diff options
Diffstat (limited to 'thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.h')
-rw-r--r-- | thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.h | 664 |
1 files changed, 316 insertions, 348 deletions
diff --git a/thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.h b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.h index b2ad45f749..b9e762e175 100644 --- a/thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.h +++ b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.h @@ -23,7 +23,6 @@ email: projectileman@yahoo.com http://gimpact.sf.net */ - #ifndef BT_GENERIC_6DOF_CONSTRAINT_H #define BT_GENERIC_6DOF_CONSTRAINT_H @@ -33,96 +32,91 @@ http://gimpact.sf.net class btRigidBody; - - #ifdef BT_USE_DOUBLE_PRECISION -#define btGeneric6DofConstraintData2 btGeneric6DofConstraintDoubleData2 -#define btGeneric6DofConstraintDataName "btGeneric6DofConstraintDoubleData2" +#define btGeneric6DofConstraintData2 btGeneric6DofConstraintDoubleData2 +#define btGeneric6DofConstraintDataName "btGeneric6DofConstraintDoubleData2" #else -#define btGeneric6DofConstraintData2 btGeneric6DofConstraintData -#define btGeneric6DofConstraintDataName "btGeneric6DofConstraintData" -#endif //BT_USE_DOUBLE_PRECISION - +#define btGeneric6DofConstraintData2 btGeneric6DofConstraintData +#define btGeneric6DofConstraintDataName "btGeneric6DofConstraintData" +#endif //BT_USE_DOUBLE_PRECISION //! Rotation Limit structure for generic joints class btRotationalLimitMotor { public: - //! limit_parameters - //!@{ - btScalar m_loLimit;//!< joint limit - btScalar m_hiLimit;//!< joint limit - btScalar m_targetVelocity;//!< target motor velocity - btScalar m_maxMotorForce;//!< max force on motor - btScalar m_maxLimitForce;//!< max force on limit - btScalar m_damping;//!< Damping. - btScalar m_limitSoftness;//! Relaxation factor - btScalar m_normalCFM;//!< Constraint force mixing factor - btScalar m_stopERP;//!< Error tolerance factor when joint is at limit - btScalar m_stopCFM;//!< Constraint force mixing factor when joint is at limit - btScalar m_bounce;//!< restitution factor - bool m_enableMotor; - - //!@} - - //! temp_variables - //!@{ - btScalar m_currentLimitError;//! How much is violated this limit - btScalar m_currentPosition; //! current value of angle - int m_currentLimit;//!< 0=free, 1=at lo limit, 2=at hi limit - btScalar m_accumulatedImpulse; - //!@} - - btRotationalLimitMotor() - { - m_accumulatedImpulse = 0.f; - m_targetVelocity = 0; - m_maxMotorForce = 6.0f; - m_maxLimitForce = 300.0f; - m_loLimit = 1.0f; - m_hiLimit = -1.0f; + //! limit_parameters + //!@{ + btScalar m_loLimit; //!< joint limit + btScalar m_hiLimit; //!< joint limit + btScalar m_targetVelocity; //!< target motor velocity + btScalar m_maxMotorForce; //!< max force on motor + btScalar m_maxLimitForce; //!< max force on limit + btScalar m_damping; //!< Damping. + btScalar m_limitSoftness; //! Relaxation factor + btScalar m_normalCFM; //!< Constraint force mixing factor + btScalar m_stopERP; //!< Error tolerance factor when joint is at limit + btScalar m_stopCFM; //!< Constraint force mixing factor when joint is at limit + btScalar m_bounce; //!< restitution factor + bool m_enableMotor; + + //!@} + + //! temp_variables + //!@{ + btScalar m_currentLimitError; //! How much is violated this limit + btScalar m_currentPosition; //! current value of angle + int m_currentLimit; //!< 0=free, 1=at lo limit, 2=at hi limit + btScalar m_accumulatedImpulse; + //!