summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.cpp')
-rw-r--r--thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.cpp975
1 files changed, 0 insertions, 975 deletions
diff --git a/thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.cpp b/thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.cpp
deleted file mode 100644
index 1f54203532..0000000000
--- a/thirdparty/bullet/BulletDynamics/ConstraintSolver/btGeneric6DofConstraint.cpp
+++ /dev/null
@@ -1,975 +0,0 @@
-/*
-Bullet Continuous Collision Detection and Physics Library
-Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
-
-This software is provided 'as-is', without any express or implied warranty.
-In no event will the authors be held liable for any damages arising from the use of this software.
-Permission is granted to anyone to use this software for any purpose,
-including commercial applications, and to alter it and redistribute it freely,
-subject to the following restrictions:
-
-1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
-2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
-3. This notice may not be removed or altered from any source distribution.
-*/
-/*
-2007-09-09
-Refactored by Francisco Le?n
-email: projectileman@yahoo.com
-http://gimpact.sf.net
-*/
-
-#include "btGeneric6DofConstraint.h"
-#include "BulletDynamics/Dynamics/btRigidBody.h"
-#include "LinearMath/btTransformUtil.h"
-#include "LinearMath/btTransformUtil.h"
-#include <new>
-
-#define D6_USE_OBSOLETE_METHOD false
-#define D6_USE_FRAME_OFFSET true
-
-btGeneric6DofConstraint::btGeneric6DofConstraint(btRigidBody& rbA, btRigidBody& rbB, const btTransform& frameInA, const btTransform& frameInB, bool useLinearReferenceFrameA)
- : btTypedConstraint(D6_CONSTRAINT_TYPE, rbA, rbB), m_frameInA(frameInA), m_frameInB(frameInB), m_useLinearReferenceFrameA(useLinearReferenceFrameA), m_useOffsetForConstraintFrame(D6_USE_FRAME_OFFSET), m_flags(0), m_useSolveConstraintObsolete(D6_USE_OBSOLETE_METHOD)
-{
- calculateTransforms();
-}
-
-btGeneric6DofConstraint::btGeneric6DofConstraint(btRigidBody& rbB, const btTransform& frameInB, bool useLinearReferenceFrameB)
- : btTypedConstraint(D6_CONSTRAINT_TYPE, getFixedBody(), rbB),
- m_frameInB(frameInB),
- m_useLinearReferenceFrameA(useLinearReferenceFrameB),
- m_useOffsetForConstraintFrame(D6_USE_FRAME_OFFSET),
- m_flags(0),
- m_useSolveConstraintObsolete(false)
-{
- ///not providing rigidbody A means implicitly using worldspace for body A
- m_frameInA = rbB.getCenterOfMassTransform() * m_frameInB;
- calculateTransforms();
-}
-
-#define GENERIC_D6_DISABLE_WARMSTARTING 1
-
-btScalar btGetMatrixElem(const btMatrix3x3& mat, int index);
-btScalar btGetMatrixElem(const btMatrix3x3& mat, int index)
-{
- int i = index % 3;
- int j = index / 3;
- return mat[i][j];
-}
-
-///MatrixToEulerXYZ from http://www.geometrictools.com/LibFoundation/Mathematics/Wm4Matrix3.inl.html
-bool matrixToEulerXYZ(const btMatrix3x3& mat, btVector3& xyz);
-bool matrixToEulerXYZ(const btMatrix3x3& mat, btVector3& xyz)
-{
- // // rot = cy*cz -cy*sz sy
- // // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx
- // // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy
- //
-
- btScalar fi = btGetMatrixElem(mat, 2);
- if (fi < btScalar(1.0f))
- {
- if (fi > btScalar(-1.0f))
- {
- xyz[0] = btAtan2(-btGetMatrixElem(mat, 5), btGetMatrixElem(mat, 8));
- xyz[1] = btAsin(btGetMatrixElem(mat, 2));
- xyz[2] = btAtan2(-btGetMatrixElem(mat, 1), btGetMatrixElem(mat, 0));
- return true;
- }
- else
- {
- // WARNING. Not unique. XA - ZA = -atan2(r10,r11)
- xyz[0] = -btAtan2(btGetMatrixElem(mat, 3), btGetMatrixElem(mat, 4));
