return gResolveSingleConstraintRowGeneric_scalar_reference;
- }
+btSequentialImpulseConstraintSolver::~btSequentialImpulseConstraintSolver()
+{
+}
- btSingleConstraintRowSolver btSequentialImpulseConstraintSolver::getScalarConstraintRowSolverLowerLimit()
- {
- return gResolveSingleConstraintRowLowerLimit_scalar_reference;
- }
+btSingleConstraintRowSolver btSequentialImpulseConstraintSolver::getScalarConstraintRowSolverGeneric()
+{
+ return gResolveSingleConstraintRowGeneric_scalar_reference;
+}
+btSingleConstraintRowSolver btSequentialImpulseConstraintSolver::getScalarConstraintRowSolverLowerLimit()
+{
+ return gResolveSingleConstraintRowLowerLimit_scalar_reference;
+}
#ifdef USE_SIMD
- btSingleConstraintRowSolver btSequentialImpulseConstraintSolver::getSSE2ConstraintRowSolverGeneric()
- {
- return gResolveSingleConstraintRowGeneric_sse2;
- }
- btSingleConstraintRowSolver btSequentialImpulseConstraintSolver::getSSE2ConstraintRowSolverLowerLimit()
- {
- return gResolveSingleConstraintRowLowerLimit_sse2;
- }
+btSingleConstraintRowSolver btSequentialImpulseConstraintSolver::getSSE2ConstraintRowSolverGeneric()
+{
+ return gResolveSingleConstraintRowGeneric_sse2;
+}
+btSingleConstraintRowSolver btSequentialImpulseConstraintSolver::getSSE2ConstraintRowSolverLowerLimit()
+{
+ return gResolveSingleConstraintRowLowerLimit_sse2;
+}
#ifdef BT_ALLOW_SSE4
- btSingleConstraintRowSolver btSequentialImpulseConstraintSolver::getSSE4_1ConstraintRowSolverGeneric()
- {
- return gResolveSingleConstraintRowGeneric_sse4_1_fma3;
- }
- btSingleConstraintRowSolver btSequentialImpulseConstraintSolver::getSSE4_1ConstraintRowSolverLowerLimit()
- {
- return gResolveSingleConstraintRowLowerLimit_sse4_1_fma3;
- }
-#endif //BT_ALLOW_SSE4
-#endif //USE_SIMD
+btSingleConstraintRowSolver btSequentialImpulseConstraintSolver::getSSE4_1ConstraintRowSolverGeneric()
+{
+ return gResolveSingleConstraintRowGeneric_sse4_1_fma3;
+}
+btSingleConstraintRowSolver btSequentialImpulseConstraintSolver::getSSE4_1ConstraintRowSolverLowerLimit()
+{
+ return gResolveSingleConstraintRowLowerLimit_sse4_1_fma3;
+}
+#endif //BT_ALLOW_SSE4
+#endif //USE_SIMD
unsigned long btSequentialImpulseConstraintSolver::btRand2()
{
- m_btSeed2 = (1664525L*m_btSeed2 + 1013904223L) & 0xffffffff;
+ m_btSeed2 = (1664525L * m_btSeed2 + 1013904223L) & 0xffffffff;
return m_btSeed2;
}
-
-
//See ODE: adam's all-int straightforward(?) dRandInt (0..n-1)
-int btSequentialImpulseConstraintSolver::btRandInt2 (int n)
+int btSequentialImpulseConstraintSolver::btRandInt2(int n)
{
// seems good; xor-fold and modulus
const unsigned long un = static_cast<unsigned long>(n);
@@ -448,15 +430,20 @@ int btSequentialImpulseConstraintSolver::btRandInt2 (int n)
// note: probably more aggressive than it needs to be -- might be
// able to get away without one or two of the innermost branches.
- if (un <= 0x00010000UL) {
+ if (un <= 0x00010000UL)
+ {
r ^= (r >> 16);
- if (un <= 0x00000100UL) {
+ if (un <= 0x00000100UL)
+ {
r ^= (r >> 8);
- if (un <= 0x00000010UL) {
+ if (un <= 0x00000010UL)
+ {
r ^= (r >> 4);
- if (un <= 0x00000004UL) {
+ if (un <= 0x00000004UL)
+ {
r ^= (r >> 2);
- if (un <= 0x00000002UL) {
+ if (un <= 0x00000002UL)
+ {
r ^= (r >> 1);
}
}
@@ -464,70 +451,56 @@ int btSequentialImpulseConstraintSolver::btRandInt2 (int n)
}
}
- return (int) (r % un);
+ return (int)(r % un);
}
-
-
-void btSequentialImpulseConstraintSolver::initSolverBody(btSolverBody* solverBody, btCollisionObject* collisionObject, btScalar timeStep)
+void btSequentialImpulseConstraintSolver::initSolverBody(btSolverBody* solverBody, btCollisionObject* collisionObject, btScalar timeStep)
{
+ btRigidBody* rb = collisionObject ? btRigidBody::upcast(collisionObject) : 0;
- btRigidBody* rb = collisionObject? btRigidBody::upcast(collisionObject) : 0;
-
- solverBody->internalGetDeltaLinearVelocity().setValue(0.f,0.f,0.f);
- solverBody->internalGetDeltaAngularVelocity().setValue(0.f,0.f,0.f);
- solverBody->internalGetPushVelocity().setValue(0.f,0.f,0.f);
- solverBody->internalGetTurnVelocity().setValue(0.f,0.f,0.f);
+ solverBody->internalGetDeltaLinearVelocity().setValue(0.f, 0.f, 0.f);
+ solverBody->internalGetDeltaAngularVelocity().setValue(0.f, 0.f, 0.f);
+ solverBody->internalGetPushVelocity().setValue(0.f, 0.f, 0.f);
+ solverBody->internalGetTurnVelocity().setValue(0.f, 0.f, 0.f);
if (rb)
{
solverBody->m_worldTransform = rb->getWorldTransform();
- solverBody->internalSetInvMass(btVector3(rb->getInvMass(),rb->getInvMass(),rb->getInvMass())*rb->getLinearFactor());
+ solverBody->internalSetInvMass(btVector3(rb->getInvMass(), rb->getInvMass(), rb->getInvMass()) * rb->getLinearFactor());
solverBody->m_originalBody = rb;
solverBody->m_angularFactor = rb->getAngularFactor();
solverBody->m_linearFactor = rb->getLinearFactor();
solverBody->m_linearVelocity = rb->getLinearVelocity();
solverBody->m_angularVelocity = rb->getAngularVelocity();
- solverBody->m_externalForceImpulse = rb->getTotalForce()*rb->getInvMass()*timeStep;
- solverBody->m_externalTorqueImpulse = rb->getTotalTorque()*rb->getInvInertiaTensorWorld()*timeStep ;
-
- } else
+ solverBody->m_externalForceImpulse = rb->getTotalForce() * rb->getInvMass() * timeStep;
+ solverBody->m_externalTorqueImpulse = rb->getTotalTorque() * rb->getInvInertiaTensorWorld() * timeStep;
+ }
+ else
{
solverBody->m_worldTransform.setIdentity();
- solverBody->internalSetInvMass(btVector3(0,0,0));
+ solverBody->internalSetInvMass(btVector3(0, 0, 0));
solverBody->m_originalBody = 0;
- solverBody->m_angularFactor.setValue(1,1,1);
- solverBody->m_linearFactor.setValue(1,1,1);
- solverBody->m_linearVelocity.setValue(0,0,0);
- solverBody->m_angularVelocity.setValue(0,0,0);
- solverBody->m_externalForceImpulse.setValue(0,0,0);
- solverBody->m_externalTorqueImpulse.setValue(0,0,0);
+ solverBody->m_angularFactor.setValue(1, 1, 1);
+ solverBody->m_linearFactor.setValue(1, 1, 1);
+ solverBody->m_linearVelocity.setValue(0, 0, 0);
+ solverBody->m_angularVelocity.setValue(0, 0, 0);
+ solverBody->m_externalForceImpulse.setValue(0, 0, 0);
+ solverBody->m_externalTorqueImpulse.setValue(0, 0, 0);
}
-
-
}
-
-
-
-
-
btScalar btSequentialImpulseConstraintSolver::restitutionCurve(btScalar rel_vel, btScalar restitution, btScalar velocityThreshold)
{
//printf("rel_vel =%f\n", rel_vel);
- if (btFabs(rel_vel)<velocityThreshold)
+ if (btFabs(rel_vel) < velocityThreshold)
return 0.;
btScalar rest = restitution * -rel_vel;
return rest;
}
-
-
-void btSequentialImpulseConstraintSolver::applyAnisotropicFriction(btCollisionObject* colObj,btVector3& frictionDirection, int frictionMode)
+void btSequentialImpulseConstraintSolver::applyAnisotropicFriction(btCollisionObject* colObj, btVector3& frictionDirection, int frictionMode)
{
-
-
if (colObj && colObj->hasAnisotropicFriction(frictionMode))
{
// transform to local coordinates
@@ -538,16 +511,10 @@ void btSequentialImpulseConstraintSolver::applyAnisotropicFriction(btCollisionOb
// ... and transform it back to global coordinates
frictionDirection = colObj->getWorldTransform().getBasis() * loc_lateral;
}
-
}
-
-
-
-void btSequentialImpulseConstraintSolver::setupFrictionConstraint(btSolverConstraint& solverConstraint, const btVector3& normalAxis,int solverBodyIdA,int solverBodyIdB,btManifoldPoint& cp,const btVector3& rel_pos1,const btVector3& rel_pos2,btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity, btScalar cfmSlip)
+void btSequentialImpulseConstraintSolver::setupFrictionConstraint(btSolverConstraint& solverConstraint, const btVector3& normalAxis, int solverBodyIdA, int solverBodyIdB, btManifoldPoint& cp, const btVector3& rel_pos1, const btVector3& rel_pos2, btCollisionObject* colObj0, btCollisionObject* colObj1, btScalar relaxation, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity, btScalar cfmSlip)
{
-
-
btSolverBody& solverBodyA = m_tmpSolverBodyPool[solverBodyIdA];
btSolverBody& solverBodyB = m_tmpSolverBodyPool[solverBodyIdB];
@@ -568,12 +535,13 @@ void btSequentialImpulseConstraintSolver::setupFrictionConstraint(btSolverConstr
solverConstraint.m_contactNormal1 = normalAxis;
btVector3 ftorqueAxis1 = rel_pos1.cross(solverConstraint.m_contactNormal1);
solverConstraint.m_relpos1CrossNormal = ftorqueAxis1;
- solverConstraint.m_angularComponentA = body0->getInvInertiaTensorWorld()*ftorqueAxis1*body0->getAngularFactor();
- }else
+ solverConstraint.m_angularComponentA = body0->getInvInertiaTensorWorld() * ftorqueAxis1 * body0->getAngularFactor();
+ }
+ else
{
solverConstraint.m_contactNormal1.setZero();
solverConstraint.m_relpos1CrossNormal.setZero();
- solverConstraint.m_angularComponentA .setZero();
+ solverConstraint.m_angularComponentA.setZero();
}
if (bodyA)
@@ -581,8 +549,9 @@ void btSequentialImpulseConstraintSolver::setupFrictionConstraint(btSolverConstr
solverConstraint.m_contactNormal2 = -normalAxis;
btVector3 ftorqueAxis1 = rel_pos2.cross(solverConstraint.m_contactNormal2);
solverConstraint.m_relpos2CrossNormal = ftorqueAxis1;
- solverConstraint.m_angularComponentB = bodyA->getInvInertiaTensorWorld()*ftorqueAxis1*bodyA->getAngularFactor();
- } else
+ solverConstraint.m_angularComponentB = bodyA->getInvInertiaTensorWorld() * ftorqueAxis1 * bodyA->getAngularFactor();
+ }
+ else
{
solverConstraint.m_contactNormal2.setZero();
solverConstraint.m_relpos2CrossNormal.setZero();
@@ -595,32 +564,28 @@ void btSequentialImpulseConstraintSolver::setupFrictionConstraint(btSolverConstr
btScalar denom1 = 0.f;
if (body0)
{
- vec = ( solverConstraint.m_angularComponentA).cross(rel_pos1);
+ vec = (solverConstraint.m_angularComponentA).cross(rel_pos1);
denom0 = body0->getInvMass() + normalAxis.dot(vec);
}
if (bodyA)
{
- vec = ( -solverConstraint.m_angularComponentB).cross(rel_pos2);
+ vec = (-solverConstraint.m_angularComponentB).cross(rel_pos2);
denom1 = bodyA->getInvMass() + normalAxis.dot(vec);
}
- btScalar denom = relaxation/(denom0+denom1);
+ btScalar denom = relaxation / (denom0 + denom1);
solverConstraint.m_jacDiagABInv = denom;
}
{
-
-
btScalar rel_vel;
- btScalar vel1Dotn = solverConstraint.m_contactNormal1.dot(body0?solverBodyA.m_linearVelocity+solverBodyA.m_externalForceImpulse:btVector3(0,0,0))
- + solverConstraint.m_relpos1CrossNormal.dot(body0?solverBodyA.m_angularVelocity:btVector3(0,0,0));
- btScalar vel2Dotn = solverConstraint.m_contactNormal2.dot(bodyA?solverBodyB.m_linearVelocity+solverBodyB.m_externalForceImpulse:btVector3(0,0,0))
- + solverConstraint.m_relpos2CrossNormal.dot(bodyA?solverBodyB.m_angularVelocity:btVector3(0,0,0));
+ btScalar vel1Dotn = solverConstraint.m_contactNormal1.dot(body0 ? solverBodyA.m_linearVelocity + solverBodyA.m_externalForceImpulse : btVector3(0, 0, 0)) + solverConstraint.m_relpos1CrossNormal.dot(body0 ? solverBodyA.m_angularVelocity : btVector3(0, 0, 0));
+ btScalar vel2Dotn = solverConstraint.m_contactNormal2.dot(bodyA ? solverBodyB.m_linearVelocity + solverBodyB.m_externalForceImpulse : btVector3(0, 0, 0)) + solverConstraint.m_relpos2CrossNormal.dot(bodyA ? solverBodyB.m_angularVelocity : btVector3(0, 0, 0));
- rel_vel = vel1Dotn+vel2Dotn;
+ rel_vel = vel1Dotn + vel2Dotn;
-// btScalar positionalError = 0.f;
+ // btScalar positionalError = 0.f;
- btScalar velocityError = desiredVelocity - rel_vel;
+ btScalar velocityError = desiredVelocity - rel_vel;
btScalar velocityImpulse = velocityError * solverConstraint.m_jacDiagABInv;
btScalar penetrationImpulse = btScalar(0);
@@ -628,8 +593,8 @@ void btSequentialImpulseConstraintSolver::setupFrictionConstraint(btSolverConstr
if (cp.m_contactPointFlags & BT_CONTACT_FLAG_FRICTION_ANCHOR)
{
btScalar distance = (cp.getPositionWorldOnA() - cp.getPositionWorldOnB()).dot(normalAxis);
