diff options
Diffstat (limited to 'thirdparty/bullet/BulletCollision/NarrowPhaseCollision/btPersistentManifold.h')
-rw-r--r-- | thirdparty/bullet/BulletCollision/NarrowPhaseCollision/btPersistentManifold.h | 268 |
1 files changed, 268 insertions, 0 deletions
diff --git a/thirdparty/bullet/BulletCollision/NarrowPhaseCollision/btPersistentManifold.h b/thirdparty/bullet/BulletCollision/NarrowPhaseCollision/btPersistentManifold.h new file mode 100644 index 0000000000..f872c8e1c9 --- /dev/null +++ b/thirdparty/bullet/BulletCollision/NarrowPhaseCollision/btPersistentManifold.h @@ -0,0 +1,268 @@ +/* +Bullet Continuous Collision Detection and Physics Library +Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/ + +This software is provided 'as-is', without any express or implied warranty. +In no event will the authors be held liable for any damages arising from the use of this software. +Permission is granted to anyone to use this software for any purpose, +including commercial applications, and to alter it and redistribute it freely, +subject to the following restrictions: + +1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. +2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. +3. This notice may not be removed or altered from any source distribution. +*/ + +#ifndef BT_PERSISTENT_MANIFOLD_H +#define BT_PERSISTENT_MANIFOLD_H + + +#include "LinearMath/btVector3.h" +#include "LinearMath/btTransform.h" +#include "btManifoldPoint.h" +class btCollisionObject; +#include "LinearMath/btAlignedAllocator.h" + +struct btCollisionResult; + +///maximum contact breaking and merging threshold +extern btScalar gContactBreakingThreshold; + +#ifndef SWIG +class btPersistentManifold; + +typedef bool (*ContactDestroyedCallback)(void* userPersistentData); +typedef bool (*ContactProcessedCallback)(btManifoldPoint& cp,void* body0,void* body1); +typedef void (*ContactStartedCallback)(btPersistentManifold* const &manifold); +typedef void (*ContactEndedCallback)(btPersistentManifold* const &manifold); +extern ContactDestroyedCallback gContactDestroyedCallback; +extern ContactProcessedCallback gContactProcessedCallback; +extern ContactStartedCallback gContactStartedCallback; +extern ContactEndedCallback gContactEndedCallback; +#endif //SWIG + +//the enum starts at 1024 to avoid type conflicts with btTypedConstraint +enum btContactManifoldTypes +{ + MIN_CONTACT_MANIFOLD_TYPE = 1024, + BT_PERSISTENT_MANIFOLD_TYPE +}; + +#define MANIFOLD_CACHE_SIZE 4 + +///btPersistentManifold is a contact point cache, it stays persistent as long as objects are overlapping in the broadphase. +///Those contact points are created by the collision narrow phase. +///The cache can be empty, or hold 1,2,3 or 4 points. Some collision algorithms (GJK) might only add one point at a time. +///updates/refreshes old contact points, and throw them away if necessary (distance becomes too large) +///reduces the cache to 4 points, when more then 4 points are added, using following rules: +///the contact point with deepest penetration is always kept, and it tries to maximuze the area covered by the points +///note that some pairs of objects might have more then one contact manifold. + + +//ATTRIBUTE_ALIGNED128( class) btPersistentManifold : public btTypedObject +ATTRIBUTE_ALIGNED16( class) btPersistentManifold : public btTypedObject +{ + + btManifoldPoint m_pointCache[MANIFOLD_CACHE_SIZE]; + + /// this two body pointers can point to the physics rigidbody class. + const btCollisionObject* m_body0; + const btCollisionObject* m_body1; + + int m_cachedPoints; + + btScalar m_contactBreakingThreshold; + btScalar m_contactProcessingThreshold; + + + /// sort cached points so most isolated points come first + int sortCachedPoints(const btManifoldPoint& pt); + + int findContactPoint(const btManifoldPoint* unUsed, int numUnused,const btManifoldPoint& pt); + +public: + + BT_DECLARE_ALIGNED_ALLOCATOR(); + + int m_companionIdA; + int m_companionIdB; + + int m_index1a; + + btPersistentManifold(); + + btPersistentManifold(const btCollisionObject* body0,const btCollisionObject* body1,int , btScalar contactBreakingThreshold,btScalar contactProcessingThreshold) + : btTypedObject(BT_PERSISTENT_MANIFOLD_TYPE), + m_body0(body0),m_body1(body1),m_cachedPoints(0), + m_contactBreakingThreshold(contactBreakingThreshold), + m_contactProcessingThreshold(contactProcessingThreshold) + { + } + + SIMD_FORCE_INLINE const btCollisionObject* getBody0() const { return m_body0;} + SIMD_FORCE_INLINE const btCollisionObject* getBody1() const { return m_body1;} + + void setBodies(const btCollisionObject* body0,const btCollisionObject* body1) + { + m_body0 = body0; + m_body1 = body1; + } + + void clearUserCache(btManifoldPoint& pt); + +#ifdef