- xyz[1] = -SIMD_HALF_PI;
- xyz[2] = btScalar(0.0);
- return false;
- }
- }
- else
- {
- // WARNING. Not unique. XAngle + ZAngle = atan2(r10,r11)
- xyz[0] = btAtan2(btGetMatrixElem(mat, 3), btGetMatrixElem(mat, 4));
- xyz[1] = SIMD_HALF_PI;
- xyz[2] = 0.0;
- }
- return false;
-}
-
-//////////////////////////// btRotationalLimitMotor ////////////////////////////////////
-
-int btRotationalLimitMotor::testLimitValue(btScalar test_value)
-{
- if (m_loLimit > m_hiLimit)
- {
- m_currentLimit = 0; //Free from violation
- return 0;
- }
- if (test_value < m_loLimit)
- {
- m_currentLimit = 1; //low limit violation
- m_currentLimitError = test_value - m_loLimit;
- if (m_currentLimitError > SIMD_PI)
- m_currentLimitError -= SIMD_2_PI;
- else if (m_currentLimitError < -SIMD_PI)
- m_currentLimitError += SIMD_2_PI;
- return 1;
- }
- else if (test_value > m_hiLimit)
- {
- m_currentLimit = 2; //High limit violation
- m_currentLimitError = test_value - m_hiLimit;
- if (m_currentLimitError > SIMD_PI)
- m_currentLimitError -= SIMD_2_PI;
- else if (m_currentLimitError < -SIMD_PI)
- m_currentLimitError += SIMD_2_PI;
- return 2;
- };
-
- m_currentLimit = 0; //Free from violation
- return 0;
-}
-
-btScalar btRotationalLimitMotor::solveAngularLimits(
- btScalar timeStep, btVector3& axis, btScalar jacDiagABInv,
- btRigidBody* body0, btRigidBody* body1)
-{
- if (needApplyTorques() == false) return 0.0f;
-
- btScalar target_velocity = m_targetVelocity;
- btScalar maxMotorForce = m_maxMotorForce;
-
- //current error correction
- if (m_currentLimit != 0)
- {
- target_velocity = -m_stopERP * m_currentLimitError / (timeStep);
- maxMotorForce = m_maxLimitForce;
- }
-
- maxMotorForce *= timeStep;
-
- // current velocity difference
-
- btVector3 angVelA = body0->getAngularVelocity();
- btVector3 angVelB = body1->getAngularVelocity();
-
- btVector3 vel_diff;
- vel_diff = angVelA - angVelB;
-
- btScalar rel_vel = axis.dot(vel_diff);
-
- // correction velocity
- btScalar motor_relvel = m_limitSoftness * (target_velocity - m_damping * rel_vel);
-
- if (motor_relvel < SIMD_EPSILON && motor_relvel > -SIMD_EPSILON)
- {
- return 0.0f; //no need for applying force
- }
-
- // correction impulse
- btScalar unclippedMotorImpulse = (1 + m_bounce) * motor_relvel * jacDiagABInv;
-
- // clip correction impulse
- btScalar clippedMotorImpulse;
-
- ///@todo: should clip against accumulated impulse
- if (unclippedMotorImpulse > 0.0f)
- {
- clippedMotorImpulse = unclippedMotorImpulse > maxMotorForce ? maxMotorForce : unclippedMotorImpulse;
- }
- else
- {
- clippedMotorImpulse = unclippedMotorImpulse < -maxMotorForce ? -maxMotorForce : unclippedMotorImpulse;
- }
-
- // sort with accumulated impulses
- btScalar lo = btScalar(-BT_LARGE_FLOAT);
- btScalar hi = btScalar(BT_LARGE_FLOAT);
-
- btScalar oldaccumImpulse = m_accumulatedImpulse;
- btScalar sum = oldaccumImpulse + clippedMotorImpulse;
- m_accumulatedImpulse = sum > hi ? btScalar(0.) : sum < lo ? btScalar(0.) : sum;
-
- clippedMotorImpulse = m_accumulatedImpulse - oldaccumImpulse;
-
- btVector3 motorImp = clippedMotorImpulse * axis;
-
- body0->applyTorqueImpulse(motorImp);
- body1->applyTorqueImpulse(-motorImp);
-
- return clippedMotorImpulse;
-}
-
-//////////////////////////// End btRotationalLimitMotor ////////////////////////////////////
-
-//////////////////////////// btTranslationalLimitMotor ////////////////////////////////////
-
-int btTranslationalLimitMotor::testLimitValue(int limitIndex, btScalar test_value)
-{
- btScalar loLimit = m_lowerLimit[limitIndex];
- btScalar hiLimit = m_upperLimit[limitIndex];