@} + + btRotationalLimitMotor() + { + m_accumulatedImpulse = 0.f; + m_targetVelocity = 0; + m_maxMotorForce = 6.0f; + m_maxLimitForce = 300.0f; + m_loLimit = 1.0f; + m_hiLimit = -1.0f; m_normalCFM = 0.f; m_stopERP = 0.2f; m_stopCFM = 0.f; - m_bounce = 0.0f; - m_damping = 1.0f; - m_limitSoftness = 0.5f; - m_currentLimit = 0; - m_currentLimitError = 0; - m_enableMotor = false; - } - - btRotationalLimitMotor(const btRotationalLimitMotor & limot) - { - m_targetVelocity = limot.m_targetVelocity; - m_maxMotorForce = limot.m_maxMotorForce; - m_limitSoftness = limot.m_limitSoftness; - m_loLimit = limot.m_loLimit; - m_hiLimit = limot.m_hiLimit; + m_bounce = 0.0f; + m_damping = 1.0f; + m_limitSoftness = 0.5f; + m_currentLimit = 0; + m_currentLimitError = 0; + m_enableMotor = false; + } + + btRotationalLimitMotor(const btRotationalLimitMotor& limot) + { + m_targetVelocity = limot.m_targetVelocity; + m_maxMotorForce = limot.m_maxMotorForce; + m_limitSoftness = limot.m_limitSoftness; + m_loLimit = limot.m_loLimit; + m_hiLimit = limot.m_hiLimit; m_normalCFM = limot.m_normalCFM; m_stopERP = limot.m_stopERP; - m_stopCFM = limot.m_stopCFM; - m_bounce = limot.m_bounce; - m_currentLimit = limot.m_currentLimit; - m_currentLimitError = limot.m_currentLimitError; - m_enableMotor = limot.m_enableMotor; - } - - + m_stopCFM = limot.m_stopCFM; + m_bounce = limot.m_bounce; + m_currentLimit = limot.m_currentLimit; + m_currentLimitError = limot.m_currentLimitError; + m_enableMotor = limot.m_enableMotor; + } //! Is limited - bool isLimited() const - { - if(m_loLimit > m_hiLimit) return false; - return true; - } + bool isLimited() const + { + if (m_loLimit > m_hiLimit) return false; + return true; + } //! Need apply correction - bool needApplyTorques() const - { - if(m_currentLimit == 0 && m_enableMotor == false) return false; - return true; - } + bool needApplyTorques() const + { + if (m_currentLimit == 0 && m_enableMotor == false) return false; + return true; + } //! calculates error /*! @@ -131,104 +125,98 @@ public: int testLimitValue(btScalar test_value); //! apply the correction impulses for two bodies - btScalar solveAngularLimits(btScalar timeStep,btVector3& axis, btScalar jacDiagABInv,btRigidBody * body0, btRigidBody * body1); - + btScalar solveAngularLimits(btScalar timeStep, btVector3& axis, btScalar jacDiagABInv, btRigidBody* body0, btRigidBody* body1); }; - - class btTranslationalLimitMotor { public: - btVector3 m_lowerLimit;//!< the constraint lower limits - btVector3 m_upperLimit;//!< the constraint upper limits - btVector3 m_accumulatedImpulse; - //! Linear_Limit_parameters - //!@{ - btScalar m_limitSoftness;//!< Softness for linear limit - btScalar m_damping;//!< Damping for linear limit - btScalar m_restitution;//! Bounce parameter for linear limit - btVector3 m_normalCFM;//!< Constraint force mixing factor - btVector3 m_stopERP;//!< Error tolerance factor when joint is at limit - btVector3 m_stopCFM;//!< Constraint force mixing factor when joint is at limit - //!@} - bool m_enableMotor[3]; - btVector3 m_targetVelocity;//!< target motor velocity - btVector3 m_maxMotorForce;//!< max force on motor - btVector3 m_currentLimitError;//! How much is violated this limit - btVector3 m_currentLinearDiff;//! Current relative offset of constraint frames - int m_currentLimit[3];//!< 0=free, 1=at lower limit, 2=at upper limit - - btTranslationalLimitMotor() - { - m_lowerLimit.setValue(0.f,0.f,0.f); - m_upperLimit.setValue(0.f,0.f,0.f); - m_accumulatedImpulse.setValue(0.f,0.f,0.f); + btVector3 m_lowerLimit; //!< the constraint lower limits + btVector3 m_upperLimit; //!