- btScalar positionalError = -distance * infoGlobal.m_frictionERP/infoGlobal.m_timeStep;
- penetrationImpulse = positionalError*solverConstraint.m_jacDiagABInv;
+ btScalar positionalError = -distance * infoGlobal.m_frictionERP / infoGlobal.m_timeStep;
+ penetrationImpulse = positionalError * solverConstraint.m_jacDiagABInv;
}
solverConstraint.m_rhs = penetrationImpulse + velocityImpulse;
@@ -637,11 +602,10 @@ void btSequentialImpulseConstraintSolver::setupFrictionConstraint(btSolverConstr
solverConstraint.m_cfm = cfmSlip;
solverConstraint.m_lowerLimit = -solverConstraint.m_friction;
solverConstraint.m_upperLimit = solverConstraint.m_friction;
-
}
}
-btSolverConstraint& btSequentialImpulseConstraintSolver::addFrictionConstraint(const btVector3& normalAxis,int solverBodyIdA,int solverBodyIdB,int frictionIndex,btManifoldPoint& cp,const btVector3& rel_pos1,const btVector3& rel_pos2,btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity, btScalar cfmSlip)
+btSolverConstraint& btSequentialImpulseConstraintSolver::addFrictionConstraint(const btVector3& normalAxis, int solverBodyIdA, int solverBodyIdB, int frictionIndex, btManifoldPoint& cp, const btVector3& rel_pos1, const btVector3& rel_pos2, btCollisionObject* colObj0, btCollisionObject* colObj1, btScalar relaxation, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity, btScalar cfmSlip)
{
btSolverConstraint& solverConstraint = m_tmpSolverContactFrictionConstraintPool.expandNonInitializing();
solverConstraint.m_frictionIndex = frictionIndex;
@@ -650,15 +614,13 @@ btSolverConstraint& btSequentialImpulseConstraintSolver::addFrictionConstraint(c
return solverConstraint;
}
-
-void btSequentialImpulseConstraintSolver::setupTorsionalFrictionConstraint( btSolverConstraint& solverConstraint, const btVector3& normalAxis1,int solverBodyIdA,int solverBodyIdB,
- btManifoldPoint& cp,btScalar combinedTorsionalFriction, const btVector3& rel_pos1,const btVector3& rel_pos2,
- btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation,
- btScalar desiredVelocity, btScalar cfmSlip)
+void btSequentialImpulseConstraintSolver::setupTorsionalFrictionConstraint(btSolverConstraint& solverConstraint, const btVector3& normalAxis1, int solverBodyIdA, int solverBodyIdB,
+ btManifoldPoint& cp, btScalar combinedTorsionalFriction, const btVector3& rel_pos1, const btVector3& rel_pos2,
+ btCollisionObject* colObj0, btCollisionObject* colObj1, btScalar relaxation,
+ btScalar desiredVelocity, btScalar cfmSlip)
{
- btVector3 normalAxis(0,0,0);
-
+ btVector3 normalAxis(0, 0, 0);
solverConstraint.m_contactNormal1 = normalAxis;
solverConstraint.m_contactNormal2 = -normalAxis;
@@ -671,8 +633,8 @@ void btSequentialImpulseConstraintSolver::setupTorsionalFrictionConstraint( btSo
solverConstraint.m_solverBodyIdA = solverBodyIdA;
solverConstraint.m_solverBodyIdB = solverBodyIdB;
- solverConstraint.m_friction = combinedTorsionalFriction;
- solverConstraint.m_originalContactPoint = 0;
+ solverConstraint.m_friction = combinedTorsionalFriction;
+ solverConstraint.m_originalContactPoint = 0;
solverConstraint.m_appliedImpulse = 0.f;
solverConstraint.m_appliedPushImpulse = 0.f;
@@ -680,138 +642,125 @@ void btSequentialImpulseConstraintSolver::setupTorsionalFrictionConstraint( btSo
{
btVector3 ftorqueAxis1 = -normalAxis1;
solverConstraint.m_relpos1CrossNormal = ftorqueAxis1;
- solverConstraint.m_angularComponentA = body0 ? body0->getInvInertiaTensorWorld()*ftorqueAxis1*body0->getAngularFactor() : btVector3(0,0,0);
+ solverConstraint.m_angularComponentA = body0 ? body0->getInvInertiaTensorWorld() * ftorqueAxis1 * body0->getAngularFactor() : btVector3(0, 0, 0);
}
{
btVector3 ftorqueAxis1 = normalAxis1;
solverConstraint.m_relpos2CrossNormal = ftorqueAxis1;
- solverConstraint.m_angularComponentB = bodyA ? bodyA->getInvInertiaTensorWorld()*ftorqueAxis1*bodyA->getAngularFactor() : btVector3(0,0,0);
+ solverConstraint.m_angularComponentB = bodyA ? bodyA->getInvInertiaTensorWorld() * ftorqueAxis1 * bodyA->getAngularFactor() : btVector3(0, 0, 0);
}
-
{
- btVector3 iMJaA = body0?body0->getInvInertiaTensorWorld()*solverConstraint.m_relpos1CrossNormal:btVector3(0,0,0);
- btVector3 iMJaB = bodyA?bodyA->getInvInertiaTensorWorld()*solverConstraint.m_relpos2CrossNormal:btVector3(0,0,0);
+ btVector3 iMJaA = body0 ? body0->getInvInertiaTensorWorld() * solverConstraint.m_relpos1CrossNormal : btVector3(0, 0, 0);
+ btVector3 iMJaB = bodyA ? bodyA->getInvInertiaTensorWorld() * solverConstraint.m_relpos2CrossNormal : btVector3(0, 0, 0);
btScalar sum = 0;
sum += iMJaA.dot(solverConstraint.m_relpos1CrossNormal);
sum += iMJaB.dot(solverConstraint.m_relpos2CrossNormal);
- solverConstraint.m_jacDiagABInv = btScalar(1.)/sum;
+ solverConstraint.m_jacDiagABInv = btScalar(1.) / sum;
}
{
-
-
btScalar rel_vel;
- btScalar vel1Dotn = solverConstraint.m_contactNormal1.dot(body0?solverBodyA.m_linearVelocity+solverBodyA.m_externalForceImpulse:btVector3(0,0,0))
- + solverConstraint.m_relpos1CrossNormal.dot(body0?solverBodyA.m_angularVelocity:btVector3(0,0,0));
- btScalar vel2Dotn = solverConstraint.m_contactNormal2.dot(bodyA?solverBodyB.m_linearVelocity+solverBodyB.m_externalForceImpulse:btVector3(0,0,0))
- + solverConstraint.m_relpos2CrossNormal.dot(bodyA?solverBodyB.m_angularVelocity:btVector3(0,0,0));
+ btScalar vel1Dotn = solverConstraint.m_contactNormal1.dot(body0 ? solverBodyA.m_linearVelocity + solverBodyA.m_externalForceImpulse : btVector3(0, 0, 0)) + solverConstraint.m_relpos1CrossNormal.dot(body0 ? solverBodyA.m_angularVelocity : btVector3(0, 0, 0));
+ btScalar vel2Dotn = solverConstraint.m_contactNormal2.dot(bodyA ? solverBodyB.m_linearVelocity + solverBodyB.m_externalForceImpulse : btVector3(0, 0, 0)) + solverConstraint.m_relpos2CrossNormal.dot(bodyA ? solverBodyB.m_angularVelocity : btVector3(0, 0, 0));
- rel_vel = vel1Dotn+vel2Dotn;
+ rel_vel = vel1Dotn + vel2Dotn;
-// btScalar positionalError = 0.f;
+ // btScalar positionalError = 0.f;
- btSimdScalar velocityError = desiredVelocity - rel_vel;
- btSimdScalar velocityImpulse = velocityError * btSimdScalar(solverConstraint.m_jacDiagABInv);
+ btSimdScalar velocityError = desiredVelocity - rel_vel;
+ btSimdScalar velocityImpulse = velocityError * btSimdScalar(solverConstraint.m_jacDiagABInv);
solverConstraint.m_rhs = velocityImpulse;
solverConstraint.m_cfm = cfmSlip;
solverConstraint.m_lowerLimit = -solverConstraint.m_friction;
solverConstraint.m_upperLimit = solverConstraint.m_friction;
-
}
}
-
-
-
-
-
-
-
-btSolverConstraint& btSequentialImpulseConstraintSolver::addTorsionalFrictionConstraint(const btVector3& normalAxis,int solverBodyIdA,int solverBodyIdB,int frictionIndex,btManifoldPoint& cp,btScalar combinedTorsionalFriction, const btVector3& rel_pos1,const btVector3& rel_pos2,btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, btScalar desiredVelocity, btScalar cfmSlip)
+btSolverConstraint& btSequentialImpulseConstraintSolver::addTorsionalFrictionConstraint(const btVector3& normalAxis, int solverBodyIdA, int solverBodyIdB, int frictionIndex, btManifoldPoint& cp, btScalar combinedTorsionalFriction, const btVector3& rel_pos1, const btVector3& rel_pos2, btCollisionObject* colObj0, btCollisionObject* colObj1, btScalar relaxation, btScalar desiredVelocity, btScalar cfmSlip)
{
btSolverConstraint& solverConstraint = m_tmpSolverContactRollingFrictionConstraintPool.expandNonInitializing();
solverConstraint.m_frictionIndex = frictionIndex;
- setupTorsionalFrictionConstraint(solverConstraint, normalAxis, solverBodyIdA, solverBodyIdB, cp, combinedTorsionalFriction,rel_pos1, rel_pos2,
- colObj0, colObj1, relaxation, desiredVelocity, cfmSlip);
+ setupTorsionalFrictionConstraint(solverConstraint, normalAxis, solverBodyIdA, solverBodyIdB, cp, combinedTorsionalFriction, rel_pos1, rel_pos2,
+ colObj0, colObj1, relaxation, desiredVelocity, cfmSlip);
return solverConstraint;
}
-
-int btSequentialImpulseConstraintSolver::getOrInitSolverBody(btCollisionObject& body,btScalar timeStep)
+int btSequentialImpulseConstraintSolver::getOrInitSolverBody(btCollisionObject& body, btScalar timeStep)
{
#if BT_THREADSAFE
- int solverBodyId = -1;
- bool isRigidBodyType = btRigidBody::upcast( &body ) != NULL;
- if ( isRigidBodyType && !body.isStaticOrKinematicObject() )
- {
- // dynamic body
- // Dynamic bodies can only be in one island, so it's safe to write to the companionId
- solverBodyId = body.getCompanionId();
- if ( solverBodyId < 0 )
- {
- solverBodyId = m_tmpSolverBodyPool.size();
- btSolverBody& solverBody = m_tmpSolverBodyPool.expand();
- initSolverBody( &solverBody, &body, timeStep );
- body.setCompanionId( solverBodyId );
- }
- }
- else if (isRigidBodyType && body.isKinematicObject())
- {
- //
- // NOTE: must test for kinematic before static because some kinematic objects also
- // identify as "static"
- //
- // Kinematic bodies can be in multiple islands at once, so it is a
- // race condition to write to them, so we use an alternate method
- // to record the solverBodyId
- int uniqueId = body.getWorldArrayIndex();
- const int INVALID_SOLVER_BODY_ID = -1;
- if (uniqueId >= m_kinematicBodyUniqueIdToSolverBodyTable.size())
- {
- m_kinematicBodyUniqueIdToSolverBodyTable.resize(uniqueId + 1, INVALID_SOLVER_BODY_ID);
- }
- solverBodyId = m_kinematicBodyUniqueIdToSolverBodyTable[ uniqueId ];
- // if no table entry yet,
- if ( solverBodyId == INVALID_SOLVER_BODY_ID )
- {
- // create a table entry for this body
- solverBodyId = m_tmpSolverBodyPool.size();
- btSolverBody& solverBody = m_tmpSolverBodyPool.expand();
- initSolverBody( &solverBody, &body, timeStep );
- m_kinematicBodyUniqueIdToSolverBodyTable[ uniqueId ] = solverBodyId;
- }
- }
- else
- {
- bool isMultiBodyType = (body.getInternalType()&btCollisionObject::CO_FEATHERSTONE_LINK);
- // Incorrectly set collision object flags can degrade performance in various ways.
+ int solverBodyId = -1;
+ bool isRigidBodyType = btRigidBody::upcast(&body) != NULL;
+ if (isRigidBodyType && !body.isStaticOrKinematicObject())
+ {
+ // dynamic body
+ // Dynamic bodies can only be in one island, so it's safe to write to the companionId
+ solverBodyId = body.getCompanionId();
+ if (solverBodyId < 0)
+ {
+ solverBodyId = m_tmpSolverBodyPool.size();
+ btSolverBody& solverBody = m_tmpSolverBodyPool.expand();
+ initSolverBody(&solverBody, &body, timeStep);
+ body.setCompanionId(solverBodyId);
+ }
+ }
+ else if (isRigidBodyType && body.isKinematicObject())
+ {
+ //
+ // NOTE: must test for kinematic before static because some kinematic objects also
+ // identify as "static"
+ //
+ // Kinematic bodies can be in multiple islands at once, so it is a
+ // race condition to write to them, so we use an alternate method
+ // to record the solverBodyId
+ int uniqueId = body.getWorldArrayIndex();
+ const int INVALID_SOLVER_BODY_ID = -1;
+ if (uniqueId >= m_kinematicBodyUniqueIdToSolverBodyTable.size())
+ {
+ m_kinematicBodyUniqueIdToSolverBodyTable.resize(uniqueId + 1, INVALID_SOLVER_BODY_ID);
+ }
+ solverBodyId = m_kinematicBodyUniqueIdToSolverBodyTable[uniqueId];
+ // if no table entry yet,
+ if (solverBodyId == INVALID_SOLVER_BODY_ID)
+ {
+ // create a table entry for this body
+ solverBodyId = m_tmpSolverBodyPool.size();
+ btSolverBody& solverBody = m_tmpSolverBodyPool.expand();
+ initSolverBody(&solverBody, &body, timeStep);
+ m_kinematicBodyUniqueIdToSolverBodyTable[uniqueId] = solverBodyId;
+ }
+ }
+ else
+ {
+ bool isMultiBodyType = (body.getInternalType() & btCollisionObject::CO_FEATHERSTONE_LINK);
+ // Incorrectly set collision object flags can degrade performance in various ways.
