diff options
Diffstat (limited to 'thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.h')
-rw-r--r-- | thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.h | 647 |
1 files changed, 647 insertions, 0 deletions
diff --git a/thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.h b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.h new file mode 100644 index 0000000000..bea8629c32 --- /dev/null +++ b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.h @@ -0,0 +1,647 @@ +/* +Bullet Continuous Collision Detection and Physics Library +Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ + +This software is provided 'as-is', without any express or implied warranty. +In no event will the authors be held liable for any damages arising from the use of this software. +Permission is granted to anyone to use this software for any purpose, +including commercial applications, and to alter it and redistribute it freely, +subject to the following restrictions: + +1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. +2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. +3. This notice may not be removed or altered from any source distribution. +*/ + +/// 2009 March: btGeneric6DofConstraint refactored by Roman Ponomarev +/// Added support for generic constraint solver through getInfo1/getInfo2 methods + +/* +2007-09-09 +btGeneric6DofConstraint Refactored by Francisco Le?n +email: projectileman@yahoo.com +http://gimpact.sf.net +*/ + + +#ifndef BT_GENERIC_6DOF_CONSTRAINT_H +#define BT_GENERIC_6DOF_CONSTRAINT_H + +#include "LinearMath/btVector3.h" +#include "btJacobianEntry.h" +#include "btTypedConstraint.h" + +class btRigidBody; + + + +#ifdef BT_USE_DOUBLE_PRECISION +#define btGeneric6DofConstraintData2 btGeneric6DofConstraintDoubleData2 +#define btGeneric6DofConstraintDataName "btGeneric6DofConstraintDoubleData2" +#else +#define btGeneric6DofConstraintData2 btGeneric6DofConstraintData +#define btGeneric6DofConstraintDataName "btGeneric6DofConstraintData" +#endif //BT_USE_DOUBLE_PRECISION + + +//! Rotation Limit structure for generic joints +class btRotationalLimitMotor +{ +public: + //! limit_parameters + //!@{ + btScalar m_loLimit;//!< joint limit + btScalar m_hiLimit;//!< joint limit + btScalar m_targetVelocity;//!< target motor velocity + btScalar m_maxMotorForce;//!< max force on motor + btScalar m_maxLimitForce;//!< max force on limit + btScalar m_damping;//!< Damping. + btScalar m_limitSoftness;//! Relaxation factor + btScalar m_normalCFM;//!< Constraint force mixing factor + btScalar m_stopERP;//!< Error tolerance factor when joint is at limit + btScalar m_stopCFM;//!< Constraint force mixing factor when joint is at limit + btScalar m_bounce;//!< restitution factor + bool m_enableMotor; + + //!@} + + //! temp_variables + //!@{ + btScalar m_currentLimitError;//! How much is violated this limit + btScalar m_currentPosition; //! current value of angle + int m_currentLimit;//!< 0=free, 1=at lo limit, 2=at hi limit + btScalar m_accumulatedImpulse; + //!@} + + btRotationalLimitMotor() + { + m_accumulatedImpulse = 0.f; + m_targetVelocity = 0; + m_maxMotorForce = 0.1f; + m_maxLimitForce = 300.0f; + m_loLimit = 1.0f; + m_hiLimit = -1.0f; + m_normalCFM = 0.f; + m_stopERP = 0.2f; + m_stopCFM = 0.f; + m_bounce = 0.0f; + m_damping = 1.0f; + m_limitSoftness = 0.5f; + m_currentLimit = 0; + m_currentLimitError = 0; + m_enableMotor = false; + } + + btRotationalLimitMotor(const btRotationalLimitMotor & limot) + { + m_targetVelocity = limot.m_targetVelocity; + m_maxMotorForce = limot.m_maxMotorForce; + m_limitSoftness = limot.m_limitSoftness; + m_loLimit = limot.m_loLimit; + m_hiLimit = limot.m_hiLimit; + m_normalCFM = limot.m_normalCFM; + m_stopERP = limot.m_stopERP; + m_stopCFM = limot.m_stopCFM; + m_bounce = limot.m_bounce; + m_currentLimit = limot.m_currentLimit; + m_currentLimitError = limot.m_currentLimitError; + m_enableMotor = limot.m_enableMotor; + } + + + + //! Is limited + bool isLimited() const + { + if(m_loLimit > m_hiLimit) return false; + return true; + } + + //! Need apply correction + bool needApplyTorques() const + { + if(m_currentLimit == 0 && m_enableMotor == false) return false; + return true; + } + + //! calculates error + /*! + calculates m_currentLimit and m_currentLimitError. + */ + int testLimitValue(btScalar test_value); + + //! apply the correction impulses for two bodies + btScalar solveAngularLimits(btScalar timeStep,btVector3& axis, btScalar jacDiagABInv,btRigidBody * body0, btRigidBody * body1); + +}; + + + +class btTranslationalLimitMotor +{ +public: + btVector3 m_lowerLimit;//!< the constraint lower limits + btVector3 m_upperLimit;//!< the constraint upper limits + btVector3 m_accumulatedImpulse; + //! Linear_Limit_parameters + //!@{ + btScalar m_limitSoftness;//!< Softness for linear limit + btScalar m_damping;//!< Damping for linear limit + btScalar m_restitution;//! Bounce parameter for linear limit + btVector3 m_normalCFM;//!< Constraint force mixing factor + btVector3 m_stopERP;//!< Error tolerance factor when joint is at limit + btVector3 m_stopCFM;//!< Constraint force mixing factor when joint is at limit + //!@} + bool m_enableMotor[3]; + btVector3 m_targetVelocity;//!< target motor velocity + btVector3 m_maxMotorForce;//!< max force on motor + btVector3 m_currentLimitError;//! How much is violated this limit + btVector3 m_currentLinearDiff;//! Current relative offset of constraint frames + int m_currentLimit[3];//!< 0=free, 1=at lower limit, 2=at upper limit + + btTranslationalLimitMotor() + { + m_lowerLimit.setValue(0.f,0.f,0.f); + m_upperLimit.setValue(0.f,0.f,0.f); + m_accumulatedImpulse.setValue(0.f,0.f,0.f); + m_normalCFM.setValue(0.f, 0.f, 0.f); + m_stopERP.setValue(0.2f, 0.2f, 0.2f); + m_stopCFM.setValue(0.f, 0.f, 0.f); + + m_limitSoftness = 0.7f; + m_damping = btScalar(1.0f); + m_restitution = btScalar(0.5f); + for(int i=0; i < 3; i++) + { + m_enableMotor[i] = false; + m_targetVelocity[i] = btScalar(0.f); + m_maxMotorForce[i] = btScalar(0.f); + } + } + + btTranslationalLimitMotor(const btTranslationalLimitMotor & other ) + { + m_lowerLimit = other.m_lowerLimit; + m_upperLimit = other.m_upperLimit; + m_accumulatedImpulse = other.m_accumulatedImpulse; + + m_limitSoftness = other.m_limitSoftness ; + m_damping = other.m_damping; + m_restitution = other.m_restitution; + m_normalCFM = other.m_normalCFM; + m_stopERP = other.m_stopERP; + m_stopCFM = other.m_stopCFM; + + for(int i=0; i < 3; i++) + { + m_enableMotor[i] = other.m_enableMotor[i]; + m_targetVelocity[i] = other.m_targetVelocity[i]; + m_maxMotorForce[i] = other.m_maxMotorForce[i]; + } + } + + //! Test limit + /*! + - free means upper < lower, + - locked means upper == lower + - limited means upper > lower + - limitIndex: first 3 are linear, next 3 are angular + */ + inline bool isLimited(int limitIndex) const + { + return (m_upperLimit[limitIndex] >= m_lowerLimit[limitIndex]); + } + inline bool needApplyForce(int limitIndex) const + { + if(m_currentLimit[limitIndex] == 0 && m_enableMotor[limitIndex] == false) return false; + return true; + } + int testLimitValue(int limitIndex, btScalar test_value); + + + btScalar solveLinearAxis( + btScalar timeStep, + btScalar jacDiagABInv, + btRigidBody& body1,const btVector3 &pointInA, + btRigidBody& body2,const btVector3 &pointInB, + int limit_index, + const btVector3 & axis_normal_on_a, + const btVector3 & anchorPos); + + +}; + +enum bt6DofFlags +{ + BT_6DOF_FLAGS_CFM_NORM = 1, + BT_6DOF_FLAGS_CFM_STOP = 2, + BT_6DOF_FLAGS_ERP_STOP = 4 +}; +#define BT_6DOF_FLAGS_AXIS_SHIFT 3 // bits per axis + + +/// btGeneric6DofConstraint between two rigidbodies each with a pivotpoint that descibes the