< the constraint upper limits + btVector3 m_accumulatedImpulse; + //! Linear_Limit_parameters + //!@{ + btScalar m_limitSoftness; //!< Softness for linear limit + btScalar m_damping; //!< Damping for linear limit + btScalar m_restitution; //! Bounce parameter for linear limit + btVector3 m_normalCFM; //!< Constraint force mixing factor + btVector3 m_stopERP; //!< Error tolerance factor when joint is at limit + btVector3 m_stopCFM; //!< Constraint force mixing factor when joint is at limit + //!@} + bool m_enableMotor[3]; + btVector3 m_targetVelocity; //!< target motor velocity + btVector3 m_maxMotorForce; //!< max force on motor + btVector3 m_currentLimitError; //! How much is violated this limit + btVector3 m_currentLinearDiff; //! Current relative offset of constraint frames + int m_currentLimit[3]; //!< 0=free, 1=at lower limit, 2=at upper limit + + btTranslationalLimitMotor() + { + m_lowerLimit.setValue(0.f, 0.f, 0.f); + m_upperLimit.setValue(0.f, 0.f, 0.f); + m_accumulatedImpulse.setValue(0.f, 0.f, 0.f); m_normalCFM.setValue(0.f, 0.f, 0.f); m_stopERP.setValue(0.2f, 0.2f, 0.2f); m_stopCFM.setValue(0.f, 0.f, 0.f); - m_limitSoftness = 0.7f; - m_damping = btScalar(1.0f); - m_restitution = btScalar(0.5f); - for(int i=0; i < 3; i++) + m_limitSoftness = 0.7f; + m_damping = btScalar(1.0f); + m_restitution = btScalar(0.5f); + for (int i = 0; i < 3; i++) { m_enableMotor[i] = false; m_targetVelocity[i] = btScalar(0.f); m_maxMotorForce[i] = btScalar(0.f); } - } + } - btTranslationalLimitMotor(const btTranslationalLimitMotor & other ) - { - m_lowerLimit = other.m_lowerLimit; - m_upperLimit = other.m_upperLimit; - m_accumulatedImpulse = other.m_accumulatedImpulse; + btTranslationalLimitMotor(const btTranslationalLimitMotor& other) + { + m_lowerLimit = other.m_lowerLimit; + m_upperLimit = other.m_upperLimit; + m_accumulatedImpulse = other.m_accumulatedImpulse; - m_limitSoftness = other.m_limitSoftness ; - m_damping = other.m_damping; - m_restitution = other.m_restitution; + m_limitSoftness = other.m_limitSoftness; + m_damping = other.m_damping; + m_restitution = other.m_restitution; m_normalCFM = other.m_normalCFM; m_stopERP = other.m_stopERP; m_stopCFM = other.m_stopCFM; - for(int i=0; i < 3; i++) + for (int i = 0; i < 3; i++) { m_enableMotor[i] = other.m_enableMotor[i]; m_targetVelocity[i] = other.m_targetVelocity[i]; m_maxMotorForce[i] = other.m_maxMotorForce[i]; } - } + } - //! Test limit + //! Test limit /*! - free means upper < lower, - locked means upper == lower - limited means upper > lower - limitIndex: first 3 are linear, next 3 are angular */ - inline bool isLimited(int limitIndex) const - { - return (m_upperLimit[limitIndex] >= m_lowerLimit[limitIndex]); - } - inline bool needApplyForce(int limitIndex) const - { - if(m_currentLimit[limitIndex] == 0 && m_enableMotor[limitIndex] == false) return false; - return true; - } + inline bool isLimited(int limitIndex) const + { + return (m_upperLimit[limitIndex] >= m_lowerLimit[limitIndex]); + } + inline bool needApplyForce(int limitIndex) const + { + if (m_currentLimit[limitIndex] == 0 && m_enableMotor[limitIndex] == false) return false; + return true; + } int testLimitValue(int limitIndex, btScalar test_value); - - btScalar solveLinearAxis( - btScalar timeStep, - btScalar jacDiagABInv, - btRigidBody& body1,const btVector3 &pointInA, - btRigidBody& body2,const btVector3 &pointInB, - int limit_index, - const btVector3 & axis_normal_on_a, - const btVector3 & anchorPos); - - + btScalar solveLinearAxis( + btScalar