if (!isMultiBodyType)
{
- btAssert( body.isStaticOrKinematicObject() );
+ btAssert(body.isStaticOrKinematicObject());
}
- //it could be a multibody link collider
- // all fixed bodies (inf mass) get mapped to a single solver id
- if ( m_fixedBodyId < 0 )
- {
- m_fixedBodyId = m_tmpSolverBodyPool.size();
- btSolverBody& fixedBody = m_tmpSolverBodyPool.expand();
- initSolverBody( &fixedBody, 0, timeStep );
- }
- solverBodyId = m_fixedBodyId;
- }
- btAssert( solverBodyId >= 0 && solverBodyId < m_tmpSolverBodyPool.size() );
+ //it could be a multibody link collider
+ // all fixed bodies (inf mass) get mapped to a single solver id
+ if (m_fixedBodyId < 0)
+ {
+ m_fixedBodyId = m_tmpSolverBodyPool.size();
+ btSolverBody& fixedBody = m_tmpSolverBodyPool.expand();
+ initSolverBody(&fixedBody, 0, timeStep);
+ }
+ solverBodyId = m_fixedBodyId;
+ }
+ btAssert(solverBodyId >= 0 && solverBodyId < m_tmpSolverBodyPool.size());
return solverBodyId;
-#else // BT_THREADSAFE
+#else // BT_THREADSAFE
- int solverBodyIdA = -1;
+ int solverBodyIdA = -1;
if (body.getCompanionId() >= 0)
{
//body has already been converted
solverBodyIdA = body.getCompanionId();
- btAssert(solverBodyIdA < m_tmpSolverBodyPool.size());
- } else
+ btAssert(solverBodyIdA < m_tmpSolverBodyPool.size());
+ }
+ else
{
btRigidBody* rb = btRigidBody::upcast(&body);
//convert both active and kinematic objects (for their velocity)
@@ -819,233 +768,216 @@ int btSequentialImpulseConstraintSolver::getOrInitSolverBody(btCollisionObject&
{
solverBodyIdA = m_tmpSolverBodyPool.size();
btSolverBody& solverBody = m_tmpSolverBodyPool.expand();
- initSolverBody(&solverBody,&body,timeStep);
+ initSolverBody(&solverBody, &body, timeStep);
body.setCompanionId(solverBodyIdA);
- } else
+ }
+ else
{
-
- if (m_fixedBodyId<0)
+ if (m_fixedBodyId < 0)
{
m_fixedBodyId = m_tmpSolverBodyPool.size();
btSolverBody& fixedBody = m_tmpSolverBodyPool.expand();
- initSolverBody(&fixedBody,0,timeStep);
+ initSolverBody(&fixedBody, 0, timeStep);
}
return m_fixedBodyId;
-// return 0;//assume first one is a fixed solver body
+ // return 0;//assume first one is a fixed solver body
}
}
return solverBodyIdA;
-#endif // BT_THREADSAFE
-
+#endif // BT_THREADSAFE
}
#include <stdio.h>
-
void btSequentialImpulseConstraintSolver::setupContactConstraint(btSolverConstraint& solverConstraint,
int solverBodyIdA, int solverBodyIdB,
btManifoldPoint& cp, const btContactSolverInfo& infoGlobal,
btScalar& relaxation,
const btVector3& rel_pos1, const btVector3& rel_pos2)
{
+ // const btVector3& pos1 = cp.getPositionWorldOnA();
+ // const btVector3& pos2 = cp.getPositionWorldOnB();
- // const btVector3& pos1 = cp.getPositionWorldOnA();
- // const btVector3& pos2 = cp.getPositionWorldOnB();
-
- btSolverBody* bodyA = &m_tmpSolverBodyPool[solverBodyIdA];
- btSolverBody* bodyB = &m_tmpSolverBodyPool[solverBodyIdB];
-
- btRigidBody* rb0 = bodyA->m_originalBody;
- btRigidBody* rb1 = bodyB->m_originalBody;
-
-// btVector3 rel_pos1 = pos1 - colObj0->getWorldTransform().getOrigin();
-// btVector3 rel_pos2 = pos2 - colObj1->getWorldTransform().getOrigin();
- //rel_pos1 = pos1 - bodyA->getWorldTransform().getOrigin();
- //rel_pos2 = pos2 - bodyB->getWorldTransform().getOrigin();
-
- relaxation = infoGlobal.m_sor;
- btScalar invTimeStep = btScalar(1)/infoGlobal.m_timeStep;
-
- //cfm = 1 / ( dt * kp + kd )
- //erp = dt * kp / ( dt * kp + kd )
-
- btScalar cfm = infoGlobal.m_globalCfm;
- btScalar erp = infoGlobal.m_erp2;
-
- if ((cp.m_contactPointFlags&BT_CONTACT_FLAG_HAS_CONTACT_CFM) || (cp.m_contactPointFlags&BT_CONTACT_FLAG_HAS_CONTACT_ERP))
- {
- if (cp.m_contactPointFlags&BT_CONTACT_FLAG_HAS_CONTACT_CFM)
- cfm = cp.m_contactCFM;
- if (cp.m_contactPointFlags&BT_CONTACT_FLAG_HAS_CONTACT_ERP)
- erp = cp.m_contactERP;
- } else
- {
- if (cp.m_contactPointFlags & BT_CONTACT_FLAG_CONTACT_STIFFNESS_DAMPING)
- {
- btScalar denom = ( infoGlobal.m_timeStep * cp.m_combinedContactStiffness1 + cp.m_combinedContactDamping1 );
- if (denom < SIMD_EPSILON)
- {
- denom = SIMD_EPSILON;
- }
- cfm = btScalar(1) / denom;
- erp = (infoGlobal.m_timeStep * cp.m_combinedContactStiffness1) / denom;
- }
- }
-
- cfm *= invTimeStep;
-
-
- btVector3 torqueAxis0 = rel_pos1.cross(cp.m_normalWorldOnB);
- solverConstraint.m_angularComponentA = rb0 ? rb0->getInvInertiaTensorWorld()*torqueAxis0*rb0->getAngularFactor() : btVector3(0,0,0);
- btVector3 torqueAxis1 = rel_pos2.cross(cp.m_normalWorldOnB);
- solverConstraint.m_angularComponentB = rb1 ? rb1->getInvInertiaTensorWorld()*-torqueAxis1*rb1->getAngularFactor() : btVector3(0,0,0);
-
- {
-#ifdef COMPUTE_IMPULSE_DENOM
- btScalar denom0 = rb0->computeImpulseDenominator(pos1,cp.m_normalWorldOnB);
- btScalar denom1 = rb1->computeImpulseDenominator(pos2,cp.m_normalWorldOnB);
-#else
- btVector3 vec;
- btScalar denom0 = 0.f;
- btScalar denom1 = 0.f;
- if (rb0)
- {
- vec = ( solverConstraint.m_angularComponentA).cross(rel_pos1);
- denom0 = rb0->getInvMass() + cp.m_normalWorldOnB.dot(vec);
- }
- if (rb1)
- {
- vec = ( -solverConstraint.m_angularComponentB).cross(rel_pos2);
- denom1 = rb1->getInvMass() + cp.m_normalWorldOnB.dot(vec);
- }
-#endif //COMPUTE_IMPULSE_DENOM
-
- btScalar denom = relaxation/(denom0+denom1+cfm);
- solverConstraint.m_jacDiagABInv = denom;
- }
-
- if (rb0)
- {
- solverConstraint.m_contactNormal1 = cp.m_normalWorldOnB;
- solverConstraint.m_relpos1CrossNormal = torqueAxis0;
- } else
- {
- solverConstraint.m_contactNormal1.setZero();
- solverConstraint.m_relpos1CrossNormal.setZero();
- }
- if (rb1)
- {
- solverConstraint.m_contactNormal2 = -cp.m_normalWorldOnB;
- solverConstraint.m_relpos2CrossNormal = -torqueAxis1;
- }else
- {
- solverConstraint.m_contactNormal2.setZero();
- solverConstraint.m_relpos2CrossNormal.setZero();
- }
-
- btScalar restitution = 0.f;
- btScalar penetration = cp.getDistance()+infoGlobal.m_linearSlop;
-
- {
- btVector3 vel1,vel2;
+ btSolverBody* bodyA = &m_tmpSolverBodyPool[solverBodyIdA];
+ btSolverBody* bodyB = &m_tmpSolverBodyPool[solverBodyIdB];
- vel1 = rb0? rb0->getVelocityInLocalPoint(rel_pos1) : btVector3(0,0,0);
- vel2 = rb1? rb1->getVelocityInLocalPoint(rel_pos2) : btVector3(0,0,0);
+ btRigidBody* rb0 = bodyA->m_originalBody;
+ btRigidBody* rb1 = bodyB->m_originalBody;
- // btVector3 vel2 = rb1 ? rb1->getVelocityInLocalPoint(rel_pos2) : btVector3(0,0,0);
- btVector3 vel = vel1 - vel2;
- btScalar rel_vel = cp.m_normalWorldOnB.dot(vel);
+ // btVector3 rel_pos1 = pos1 - colObj0->getWorldTransform().getOrigin();
+ // btVector3 rel_pos2 = pos2 - colObj1->getWorldTransform().getOrigin();
+ //rel_pos1 = pos1 - bodyA->getWorldTransform().getOrigin();
+ //rel_pos2 = pos2 - bodyB->getWorldTransform().getOrigin();
+ relaxation = infoGlobal.m_sor;
+ btScalar invTimeStep = btScalar(1) / infoGlobal.m_timeStep;
+ //cfm = 1 / ( dt * kp + kd )
+ //erp = dt * kp / ( dt * kp + kd )
- solverConstraint.m_friction = cp.m_combinedFriction;
+ btScalar cfm = infoGlobal.m_globalCfm;
+ btScalar erp = infoGlobal.m_erp2;
+ if ((cp.m_contactPointFlags & BT_CONTACT_FLAG_HAS_CONTACT_CFM) || (cp.m_contactPointFlags & BT_CONTACT_FLAG_HAS_CONTACT_ERP))
+ {
+ if (cp.m_contactPointFlags & BT_CONTACT_FLAG_HAS_CONTACT_CFM)
+ cfm = cp.m_contactCFM;
+ if (cp.m_contactPointFlags & BT_CONTACT_FLAG_HAS_CONTACT_ERP)
+ erp = cp.m_contactERP;
+ }
+ else
+ {
+ if (cp.m_contactPointFlags & BT_CONTACT_FLAG_CONTACT_STIFFNESS_DAMPING)
+ {
+ btScalar denom = (infoGlobal.m_timeStep * cp.m_combinedContactStiffness1 + cp.m_combinedContactDamping1);
+ if (denom < SIMD_EPSILON)
+ {
+ denom = SIMD_EPSILON;
+ }
+ cfm = btScalar(1) / denom;
+ erp = (infoGlobal.m_timeStep * cp.m_combinedContactStiffness1) / denom;
+ }
+ }
- restitution = restitutionCurve(rel_vel, cp.m_combinedRestitution, infoGlobal.m_restitutionVelocityThreshold);
- if (restitution <= btScalar(0.))
- {
- restitution = 0.f;
- };
- }
+ cfm *= invTimeStep;
+ btVector3 torqueAxis0 = rel_pos1.cross(cp.m_normalWorldOnB);
+ solverConstraint.m_angularComponentA = rb0 ? rb0->getInvInertiaTensorWorld() * torqueAxis0 * rb0->getAngularFactor() : btVector3(0, 0, 0);
+ btVector3 torqueAxis1 = rel_pos2.cross(cp.m_normalWorldOnB);
+ solverConstraint.m_angularComponentB = rb1 ? rb1->getInvInertiaTensorWorld() * -torqueAxis1 * rb1->getAngularFactor() : btVector3(0, 0, 0);
- ///warm starting (or zero if disabled)
- if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
- {
- solverConstraint.m_appliedImpulse = cp.m_appliedImpulse * infoGlobal.m_warmstartingFactor;
- if (rb0)
- bodyA->internalApplyImpulse(solverConstraint.m_contactNormal1*bodyA->internalGetInvMass()*rb0->getLinearFactor(),solverConstraint.m_angularComponentA,solverConstraint.m_appliedImpulse);
- if (rb1)
- bodyB->internalApplyImpulse(-solverConstraint.m_contactNormal2*bodyB->internalGetInvMass()*rb1->getLinearFactor(),-solverConstraint.m_angularComponentB,-(btScalar)solverConstraint.m_appliedImpulse);
- } else
- {
- solverConstraint.m_appliedImpulse = 0.f;
- }
+ {
+#ifdef COMPUTE_IMPULSE_DENOM
+ btScalar denom0 = rb0->computeImpulseDenominator(pos1, cp.m_normalWorldOnB);
+ btScalar denom1 = rb1->computeImpulseDenominator(pos2, cp.m_normalWorldOnB);
+#else
+ btVector3 vec;
+ btScalar denom0 = 0.f;
+ btScalar denom1 = 0.f;
+ if (rb0)
+ {
+ vec = (solverConstraint.m_angularComponentA).cross(rel_pos1);
+ denom0 = rb0->getInvMass() + cp.m_normalWorldOnB.dot(vec);
+ }
+ if (rb1)
+ {
+ vec = (-solverConstraint.m_angularComponentB).cross(rel_pos2);
+ denom1 = rb1->getInvMass() + cp.m_normalWorldOnB.dot(vec);
+ }
+#endif //COMPUTE_IMPULSE_DENOM
- solverConstraint.m_appliedPushImpulse = 0.f;
+ btScalar denom = relaxation / (denom0 + denom1 + cfm);
+ solverConstraint.m_jacDiagABInv = denom;
+ }
- {
+ if (rb0)
+ {
+ solverConstraint.m_contactNormal1 = cp.m_normalWorldOnB;
+ solverConstraint.m_relpos1CrossNormal = torqueAxis0;
+ }
+ else
+ {
+ solverConstraint.m_contactNormal1.setZero();
+ solverConstraint.m_relpos1CrossNormal.setZero();
+ }
+ if (rb1)
+ {
+ solverConstraint.m_contactNormal2 = -cp.m_normalWorldOnB;
+ solverConstraint.m_relpos2CrossNormal = -torqueAxis1;
+ }
+ else
+ {
+ solverConstraint.m_contactNormal2.setZero();
+ solverConstraint.m_relpos2CrossNormal.setZero();
+ }
- btVector3 externalForceImpulseA = bodyA->m_originalBody ? bodyA->m_externalForceImpulse: btVector3(0,0,0);
- btVector3 externalTorqueImpulseA = bodyA->m_originalBody ? bodyA->m_externalTorqueImpulse: btVector3(0,0,0);
- btVector3 externalForceImpulseB = bodyB->m_originalBody ? bodyB->m_externalForceImpulse: btVector3(0,0,0);
- btVector3 externalTorqueImpulseB = bodyB->m_originalBody ?bodyB->m_externalTorqueImpulse : btVector3(0,0,0);
+ btScalar restitution = 0.f;
+ btScalar penetration = cp.getDistance() + infoGlobal.m_linearSlop;
+ {
+ btVector3 vel1, vel2;
- btScalar vel1Dotn = solverConstraint.m_contactNormal1.dot(bodyA->m_linearVelocity+externalForceImpulseA)
- + solverConstraint.m_relpos1CrossNormal.dot(bodyA->m_angularVelocity+externalTorqueImpulseA);
- btScalar vel2Dotn = solverConstraint.m_contactNormal2.dot(bodyB->m_linearVelocity+externalForceImpulseB)
- + solverConstraint.m_relpos2CrossNormal.dot(bodyB->m_angularVelocity+externalTorqueImpulseB);
- btScalar rel_vel = vel1Dotn+vel2Dotn;
+ vel1 = rb0 ? rb0->getVelocityInLocalPoint(rel_pos1) : btVector3(0, 0, 0);
+ vel2 = rb1 ? rb1->getVelocityInLocalPoint(rel_pos2) : btVector3(0, 0, 0);
- btScalar positionalError = 0.f;
- btScalar velocityError = restitution - rel_vel;// * damping;
+ // btVector3 vel2 = rb1 ? rb1->getVelocityInLocalPoint(rel_pos2) : btVector3(0,0,0);
+ btVector3 vel = vel1 - vel2;
+ btScalar rel_vel = cp.m_normalWorldOnB.dot(vel);
+ solverConstraint.m_friction = cp.m_combinedFriction;
-
- if (penetration>0)
- {
- positionalError = 0;
+ restitution = restitutionCurve(rel_vel, cp.m_combinedRestitution, infoGlobal.m_restitutionVelocityThreshold);
+ if (restitution <= btScalar(0.))