- if (loLimit > hiLimit)
- {
- m_currentLimit[limitIndex] = 0; //Free from violation
- m_currentLimitError[limitIndex] = btScalar(0.f);
- return 0;
- }
-
- if (test_value < loLimit)
- {
- m_currentLimit[limitIndex] = 2; //low limit violation
- m_currentLimitError[limitIndex] = test_value - loLimit;
- return 2;
- }
- else if (test_value > hiLimit)
- {
- m_currentLimit[limitIndex] = 1; //High limit violation
- m_currentLimitError[limitIndex] = test_value - hiLimit;
- return 1;
- };
-
- m_currentLimit[limitIndex] = 0; //Free from violation
- m_currentLimitError[limitIndex] = btScalar(0.f);
- return 0;
-}
-
-btScalar btTranslationalLimitMotor::solveLinearAxis(
- btScalar timeStep,
- btScalar jacDiagABInv,
- btRigidBody& body1, const btVector3& pointInA,
- btRigidBody& body2, const btVector3& pointInB,
- int limit_index,
- const btVector3& axis_normal_on_a,
- const btVector3& anchorPos)
-{
- ///find relative velocity
- // btVector3 rel_pos1 = pointInA - body1.getCenterOfMassPosition();
- // btVector3 rel_pos2 = pointInB - body2.getCenterOfMassPosition();
- btVector3 rel_pos1 = anchorPos - body1.getCenterOfMassPosition();
- btVector3 rel_pos2 = anchorPos - body2.getCenterOfMassPosition();
-
- btVector3 vel1 = body1.getVelocityInLocalPoint(rel_pos1);
- btVector3 vel2 = body2.getVelocityInLocalPoint(rel_pos2);
- btVector3 vel = vel1 - vel2;
-
- btScalar rel_vel = axis_normal_on_a.dot(vel);
-
- /// apply displacement correction
-
- //positional error (zeroth order error)
- btScalar depth = -(pointInA - pointInB).dot(axis_normal_on_a);
- btScalar lo = btScalar(-BT_LARGE_FLOAT);
- btScalar hi = btScalar(BT_LARGE_FLOAT);
-
- btScalar minLimit = m_lowerLimit[limit_index];
- btScalar maxLimit = m_upperLimit[limit_index];
-
- //handle the limits
- if (minLimit < maxLimit)
- {
- {
- if (depth > maxLimit)
- {
- depth -= maxLimit;
- lo = btScalar(0.);
- }
- else
- {
- if (depth < minLimit)
- {
- depth -= minLimit;
- hi = btScalar(0.);
- }
- else
- {
- return 0.0f;
- }
- }
- }
- }
-
- btScalar normalImpulse = m_limitSoftness * (m_restitution * depth / timeStep - m_damping * rel_vel) * jacDiagABInv;
-
- btScalar oldNormalImpulse = m_accumulatedImpulse[limit_index];
- btScalar sum = oldNormalImpulse + normalImpulse;
- m_accumulatedImpulse[limit_index] = sum > hi ? btScalar(0.) : sum < lo ? btScalar(0.) : sum;
- normalImpulse = m_accumulatedImpulse[limit_index] - oldNormalImpulse;
-
- btVector3 impulse_vector = axis_normal_on_a * normalImpulse;
- body1.applyImpulse(impulse_vector, rel_pos1);
- body2.applyImpulse(-impulse_vector, rel_pos2);
-
- return normalImpulse;
-}
-
-//////////////////////////// btTranslationalLimitMotor ////////////////////////////////////
-
-void btGeneric6DofConstraint::calculateAngleInfo()
-{
- btMatrix3x3 relative_frame = m_calculatedTransformA.getBasis().inverse() * m_calculatedTransformB.getBasis();
- matrixToEulerXYZ(relative_frame, m_calculatedAxisAngleDiff);
- // in euler angle mode we do not actually constrain the angular velocity
- // along the axes axis[0] and axis[2] (although we do use axis[1]) :
- //
- // to get constrain w2-w1 along ...not
- // ------ --------------------- ------
- // d(angle[0])/dt = 0 ax[1] x ax[2] ax[0]
- // d(angle[1])/dt = 0 ax[1]
- // d(angle[2])/dt = 0 ax[0] x ax[1] ax[2]
- //
- // constraining w2-w1 along an axis 'a' means that a'*(w2-w1)=0.
- // to prove the result for angle[0], write the expression for angle[0] from
- // GetInfo1 then take the derivative. to prove this for angle[2] it is
- // easier to take the euler rate expression for d(angle[2])/dt with respect
- // to the components of w and set that to 0.