timeStep, + btScalar jacDiagABInv, + btRigidBody& body1, const btVector3& pointInA, + btRigidBody& body2, const btVector3& pointInB, + int limit_index, + const btVector3& axis_normal_on_a, + const btVector3& anchorPos); }; enum bt6DofFlags @@ -237,8 +225,7 @@ enum bt6DofFlags BT_6DOF_FLAGS_CFM_STOP = 2, BT_6DOF_FLAGS_ERP_STOP = 4 }; -#define BT_6DOF_FLAGS_AXIS_SHIFT 3 // bits per axis - +#define BT_6DOF_FLAGS_AXIS_SHIFT 3 // bits per axis /// btGeneric6DofConstraint between two rigidbodies each with a pivotpoint that descibes the axis location in local space /*! @@ -276,254 +263,245 @@ This brings support for limit parameters and motors. </li> </ul> */ -ATTRIBUTE_ALIGNED16(class) btGeneric6DofConstraint : public btTypedConstraint +ATTRIBUTE_ALIGNED16(class) +btGeneric6DofConstraint : public btTypedConstraint { protected: - //! relative_frames - //!@{ - btTransform m_frameInA;//!< the constraint space w.r.t body A - btTransform m_frameInB;//!< the constraint space w.r.t body B - //!@} + //!@{ + btTransform m_frameInA; //!< the constraint space w.r.t body A + btTransform m_frameInB; //!< the constraint space w.r.t body B + //!@} - //! Jacobians - //!@{ - btJacobianEntry m_jacLinear[3];//!< 3 orthogonal linear constraints - btJacobianEntry m_jacAng[3];//!< 3 orthogonal angular constraints - //!@} + //! Jacobians + //!@{ + btJacobianEntry m_jacLinear[3]; //!< 3 orthogonal linear constraints + btJacobianEntry m_jacAng[3]; //!< 3 orthogonal angular constraints + //!@} //! Linear_Limit_parameters - //!@{ - btTranslationalLimitMotor m_linearLimits; - //!@} - - - //! hinge_parameters - //!@{ - btRotationalLimitMotor m_angularLimits[3]; + //!@{ + btTranslationalLimitMotor m_linearLimits; //!@} + //! hinge_parameters + //!@{ + btRotationalLimitMotor m_angularLimits[3]; + //!@} protected: - //! temporal variables - //!@{ - btScalar m_timeStep; - btTransform m_calculatedTransformA; - btTransform m_calculatedTransformB; - btVector3 m_calculatedAxisAngleDiff; - btVector3 m_calculatedAxis[3]; - btVector3 m_calculatedLinearDiff; - btScalar m_factA; - btScalar m_factB; - bool m_hasStaticBody; - - btVector3 m_AnchorPos; // point betwen pivots of bodies A and B to solve linear axes + //! temporal variables + //!@{ + btScalar m_timeStep; + btTransform m_calculatedTransformA; + btTransform m_calculatedTransformB; + btVector3 m_calculatedAxisAngleDiff; + btVector3 m_calculatedAxis[3]; + btVector3 m_calculatedLinearDiff; + btScalar m_factA; + btScalar m_factB; + bool m_hasStaticBody; - bool m_useLinearReferenceFrameA; - bool m_useOffsetForConstraintFrame; - - int m_flags; + btVector3 m_AnchorPos; // point betwen pivots of bodies A and B to solve linear axes - //!@} + bool m_useLinearReferenceFrameA; + bool m_useOffsetForConstraintFrame; - btGeneric6DofConstraint& operator=(btGeneric6DofConstraint& other) - { - btAssert(0); - (void) other; - return *this; - } + int m_flags; + //!@} - int setAngularLimits(btConstraintInfo2 *info, int row_offset,const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB); + btGeneric6DofConstraint& operator=(btGeneric6DofConstraint& other) + { + btAssert(0); + (void)other; + return *this; + } - int setLinearLimits(btConstraintInfo2 *info, int row, const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB); + int setAngularLimits(btConstraintInfo2 * info, int row_offset, const btTransform& transA, const btTransform& transB, const btVector3& linVelA, const btVector3& linVelB, const btVector3& angVelA, const btVector3& angVelB); - void buildLinearJacobian( - btJacobianEntry & jacLinear,const btVector3 & normalWorld, - const btVector3 & pivotAInW,const btVector3 & pivotBInW); + int setLinearLimits(btConstraintInfo2 * info, int row, const btTransform& transA, const btTransform& transB, const btVector3& linVelA, const btVector3& linVelB, const btVector3& angVelA, const btVector3& angVelB); - void buildAngularJacobian(btJacobianEntry & jacAngular,const btVector3 & jointAxisW); + void buildLinearJacobian( + btJacobianEntry & jacLinear, const btVector3& normalWorld, + const btVector3& pivotAInW, const btVector3& pivotBInW); + + void buildAngularJacobian(btJacobianEntry & jacAngular, const btVector3& jointAxisW); // tests linear limits void calculateLinearInfo(); //! calcs the euler angles between the two bodies. - void calculateAngleInfo(); - - + void calculateAngleInfo(); public: - BT_DECLARE_ALIGNED_ALLOCATOR(); - + ///for backwards compatibility during the transition to 'getInfo/getInfo2' - bool m_useSolveConstraintObsolete; + bool m_useSolveConstraintObsolete; + + btGeneric6DofConstraint(btRigidBody & rbA, btRigidBody & rbB, const btTransform& frameInA, const btTransform& frameInB, bool useLinearReferenceFrameA); + btGeneric6DofConstraint(btRigidBody & rbB, const btTransform& frameInB, bool useLinearReferenceFrameB); - btGeneric6DofConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB ,bool useLinearReferenceFrameA); - btGeneric6DofConstraint(btRigidBody& rbB, const btTransform& frameInB, bool useLinearReferenceFrameB); - //! Calcs global transform of the offsets /*! Calcs the global transform for the joint offset for body A an B, and also calcs the agle differences between the bodies. \sa btGeneric6DofConstraint.getCalculatedTransformA , btGeneric6DofConstraint.getCalculatedTransformB, btGeneric6DofConstraint.calculateAngleInfo */ - void calculateTransforms(const btTransform& transA,const btTransform& transB); + void calculateTransforms(const btTransform& transA, const btTransform& transB); void calculateTransforms(); //! Gets the global transform of the offset for body A - /*! + /*! \sa btGeneric6DofConstraint.getFrameOffsetA, btGeneric6DofConstraint.getFrameOffsetB, btGeneric6DofConstraint.calculateAngleInfo. */ - const btTransform & getCalculatedTransformA() const - { - return m_calculatedTransformA; - } + const btTransform& getCalculatedTransformA() const + { + return m_calculatedTransformA; + } - //! Gets the global transform of the offset for body B - /*! + //! Gets the global transform of the offset for body B + /*! \sa btGeneric6DofConstraint.getFrameOffsetA, btGeneric6DofConstraint.getFrameOffsetB, btGeneric6DofConstraint.calculateAngleInfo. */ - const btTransform & getCalculatedTransformB() const - { - return m_calculatedTransformB; - } - - const btTransform & getFrameOffsetA() const - { - return m_frameInA; - } - - const btTransform & getFrameOffsetB() const - { - return m_frameInB; - } + const btTransform& getCalculatedTransformB() const + { + return m_calculatedTransformB; + } + const btTransform& getFrameOffsetA() const + { + return m_frameInA; + } - btTransform & getFrameOffsetA() - { - return m_frameInA; - } + const btTransform& getFrameOffsetB() const + { + return m_frameInB; + } - btTransform & getFrameOffsetB() - { - return m_frameInB; - } + btTransform& getFrameOffsetA() + { + return m_frameInA; + } + btTransform& getFrameOffsetB() + { + return m_frameInB; + } //! performs Jacobian calculation, and also calculates angle differences and axis - virtual void buildJacobian(); - - virtual void getInfo1 (btConstraintInfo1* info); + virtual