+ {
+ restitution = 0.f;
+ };
+ }
- velocityError -= penetration *invTimeStep;
- } else
- {
- positionalError = -penetration * erp*invTimeStep;
+ ///warm starting (or zero if disabled)
+ if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
+ {
+ solverConstraint.m_appliedImpulse = cp.m_appliedImpulse * infoGlobal.m_warmstartingFactor;
+ if (rb0)
+ bodyA->internalApplyImpulse(solverConstraint.m_contactNormal1 * bodyA->internalGetInvMass(), solverConstraint.m_angularComponentA, solverConstraint.m_appliedImpulse);
+ if (rb1)
+ bodyB->internalApplyImpulse(-solverConstraint.m_contactNormal2 * bodyB->internalGetInvMass() , -solverConstraint.m_angularComponentB, -(btScalar)solverConstraint.m_appliedImpulse);
+ }
+ else
+ {
+ solverConstraint.m_appliedImpulse = 0.f;
+ }
- }
+ solverConstraint.m_appliedPushImpulse = 0.f;
- btScalar penetrationImpulse = positionalError*solverConstraint.m_jacDiagABInv;
- btScalar velocityImpulse = velocityError *solverConstraint.m_jacDiagABInv;
+ {
+ btVector3 externalForceImpulseA = bodyA->m_originalBody ? bodyA->m_externalForceImpulse : btVector3(0, 0, 0);
+ btVector3 externalTorqueImpulseA = bodyA->m_originalBody ? bodyA->m_externalTorqueImpulse : btVector3(0, 0, 0);
+ btVector3 externalForceImpulseB = bodyB->m_originalBody ? bodyB->m_externalForceImpulse : btVector3(0, 0, 0);
+ btVector3 externalTorqueImpulseB = bodyB->m_originalBody ? bodyB->m_externalTorqueImpulse : btVector3(0, 0, 0);
- if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
- {
- //combine position and velocity into rhs
- solverConstraint.m_rhs = penetrationImpulse+velocityImpulse;//-solverConstraint.m_contactNormal1.dot(bodyA->m_externalForce*bodyA->m_invMass-bodyB->m_externalForce/bodyB->m_invMass)*solverConstraint.m_jacDiagABInv;
- solverConstraint.m_rhsPenetration = 0.f;
+ btScalar vel1Dotn = solverConstraint.m_contactNormal1.dot(bodyA->m_linearVelocity + externalForceImpulseA) + solverConstraint.m_relpos1CrossNormal.dot(bodyA->m_angularVelocity + externalTorqueImpulseA);
+ btScalar vel2Dotn = solverConstraint.m_contactNormal2.dot(bodyB->m_linearVelocity + externalForceImpulseB) + solverConstraint.m_relpos2CrossNormal.dot(bodyB->m_angularVelocity + externalTorqueImpulseB);
+ btScalar rel_vel = vel1Dotn + vel2Dotn;
- } else
- {
- //split position and velocity into rhs and m_rhsPenetration
- solverConstraint.m_rhs = velocityImpulse;
- solverConstraint.m_rhsPenetration = penetrationImpulse;
- }
- solverConstraint.m_cfm = cfm*solverConstraint.m_jacDiagABInv;
- solverConstraint.m_lowerLimit = 0;
- solverConstraint.m_upperLimit = 1e10f;
- }
+ btScalar positionalError = 0.f;
+ btScalar velocityError = restitution - rel_vel; // * damping;
+ if (penetration > 0)
+ {
+ positionalError = 0;
+ velocityError -= penetration * invTimeStep;
+ }
+ else
+ {
+ positionalError = -penetration * erp * invTimeStep;
+ }
+ btScalar penetrationImpulse = positionalError * solverConstraint.m_jacDiagABInv;
+ btScalar velocityImpulse = velocityError * solverConstraint.m_jacDiagABInv;
+ if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
+ {
+ //combine position and velocity into rhs
+ solverConstraint.m_rhs = penetrationImpulse + velocityImpulse; //-solverConstraint.m_contactNormal1.dot(bodyA->m_externalForce*bodyA->m_invMass-bodyB->m_externalForce/bodyB->m_invMass)*solverConstraint.m_jacDiagABInv;
+ solverConstraint.m_rhsPenetration = 0.f;
+ }
+ else
+ {
+ //split position and velocity into rhs and m_rhsPenetration
+ solverConstraint.m_rhs = velocityImpulse;
+ solverConstraint.m_rhsPenetration = penetrationImpulse;
+ }
+ solverConstraint.m_cfm = cfm * solverConstraint.m_jacDiagABInv;
+ solverConstraint.m_lowerLimit = 0;
+ solverConstraint.m_upperLimit = 1e10f;
+ }
}
-
-
-void btSequentialImpulseConstraintSolver::setFrictionConstraintImpulse( btSolverConstraint& solverConstraint,
- int solverBodyIdA, int solverBodyIdB,
- btManifoldPoint& cp, const btContactSolverInfo& infoGlobal)
+void btSequentialImpulseConstraintSolver::setFrictionConstraintImpulse(btSolverConstraint& solverConstraint,
+ int solverBodyIdA, int solverBodyIdB,
+ btManifoldPoint& cp, const btContactSolverInfo& infoGlobal)
{
-
btSolverBody* bodyA = &m_tmpSolverBodyPool[solverBodyIdA];
btSolverBody* bodyB = &m_tmpSolverBodyPool[solverBodyIdB];
@@ -1058,10 +990,11 @@ void btSequentialImpulseConstraintSolver::setFrictionConstraintImpulse( btSolver
{
frictionConstraint1.m_appliedImpulse = cp.m_appliedImpulseLateral1 * infoGlobal.m_warmstartingFactor;
if (rb0)
- bodyA->internalApplyImpulse(frictionConstraint1.m_contactNormal1*rb0->getInvMass()*rb0->getLinearFactor(),frictionConstraint1.m_angularComponentA,frictionConstraint1.m_appliedImpulse);
+ bodyA->internalApplyImpulse(frictionConstraint1.m_contactNormal1 * rb0->getInvMass() , frictionConstraint1.m_angularComponentA, frictionConstraint1.m_appliedImpulse);
if (rb1)
- bodyB->internalApplyImpulse(-frictionConstraint1.m_contactNormal2*rb1->getInvMass()*rb1->getLinearFactor(),-frictionConstraint1.m_angularComponentB,-(btScalar)frictionConstraint1.m_appliedImpulse);
- } else
+ bodyB->internalApplyImpulse(-frictionConstraint1.m_contactNormal2 * rb1->getInvMass() , -frictionConstraint1.m_angularComponentB, -(btScalar)frictionConstraint1.m_appliedImpulse);
+ }
+ else
{
frictionConstraint1.m_appliedImpulse = 0.f;
}
@@ -1069,50 +1002,45 @@ void btSequentialImpulseConstraintSolver::setFrictionConstraintImpulse( btSolver
if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
{
- btSolverConstraint& frictionConstraint2 = m_tmpSolverContactFrictionConstraintPool[solverConstraint.m_frictionIndex+1];
+ btSolverConstraint& frictionConstraint2 = m_tmpSolverContactFrictionConstraintPool[solverConstraint.m_frictionIndex + 1];
if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
{
- frictionConstraint2.m_appliedImpulse = cp.m_appliedImpulseLateral2 * infoGlobal.m_warmstartingFactor;
+ frictionConstraint2.m_appliedImpulse = cp.m_appliedImpulseLateral2 * infoGlobal.m_warmstartingFactor;
if (rb0)
- bodyA->internalApplyImpulse(frictionConstraint2.m_contactNormal1*rb0->getInvMass(),frictionConstraint2.m_angularComponentA,frictionConstraint2.m_appliedImpulse);
+ bodyA->internalApplyImpulse(frictionConstraint2.m_contactNormal1 * rb0->getInvMass(), frictionConstraint2.m_angularComponentA, frictionConstraint2.m_appliedImpulse);
if (rb1)
- bodyB->internalApplyImpulse(-frictionConstraint2.m_contactNormal2*rb1->getInvMass(),-frictionConstraint2.m_angularComponentB,-(btScalar)frictionConstraint2.m_appliedImpulse);
- } else
+ bodyB->internalApplyImpulse(-frictionConstraint2.m_contactNormal2 * rb1->getInvMass(), -frictionConstraint2.m_angularComponentB, -(btScalar)frictionConstraint2.m_appliedImpulse);
+ }
+ else
{
frictionConstraint2.m_appliedImpulse = 0.f;
}
}
}
-
-
-
-void btSequentialImpulseConstraintSolver::convertContact(btPersistentManifold* manifold,const btContactSolverInfo& infoGlobal)
+void btSequentialImpulseConstraintSolver::convertContact(btPersistentManifold* manifold, const btContactSolverInfo& infoGlobal)
{
- btCollisionObject* colObj0=0,*colObj1=0;
+ btCollisionObject *colObj0 = 0, *colObj1 = 0;
colObj0 = (btCollisionObject*)manifold->getBody0();
colObj1 = (btCollisionObject*)manifold->getBody1();
- int solverBodyIdA = getOrInitSolverBody(*colObj0,infoGlobal.m_timeStep);
- int solverBodyIdB = getOrInitSolverBody(*colObj1,infoGlobal.m_timeStep);
+ int solverBodyIdA = getOrInitSolverBody(*colObj0, infoGlobal.m_timeStep);
+ int solverBodyIdB = getOrInitSolverBody(*colObj1, infoGlobal.m_timeStep);
-// btRigidBody* bodyA = btRigidBody::upcast(colObj0);
-// btRigidBody* bodyB = btRigidBody::upcast(colObj1);
+ // btRigidBody* bodyA = btRigidBody::upcast(colObj0);
+ // btRigidBody* bodyB = btRigidBody::upcast(colObj1);
btSolverBody* solverBodyA = &m_tmpSolverBodyPool[solverBodyIdA];
btSolverBody* solverBodyB = &m_tmpSolverBodyPool[solverBodyIdB];
-
-
///avoid collision response between two static objects
if (!solverBodyA || (solverBodyA->m_invMass.fuzzyZero() && (!solverBodyB || solverBodyB->m_invMass.fuzzyZero())))
return;
- int rollingFriction=1;
- for (int j=0;j<manifold->getNumContacts();j++)
+ int rollingFriction = 1;
+ for (int j = 0; j < manifold->getNumContacts(); j++)
{
-
btManifoldPoint& cp = manifold->getContactPoint(j);
if (cp.getDistance() <= manifold->getContactProcessingThreshold())
@@ -1121,7 +1049,6 @@ void btSequentialImpulseConstraintSolver::convertContact(btPersistentManifold* m
btVector3 rel_pos2;
btScalar relaxation;
-
int frictionIndex = m_tmpSolverContactConstraintPool.size();
btSolverConstraint& solverConstraint = m_tmpSolverContactConstraintPool.expandNonInitializing();
solverConstraint.m_solverBodyIdA = solverBodyIdA;
@@ -1137,43 +1064,38 @@ void btSequentialImpulseConstraintSolver::convertContact(btPersistentManifold* m
btVector3 vel1;
btVector3 vel2;
-
- solverBodyA->getVelocityInLocalPointNoDelta(rel_pos1,vel1);
- solverBodyB->getVelocityInLocalPointNoDelta(rel_pos2,vel2 );
- btVector3 vel = vel1 - vel2;
+ solverBodyA->getVelocityInLocalPointNoDelta(rel_pos1, vel1);
+ solverBodyB->getVelocityInLocalPointNoDelta(rel_pos2, vel2);
+
+ btVector3 vel = vel1 - vel2;
btScalar rel_vel = cp.m_normalWorldOnB.dot(vel);
setupContactConstraint(solverConstraint, solverBodyIdA, solverBodyIdB, cp, infoGlobal, relaxation, rel_pos1, rel_pos2);
-
-
-
/////setup the friction constraints
solverConstraint.m_frictionIndex = m_tmpSolverContactFrictionConstraintPool.size();
- if ((cp.m_combinedRollingFriction>0.f) && (rollingFriction>0))
+ if ((cp.m_combinedRollingFriction > 0.f) && (rollingFriction > 0))
{
-
{
- addTorsionalFrictionConstraint(cp.m_normalWorldOnB,solverBodyIdA,solverBodyIdB,frictionIndex,cp,cp.m_combinedSpinningFriction, rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
- btVector3 axis0,axis1;
- btPlaneSpace1(cp.m_normalWorldOnB,axis0,axis1);
+ addTorsionalFrictionConstraint(cp.m_normalWorldOnB, solverBodyIdA, solverBodyIdB, frictionIndex, cp, cp.m_combinedSpinningFriction, rel_pos1, rel_pos2, colObj0, colObj1, relaxation);
+ btVector3 axis0, axis1;
+ btPlaneSpace1(cp.m_normalWorldOnB, axis0, axis1);
axis0.normalize();
axis1.normalize();
-
- applyAnisotropicFriction(colObj0,axis0,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
- applyAnisotropicFriction(colObj1,axis0,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
- applyAnisotropicFriction(colObj0,axis1,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
- applyAnisotropicFriction(colObj1,axis1,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
- if (axis0.length()>0.001)
- addTorsionalFrictionConstraint(axis0,solverBodyIdA,solverBodyIdB,frictionIndex,cp,
- cp.m_combinedRollingFriction, rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
- if (axis1.length()>0.001)
- addTorsionalFrictionConstraint(axis1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,
- cp.m_combinedRollingFriction, rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
+ applyAnisotropicFriction(colObj0, axis0, btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
+ applyAnisotropicFriction(colObj1, axis0, btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
+ applyAnisotropicFriction(colObj0, axis1, btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
+ applyAnisotropicFriction(colObj1, axis1, btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
+ if (axis0.length() > 0.001)
+ addTorsionalFrictionConstraint(axis0, solverBodyIdA, solverBodyIdB, frictionIndex, cp,
+ cp.m_combinedRollingFriction, rel_pos1, rel_pos2, colObj0, colObj1, relaxation);
+ if (axis1.length() > 0.001)
+ addTorsionalFrictionConstraint(axis1, solverBodyIdA, solverBodyIdB, frictionIndex, cp,
+ cp.m_combinedRollingFriction, rel_pos1, rel_pos2, colObj0, colObj1, relaxation);
}
}
@@ -1188,106 +1110,97 @@ void btSequentialImpulseConstraintSolver::convertContact(btPersistentManifold* m
///If you choose SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION, then the friction will be independent from the relative projected velocity.