- btVector3 axis0 = m_calculatedTransformB.getBasis().getColumn(0);
- btVector3 axis2 = m_calculatedTransformA.getBasis().getColumn(2);
-
- m_calculatedAxis[1] = axis2.cross(axis0);
- m_calculatedAxis[0] = m_calculatedAxis[1].cross(axis2);
- m_calculatedAxis[2] = axis0.cross(m_calculatedAxis[1]);
-
- m_calculatedAxis[0].normalize();
- m_calculatedAxis[1].normalize();
- m_calculatedAxis[2].normalize();
-}
-
-void btGeneric6DofConstraint::calculateTransforms()
-{
- calculateTransforms(m_rbA.getCenterOfMassTransform(), m_rbB.getCenterOfMassTransform());
-}
-
-void btGeneric6DofConstraint::calculateTransforms(const btTransform& transA, const btTransform& transB)
-{
- m_calculatedTransformA = transA * m_frameInA;
- m_calculatedTransformB = transB * m_frameInB;
- calculateLinearInfo();
- calculateAngleInfo();
- if (m_useOffsetForConstraintFrame)
- { // get weight factors depending on masses
- btScalar miA = getRigidBodyA().getInvMass();
- btScalar miB = getRigidBodyB().getInvMass();
- m_hasStaticBody = (miA < SIMD_EPSILON) || (miB < SIMD_EPSILON);
- btScalar miS = miA + miB;
- if (miS > btScalar(0.f))
- {
- m_factA = miB / miS;
- }
- else
- {
- m_factA = btScalar(0.5f);
- }
- m_factB = btScalar(1.0f) - m_factA;
- }
-}
-
-void btGeneric6DofConstraint::buildLinearJacobian(
- btJacobianEntry& jacLinear, const btVector3& normalWorld,
- const btVector3& pivotAInW, const btVector3& pivotBInW)
-{
- new (&jacLinear) btJacobianEntry(
- m_rbA.getCenterOfMassTransform().getBasis().transpose(),
- m_rbB.getCenterOfMassTransform().getBasis().transpose(),
- pivotAInW - m_rbA.getCenterOfMassPosition(),
- pivotBInW - m_rbB.getCenterOfMassPosition(),
- normalWorld,
- m_rbA.getInvInertiaDiagLocal(),
- m_rbA.getInvMass(),
- m_rbB.getInvInertiaDiagLocal(),
- m_rbB.getInvMass());
-}
-
-void btGeneric6DofConstraint::buildAngularJacobian(
- btJacobianEntry& jacAngular, const btVector3& jointAxisW)
-{
- new (&jacAngular) btJacobianEntry(jointAxisW,
- m_rbA.getCenterOfMassTransform().getBasis().transpose(),
- m_rbB.getCenterOfMassTransform().getBasis().transpose(),
- m_rbA.getInvInertiaDiagLocal(),
- m_rbB.getInvInertiaDiagLocal());
-}
-
-bool btGeneric6DofConstraint::testAngularLimitMotor(int axis_index)
-{
- btScalar angle = m_calculatedAxisAngleDiff[axis_index];
- angle = btAdjustAngleToLimits(angle, m_angularLimits[axis_index].m_loLimit, m_angularLimits[axis_index].m_hiLimit);
- m_angularLimits[axis_index].m_currentPosition = angle;
- //test limits
- m_angularLimits[axis_index].testLimitValue(angle);
- return m_angularLimits[axis_index].needApplyTorques();
-}
-
-void btGeneric6DofConstraint::buildJacobian()
-{
-#ifndef __SPU__
- if (m_useSolveConstraintObsolete)
- {
- // Clear accumulated impulses for the next simulation step
- m_linearLimits.m_accumulatedImpulse.setValue(btScalar(0.), btScalar(0.), btScalar(0.));
- int i;
- for (i = 0; i < 3; i++)
- {
- m_angularLimits[i].m_accumulatedImpulse = btScalar(0.);
- }
- //calculates transform
- calculateTransforms(m_rbA.getCenterOfMassTransform(), m_rbB.getCenterOfMassTransform());
-
- // const btVector3& pivotAInW = m_calculatedTransformA.getOrigin();
- // const btVector3& pivotBInW = m_calculatedTransformB.getOrigin();
- calcAnchorPos();
- btVector3 pivotAInW = m_AnchorPos;
- btVector3 pivotBInW = m_AnchorPos;
-
- // not used here
- // btVector3 rel_pos1 = pivotAInW - m_rbA.getCenterOfMassPosition();
- // btVector3 rel_pos2 = pivotBInW - m_rbB.getCenterOfMassPosition();
-
- btVector3 normalWorld;
- //linear part
- for (i = 0; i < 3; i++)
- {
- if (m_linearLimits.isLimited(i))
- {
- if (m_useLinearReferenceFrameA)
- normalWorld = m_calculatedTransformA.getBasis().getColumn(i);
- else
- normalWorld = m_calculatedTransformB.getBasis().getColumn(i);
-
- buildLinearJacobian(
- m_jacLinear[i], normalWorld,
- pivotAInW, pivotBInW);
- }
- }
-
- // angular part
- for (i = 0; i < 3; i++)
- {
- //calculates error angle
- if (testAngularLimitMotor(i))
- {
- normalWorld = this->getAxis(i);
- // Create angular atom