DEBUG_PERSISTENCY + void DebugPersistency(); +#endif // + + SIMD_FORCE_INLINE int getNumContacts() const { return m_cachedPoints;} + /// the setNumContacts API is usually not used, except when you gather/fill all contacts manually + void setNumContacts(int cachedPoints) + { + m_cachedPoints = cachedPoints; + } + + + SIMD_FORCE_INLINE const btManifoldPoint& getContactPoint(int index) const + { + btAssert(index < m_cachedPoints); + return m_pointCache[index]; + } + + SIMD_FORCE_INLINE btManifoldPoint& getContactPoint(int index) + { + btAssert(index < m_cachedPoints); + return m_pointCache[index]; + } + + ///@todo: get this margin from the current physics / collision environment + btScalar getContactBreakingThreshold() const; + + btScalar getContactProcessingThreshold() const + { + return m_contactProcessingThreshold; + } + + void setContactBreakingThreshold(btScalar contactBreakingThreshold) + { + m_contactBreakingThreshold = contactBreakingThreshold; + } + + void setContactProcessingThreshold(btScalar contactProcessingThreshold) + { + m_contactProcessingThreshold = contactProcessingThreshold; + } + + + + + int getCacheEntry(const btManifoldPoint& newPoint) const; + + int addManifoldPoint( const btManifoldPoint& newPoint, bool isPredictive=false); + + void removeContactPoint (int index) + { + clearUserCache(m_pointCache[index]); + + int lastUsedIndex = getNumContacts() - 1; +// m_pointCache[index] = m_pointCache[lastUsedIndex]; + if(index != lastUsedIndex) + { + m_pointCache[index] = m_pointCache[lastUsedIndex]; + //get rid of duplicated userPersistentData pointer + m_pointCache[lastUsedIndex].m_userPersistentData = 0; + m_pointCache[lastUsedIndex].m_appliedImpulse = 0.f; + m_pointCache[lastUsedIndex].m_contactPointFlags = 0; + m_pointCache[lastUsedIndex].m_appliedImpulseLateral1 = 0.f; + m_pointCache[lastUsedIndex].m_appliedImpulseLateral2 = 0.f; + m_pointCache[lastUsedIndex].m_lifeTime = 0; + } + + btAssert(m_pointCache[lastUsedIndex].m_userPersistentData==0); + m_cachedPoints--; + + if (gContactEndedCallback && m_cachedPoints == 0) + { + gContactEndedCallback(this); + } + } + void replaceContactPoint(const btManifoldPoint& newPoint, int insertIndex) + { + btAssert(validContactDistance(newPoint)); + +#define MAINTAIN_PERSISTENCY 1 +#ifdef MAINTAIN_PERSISTENCY + int lifeTime = m_pointCache[insertIndex].getLifeTime(); + btScalar appliedImpulse = m_pointCache[insertIndex].m_appliedImpulse; + btScalar appliedLateralImpulse1 = m_pointCache[insertIndex].m_appliedImpulseLateral1; + btScalar appliedLateralImpulse2 = m_pointCache[insertIndex].m_appliedImpulseLateral2; + + bool replacePoint = true; + ///we keep existing contact points for friction anchors + ///if the friction force is within the Coulomb friction cone + if (newPoint.m_contactPointFlags & BT_CONTACT_FLAG_FRICTION_ANCHOR) + { + // printf("appliedImpulse=%f\n", appliedImpulse); + // printf("appliedLateralImpulse1=%f\n", appliedLateralImpulse1); + // printf("appliedLateralImpulse2=%f\n", appliedLateralImpulse2); + // printf("mu = %f\n", m_pointCache[insertIndex].m_combinedFriction); + btScalar mu = m_pointCache[insertIndex].m_combinedFriction; + btScalar eps = 0; //we could allow to enlarge or shrink the tolerance to check against the friction cone a bit, say 1e-7 + btScalar a = appliedLateralImpulse1 * appliedLateralImpulse1 + appliedLateralImpulse2 * appliedLateralImpulse2; + btScalar b = eps + mu * appliedImpulse; + b = b * b; + replacePoint = (a) > (b); + } + + if (replacePoint) + { + btAssert(lifeTime >= 0); + void* cache = m_pointCache[insertIndex].m_userPersistentData; + + m_pointCache[insertIndex] = newPoint; + m_pointCache[insertIndex].m_userPersistentData = cache; + m_pointCache[insertIndex].m_appliedImpulse = appliedImpulse; + m_pointCache[insertIndex].m_appliedImpulseLateral1 = appliedLateralImpulse1; + m_pointCache[insertIndex].m_appliedImpulseLateral2 = appliedLateralImpulse2; + } + + m_pointCache[insertIndex].m_lifeTime = lifeTime; +#else + clearUserCache(m_pointCache[insertIndex]); + m_pointCache[insertIndex] = newPoint; + +#endif + } + + bool validContactDistance(const btManifoldPoint& pt) const + { + return pt.m_distance1 <= getContactBreakingThreshold(); + } + /// calculated new worldspace coordinates and depth, and reject points that exceed the collision margin + void refreshContactPoints( const btTransform& trA,const btTransform& trB); + + + SIMD_FORCE_INLINE void clearManifold() + { + int i; + for (i=0;i<m_cachedPoints;i++) + { + clearUserCache(m_pointCache[i]); + } + + if (gContactEndedCallback && m_cachedPoints) + { + gContactEndedCallback(this); + } + m_cachedPoints = 0; + } + + + +} +; + + + + + +#endif //BT_PERSISTENT_MANIFOLD_H |