///
///The user can manually override the friction directions for certain contacts using a contact callback,
- ///and set the cp.m_lateralFrictionInitialized to true
+ ///and use contactPoint.m_contactPointFlags |= BT_CONTACT_FLAG_LATERAL_FRICTION_INITIALIZED
///In that case, you can set the target relative motion in each friction direction (cp.m_contactMotion1 and cp.m_contactMotion2)
///this will give a conveyor belt effect
///
-
- if (!(infoGlobal.m_solverMode & SOLVER_ENABLE_FRICTION_DIRECTION_CACHING) || !(cp.m_contactPointFlags&BT_CONTACT_FLAG_LATERAL_FRICTION_INITIALIZED))
+
+ if (!(infoGlobal.m_solverMode & SOLVER_ENABLE_FRICTION_DIRECTION_CACHING) || !(cp.m_contactPointFlags & BT_CONTACT_FLAG_LATERAL_FRICTION_INITIALIZED))
{
cp.m_lateralFrictionDir1 = vel - cp.m_normalWorldOnB * rel_vel;
btScalar lat_rel_vel = cp.m_lateralFrictionDir1.length2();
if (!(infoGlobal.m_solverMode & SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION) && lat_rel_vel > SIMD_EPSILON)
{
- cp.m_lateralFrictionDir1 *= 1.f/btSqrt(lat_rel_vel);
- applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
- applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
- addFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation,infoGlobal);
+ cp.m_lateralFrictionDir1 *= 1.f / btSqrt(lat_rel_vel);
+ applyAnisotropicFriction(colObj0, cp.m_lateralFrictionDir1, btCollisionObject::CF_ANISOTROPIC_FRICTION);
+ applyAnisotropicFriction(colObj1, cp.m_lateralFrictionDir1, btCollisionObject::CF_ANISOTROPIC_FRICTION);
+ addFrictionConstraint(cp.m_lateralFrictionDir1, solverBodyIdA, solverBodyIdB, frictionIndex, cp, rel_pos1, rel_pos2, colObj0, colObj1, relaxation, infoGlobal);
- if((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
+ if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
{
cp.m_lateralFrictionDir2 = cp.m_lateralFrictionDir1.cross(cp.m_normalWorldOnB);
- cp.m_lateralFrictionDir2.normalize();//??
- applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
- applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
- addFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation, infoGlobal);
+ cp.m_lateralFrictionDir2.normalize(); //??
+ applyAnisotropicFriction(colObj0, cp.m_lateralFrictionDir2, btCollisionObject::CF_ANISOTROPIC_FRICTION);
+ applyAnisotropicFriction(colObj1, cp.m_lateralFrictionDir2, btCollisionObject::CF_ANISOTROPIC_FRICTION);
+ addFrictionConstraint(cp.m_lateralFrictionDir2, solverBodyIdA, solverBodyIdB, frictionIndex, cp, rel_pos1, rel_pos2, colObj0, colObj1, relaxation, infoGlobal);
}
-
- } else
+ }
+ else
{
- btPlaneSpace1(cp.m_normalWorldOnB,cp.m_lateralFrictionDir1,cp.m_lateralFrictionDir2);
+ btPlaneSpace1(cp.m_normalWorldOnB, cp.m_lateralFrictionDir1, cp.m_lateralFrictionDir2);
- applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
- applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
- addFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation, infoGlobal);
+ applyAnisotropicFriction(colObj0, cp.m_lateralFrictionDir1, btCollisionObject::CF_ANISOTROPIC_FRICTION);
+ applyAnisotropicFriction(colObj1, cp.m_lateralFrictionDir1, btCollisionObject::CF_ANISOTROPIC_FRICTION);
+ addFrictionConstraint(cp.m_lateralFrictionDir1, solverBodyIdA, solverBodyIdB, frictionIndex, cp, rel_pos1, rel_pos2, colObj0, colObj1, relaxation, infoGlobal);
if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
{
- applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
- applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
- addFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation, infoGlobal);
+ applyAnisotropicFriction(colObj0, cp.m_lateralFrictionDir2, btCollisionObject::CF_ANISOTROPIC_FRICTION);
+ applyAnisotropicFriction(colObj1, cp.m_lateralFrictionDir2, btCollisionObject::CF_ANISOTROPIC_FRICTION);
+ addFrictionConstraint(cp.m_lateralFrictionDir2, solverBodyIdA, solverBodyIdB, frictionIndex, cp, rel_pos1, rel_pos2, colObj0, colObj1, relaxation, infoGlobal);
}
-
if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS) && (infoGlobal.m_solverMode & SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION))
{
- cp.m_contactPointFlags|=BT_CONTACT_FLAG_LATERAL_FRICTION_INITIALIZED;
+ cp.m_contactPointFlags |= BT_CONTACT_FLAG_LATERAL_FRICTION_INITIALIZED;
}
}
-
- } else
+ }
+ else
{
- addFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation, infoGlobal, cp.m_contactMotion1, cp.m_frictionCFM);
+ addFrictionConstraint(cp.m_lateralFrictionDir1, solverBodyIdA, solverBodyIdB, frictionIndex, cp, rel_pos1, rel_pos2, colObj0, colObj1, relaxation, infoGlobal, cp.m_contactMotion1, cp.m_frictionCFM);
if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
- addFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation, infoGlobal, cp.m_contactMotion2, cp.m_frictionCFM);
-
+ addFrictionConstraint(cp.m_lateralFrictionDir2, solverBodyIdA, solverBodyIdB, frictionIndex, cp, rel_pos1, rel_pos2, colObj0, colObj1, relaxation, infoGlobal, cp.m_contactMotion2, cp.m_frictionCFM);
}
- setFrictionConstraintImpulse( solverConstraint, solverBodyIdA, solverBodyIdB, cp, infoGlobal);
-
-
-
-
+ setFrictionConstraintImpulse(solverConstraint, solverBodyIdA, solverBodyIdB, cp, infoGlobal);
}
}
}
-void btSequentialImpulseConstraintSolver::convertContacts(btPersistentManifold** manifoldPtr,int numManifolds, const btContactSolverInfo& infoGlobal)
+void btSequentialImpulseConstraintSolver::convertContacts(btPersistentManifold** manifoldPtr, int numManifolds, const btContactSolverInfo& infoGlobal)
{
int i;
btPersistentManifold* manifold = 0;
-// btCollisionObject* colObj0=0,*colObj1=0;
-
+ // btCollisionObject* colObj0=0,*colObj1=0;
- for (i=0;i<numManifolds;i++)
+ for (i = 0; i < numManifolds; i++)
{
manifold = manifoldPtr[i];
- convertContact(manifold,infoGlobal);
+ convertContact(manifold, infoGlobal);
}
}
-
void btSequentialImpulseConstraintSolver::convertJoint(btSolverConstraint* currentConstraintRow,
- btTypedConstraint* constraint,
- const btTypedConstraint::btConstraintInfo1& info1,
- int solverBodyIdA,
- int solverBodyIdB,
- const btContactSolverInfo& infoGlobal
- )
+ btTypedConstraint* constraint,
+ const btTypedConstraint::btConstraintInfo1& info1,
+ int solverBodyIdA,
+ int solverBodyIdB,
+ const btContactSolverInfo& infoGlobal)
{
const btRigidBody& rbA = constraint->getRigidBodyA();
const btRigidBody& rbB = constraint->getRigidBodyB();
- const btSolverBody* bodyAPtr = &m_tmpSolverBodyPool[solverBodyIdA];
- const btSolverBody* bodyBPtr = &m_tmpSolverBodyPool[solverBodyIdB];
+ const btSolverBody* bodyAPtr = &m_tmpSolverBodyPool[solverBodyIdA];
+ const btSolverBody* bodyBPtr = &m_tmpSolverBodyPool[solverBodyIdB];
int overrideNumSolverIterations = constraint->getOverrideNumSolverIterations() > 0 ? constraint->getOverrideNumSolverIterations() : infoGlobal.m_numIterations;
- if (overrideNumSolverIterations>m_maxOverrideNumSolverIterations)
+ if (overrideNumSolverIterations > m_maxOverrideNumSolverIterations)
m_maxOverrideNumSolverIterations = overrideNumSolverIterations;
- for (int j=0;j<info1.m_numConstraintRows;j++)
+ for (int j = 0; j < info1.m_numConstraintRows; j++)
{
- memset(&currentConstraintRow[j],0,sizeof(btSolverConstraint));
+ memset(&currentConstraintRow[j], 0, sizeof(btSolverConstraint));
currentConstraintRow[j].m_lowerLimit = -SIMD_INFINITY;
currentConstraintRow[j].m_upperLimit = SIMD_INFINITY;
currentConstraintRow[j].m_appliedImpulse = 0.f;
@@ -1297,15 +1210,15 @@ void btSequentialImpulseConstraintSolver::convertJoint(btSolverConstraint* curre
currentConstraintRow[j].m_overrideNumSolverIterations = overrideNumSolverIterations;
}
- // these vectors are already cleared in initSolverBody, no need to redundantly clear again
- btAssert(bodyAPtr->getDeltaLinearVelocity().isZero());
- btAssert(bodyAPtr->getDeltaAngularVelocity().isZero());
- btAssert(bodyAPtr->getPushVelocity().isZero());
- btAssert(bodyAPtr->getTurnVelocity().isZero());
- btAssert(bodyBPtr->getDeltaLinearVelocity().isZero());
- btAssert(bodyBPtr->getDeltaAngularVelocity().isZero());
- btAssert(bodyBPtr->getPushVelocity().isZero());
- btAssert(bodyBPtr->getTurnVelocity().isZero());
+ // these vectors are already cleared in initSolverBody, no need to redundantly clear again
+ btAssert(bodyAPtr->getDeltaLinearVelocity().isZero());
+ btAssert(bodyAPtr->getDeltaAngularVelocity().isZero());
+ btAssert(bodyAPtr->getPushVelocity().isZero());
+ btAssert(bodyAPtr->getTurnVelocity().isZero());
+ btAssert(bodyBPtr->getDeltaLinearVelocity().isZero());
+ btAssert(bodyBPtr->getDeltaAngularVelocity().isZero());
+ btAssert(bodyBPtr->getPushVelocity().isZero());
+ btAssert(bodyBPtr->getTurnVelocity().isZero());
//bodyAPtr->internalGetDeltaLinearVelocity().setValue(0.f,0.f,0.f);
//bodyAPtr->internalGetDeltaAngularVelocity().setValue(0.f,0.f,0.f);
//bodyAPtr->internalGetPushVelocity().setValue(0.f,0.f,0.f);
@@ -1315,17 +1228,16 @@ void btSequentialImpulseConstraintSolver::convertJoint(btSolverConstraint* curre
//bodyBPtr->internalGetPushVelocity().setValue(0.f,0.f,0.f);
//bodyBPtr->internalGetTurnVelocity().setValue(0.f,0.f,0.f);
-
btTypedConstraint::btConstraintInfo2 info2;
- info2.fps = 1.f/infoGlobal.m_timeStep;
+ info2.fps = 1.f / infoGlobal.m_timeStep;
info2.erp = infoGlobal.m_erp;
info2.m_J1linearAxis = currentConstraintRow->m_contactNormal1;
info2.m_J1angularAxis = currentConstraintRow->m_relpos1CrossNormal;
info2.m_J2linearAxis = currentConstraintRow->m_contactNormal2;
info2.m_J2angularAxis = currentConstraintRow->m_relpos2CrossNormal;
- info2.rowskip = sizeof(btSolverConstraint)/sizeof(btScalar);//check this
+ info2.rowskip = sizeof(btSolverConstraint) / sizeof(btScalar); //check this
///the size of btSolverConstraint needs be a multiple of btScalar
- btAssert(info2.rowskip*sizeof(btScalar)== sizeof(btSolverConstraint));
+ btAssert(info2.rowskip * sizeof(btScalar) == sizeof(btSolverConstraint));
info2.m_constraintError = &currentConstraintRow->m_rhs;
currentConstraintRow->m_cfm = infoGlobal.m_globalCfm;
info2.m_damping = infoGlobal.m_damping;
@@ -1336,16 +1248,16 @@ void btSequentialImpulseConstraintSolver::convertJoint(btSolverConstraint* curre
constraint->getInfo2(&info2);
///finalize the constraint setup
- for (int j=0;j<info1.m_numConstraintRows;j++)
+ for (int j = 0; j < info1.m_numConstraintRows; j++)
{
btSolverConstraint& solverConstraint = currentConstraintRow[j];
- if (solverConstraint.m_upperLimit>=constraint->getBreakingImpulseThreshold())
+ if (solverConstraint.m_upperLimit >= constraint->getBreakingImpulseThreshold())
{
solverConstraint.m_upperLimit = constraint->getBreakingImpulseThreshold();
}
- if (solverConstraint.m_lowerLimit<=-constraint->getBreakingImpulseThreshold())
+ if (solverConstraint.m_lowerLimit <= -constraint->getBreakingImpulseThreshold())
{
solverConstraint.m_lowerLimit = -constraint->getBreakingImpulseThreshold();
}
@@ -1354,18 +1266,18 @@ void btSequentialImpulseConstraintSolver::convertJoint(btSolverConstraint* curre
{
const btVector3& ftorqueAxis1 = solverConstraint.m_relpos1CrossNormal;
- solverConstraint.m_angularComponentA = constraint->getRigidBodyA().getInvInertiaTensorWorld()*ftorqueAxis1*constraint->getRigidBodyA().getAngularFactor();
+ solverConstraint.m_angularComponentA = constraint->getRigidBodyA().getInvInertiaTensorWorld() * ftorqueAxis1 * constraint->getRigidBodyA().getAngularFactor();
}
{
const btVector3& ftorqueAxis2 = solverConstraint.m_relpos2CrossNormal;
- solverConstraint.m_angularComponentB = constraint->getRigidBodyB().getInvInertiaTensorWorld()*ftorqueAxis2*constraint->getRigidBodyB().getAngularFactor();
+ solverConstraint.m_angularComponentB = constraint->getRigidBodyB().getInvInertiaTensorWorld() * ftorqueAxis2 * constraint->getRigidBodyB().getAngularFactor();
}
{
- btVector3 iMJlA = solverConstraint.m_contactNormal1*rbA.getInvMass();
- btVector3 iMJaA = rbA.getInvInertiaTensorWorld()*solverConstraint.m_relpos1CrossNormal;
- btVector3 iMJlB = solverConstraint.m_contactNormal2*rbB.getInvMass();//sign of normal?