- buildAngularJacobian(m_jacAng[i], normalWorld);
- }
- }
- }
-#endif //__SPU__
-}
-
-void btGeneric6DofConstraint::getInfo1(btConstraintInfo1* info)
-{
- if (m_useSolveConstraintObsolete)
- {
- info->m_numConstraintRows = 0;
- info->nub = 0;
- }
- else
- {
- //prepare constraint
- calculateTransforms(m_rbA.getCenterOfMassTransform(), m_rbB.getCenterOfMassTransform());
- info->m_numConstraintRows = 0;
- info->nub = 6;
- int i;
- //test linear limits
- for (i = 0; i < 3; i++)
- {
- if (m_linearLimits.needApplyForce(i))
- {
- info->m_numConstraintRows++;
- info->nub--;
- }
- }
- //test angular limits
- for (i = 0; i < 3; i++)
- {
- if (testAngularLimitMotor(i))
- {
- info->m_numConstraintRows++;
- info->nub--;
- }
- }
- }
-}
-
-void btGeneric6DofConstraint::getInfo1NonVirtual(btConstraintInfo1* info)
-{
- if (m_useSolveConstraintObsolete)
- {
- info->m_numConstraintRows = 0;
- info->nub = 0;
- }
- else
- {
- //pre-allocate all 6
- info->m_numConstraintRows = 6;
- info->nub = 0;
- }
-}
-
-void btGeneric6DofConstraint::getInfo2(btConstraintInfo2* info)
-{
- btAssert(!m_useSolveConstraintObsolete);
-
- const btTransform& transA = m_rbA.getCenterOfMassTransform();
- const btTransform& transB = m_rbB.getCenterOfMassTransform();
- const btVector3& linVelA = m_rbA.getLinearVelocity();
- const btVector3& linVelB = m_rbB.getLinearVelocity();
- const btVector3& angVelA = m_rbA.getAngularVelocity();
- const btVector3& angVelB = m_rbB.getAngularVelocity();
-
- if (m_useOffsetForConstraintFrame)
- { // for stability better to solve angular limits first
- int row = setAngularLimits(info, 0, transA, transB, linVelA, linVelB, angVelA, angVelB);
- setLinearLimits(info, row, transA, transB, linVelA, linVelB, angVelA, angVelB);
- }
- else
- { // leave old version for compatibility
- int row = setLinearLimits(info, 0, transA, transB, linVelA, linVelB, angVelA, angVelB);
- setAngularLimits(info, row, transA, transB, linVelA, linVelB, angVelA, angVelB);
- }
-}
-
-void btGeneric6DofConstraint::getInfo2NonVirtual(btConstraintInfo2* info, const btTransform& transA, const btTransform& transB, const btVector3& linVelA, const btVector3& linVelB, const btVector3& angVelA, const btVector3& angVelB)
-{
- btAssert(!m_useSolveConstraintObsolete);
- //prepare constraint
- calculateTransforms(transA, transB);
-
- int i;
- for (i = 0; i < 3; i++)
- {
- testAngularLimitMotor(i);
- }
-
- if (m_useOffsetForConstraintFrame)
- { // for stability better to solve angular limits first
- int row = setAngularLimits(info, 0, transA, transB, linVelA, linVelB, angVelA, angVelB);
- setLinearLimits(info, row, transA, transB, linVelA, linVelB, angVelA, angVelB);
- }
- else
- { // leave old version for compatibility
- int row = setLinearLimits(info, 0, transA, transB, linVelA, linVelB, angVelA, angVelB);
- setAngularLimits(info, row, transA, transB, linVelA, linVelB, angVelA, angVelB);
- }
-}
-
-int btGeneric6DofConstraint::setLinearLimits(btConstraintInfo2* info, int row, const btTransform& transA, const btTransform& transB, const btVector3& linVelA, const btVector3& linVelB, const btVector3& angVelA, const btVector3& angVelB)
-{
- // int row = 0;
- //solve linear limits
- btRotationalLimitMotor limot;
- for (int i = 0; i < 3; i++)
- {
- if (m_linearLimits.needApplyForce(i))
- { // re-use rotational motor code
- limot.m_bounce = btScalar(0.f);
- limot.m_currentLimit = m_linearLimits.m_currentLimit[i];
- limot.m_currentPosition = m_linearLimits.m_currentLinearDiff[i];
- limot.m_currentLimitError = m_linearLimits.m_currentLimitError[i];
- limot.m_damping = m_linearLimits.m_damping;
- limot.m_enableMotor = m_linearLimits.m_enableMotor[i];
- limot.m_hiLimit = m_linearLimits.m_upperLimit[i];
- limot.m_limitSoftness = m_linearLimits.m_limitSoftness;
- limot.m_loLimit = m_linearLimits.m_lowerLimit[i];
- limot.m_maxLimitForce = btScalar(0.f);
- limot.m_maxMotorForce = m_linearLimits.m_maxMotorForce[i];
- limot.m_targetVelocity = m_linearLimits.m_targetVelocity[i];
- btVector3 axis = m_calculatedTransformA.getBasis().getColumn(i);