axis location in local space +/*! +btGeneric6DofConstraint can leave any of the 6 degree of freedom 'free' or 'locked'. +currently this limit supports rotational motors<br> +<ul> +<li> For Linear limits, use btGeneric6DofConstraint.setLinearUpperLimit, btGeneric6DofConstraint.setLinearLowerLimit. You can set the parameters with the btTranslationalLimitMotor structure accsesible through the btGeneric6DofConstraint.getTranslationalLimitMotor method. +At this moment translational motors are not supported. May be in the future. </li> + +<li> For Angular limits, use the btRotationalLimitMotor structure for configuring the limit. +This is accessible through btGeneric6DofConstraint.getLimitMotor method, +This brings support for limit parameters and motors. </li> + +<li> Angulars limits have these possible ranges: +<table border=1 > +<tr> + <td><b>AXIS</b></td> + <td><b>MIN ANGLE</b></td> + <td><b>MAX ANGLE</b></td> +</tr><tr> + <td>X</td> + <td>-PI</td> + <td>PI</td> +</tr><tr> + <td>Y</td> + <td>-PI/2</td> + <td>PI/2</td> +</tr><tr> + <td>Z</td> + <td>-PI</td> + <td>PI</td> +</tr> +</table> +</li> +</ul> + +*/ +ATTRIBUTE_ALIGNED16(class) btGeneric6DofConstraint : public btTypedConstraint +{ +protected: + + //! relative_frames + //!@{ + btTransform m_frameInA;//!< the constraint space w.r.t body A + btTransform m_frameInB;//!< the constraint space w.r.t body B + //!@} + + //! Jacobians + //!@{ + btJacobianEntry m_jacLinear[3];//!< 3 orthogonal linear constraints + btJacobianEntry m_jacAng[3];//!< 3 orthogonal angular constraints + //!@} + + //! Linear_Limit_parameters + //!@{ + btTranslationalLimitMotor m_linearLimits; + //!@} + + + //! hinge_parameters + //!@{ + btRotationalLimitMotor m_angularLimits[3]; + //!@} + + +protected: + //! temporal variables + //!@{ + btScalar m_timeStep; + btTransform m_calculatedTransformA; + btTransform m_calculatedTransformB; + btVector3 m_calculatedAxisAngleDiff; + btVector3 m_calculatedAxis[3]; + btVector3 m_calculatedLinearDiff; + btScalar m_factA; + btScalar m_factB; + bool m_hasStaticBody; + + btVector3 m_AnchorPos; // point betwen pivots of bodies A and B to solve linear axes + + bool m_useLinearReferenceFrameA; + bool m_useOffsetForConstraintFrame; + + int m_flags; + + //!@} + + btGeneric6DofConstraint& operator=(btGeneric6DofConstraint& other) + { + btAssert(0); + (void) other; + return *this; + } + + + int setAngularLimits(btConstraintInfo2 *info, int row_offset,const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB); + + int setLinearLimits(btConstraintInfo2 *info, int row, const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB); + + void buildLinearJacobian( + btJacobianEntry & jacLinear,const btVector3 & normalWorld, + const btVector3 & pivotAInW,const btVector3 & pivotBInW); + + void buildAngularJacobian(btJacobianEntry & jacAngular,const btVector3 & jointAxisW); + + // tests linear limits + void calculateLinearInfo(); + + //! calcs the euler angles between the two bodies. + void calculateAngleInfo(); + + + +public: + + BT_DECLARE_ALIGNED_ALLOCATOR(); + + ///for backwards compatibility during the transition to 'getInfo/getInfo2' + bool m_useSolveConstraintObsolete; + + btGeneric6DofConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB ,bool useLinearReferenceFrameA); + btGeneric6DofConstraint(btRigidBody& rbB, const btTransform& frameInB, bool useLinearReferenceFrameB); + + //! Calcs global transform of the offsets + /*! + Calcs the global transform for the joint offset for body A an B, and also calcs the agle differences between the bodies. + \sa btGeneric6DofConstraint.getCalculatedTransformA , btGeneric6DofConstraint.getCalculatedTransformB, btGeneric6DofConstraint.calculateAngleInfo + */ + void calculateTransforms(const btTransform& transA,const btTransform& transB); + + void calculateTransforms(); + + //! Gets