- btVector3 iMJaB = rbB.getInvInertiaTensorWorld()*solverConstraint.m_relpos2CrossNormal;
+ btVector3 iMJlA = solverConstraint.m_contactNormal1 * rbA.getInvMass();
+ btVector3 iMJaA = rbA.getInvInertiaTensorWorld() * solverConstraint.m_relpos1CrossNormal;
+ btVector3 iMJlB = solverConstraint.m_contactNormal2 * rbB.getInvMass(); //sign of normal?
+ btVector3 iMJaB = rbB.getInvInertiaTensorWorld() * solverConstraint.m_relpos2CrossNormal;
btScalar sum = iMJlA.dot(solverConstraint.m_contactNormal1);
sum += iMJaA.dot(solverConstraint.m_relpos1CrossNormal);
@@ -1373,41 +1285,38 @@ void btSequentialImpulseConstraintSolver::convertJoint(btSolverConstraint* curre
sum += iMJaB.dot(solverConstraint.m_relpos2CrossNormal);
btScalar fsum = btFabs(sum);
btAssert(fsum > SIMD_EPSILON);
- btScalar sorRelaxation = 1.f;//todo: get from globalInfo?
- solverConstraint.m_jacDiagABInv = fsum>SIMD_EPSILON?sorRelaxation/sum : 0.f;
+ btScalar sorRelaxation = 1.f; //todo: get from globalInfo?
+ solverConstraint.m_jacDiagABInv = fsum > SIMD_EPSILON ? sorRelaxation / sum : 0.f;
}
{
btScalar rel_vel;
- btVector3 externalForceImpulseA = bodyAPtr->m_originalBody ? bodyAPtr->m_externalForceImpulse : btVector3(0,0,0);
- btVector3 externalTorqueImpulseA = bodyAPtr->m_originalBody ? bodyAPtr->m_externalTorqueImpulse : btVector3(0,0,0);
+ btVector3 externalForceImpulseA = bodyAPtr->m_originalBody ? bodyAPtr->m_externalForceImpulse : btVector3(0, 0, 0);
+ btVector3 externalTorqueImpulseA = bodyAPtr->m_originalBody ? bodyAPtr->m_externalTorqueImpulse : btVector3(0, 0, 0);
- btVector3 externalForceImpulseB = bodyBPtr->m_originalBody ? bodyBPtr->m_externalForceImpulse : btVector3(0,0,0);
- btVector3 externalTorqueImpulseB = bodyBPtr->m_originalBody ?bodyBPtr->m_externalTorqueImpulse : btVector3(0,0,0);
+ btVector3 externalForceImpulseB = bodyBPtr->m_originalBody ? bodyBPtr->m_externalForceImpulse : btVector3(0, 0, 0);
+ btVector3 externalTorqueImpulseB = bodyBPtr->m_originalBody ? bodyBPtr->m_externalTorqueImpulse : btVector3(0, 0, 0);
- btScalar vel1Dotn = solverConstraint.m_contactNormal1.dot(rbA.getLinearVelocity()+externalForceImpulseA)
- + solverConstraint.m_relpos1CrossNormal.dot(rbA.getAngularVelocity()+externalTorqueImpulseA);
+ btScalar vel1Dotn = solverConstraint.m_contactNormal1.dot(rbA.getLinearVelocity() + externalForceImpulseA) + solverConstraint.m_relpos1CrossNormal.dot(rbA.getAngularVelocity() + externalTorqueImpulseA);
- btScalar vel2Dotn = solverConstraint.m_contactNormal2.dot(rbB.getLinearVelocity()+externalForceImpulseB)
- + solverConstraint.m_relpos2CrossNormal.dot(rbB.getAngularVelocity()+externalTorqueImpulseB);
+ btScalar vel2Dotn = solverConstraint.m_contactNormal2.dot(rbB.getLinearVelocity() + externalForceImpulseB) + solverConstraint.m_relpos2CrossNormal.dot(rbB.getAngularVelocity() + externalTorqueImpulseB);
- rel_vel = vel1Dotn+vel2Dotn;
+ rel_vel = vel1Dotn + vel2Dotn;
btScalar restitution = 0.f;
- btScalar positionalError = solverConstraint.m_rhs;//already filled in by getConstraintInfo2
- btScalar velocityError = restitution - rel_vel * info2.m_damping;
- btScalar penetrationImpulse = positionalError*solverConstraint.m_jacDiagABInv;
- btScalar velocityImpulse = velocityError *solverConstraint.m_jacDiagABInv;
- solverConstraint.m_rhs = penetrationImpulse+velocityImpulse;
+ btScalar positionalError = solverConstraint.m_rhs; //already filled in by getConstraintInfo2
+ btScalar velocityError = restitution - rel_vel * info2.m_damping;
+ btScalar penetrationImpulse = positionalError * solverConstraint.m_jacDiagABInv;
+ btScalar velocityImpulse = velocityError * solverConstraint.m_jacDiagABInv;
+ solverConstraint.m_rhs = penetrationImpulse + velocityImpulse;
solverConstraint.m_appliedImpulse = 0.f;
}
}
}
-
-void btSequentialImpulseConstraintSolver::convertJoints(btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal)
+void btSequentialImpulseConstraintSolver::convertJoints(btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal)
{
- BT_PROFILE("convertJoints");
- for (int j=0;j<numConstraints;j++)
+ BT_PROFILE("convertJoints");
+ for (int j = 0; j < numConstraints; j++)
{
btTypedConstraint* constraint = constraints[j];
constraint->buildJacobian();
@@ -1418,7 +1327,7 @@ void btSequentialImpulseConstraintSolver::convertJoints(btTypedConstraint** cons
m_tmpConstraintSizesPool.resizeNoInitialize(numConstraints);
//calculate the total number of contraint rows
- for (int i=0;i<numConstraints;i++)
+ for (int i = 0; i < numConstraints; i++)
{
btTypedConstraint::btConstraintInfo1& info1 = m_tmpConstraintSizesPool[i];
btJointFeedback* fb = constraints[i]->getJointFeedback();
@@ -1433,7 +1342,8 @@ void btSequentialImpulseConstraintSolver::convertJoints(btTypedConstraint** cons
if (constraints[i]->isEnabled())
{
constraints[i]->getInfo1(&info1);
- } else
+ }
+ else
{
info1.m_numConstraintRows = 0;
info1.nub = 0;
@@ -1442,110 +1352,105 @@ void btSequentialImpulseConstraintSolver::convertJoints(btTypedConstraint** cons
}
m_tmpSolverNonContactConstraintPool.resizeNoInitialize(totalNumRows);
-
///setup the btSolverConstraints
int currentRow = 0;
- for (int i=0;i<numConstraints;i++)
+ for (int i = 0; i < numConstraints; i++)
{
const btTypedConstraint::btConstraintInfo1& info1 = m_tmpConstraintSizesPool[i];
if (info1.m_numConstraintRows)
{
- btAssert(currentRow<totalNumRows);
+ btAssert(currentRow < totalNumRows);
btSolverConstraint* currentConstraintRow = &m_tmpSolverNonContactConstraintPool[currentRow];
btTypedConstraint* constraint = constraints[i];
btRigidBody& rbA = constraint->getRigidBodyA();
btRigidBody& rbB = constraint->getRigidBodyB();
- int solverBodyIdA = getOrInitSolverBody(rbA,infoGlobal.m_timeStep);
- int solverBodyIdB = getOrInitSolverBody(rbB,infoGlobal.m_timeStep);
+ int solverBodyIdA = getOrInitSolverBody(rbA, infoGlobal.m_timeStep);
+ int solverBodyIdB = getOrInitSolverBody(rbB, infoGlobal.m_timeStep);
- convertJoint(currentConstraintRow, constraint, info1, solverBodyIdA, solverBodyIdB, infoGlobal);
- }
- currentRow+=info1.m_numConstraintRows;
+ convertJoint(currentConstraintRow, constraint, info1, solverBodyIdA, solverBodyIdB, infoGlobal);
+ }
+ currentRow += info1.m_numConstraintRows;
}
}
-
void btSequentialImpulseConstraintSolver::convertBodies(btCollisionObject** bodies, int numBodies, const btContactSolverInfo& infoGlobal)
{
- BT_PROFILE("convertBodies");
+ BT_PROFILE("convertBodies");
for (int i = 0; i < numBodies; i++)
{
bodies[i]->setCompanionId(-1);
}
#if BT_THREADSAFE
- m_kinematicBodyUniqueIdToSolverBodyTable.resize( 0 );
-#endif // BT_THREADSAFE
+ m_kinematicBodyUniqueIdToSolverBodyTable.resize(0);
+#endif // BT_THREADSAFE
- m_tmpSolverBodyPool.reserve(numBodies+1);
+ m_tmpSolverBodyPool.reserve(numBodies + 1);
m_tmpSolverBodyPool.resize(0);
//btSolverBody& fixedBody = m_tmpSolverBodyPool.expand();
- //initSolverBody(&fixedBody,0);
+ //initSolverBody(&fixedBody,0);
- for (int i=0;i<numBodies;i++)
+ for (int i = 0; i < numBodies; i++)
{
- int bodyId = getOrInitSolverBody(*bodies[i],infoGlobal.m_timeStep);
+ int bodyId = getOrInitSolverBody(*bodies[i], infoGlobal.m_timeStep);
btRigidBody* body = btRigidBody::upcast(bodies[i]);
if (body && body->getInvMass())
{
btSolverBody& solverBody = m_tmpSolverBodyPool[bodyId];
- btVector3 gyroForce (0,0,0);
- if (body->getFlags()&BT_ENABLE_GYROSCOPIC_FORCE_EXPLICIT)
+ btVector3 gyroForce(0, 0, 0);
+ if (body->getFlags() & BT_ENABLE_GYROSCOPIC_FORCE_EXPLICIT)
{
gyroForce = body->computeGyroscopicForceExplicit(infoGlobal.m_maxGyroscopicForce);
- solverBody.m_externalTorqueImpulse -= gyroForce*body->getInvInertiaTensorWorld()*infoGlobal.m_timeStep;
+ solverBody.m_externalTorqueImpulse -= gyroForce * body->getInvInertiaTensorWorld() * infoGlobal.m_timeStep;
}
- if (body->getFlags()&BT_ENABLE_GYROSCOPIC_FORCE_IMPLICIT_WORLD)
+ if (body->getFlags() & BT_ENABLE_GYROSCOPIC_FORCE_IMPLICIT_WORLD)
{
gyroForce = body->computeGyroscopicImpulseImplicit_World(infoGlobal.m_timeStep);
solverBody.m_externalTorqueImpulse += gyroForce;
}
- if (body->getFlags()&BT_ENABLE_GYROSCOPIC_FORCE_IMPLICIT_BODY)
+ if (body->getFlags() & BT_ENABLE_GYROSCOPIC_FORCE_IMPLICIT_BODY)
{
gyroForce = body->computeGyroscopicImpulseImplicit_Body(infoGlobal.m_timeStep);
solverBody.m_externalTorqueImpulse += gyroForce;
-
}
}
}
}
-
-btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCollisionObject** bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer)
+btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCollisionObject** bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal, btIDebugDraw* debugDrawer)
{
m_fixedBodyId = -1;
BT_PROFILE("solveGroupCacheFriendlySetup");
(void)debugDrawer;
- // if solver mode has changed,
- if ( infoGlobal.m_solverMode != m_cachedSolverMode )
- {
- // update solver functions to use SIMD or non-SIMD
- bool useSimd = !!( infoGlobal.m_solverMode & SOLVER_SIMD );
- setupSolverFunctions( useSimd );
- m_cachedSolverMode = infoGlobal.m_solverMode;
- }
+ // if solver mode has changed,
+ if (infoGlobal.m_solverMode != m_cachedSolverMode)
+ {
+ // update solver functions to use SIMD or non-SIMD
+ bool useSimd = !!(infoGlobal.m_solverMode & SOLVER_SIMD);
+ setupSolverFunctions(useSimd);
+ m_cachedSolverMode = infoGlobal.m_solverMode;
+ }
m_maxOverrideNumSolverIterations = 0;
#ifdef BT_ADDITIONAL_DEBUG
- //make sure that dynamic bodies exist for all (enabled) constraints
- for (int i=0;i<numConstraints;i++)
+ //make sure that dynamic bodies exist for all (enabled) constraints
+ for (int i = 0; i < numConstraints; i++)
{
btTypedConstraint* constraint = constraints[i];
if (constraint->isEnabled())
{
if (!constraint->getRigidBodyA().isStaticOrKinematicObject())
{
- bool found=false;
- for (int b=0;b<numBodies;b++)
+ bool found = false;
+ for (int b = 0; b < numBodies; b++)
{
-
- if (&constraint->getRigidBodyA()==bodies[b])
+ if (&constraint->getRigidBodyA() == bodies[b])
{
found = true;
break;
@@ -1555,10 +1460,10 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCol
}
if (!constraint->getRigidBodyB().isStaticOrKinematicObject())
{
- bool found=false;
- for (int b=0;b<numBodies;b++)
+ bool found = false;
+ for (int b = 0; b < numBodies; b++)
{
- if (&constraint->getRigidBodyB()==bodies[b])
+ if (&constraint->getRigidBodyB() == bodies[b])
{
found = true;
break;
@@ -1568,50 +1473,46 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCol
}
}
}
- //make sure that dynamic bodies exist for all contact manifolds
- for (int i=0;i<numManifolds;i++)
- {
- if (!manifoldPtr[i]->getBody0()->isStaticOrKinematicObject())
- {
- bool found=false;
- for (int b=0;b<numBodies;b++)
- {
-
- if (manifoldPtr[i]->getBody0()==bodies[b])
- {
- found = true;
- break;
- }
- }
- btAssert(found);
- }
- if (!manifoldPtr[i]->getBody1()->isStaticOrKinematicObject())
- {
- bool found=false;
- for (int b=0;b<numBodies;b++)
- {
- if (manifoldPtr[i]->getBody1()==bodies[b])
- {
- found = true;
- break;
- }
- }
- btAssert(found);
- }
- }
-#endif //BT_ADDITIONAL_DEBUG
-
+ //make sure that dynamic bodies exist for all contact manifolds
+ for (int i = 0; i < numManifolds; i++)
+ {
+ if (!manifoldPtr[i]->getBody0()->isStaticOrKinematicObject())
+ {
+ bool found = false;
+ for (int b = 0; b < numBodies; b++)
+ {
+ if (manifoldPtr[i]->getBody0() == bodies[b])
+ {
+ found = true;
+ break;
+ }
+ }
+ btAssert(found);
+ }
+ if (!manifoldPtr[i]->getBody1()->isStaticOrKinematicObject())
+ {
+ bool found = false;
+ for (int b = 0; b < numBodies; b++)
+ {
+ if (manifoldPtr[i]->getBody1() == bodies[b])
+ {
+ found = true;
+ break;
+ }
+ }
+ btAssert(found);
+ }
+ }
+#endif //BT_ADDITIONAL_DEBUG
//convert all bodies
- convertBodies(bodies, numBodies, infoGlobal);
-
- convertJoints(constraints, numConstraints, infoGlobal);
+ convertBodies(bodies, numBodies, infoGlobal);
- convertContacts(manifoldPtr,numManifolds,infoGlobal);
+ convertJoints(constraints, numConstraints, infoGlobal);
+ convertContacts(manifoldPtr, numManifolds, infoGlobal);
-// btContactSolverInfo info = infoGlobal;
-
+ // btContactSolverInfo info = infoGlobal;
int numNonContactPool = m_tmpSolverNonContactConstraintPool.size();
int numConstraintPool = m_tmpSolverContactConstraintPool.size();
@@ -1620,35 +1521,33 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup(btCol
///@todo: use stack allocator for such temporarily memory, same for solver bodies/constraints