void buildJacobian(); - void getInfo1NonVirtual (btConstraintInfo1* info); + virtual void getInfo1(btConstraintInfo1 * info); - virtual void getInfo2 (btConstraintInfo2* info); + void getInfo1NonVirtual(btConstraintInfo1 * info); - void getInfo2NonVirtual (btConstraintInfo2* info,const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB); + virtual void getInfo2(btConstraintInfo2 * info); + void getInfo2NonVirtual(btConstraintInfo2 * info, const btTransform& transA, const btTransform& transB, const btVector3& linVelA, const btVector3& linVelB, const btVector3& angVelA, const btVector3& angVelB); - void updateRHS(btScalar timeStep); + void updateRHS(btScalar timeStep); //! Get the rotation axis in global coordinates /*! \pre btGeneric6DofConstraint.buildJacobian must be called previously. */ - btVector3 getAxis(int axis_index) const; + btVector3 getAxis(int axis_index) const; - //! Get the relative Euler angle - /*! + //! Get the relative Euler angle + /*! \pre btGeneric6DofConstraint::calculateTransforms() must be called previously. */ - btScalar getAngle(int axis_index) const; + btScalar getAngle(int axis_index) const; //! Get the relative position of the constraint pivot - /*! + /*! \pre btGeneric6DofConstraint::calculateTransforms() must be called previously. */ btScalar getRelativePivotPosition(int axis_index) const; - void setFrames(const btTransform & frameA, const btTransform & frameB); + void setFrames(const btTransform& frameA, const btTransform& frameB); //! Test angular limit. /*! Calculates angular correction and returns true if limit needs to be corrected. \pre btGeneric6DofConstraint::calculateTransforms() must be called previously. */ - bool testAngularLimitMotor(int axis_index); + bool testAngularLimitMotor(int axis_index); - void setLinearLowerLimit(const btVector3& linearLower) - { - m_linearLimits.m_lowerLimit = linearLower; - } + void setLinearLowerLimit(const btVector3& linearLower) + { + m_linearLimits.m_lowerLimit = linearLower; + } - void getLinearLowerLimit(btVector3& linearLower) const + void getLinearLowerLimit(btVector3 & linearLower) const { linearLower = m_linearLimits.m_lowerLimit; } - void setLinearUpperLimit(const btVector3& linearUpper) + void setLinearUpperLimit(const btVector3& linearUpper) { m_linearLimits.m_upperLimit = linearUpper; } - void getLinearUpperLimit(btVector3& linearUpper) const + void getLinearUpperLimit(btVector3 & linearUpper) const { linearUpper = m_linearLimits.m_upperLimit; } - void setAngularLowerLimit(const btVector3& angularLower) - { - for(int i = 0; i < 3; i++) + void setAngularLowerLimit(const btVector3& angularLower) + { + for (int i = 0; i < 3; i++) m_angularLimits[i].m_loLimit = btNormalizeAngle(angularLower[i]); - } + } - void getAngularLowerLimit(btVector3& angularLower) const + void getAngularLowerLimit(btVector3 & angularLower) const { - for(int i = 0; i < 3; i++) + for (int i = 0; i < 3; i++) angularLower[i] = m_angularLimits[i].m_loLimit; } - void setAngularUpperLimit(const btVector3& angularUpper) - { - for(int i = 0; i < 3; i++) + void setAngularUpperLimit(const btVector3& angularUpper) + { + for (int i = 0; i < 3; i++) m_angularLimits[i].m_hiLimit = btNormalizeAngle(angularUpper[i]); - } + } - void getAngularUpperLimit(btVector3& angularUpper) const + void getAngularUpperLimit(btVector3 & angularUpper) const { - for(int i = 0; i < 3; i++) + for (int i = 0; i < 3; i++) angularUpper[i] = m_angularLimits[i].m_hiLimit; } //! Retrieves the angular limit informacion - btRotationalLimitMotor * getRotationalLimitMotor(int index) - { - return &m_angularLimits[index]; - } - - //! Retrieves the limit informacion - btTranslationalLimitMotor * getTranslationalLimitMotor() - { - return &m_linearLimits; - } - - //first 3 are linear, next 3 are angular - void setLimit(int axis, btScalar lo, btScalar hi) - { - if(axis<3) - { - m_linearLimits.m_lowerLimit[axis] = lo; - m_linearLimits.m_upperLimit[axis] = hi; - } - else - { + btRotationalLimitMotor* getRotationalLimitMotor(int index) + { + return &m_angularLimits[index]; + } + + //! Retrieves the limit informacion + btTranslationalLimitMotor* getTranslationalLimitMotor() + { + return &m_linearLimits; + } + + //first 3 are linear, next 3 are angular + void setLimit(int axis, btScalar lo, btScalar hi) + { + if (axis < 3) + { + m_linearLimits.m_lowerLimit[axis] = lo; + m_linearLimits.m_upperLimit[axis] = hi; + } + else + { lo = btNormalizeAngle(lo); hi = btNormalizeAngle(hi); - m_angularLimits[axis-3].m_loLimit = lo; - m_angularLimits[axis-3].m_hiLimit = hi; - } - } + m_angularLimits[axis - 3].m_loLimit = lo; + m_angularLimits[axis - 3].m_hiLimit = hi; + } + } //! Test limit /*! @@ -532,116 +510,106 @@ public: - limited means upper > lower - limitIndex: first 3 are linear, next 3 are angular */ - bool isLimited(int limitIndex) const - { - if(limitIndex<3) - { + bool isLimited(int limitIndex) const + { + if (limitIndex < 3) + { return m_linearLimits.isLimited(limitIndex); + } + return m_angularLimits[limitIndex - 3].isLimited(); + } - } - return m_angularLimits[limitIndex-3].isLimited(); - } - - virtual void calcAnchorPos(void); // overridable + virtual void calcAnchorPos(void); // overridable - int get_limit_motor_info2( btRotationalLimitMotor * limot, - const btTransform& transA,const btTransform& transB,const btVector3& linVelA,const btVector3& linVelB,const btVector3& angVelA,const btVector3& angVelB, - btConstraintInfo2 *info, int row, btVector3& ax1, int rotational, int rotAllowed = false); + int get_limit_motor_info2(btRotationalLimitMotor * limot, + const btTransform& transA, const btTransform& transB, const btVector3& linVelA, const btVector3& linVelB, const btVector3& angVelA, const btVector3& angVelB, + btConstraintInfo2* info, int row, btVector3& ax1, int rotational, int rotAllowed = false); // access for UseFrameOffset bool getUseFrameOffset() const { return m_useOffsetForConstraintFrame; } void setUseFrameOffset(bool frameOffsetOnOff) { m_useOffsetForConstraintFrame = frameOffsetOnOff; } - + bool getUseLinearReferenceFrameA() const { return m_useLinearReferenceFrameA; } void setUseLinearReferenceFrameA(bool linearReferenceFrameA) { m_useLinearReferenceFrameA = linearReferenceFrameA; } - ///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5). + ///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5). ///If no axis is provided, it uses the default axis for this constraint. - virtual void setParam(int num, btScalar value, int axis = -1); + virtual void setParam(int num, btScalar value, int axis = -1); ///return the local value of parameter - virtual btScalar getParam(int num, int axis = -1) const; + virtual btScalar getParam(int num, int axis = -1) const; - void setAxis( const btVector3& axis1, const btVector3& axis2); + void setAxis(const btVector3& axis1, const btVector3& axis2); - virtual int getFlags() const - { - return m_flags; + virtual int getFlags() const + { + return m_flags; } - virtual int calculateSerializeBufferSize() const; + virtual int calculateSerializeBufferSize() const; ///fills the