- int flags = m_flags >> (i * BT_6DOF_FLAGS_AXIS_SHIFT);
- limot.m_normalCFM = (flags & BT_6DOF_FLAGS_CFM_NORM) ? m_linearLimits.m_normalCFM[i] : info->cfm[0];
- limot.m_stopCFM = (flags & BT_6DOF_FLAGS_CFM_STOP) ? m_linearLimits.m_stopCFM[i] : info->cfm[0];
- limot.m_stopERP = (flags & BT_6DOF_FLAGS_ERP_STOP) ? m_linearLimits.m_stopERP[i] : info->erp;
- if (m_useOffsetForConstraintFrame)
- {
- int indx1 = (i + 1) % 3;
- int indx2 = (i + 2) % 3;
- int rotAllowed = 1; // rotations around orthos to current axis
- if (m_angularLimits[indx1].m_currentLimit && m_angularLimits[indx2].m_currentLimit)
- {
- rotAllowed = 0;
- }
- row += get_limit_motor_info2(&limot, transA, transB, linVelA, linVelB, angVelA, angVelB, info, row, axis, 0, rotAllowed);
- }
- else
- {
- row += get_limit_motor_info2(&limot, transA, transB, linVelA, linVelB, angVelA, angVelB, info, row, axis, 0);
- }
- }
- }
- return row;
-}
-
-int btGeneric6DofConstraint::setAngularLimits(btConstraintInfo2* info, int row_offset, const btTransform& transA, const btTransform& transB, const btVector3& linVelA, const btVector3& linVelB, const btVector3& angVelA, const btVector3& angVelB)
-{
- btGeneric6DofConstraint* d6constraint = this;
- int row = row_offset;
- //solve angular limits
- for (int i = 0; i < 3; i++)
- {
- if (d6constraint->getRotationalLimitMotor(i)->needApplyTorques())
- {
- btVector3 axis = d6constraint->getAxis(i);
- int flags = m_flags >> ((i + 3) * BT_6DOF_FLAGS_AXIS_SHIFT);
- if (!(flags & BT_6DOF_FLAGS_CFM_NORM))
- {
- m_angularLimits[i].m_normalCFM = info->cfm[0];
- }
- if (!(flags & BT_6DOF_FLAGS_CFM_STOP))
- {
- m_angularLimits[i].m_stopCFM = info->cfm[0];
- }
- if (!(flags & BT_6DOF_FLAGS_ERP_STOP))
- {
- m_angularLimits[i].m_stopERP = info->erp;
- }
- row += get_limit_motor_info2(d6constraint->getRotationalLimitMotor(i),
- transA, transB, linVelA, linVelB, angVelA, angVelB, info, row, axis, 1);
- }
- }
-
- return row;
-}
-
-void btGeneric6DofConstraint::updateRHS(btScalar timeStep)
-{
- (void)timeStep;
-}
-
-void btGeneric6DofConstraint::setFrames(const btTransform& frameA, const btTransform& frameB)
-{
- m_frameInA = frameA;
- m_frameInB = frameB;
- buildJacobian();
- calculateTransforms();
-}
-
-btVector3 btGeneric6DofConstraint::getAxis(int axis_index) const
-{
- return m_calculatedAxis[axis_index];
-}
-
-btScalar btGeneric6DofConstraint::getRelativePivotPosition(int axisIndex) const
-{
- return m_calculatedLinearDiff[axisIndex];
-}
-
-btScalar btGeneric6DofConstraint::getAngle(int axisIndex) const
-{
- return m_calculatedAxisAngleDiff[axisIndex];
-}
-
-void btGeneric6DofConstraint::calcAnchorPos(void)
-{
- btScalar imA = m_rbA.getInvMass();
- btScalar imB = m_rbB.getInvMass();
- btScalar weight;
- if (imB == btScalar(0.0))
- {
- weight = btScalar(1.0);
- }
- else
- {
- weight = imA / (imA + imB);
- }
- const btVector3& pA = m_calculatedTransformA.getOrigin();
- const btVector3& pB = m_calculatedTransformB.getOrigin();
- m_AnchorPos = pA * weight + pB * (btScalar(1.0) - weight);
- return;
-}
-
-void btGeneric6DofConstraint::calculateLinearInfo()
-{
- m_calculatedLinearDiff = m_calculatedTransformB.getOrigin() - m_calculatedTransformA.getOrigin();
- m_calculatedLinearDiff = m_calculatedTransformA.getBasis().inverse() * m_calculatedLinearDiff;
- for (int i = 0; i < 3; i++)
- {
- m_linearLimits.m_currentLinearDiff[i] = m_calculatedLinearDiff[i];
- m_linearLimits.testLimitValue(i, m_calculatedLinearDiff[i]);
- }
-}
-
-int btGeneric6DofConstraint::get_limit_motor_info2(
- btRotationalLimitMotor* limot,
- const btTransform& transA, const btTransform& transB, const btVector3& linVelA, const btVector3& linVelB, const btVector3& angVelA, const btVector3& angVelB,
- btConstraintInfo2* info, int row, btVector3& ax1, int rotational, int rotAllowed)
-{
- int srow = row * info->rowskip;
- bool powered = limot->m_enableMotor;
- int limit = limot->m_currentLimit;
- if (powered || limit)
- { // if the joint is powered, or has joint limits, add in the extra row