m_orderNonContactConstraintPool.resizeNoInitialize(numNonContactPool);
if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
- m_orderTmpConstraintPool.resizeNoInitialize(numConstraintPool*2);
+ m_orderTmpConstraintPool.resizeNoInitialize(numConstraintPool * 2);
else
m_orderTmpConstraintPool.resizeNoInitialize(numConstraintPool);
m_orderFrictionConstraintPool.resizeNoInitialize(numFrictionPool);
{
int i;
- for (i=0;i<numNonContactPool;i++)
+ for (i = 0; i < numNonContactPool; i++)
{
m_orderNonContactConstraintPool[i] = i;
}
- for (i=0;i<numConstraintPool;i++)
+ for (i = 0; i < numConstraintPool; i++)
{
m_orderTmpConstraintPool[i] = i;
}
- for (i=0;i<numFrictionPool;i++)
+ for (i = 0; i < numFrictionPool; i++)
{
m_orderFrictionConstraintPool[i] = i;
}
}
return 0.f;
-
}
-
-btScalar btSequentialImpulseConstraintSolver::solveSingleIteration(int iteration, btCollisionObject** /*bodies */,int /*numBodies*/,btPersistentManifold** /*manifoldPtr*/, int /*numManifolds*/,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* /*debugDrawer*/)
+btScalar btSequentialImpulseConstraintSolver::solveSingleIteration(int iteration, btCollisionObject** /*bodies */, int /*numBodies*/, btPersistentManifold** /*manifoldPtr*/, int /*numManifolds*/, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal, btIDebugDraw* /*debugDrawer*/)
{
- BT_PROFILE("solveSingleIteration");
+ BT_PROFILE("solveSingleIteration");
btScalar leastSquaresResidual = 0.f;
int numNonContactPool = m_tmpSolverNonContactConstraintPool.size();
@@ -1657,29 +1556,31 @@ btScalar btSequentialImpulseConstraintSolver::solveSingleIteration(int iteration
if (infoGlobal.m_solverMode & SOLVER_RANDMIZE_ORDER)
{
- if (1) // uncomment this for a bit less random ((iteration & 7) == 0)
+ if (1) // uncomment this for a bit less random ((iteration & 7) == 0)
{
-
- for (int j=0; j<numNonContactPool; ++j) {
+ for (int j = 0; j < numNonContactPool; ++j)
+ {
int tmp = m_orderNonContactConstraintPool[j];
- int swapi = btRandInt2(j+1);
+ int swapi = btRandInt2(j + 1);
m_orderNonContactConstraintPool[j] = m_orderNonContactConstraintPool[swapi];
m_orderNonContactConstraintPool[swapi] = tmp;
}
//contact/friction constraints are not solved more than
- if (iteration< infoGlobal.m_numIterations)
+ if (iteration < infoGlobal.m_numIterations)
{
- for (int j=0; j<numConstraintPool; ++j) {
+ for (int j = 0; j < numConstraintPool; ++j)
+ {
int tmp = m_orderTmpConstraintPool[j];
- int swapi = btRandInt2(j+1);
+ int swapi = btRandInt2(j + 1);
m_orderTmpConstraintPool[j] = m_orderTmpConstraintPool[swapi];
m_orderTmpConstraintPool[swapi] = tmp;
}
- for (int j=0; j<numFrictionPool; ++j) {
+ for (int j = 0; j < numFrictionPool; ++j)
+ {
int tmp = m_orderFrictionConstraintPool[j];
- int swapi = btRandInt2(j+1);
+ int swapi = btRandInt2(j + 1);
m_orderFrictionConstraintPool[j] = m_orderFrictionConstraintPool[swapi];
m_orderFrictionConstraintPool[swapi] = tmp;
}
@@ -1687,253 +1588,240 @@ btScalar btSequentialImpulseConstraintSolver::solveSingleIteration(int iteration
}
}
- ///solve all joint constraints
- for (int j=0;j<m_tmpSolverNonContactConstraintPool.size();j++)
+ ///solve all joint constraints
+ for (int j = 0; j < m_tmpSolverNonContactConstraintPool.size(); j++)
+ {
+ btSolverConstraint& constraint = m_tmpSolverNonContactConstraintPool[m_orderNonContactConstraintPool[j]];
+ if (iteration < constraint.m_overrideNumSolverIterations)
{
- btSolverConstraint& constraint = m_tmpSolverNonContactConstraintPool[m_orderNonContactConstraintPool[j]];
- if (iteration < constraint.m_overrideNumSolverIterations)
- {
- btScalar residual = resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[constraint.m_solverBodyIdA],m_tmpSolverBodyPool[constraint.m_solverBodyIdB],constraint);
- leastSquaresResidual = btMax(leastSquaresResidual, residual*residual);
- }
+ btScalar residual = resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[constraint.m_solverBodyIdA], m_tmpSolverBodyPool[constraint.m_solverBodyIdB], constraint);
+ leastSquaresResidual = btMax(leastSquaresResidual, residual * residual);
}
+ }
- if (iteration< infoGlobal.m_numIterations)
+ if (iteration < infoGlobal.m_numIterations)
+ {
+ for (int j = 0; j < numConstraints; j++)
{
- for (int j=0;j<numConstraints;j++)
+ if (constraints[j]->isEnabled())
{
- if (constraints[j]->isEnabled())
- {
- int bodyAid = getOrInitSolverBody(constraints[j]->getRigidBodyA(),infoGlobal.m_timeStep);
- int bodyBid = getOrInitSolverBody(constraints[j]->getRigidBodyB(),infoGlobal.m_timeStep);
- btSolverBody& bodyA = m_tmpSolverBodyPool[bodyAid];
- btSolverBody& bodyB = m_tmpSolverBodyPool[bodyBid];
- constraints[j]->solveConstraintObsolete(bodyA,bodyB,infoGlobal.m_timeStep);
- }
+ int bodyAid = getOrInitSolverBody(constraints[j]->getRigidBodyA(), infoGlobal.m_timeStep);
+ int bodyBid = getOrInitSolverBody(constraints[j]->getRigidBodyB(), infoGlobal.m_timeStep);
+ btSolverBody& bodyA = m_tmpSolverBodyPool[bodyAid];
+ btSolverBody& bodyB = m_tmpSolverBodyPool[bodyBid];
+ constraints[j]->solveConstraintObsolete(bodyA, bodyB, infoGlobal.m_timeStep);
}
+ }
+
+ ///solve all contact constraints
+ if (infoGlobal.m_solverMode & SOLVER_INTERLEAVE_CONTACT_AND_FRICTION_CONSTRAINTS)
+ {
+ int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
+ int multiplier = (infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS) ? 2 : 1;
- ///solve all contact constraints
- if (infoGlobal.m_solverMode & SOLVER_INTERLEAVE_CONTACT_AND_FRICTION_CONSTRAINTS)
+ for (int c = 0; c < numPoolConstraints; c++)
{
- int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
- int multiplier = (infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS)? 2 : 1;
+ btScalar totalImpulse = 0;
- for (int c=0;c<numPoolConstraints;c++)
{
- btScalar totalImpulse =0;
+ const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[c]];
+ btScalar residual = resolveSingleConstraintRowLowerLimit(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA], m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB], solveManifold);
+ leastSquaresResidual = btMax(leastSquaresResidual, residual * residual);
+ totalImpulse = solveManifold.m_appliedImpulse;
+ }
+ bool applyFriction = true;
+ if (applyFriction)
+ {
{
- const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[c]];
- btScalar residual = resolveSingleConstraintRowLowerLimit(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
- leastSquaresResidual = btMax(leastSquaresResidual, residual*residual);
+ btSolverConstraint& solveManifold = m_tmpSolverContactFrictionConstraintPool[m_orderFrictionConstraintPool[c * multiplier]];
- totalImpulse = solveManifold.m_appliedImpulse;
- }
- bool applyFriction = true;
- if (applyFriction)
- {
+ if (totalImpulse > btScalar(0))
{
+ solveManifold.m_lowerLimit = -(solveManifold.m_friction * totalImpulse);
+ solveManifold.m_upperLimit = solveManifold.m_friction * totalImpulse;
- btSolverConstraint& solveManifold = m_tmpSolverContactFrictionConstraintPool[m_orderFrictionConstraintPool[c*multiplier]];
-
- if (totalImpulse>btScalar(0))
- {
- solveManifold.m_lowerLimit = -(solveManifold.m_friction*totalImpulse);
- solveManifold.m_upperLimit = solveManifold.m_friction*totalImpulse;
-
- btScalar residual = resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
- leastSquaresResidual = btMax(leastSquaresResidual, residual*residual);
- }
+ btScalar residual = resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA], m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB], solveManifold);
+ leastSquaresResidual = btMax(leastSquaresResidual, residual * residual);
}
+ }
- if (infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS)
- {
-
- btSolverConstraint& solveManifold = m_tmpSolverContactFrictionConstraintPool[m_orderFrictionConstraintPool[c*multiplier+1]];
+ if (infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS)
+ {
+ btSolverConstraint& solveManifold = m_tmpSolverContactFrictionConstraintPool[m_orderFrictionConstraintPool[c * multiplier + 1]];
- if (totalImpulse>btScalar(0))
- {
- solveManifold.m_lowerLimit = -(solveManifold.m_friction*totalImpulse);
- solveManifold.m_upperLimit = solveManifold.m_friction*totalImpulse;
+ if (totalImpulse > btScalar(0))
+ {
+ solveManifold.m_lowerLimit = -(solveManifold.m_friction * totalImpulse);
+ solveManifold.m_upperLimit = solveManifold.m_friction * totalImpulse;
- btScalar residual = resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
- leastSquaresResidual = btMax(leastSquaresResidual, residual*residual);
- }
+ btScalar residual = resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA], m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB], solveManifold);
+ leastSquaresResidual = btMax(leastSquaresResidual, residual * residual);
}
}
}
-
}
- else//SOLVER_INTERLEAVE_CONTACT_AND_FRICTION_CONSTRAINTS
- {
- //solve the friction constraints after all contact constraints, don't interleave them
- int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
- int j;
-
- for (j=0;j<numPoolConstraints;j++)
- {
- const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]];
- btScalar residual = resolveSingleConstraintRowLowerLimit(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
- leastSquaresResidual = btMax(leastSquaresResidual, residual*residual);
- }
+ }
+ else //SOLVER_INTERLEAVE_CONTACT_AND_FRICTION_CONSTRAINTS
+ {
+ //solve the friction constraints after all contact constraints, don't interleave them
+ int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
+ int j;
+ for (j = 0; j < numPoolConstraints; j++)
+ {
+ const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]];
+ btScalar residual = resolveSingleConstraintRowLowerLimit(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA], m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB], solveManifold);
+ leastSquaresResidual = btMax(leastSquaresResidual, residual * residual);
+ }
+ ///solve all friction constraints
- ///solve all friction constraints
+ int numFrictionPoolConstraints = m_tmpSolverContactFrictionConstraintPool.size();
+ for (j = 0; j < numFrictionPoolConstraints; j++)
+ {
+ btSolverConstraint& solveManifold = m_tmpSolverContactFrictionConstraintPool[m_orderFrictionConstraintPool[j]];
+ btScalar totalImpulse = m_tmpSolverContactConstraintPool[solveManifold.m_frictionIndex].m_appliedImpulse;
- int numFrictionPoolConstraints = m_tmpSolverContactFrictionConstraintPool.size();
- for (j=0;j<numFrictionPoolConstraints;j++)
+ if (totalImpulse > btScalar(0))
{
- btSolverConstraint& solveManifold = m_tmpSolverContactFrictionConstraintPool[m_orderFrictionConstraintPool[j]];
- btScalar totalImpulse = m_tmpSolverContactConstraintPool[solveManifold.m_frictionIndex].m_appliedImpulse;
+ solveManifold.m_lowerLimit = -(solveManifold.m_friction * totalImpulse);
+ solveManifold.m_upperLimit = solveManifold.m_friction * totalImpulse;
- if (totalImpulse>btScalar(0))
- {
- solveManifold.m_lowerLimit = -(solveManifold.m_friction*totalImpulse);
- solveManifold.m_upperLimit = solveManifold.m_friction*totalImpulse;
-
- btScalar residual = resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
- leastSquaresResidual = btMax(leastSquaresResidual, residual*residual);
- }
+ btScalar residual = resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA], m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB], solveManifold);
+ leastSquaresResidual = btMax(leastSquaresResidual, residual * residual);
}
}
+ }
+ int numRollingFrictionPoolConstraints = m_tmpSolverContactRollingFrictionConstraintPool.size();
+ for (int j = 0; j < numRollingFrictionPoolConstraints; j++)
+ {
+ btSolverConstraint& rollingFrictionConstraint = m_tmpSolverContactRollingFrictionConstraintPool[j];
+ btScalar totalImpulse = m_tmpSolverContactConstraintPool[rollingFrictionConstraint.m_frictionIndex].m_appliedImpulse;
+ if (totalImpulse > btScalar(0))
+ {
+ btScalar rollingFrictionMagnitude = rollingFrictionConstraint.m_friction * totalImpulse;
+ if (rollingFrictionMagnitude > rollingFrictionConstraint.m_friction)
+ rollingFrictionMagnitude = rollingFrictionConstraint.m_friction;
- int numRollingFrictionPoolConstraints = m_tmpSolverContactRollingFrictionConstraintPool.size();
- for (int j=0;j<numRollingFrictionPoolConstraints;j++)
- {
-