the global transform of the offset for body A + /*! + \sa btGeneric6DofConstraint.getFrameOffsetA, btGeneric6DofConstraint.getFrameOffsetB, btGeneric6DofConstraint.calculateAngleInfo. + */ + const btTransform & getCalculatedTransformA() const + { + return m_calculatedTransformA; + } + + //! Gets the global transform of the offset for body B + /*! + \sa btGeneric6DofConstraint.getFrameOffsetA, btGeneric6DofConstraint.getFrameOffsetB, btGeneric6DofConstraint.calculateAngleInfo. + */ + const btTransform & getCalculatedTransformB() const + { + return m_calculatedTransformB; + } + + const btTransform & getFrameOffsetA() const + { + return m_frameInA; + } + + const btTransform & getFrameOffsetB() const + { + return m_frameInB; + } + + + btTransform & getFrameOffsetA() + { + return m_frameInA; + } + + btTransform & getFrameOffsetB() + { + return m_frameInB; + } + + + //! performs Jacobian calculation, and also calculates angle differences and axis + virtual void buildJacobian(); + + virtual void getInfo1 (btConstraintInfo1* info); + + void getInfo1NonVirtual (btConstraintInfo1* info); + + virtual void getInfo2 (btConstraintInfo2* info); + + void getInfo2NonVirtual (btConstraintInfo2* info,const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB); + + + void updateRHS(btScalar timeStep); + + //! Get the rotation axis in global coordinates + /*! + \pre btGeneric6DofConstraint.buildJacobian must be called previously. + */ + btVector3 getAxis(int axis_index) const; + + //! Get the relative Euler angle + /*! + \pre btGeneric6DofConstraint::calculateTransforms() must be called previously. + */ + btScalar getAngle(int axis_index) const; + + //! Get the relative position of the constraint pivot + /*! + \pre btGeneric6DofConstraint::calculateTransforms() must be called previously. + */ + btScalar getRelativePivotPosition(int axis_index) const; + + void setFrames(const btTransform & frameA, const btTransform & frameB); + + //! Test angular limit. + /*! + Calculates angular correction and returns true if limit needs to be corrected. + \pre btGeneric6DofConstraint::calculateTransforms() must be called previously. + */ + bool testAngularLimitMotor(int axis_index); + + void setLinearLowerLimit(const btVector3& linearLower) + { + m_linearLimits.m_lowerLimit = linearLower; + } + + void getLinearLowerLimit(btVector3& linearLower) const + { + linearLower = m_linearLimits.m_lowerLimit; + } + + void setLinearUpperLimit(const btVector3& linearUpper) + { + m_linearLimits.m_upperLimit = linearUpper; + } + + void getLinearUpperLimit(btVector3& linearUpper) const + { + linearUpper = m_linearLimits.m_upperLimit; + } + + void setAngularLowerLimit(const btVector3& angularLower) + { + for(int i = 0; i < 3; i++) + m_angularLimits[i].m_loLimit = btNormalizeAngle(angularLower[i]); + } + + void getAngularLowerLimit(btVector3& angularLower) const + { + for(int i = 0; i < 3; i++) + angularLower[i] = m_angularLimits[i].m_loLimit; + } + + void setAngularUpperLimit(const btVector3& angularUpper) + { + for(int i = 0; i < 3; i++) + m_angularLimits[i].m_hiLimit = btNormalizeAngle(angularUpper[i]); + } + + void getAngularUpperLimit(btVector3& angularUpper) const + { + for(int i = 0; i < 3; i++) + angularUpper[i] = m_angularLimits[i].m_hiLimit; + } + + //! Retrieves the angular limit informacion + btRotationalLimitMotor * getRotationalLimitMotor(int index) + { + return &m_angularLimits[index]; + } + + //! Retrieves the limit informacion + btTranslationalLimitMotor * getTranslationalLimitMotor() + { + return &m_linearLimits; + } + + //first 3 are linear, next 3 are angular + void setLimit(int axis, btScalar lo, btScalar hi) + { + if(axis<3) + { + m_linearLimits.m_lowerLimit[axis] = lo; + m_linearLimits.m_upperLimit[axis] = hi; + } + else + { + lo = btNormalizeAngle(lo); + hi = btNormalizeAngle(hi); + m_angularLimits[axis-3].m_loLimit = lo; + m_angularLimits[axis-3].m_hiLimit = hi; + } + } + + //! Test limit + /*! + - free means upper < lower, + - locked means upper == lower + - limited means upper > lower + - limitIndex: first 3 are linear, next 3 are angular + */ + bool isLimited(int limitIndex) const + { + if(limitIndex<3) + { + return m_linearLimits.isLimited(limitIndex); + + } + return m_angularLimits[limitIndex-3].isLimited(); + } + + virtual void calcAnchorPos(void); // overridable + + int get_limit_motor_info2( btRotationalLimitMotor * limot, + const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB, + btConstraintInfo2 *info, int row, btVector3& ax1, int rotational, int rotAllowed = false); + + // access for UseFrameOffset + bool getUseFrameOffset() const { return m_useOffsetForConstraintFrame; } + void setUseFrameOffset(bool frameOffsetOnOff) { m_useOffsetForConstraintFrame = frameOffsetOnOff; } + + bool getUseLinearReferenceFrameA() const { return m_useLinearReferenceFrameA; } + void setUseLinearReferenceFrameA(bool linearReferenceFrameA) { m_useLinearReferenceFrameA = linearReferenceFrameA; } + + ///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5). + ///If no axis is provided, it uses the default axis for this constraint. + virtual void setParam(int num, btScalar value, int axis = -1); + ///return the local value of parameter + virtual btScalar getParam(int num, int axis = -1) const; + + void setAxis( const btVector3& axis1, const btVector3& axis2); + + virtual int getFlags() const + { + return m_flags; + } + + virtual int calculateSerializeBufferSize() const; + + ///fills the dataBuffer and returns the struct name (and 0 on failure) + virtual const char* serialize(void* dataBuffer, btSerializer* serializer) const; + + +}; + + +struct btGeneric6DofConstraintData +{ + btTypedConstraintData m_typeConstraintData; + btTransformFloatData m_rbAFrame; // constraint axii. Assumes z is hinge axis. + btTransformFloatData m_rbBFrame; + + btVector3FloatData m_linearUpperLimit; + btVector3FloatData m_linearLowerLimit; + + btVector3FloatData m_angularUpperLimit; + btVector3FloatData m_angularLowerLimit; + + int m_useLinearReferenceFrameA; + int m_useOffsetForConstraintFrame; +}; + +struct btGeneric6DofConstraintDoubleData2 +{ + btTypedConstraintDoubleData m_typeConstraintData; + btTransformDoubleData m_rbAFrame; // constraint axii. Assumes z is hinge axis. + btTransformDoubleData m_rbBFrame; + + btVector3DoubleData m_linearUpperLimit; + btVector3DoubleData m_linearLowerLimit; + + btVector3DoubleData m_angularUpperLimit; + btVector3DoubleData m_angularLowerLimit; + + int m_useLinearReferenceFrameA; + int m_useOffsetForConstraintFrame; +}; + +SIMD_FORCE_INLINE int btGeneric6DofConstraint::calculateSerializeBufferSize() const +{ + return sizeof(btGeneric6DofConstraintData2); +} + + ///fills the dataBuffer and returns the struct name (and 0 on failure) +SIMD_FORCE_INLINE const char* btGeneric6DofConstraint::serialize(void* dataBuffer, btSerializer* serializer) const +{ + + btGeneric6DofConstraintData2* dof = (btGeneric6DofConstraintData2*)dataBuffer; + btTypedConstraint::serialize(&dof->m_typeConstraintData,serializer); + + m_frameInA.serialize(dof->m_rbAFrame); + m_frameInB.serialize(dof->m_rbBFrame); + + + int i; + for (i=0;i<3;i++) + { + dof->m_angularLowerLimit.m_floats[i] = m_angularLimits[i].m_loLimit; + dof->m_angularUpperLimit.m_floats[i] = m_angularLimits[i].m_hiLimit; + dof->m_linearLowerLimit.m_floats[i] = m_linearLimits.m_lowerLimit[i]; + dof->m_linearUpperLimit.m_floats[i] = m_linearLimits.m_upperLimit[i]; + } + + dof->m_useLinearReferenceFrameA = m_useLinearReferenceFrameA? 1 : 0; + dof->m_useOffsetForConstraintFrame = m_useOffsetForConstraintFrame ? 1 : 0; + + return btGeneric6DofConstraintDataName; +} + + + + + +#endif //BT_GENERIC_6DOF_CONSTRAINT_H |