dataBuffer and returns the struct name (and 0 on failure) - virtual const char* serialize(void* dataBuffer, btSerializer* serializer) const; - - + virtual const char* serialize(void* dataBuffer, btSerializer* serializer) const; }; - struct btGeneric6DofConstraintData { - btTypedConstraintData m_typeConstraintData; - btTransformFloatData m_rbAFrame; // constraint axii. Assumes z is hinge axis. + btTypedConstraintData m_typeConstraintData; + btTransformFloatData m_rbAFrame; // constraint axii. Assumes z is hinge axis. btTransformFloatData m_rbBFrame; - - btVector3FloatData m_linearUpperLimit; - btVector3FloatData m_linearLowerLimit; - - btVector3FloatData m_angularUpperLimit; - btVector3FloatData m_angularLowerLimit; - - int m_useLinearReferenceFrameA; + + btVector3FloatData m_linearUpperLimit; + btVector3FloatData m_linearLowerLimit; + + btVector3FloatData m_angularUpperLimit; + btVector3FloatData m_angularLowerLimit; + + int m_useLinearReferenceFrameA; int m_useOffsetForConstraintFrame; }; struct btGeneric6DofConstraintDoubleData2 { - btTypedConstraintDoubleData m_typeConstraintData; - btTransformDoubleData m_rbAFrame; // constraint axii. Assumes z is hinge axis. + btTypedConstraintDoubleData m_typeConstraintData; + btTransformDoubleData m_rbAFrame; // constraint axii. Assumes z is hinge axis. btTransformDoubleData m_rbBFrame; - - btVector3DoubleData m_linearUpperLimit; - btVector3DoubleData m_linearLowerLimit; - - btVector3DoubleData m_angularUpperLimit; - btVector3DoubleData m_angularLowerLimit; - - int m_useLinearReferenceFrameA; + + btVector3DoubleData m_linearUpperLimit; + btVector3DoubleData m_linearLowerLimit; + + btVector3DoubleData m_angularUpperLimit; + btVector3DoubleData m_angularLowerLimit; + + int m_useLinearReferenceFrameA; int m_useOffsetForConstraintFrame; }; -SIMD_FORCE_INLINE int btGeneric6DofConstraint::calculateSerializeBufferSize() const +SIMD_FORCE_INLINE int btGeneric6DofConstraint::calculateSerializeBufferSize() const { return sizeof(btGeneric6DofConstraintData2); } - ///fills the dataBuffer and returns the struct name (and 0 on failure) -SIMD_FORCE_INLINE const char* btGeneric6DofConstraint::serialize(void* dataBuffer, btSerializer* serializer) const +///fills the dataBuffer and returns the struct name (and 0 on failure) +SIMD_FORCE_INLINE const char* btGeneric6DofConstraint::serialize(void* dataBuffer, btSerializer* serializer) const { - btGeneric6DofConstraintData2* dof = (btGeneric6DofConstraintData2*)dataBuffer; - btTypedConstraint::serialize(&dof->m_typeConstraintData,serializer); + btTypedConstraint::serialize(&dof->m_typeConstraintData, serializer); m_frameInA.serialize(dof->m_rbAFrame); m_frameInB.serialize(dof->m_rbBFrame); - int i; - for (i=0;i<3;i++) + for (i = 0; i < 3; i++) { - dof->m_angularLowerLimit.m_floats[i] = m_angularLimits[i].m_loLimit; - dof->m_angularUpperLimit.m_floats[i] = m_angularLimits[i].m_hiLimit; + dof->m_angularLowerLimit.m_floats[i] = m_angularLimits[i].m_loLimit; + dof->m_angularUpperLimit.m_floats[i] = m_angularLimits[i].m_hiLimit; dof->m_linearLowerLimit.m_floats[i] = m_linearLimits.m_lowerLimit[i]; dof->m_linearUpperLimit.m_floats[i] = m_linearLimits.m_upperLimit[i]; } - - dof->m_useLinearReferenceFrameA = m_useLinearReferenceFrameA? 1 : 0; + + dof->m_useLinearReferenceFrameA = m_useLinearReferenceFrameA ? 1 : 0; dof->m_useOffsetForConstraintFrame = m_useOffsetForConstraintFrame ? 1 : 0; return btGeneric6DofConstraintDataName; } - - - - -#endif //BT_GENERIC_6DOF_CONSTRAINT_H +#endif //BT_GENERIC_6DOF_CONSTRAINT_H |