- btSolverConstraint& rollingFrictionConstraint = m_tmpSolverContactRollingFrictionConstraintPool[j];
- btScalar totalImpulse = m_tmpSolverContactConstraintPool[rollingFrictionConstraint.m_frictionIndex].m_appliedImpulse;
- if (totalImpulse>btScalar(0))
- {
- btScalar rollingFrictionMagnitude = rollingFrictionConstraint.m_friction*totalImpulse;
- if (rollingFrictionMagnitude>rollingFrictionConstraint.m_friction)
- rollingFrictionMagnitude = rollingFrictionConstraint.m_friction;
-
- rollingFrictionConstraint.m_lowerLimit = -rollingFrictionMagnitude;
- rollingFrictionConstraint.m_upperLimit = rollingFrictionMagnitude;
-
- btScalar residual = resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[rollingFrictionConstraint.m_solverBodyIdA],m_tmpSolverBodyPool[rollingFrictionConstraint.m_solverBodyIdB],rollingFrictionConstraint);
- leastSquaresResidual = btMax(leastSquaresResidual, residual*residual);
- }
- }
-
+ rollingFrictionConstraint.m_lowerLimit = -rollingFrictionMagnitude;
+ rollingFrictionConstraint.m_upperLimit = rollingFrictionMagnitude;
+ btScalar residual = resolveSingleConstraintRowGeneric(m_tmpSolverBodyPool[rollingFrictionConstraint.m_solverBodyIdA], m_tmpSolverBodyPool[rollingFrictionConstraint.m_solverBodyIdB], rollingFrictionConstraint);
+ leastSquaresResidual = btMax(leastSquaresResidual, residual * residual);
+ }
}
+ }
return leastSquaresResidual;
}
-
-void btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySplitImpulseIterations(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer)
+void btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySplitImpulseIterations(btCollisionObject** bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal, btIDebugDraw* debugDrawer)
{
BT_PROFILE("solveGroupCacheFriendlySplitImpulseIterations");
int iteration;
if (infoGlobal.m_splitImpulse)
{
{
- for ( iteration = 0;iteration<infoGlobal.m_numIterations;iteration++)
+ for (iteration = 0; iteration < infoGlobal.m_numIterations; iteration++)
{
- btScalar leastSquaresResidual =0.f;
+ btScalar leastSquaresResidual = 0.f;
{
int numPoolConstraints = m_tmpSolverContactConstraintPool.size();
int j;
- for (j=0;j<numPoolConstraints;j++)
+ for (j = 0; j < numPoolConstraints; j++)
{
const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[m_orderTmpConstraintPool[j]];
- btScalar residual = resolveSplitPenetrationImpulse(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA],m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB],solveManifold);
- leastSquaresResidual = btMax(leastSquaresResidual, residual*residual);
+ btScalar residual = resolveSplitPenetrationImpulse(m_tmpSolverBodyPool[solveManifold.m_solverBodyIdA], m_tmpSolverBodyPool[solveManifold.m_solverBodyIdB], solveManifold);
+ leastSquaresResidual = btMax(leastSquaresResidual, residual * residual);
}
}
- if (leastSquaresResidual <= infoGlobal.m_leastSquaresResidualThreshold || iteration>=(infoGlobal.m_numIterations-1))
+ if (leastSquaresResidual <= infoGlobal.m_leastSquaresResidualThreshold || iteration >= (infoGlobal.m_numIterations - 1))
{
#ifdef VERBOSE_RESIDUAL_PRINTF
- printf("residual = %f at iteration #%d\n",leastSquaresResidual,iteration);
+ printf("residual = %f at iteration #%d\n", leastSquaresResidual, iteration);
#endif
break;
}
}
- }
+ }
}
}
-btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyIterations(btCollisionObject** bodies ,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer)
+btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyIterations(btCollisionObject** bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal, btIDebugDraw* debugDrawer)
{
BT_PROFILE("solveGroupCacheFriendlyIterations");
{
///this is a special step to resolve penetrations (just for contacts)
- solveGroupCacheFriendlySplitImpulseIterations(bodies ,numBodies,manifoldPtr, numManifolds,constraints,numConstraints,infoGlobal,debugDrawer);
+ solveGroupCacheFriendlySplitImpulseIterations(bodies, numBodies, manifoldPtr, numManifolds, constraints, numConstraints, infoGlobal, debugDrawer);
- int maxIterations = m_maxOverrideNumSolverIterations > infoGlobal.m_numIterations? m_maxOverrideNumSolverIterations : infoGlobal.m_numIterations;
+ int maxIterations = m_maxOverrideNumSolverIterations > infoGlobal.m_numIterations ? m_maxOverrideNumSolverIterations : infoGlobal.m_numIterations;
- for ( int iteration = 0 ; iteration< maxIterations ; iteration++)
+ for (int iteration = 0; iteration < maxIterations; iteration++)
//for ( int iteration = maxIterations-1 ; iteration >= 0;iteration--)
{
- m_leastSquaresResidual = solveSingleIteration(iteration, bodies ,numBodies,manifoldPtr, numManifolds,constraints,numConstraints,infoGlobal,debugDrawer);
+ m_leastSquaresResidual = solveSingleIteration(iteration, bodies, numBodies, manifoldPtr, numManifolds, constraints, numConstraints, infoGlobal, debugDrawer);
- if (m_leastSquaresResidual <= infoGlobal.m_leastSquaresResidualThreshold || (iteration>= (maxIterations-1)))
+ if (m_leastSquaresResidual <= infoGlobal.m_leastSquaresResidualThreshold || (iteration >= (maxIterations - 1)))
{
#ifdef VERBOSE_RESIDUAL_PRINTF
- printf("residual = %f at iteration #%d\n",m_leastSquaresResidual,iteration);
+ printf("residual = %f at iteration #%d\n", m_leastSquaresResidual, iteration);
#endif
break;
}
}
-
}
return 0.f;
}
void btSequentialImpulseConstraintSolver::writeBackContacts(int iBegin, int iEnd, const btContactSolverInfo& infoGlobal)
{
- for (int j=iBegin; j<iEnd; j++)
- {
- const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[j];
- btManifoldPoint* pt = (btManifoldPoint*) solveManifold.m_originalContactPoint;
- btAssert(pt);
- pt->m_appliedImpulse = solveManifold.m_appliedImpulse;
+ for (int j = iBegin; j < iEnd; j++)
+ {
+ const btSolverConstraint& solveManifold = m_tmpSolverContactConstraintPool[j];
+ btManifoldPoint* pt = (btManifoldPoint*)solveManifold.m_originalContactPoint;
+ btAssert(pt);
+ pt->m_appliedImpulse = solveManifold.m_appliedImpulse;
// float f = m_tmpSolverContactFrictionConstraintPool[solveManifold.m_frictionIndex].m_appliedImpulse;
- // printf("pt->m_appliedImpulseLateral1 = %f\n", f);
- pt->m_appliedImpulseLateral1 = m_tmpSolverContactFrictionConstraintPool[solveManifold.m_frictionIndex].m_appliedImpulse;
- //printf("pt->m_appliedImpulseLateral1 = %f\n", pt->m_appliedImpulseLateral1);
- if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
- {
- pt->m_appliedImpulseLateral2 = m_tmpSolverContactFrictionConstraintPool[solveManifold.m_frictionIndex+1].m_appliedImpulse;
- }
- //do a callback here?
+ // printf("pt->m_appliedImpulseLateral1 = %f\n", f);
+ pt->m_appliedImpulseLateral1 = m_tmpSolverContactFrictionConstraintPool[solveManifold.m_frictionIndex].m_appliedImpulse;
+ //printf("pt->m_appliedImpulseLateral1 = %f\n", pt->m_appliedImpulseLateral1);
+ if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
+ {
+ pt->m_appliedImpulseLateral2 = m_tmpSolverContactFrictionConstraintPool[solveManifold.m_frictionIndex + 1].m_appliedImpulse;
}
+ //do a callback here?
+ }
}
void btSequentialImpulseConstraintSolver::writeBackJoints(int iBegin, int iEnd, const btContactSolverInfo& infoGlobal)
{
- for (int j=iBegin; j<iEnd; j++)
+ for (int j = iBegin; j < iEnd; j++)
{
const btSolverConstraint& solverConstr = m_tmpSolverNonContactConstraintPool[j];
btTypedConstraint* constr = (btTypedConstraint*)solverConstr.m_originalContactPoint;
btJointFeedback* fb = constr->getJointFeedback();
if (fb)
{
- fb->m_appliedForceBodyA += solverConstr.m_contactNormal1*solverConstr.m_appliedImpulse*constr->getRigidBodyA().getLinearFactor()/infoGlobal.m_timeStep;
- fb->m_appliedForceBodyB += solverConstr.m_contactNormal2*solverConstr.m_appliedImpulse*constr->getRigidBodyB().getLinearFactor()/infoGlobal.m_timeStep;
- fb->m_appliedTorqueBodyA += solverConstr.m_relpos1CrossNormal* constr->getRigidBodyA().getAngularFactor()*solverConstr.m_appliedImpulse/infoGlobal.m_timeStep;
- fb->m_appliedTorqueBodyB += solverConstr.m_relpos2CrossNormal* constr->getRigidBodyB().getAngularFactor()*solverConstr.m_appliedImpulse/infoGlobal.m_timeStep; /*RGM ???? */
-
+ fb->m_appliedForceBodyA += solverConstr.m_contactNormal1 * solverConstr.m_appliedImpulse * constr->getRigidBodyA().getLinearFactor() / infoGlobal.m_timeStep;
+ fb->m_appliedForceBodyB += solverConstr.m_contactNormal2 * solverConstr.m_appliedImpulse * constr->getRigidBodyB().getLinearFactor() / infoGlobal.m_timeStep;
+ fb->m_appliedTorqueBodyA += solverConstr.m_relpos1CrossNormal * constr->getRigidBodyA().getAngularFactor() * solverConstr.m_appliedImpulse / infoGlobal.m_timeStep;
+ fb->m_appliedTorqueBodyB += solverConstr.m_relpos2CrossNormal * constr->getRigidBodyB().getAngularFactor() * solverConstr.m_appliedImpulse / infoGlobal.m_timeStep; /*RGM ???? */
}
constr->internalSetAppliedImpulse(solverConstr.m_appliedImpulse);
- if (btFabs(solverConstr.m_appliedImpulse)>=constr->getBreakingImpulseThreshold())
+ if (btFabs(solverConstr.m_appliedImpulse) >= constr->getBreakingImpulseThreshold())
{
constr->setEnabled(false);
}
}
}
-
void btSequentialImpulseConstraintSolver::writeBackBodies(int iBegin, int iEnd, const btContactSolverInfo& infoGlobal)
{
- for (int i=iBegin; i<iEnd; i++)
+ for (int i = iBegin; i < iEnd; i++)
{
btRigidBody* body = m_tmpSolverBodyPool[i].m_originalBody;
if (body)
@@ -1944,11 +1832,11 @@ void btSequentialImpulseConstraintSolver::writeBackBodies(int iBegin, int iEnd,
m_tmpSolverBodyPool[i].writebackVelocity();
m_tmpSolverBodyPool[i].m_originalBody->setLinearVelocity(
- m_tmpSolverBodyPool[i].m_linearVelocity+
+ m_tmpSolverBodyPool[i].m_linearVelocity +
m_tmpSolverBodyPool[i].m_externalForceImpulse);
m_tmpSolverBodyPool[i].m_originalBody->setAngularVelocity(
- m_tmpSolverBodyPool[i].m_angularVelocity+
+ m_tmpSolverBodyPool[i].m_angularVelocity +
m_tmpSolverBodyPool[i].m_externalTorqueImpulse);
if (infoGlobal.m_splitImpulse)
@@ -1959,17 +1847,17 @@ void btSequentialImpulseConstraintSolver::writeBackBodies(int iBegin, int iEnd,
}
}
-btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyFinish(btCollisionObject** bodies,int numBodies,const btContactSolverInfo& infoGlobal)
+btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyFinish(btCollisionObject** bodies, int numBodies, const btContactSolverInfo& infoGlobal)
{
BT_PROFILE("solveGroupCacheFriendlyFinish");
if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
{
- writeBackContacts(0, m_tmpSolverContactConstraintPool.size(), infoGlobal);
+ writeBackContacts(0, m_tmpSolverContactConstraintPool.size(), infoGlobal);
}
- writeBackJoints(0, m_tmpSolverNonContactConstraintPool.size(), infoGlobal);
- writeBackBodies(0, m_tmpSolverBodyPool.size(), infoGlobal);
+ writeBackJoints(0, m_tmpSolverNonContactConstraintPool.size(), infoGlobal);
+ writeBackBodies(0, m_tmpSolverBodyPool.size(), infoGlobal);
m_tmpSolverContactConstraintPool.resizeNoInitialize(0);
m_tmpSolverNonContactConstraintPool.resizeNoInitialize(0);
@@ -1980,25 +1868,22 @@ btScalar btSequentialImpulseConstraintSolver::solveGroupCacheFriendlyFinish(btCo
return 0.f;
}
-
-
/// btSequentialImpulseConstraintSolver Sequentially applies impulses
-btScalar btSequentialImpulseConstraintSolver::solveGroup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer,btDispatcher* /*dispatcher*/)
+btScalar btSequentialImpulseConstraintSolver::solveGroup(btCollisionObject** bodies, int numBodies, btPersistentManifold** manifoldPtr, int numManifolds, btTypedConstraint** constraints, int numConstraints, const btContactSolverInfo& infoGlobal, btIDebugDraw* debugDrawer, btDispatcher* /*dispatcher*/)
{
-
BT_PROFILE("solveGroup");
//you need to provide at least some bodies
- solveGroupCacheFriendlySetup( bodies, numBodies, manifoldPtr, numManifolds,constraints, numConstraints,infoGlobal,debugDrawer);
+ solveGroupCacheFriendlySetup(bodies, numBodies, manifoldPtr, numManifolds, constraints, numConstraints, infoGlobal, debugDrawer);
- solveGroupCacheFriendlyIterations(bodies, numBodies, manifoldPtr, numManifolds,constraints, numConstraints,infoGlobal,debugDrawer);
+ solveGroupCacheFriendlyIterations(bodies, numBodies, manifoldPtr, numManifolds, constraints, numConstraints, infoGlobal, debugDrawer);
solveGroupCacheFriendlyFinish(bodies, numBodies, infoGlobal);
return 0.f;
}
-void btSequentialImpulseConstraintSolver::reset()
+void btSequentialImpulseConstraintSolver::reset()
{
m_btSeed2 = 0;
}