- btScalar* J1 = rotational ? info->m_J1angularAxis : info->m_J1linearAxis;
- btScalar* J2 = rotational ? info->m_J2angularAxis : info->m_J2linearAxis;
- J1[srow + 0] = ax1[0];
- J1[srow + 1] = ax1[1];
- J1[srow + 2] = ax1[2];
-
- J2[srow + 0] = -ax1[0];
- J2[srow + 1] = -ax1[1];
- J2[srow + 2] = -ax1[2];
-
- if ((!rotational))
- {
- if (m_useOffsetForConstraintFrame)
- {
- btVector3 tmpA, tmpB, relA, relB;
- // get vector from bodyB to frameB in WCS
- relB = m_calculatedTransformB.getOrigin() - transB.getOrigin();
- // get its projection to constraint axis
- btVector3 projB = ax1 * relB.dot(ax1);
- // get vector directed from bodyB to constraint axis (and orthogonal to it)
- btVector3 orthoB = relB - projB;
- // same for bodyA
- relA = m_calculatedTransformA.getOrigin() - transA.getOrigin();
- btVector3 projA = ax1 * relA.dot(ax1);
- btVector3 orthoA = relA - projA;
- // get desired offset between frames A and B along constraint axis
- btScalar desiredOffs = limot->m_currentPosition - limot->m_currentLimitError;
- // desired vector from projection of center of bodyA to projection of center of bodyB to constraint axis
- btVector3 totalDist = projA + ax1 * desiredOffs - projB;
- // get offset vectors relA and relB
- relA = orthoA + totalDist * m_factA;
- relB = orthoB - totalDist * m_factB;
- tmpA = relA.cross(ax1);
- tmpB = relB.cross(ax1);
- if (m_hasStaticBody && (!rotAllowed))
- {
- tmpA *= m_factA;
- tmpB *= m_factB;
- }
- int i;
- for (i = 0; i < 3; i++) info->m_J1angularAxis[srow + i] = tmpA[i];
- for (i = 0; i < 3; i++) info->m_J2angularAxis[srow + i] = -tmpB[i];
- }
- else
- {
- btVector3 ltd; // Linear Torque Decoupling vector
- btVector3 c = m_calculatedTransformB.getOrigin() - transA.getOrigin();
- ltd = c.cross(ax1);
- info->m_J1angularAxis[srow + 0] = ltd[0];
- info->m_J1angularAxis[srow + 1] = ltd[1];
- info->m_J1angularAxis[srow + 2] = ltd[2];
-
- c = m_calculatedTransformB.getOrigin() - transB.getOrigin();
- ltd = -c.cross(ax1);
- info->m_J2angularAxis[srow + 0] = ltd[0];
- info->m_J2angularAxis[srow + 1] = ltd[1];
- info->m_J2angularAxis[srow + 2] = ltd[2];
- }
- }
- // if we're limited low and high simultaneously, the joint motor is
- // ineffective
- if (limit && (limot->m_loLimit == limot->m_hiLimit)) powered = false;
- info->m_constraintError[srow] = btScalar(0.f);
- if (powered)
- {
- info->cfm[srow] = limot->m_normalCFM;
- if (!limit)
- {
- btScalar tag_vel = rotational ? limot->m_targetVelocity : -limot->m_targetVelocity;
-
- btScalar mot_fact = getMotorFactor(limot->m_currentPosition,
- limot->m_loLimit,
- limot->m_hiLimit,
- tag_vel,
- info->fps * limot->m_stopERP);
- info->m_constraintError[srow] += mot_fact * limot->m_targetVelocity;
- info->m_lowerLimit[srow] = -limot->m_maxMotorForce / info->fps;
- info->m_upperLimit[srow] = limot->m_maxMotorForce / info->fps;
- }
- }
- if (limit)
- {
- btScalar k = info->fps * limot->m_stopERP;
- if (!rotational)
- {
- info->m_constraintError[srow] += k * limot->m_currentLimitError;
- }
- else
- {
- info->m_constraintError[srow] += -k * limot->m_currentLimitError;
- }
- info->cfm[srow] = limot->m_stopCFM;
- if (limot->m_loLimit == limot->m_hiLimit)
- { // limited low and high simultaneously
- info->m_lowerLimit[srow] = -SIMD_INFINITY;
- info->m_upperLimit[srow] = SIMD_INFINITY;
- }
- else
- {
- if (limit == 1)
- {
- info->m_lowerLimit[srow] = 0;
- info->m_upperLimit[srow] = SIMD_INFINITY;
- }
- else
- {
- info->m_lowerLimit[srow] = -SIMD_INFINITY;
- info->m_upperLimit[srow] = 0;
- }
- // deal with bounce
- if (limot->m_bounce > 0)
- {
- // calculate joint velocity
- btScalar vel;
- if (rotational)
- {
- vel = angVelA.dot(ax1);
- //make sure that if no body -> angVelB == zero vec
- // if (body1)
- vel -= angVelB.dot(ax1);
- }
- else
- {
- vel = linVelA.dot(ax1);
- //make sure that if no body -> angVelB == zero vec
- // if (body1)
- vel -= linVelB.dot(ax1);
- }
- // only apply bounce if the velocity is incoming, and if the
- // resulting c[] exceeds what we already have.
- if (limit == 1)
- {
- if (vel < 0)
- {
- btScalar newc = -limot->m_bounce * vel;
- if (newc > info->m_constraintError[srow])
- info->m_constraintError[srow] = newc;
- }
- }
- else
- {
- if (vel > 0)
- {
- btScalar newc = -limot->m_bounce * vel;
- if (newc < info->m_constraintError[srow])
- info->m_constraintError[srow] = newc;
- }
- }
- }
- }
- }
- return 1;
- }
- else
- return 0;
-}
-
-///override the default global value of a parameter (such as ERP or CFM), optionally provide the axis (0..5).
-///If no axis is provided, it uses the default axis for this constraint.
-void btGeneric6DofConstraint::setParam(int num, btScalar value, int axis)
-{
- if ((axis >= 0) && (axis < 3))
- {
- switch (num)
- {
- case BT_CONSTRAINT_STOP_ERP:
- m_linearLimits.m_stopERP[axis] = value;
- m_flags |= BT_6DOF_FLAGS_ERP_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT);
- break;
- case BT_CONSTRAINT_STOP_CFM:
- m_linearLimits.m_stopCFM[axis] = value;
- m_flags |= BT_6DOF_FLAGS_CFM_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT);
- break;
- case BT_CONSTRAINT_CFM:
- m_linearLimits.m_normalCFM[axis] = value;
- m_flags |= BT_6DOF_FLAGS_CFM_NORM << (axis * BT_6DOF_FLAGS_AXIS_SHIFT);
- break;
- default:
- btAssertConstrParams(0);
- }
- }
- else if ((axis >= 3) && (axis < 6))
- {
- switch (num)
- {
- case BT_CONSTRAINT_STOP_ERP:
- m_angularLimits[axis - 3].m_stopERP = value;
- m_flags |= BT_6DOF_FLAGS_ERP_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT);
- break;
- case BT_CONSTRAINT_STOP_CFM:
- m_angularLimits[axis - 3].m_stopCFM = value;
- m_flags |= BT_6DOF_FLAGS_CFM_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT);
- break;
- case BT_CONSTRAINT_CFM:
- m_angularLimits[axis - 3].m_normalCFM = value;
- m_flags |= BT_6DOF_FLAGS_CFM_NORM << (axis * BT_6DOF_FLAGS_AXIS_SHIFT);
- break;
- default:
- btAssertConstrParams(0);
- }
- }
- else
- {
- btAssertConstrParams(0);
- }
-}
-
-///return the local value of parameter
-btScalar btGeneric6DofConstraint::getParam(int num, int axis) const
-{
- btScalar retVal = 0;
- if ((axis >= 0) && (axis < 3))
- {
- switch (num)
- {
- case BT_CONSTRAINT_STOP_ERP:
- btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_ERP_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT)));
- retVal = m_linearLimits.m_stopERP[axis];
- break;
- case BT_CONSTRAINT_STOP_CFM:
- btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_CFM_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT)));
- retVal = m_linearLimits.m_stopCFM[axis];
- break;
- case BT_CONSTRAINT_CFM:
- btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_CFM_NORM << (axis * BT_6DOF_FLAGS_AXIS_SHIFT)));
- retVal = m_linearLimits.m_normalCFM[axis];
- break;
- default:
- btAssertConstrParams(0);
- }
- }
- else if ((axis >= 3) && (axis < 6))
- {
- switch (num)
- {
- case BT_CONSTRAINT_STOP_ERP:
- btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_ERP_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT)));
- retVal = m_angularLimits[axis - 3].m_stopERP;
- break;
- case BT_CONSTRAINT_STOP_CFM:
- btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_CFM_STOP << (axis * BT_6DOF_FLAGS_AXIS_SHIFT)));
- retVal = m_angularLimits[axis - 3].m_stopCFM;
- break;
- case BT_CONSTRAINT_CFM:
- btAssertConstrParams(m_flags & (BT_6DOF_FLAGS_CFM_NORM << (axis * BT_6DOF_FLAGS_AXIS_SHIFT)));
- retVal = m_angularLimits[axis - 3].m_normalCFM;
- break;
- default:
- btAssertConstrParams(0);
- }
- }
- else
- {
- btAssertConstrParams(0);
- }
- return retVal;
-}
-
-void btGeneric6DofConstraint::setAxis(const btVector3& axis1, const btVector3& axis2)
-{
- btVector3 zAxis = axis1.normalized();
- btVector3 yAxis = axis2.normalized();
- btVector3 xAxis = yAxis.cross(zAxis); // we want right coordinate system
-
- btTransform frameInW;
- frameInW.setIdentity();
- frameInW.getBasis().setValue(xAxis[0], yAxis[0], zAxis[0],
- xAxis[1], yAxis[1], zAxis[1],
- xAxis[2], yAxis[2], zAxis[2]);
-
- // now get constraint frame in local coordinate systems
- m_frameInA = m_rbA.getCenterOfMassTransform().inverse() * frameInW;
- m_frameInB = m_rbB.getCenterOfMassTransform().inverse() * frameInW;
-
- calculateTransforms();
-}