summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletCollision/Gimpact/gim_tri_collision.h
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/bullet/BulletCollision/Gimpact/gim_tri_collision.h')
-rw-r--r--thirdparty/bullet/BulletCollision/Gimpact/gim_tri_collision.h380
1 files changed, 380 insertions, 0 deletions
diff --git a/thirdparty/bullet/BulletCollision/Gimpact/gim_tri_collision.h b/thirdparty/bullet/BulletCollision/Gimpact/gim_tri_collision.h
new file mode 100644
index 0000000000..267f806e7e
--- /dev/null
+++ b/thirdparty/bullet/BulletCollision/Gimpact/gim_tri_collision.h
@@ -0,0 +1,380 @@
+#ifndef GIM_TRI_COLLISION_H_INCLUDED
+#define GIM_TRI_COLLISION_H_INCLUDED
+
+/*! \file gim_tri_collision.h
+\author Francisco Leon Najera
+*/
+/*
+-----------------------------------------------------------------------------
+This source file is part of GIMPACT Library.
+
+For the latest info, see http://gimpact.sourceforge.net/
+
+Copyright (c) 2006 Francisco Leon Najera. C.C. 80087371.
+email: projectileman@yahoo.com
+
+ This library is free software; you can redistribute it and/or
+ modify it under the terms of EITHER:
+ (1) The GNU Lesser General Public License as published by the Free
+ Software Foundation; either version 2.1 of the License, or (at
+ your option) any later version. The text of the GNU Lesser
+ General Public License is included with this library in the
+ file GIMPACT-LICENSE-LGPL.TXT.
+ (2) The BSD-style license that is included with this library in
+ the file GIMPACT-LICENSE-BSD.TXT.
+ (3) The zlib/libpng license that is included with this library in
+ the file GIMPACT-LICENSE-ZLIB.TXT.
+
+ This library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the files
+ GIMPACT-LICENSE-LGPL.TXT, GIMPACT-LICENSE-ZLIB.TXT and GIMPACT-LICENSE-BSD.TXT for more details.
+
+-----------------------------------------------------------------------------
+*/
+
+#include "gim_box_collision.h"
+#include "gim_clip_polygon.h"
+
+
+
+#ifndef MAX_TRI_CLIPPING
+#define MAX_TRI_CLIPPING 16
+#endif
+
+//! Structure for collision
+struct GIM_TRIANGLE_CONTACT_DATA
+{
+ GREAL m_penetration_depth;
+ GUINT m_point_count;
+ btVector4 m_separating_normal;
+ btVector3 m_points[MAX_TRI_CLIPPING];
+
+ SIMD_FORCE_INLINE void copy_from(const GIM_TRIANGLE_CONTACT_DATA& other)
+ {
+ m_penetration_depth = other.m_penetration_depth;
+ m_separating_normal = other.m_separating_normal;
+ m_point_count = other.m_point_count;
+ GUINT i = m_point_count;
+ while(i--)
+ {
+ m_points[i] = other.m_points[i];
+ }
+ }
+
+ GIM_TRIANGLE_CONTACT_DATA()
+ {
+ }
+
+ GIM_TRIANGLE_CONTACT_DATA(const GIM_TRIANGLE_CONTACT_DATA& other)
+ {
+ copy_from(other);
+ }
+
+
+
+
+ //! classify points that are closer
+ template<typename DISTANCE_FUNC,typename CLASS_PLANE>
+ SIMD_FORCE_INLINE void mergepoints_generic(const CLASS_PLANE & plane,
+ GREAL margin, const btVector3 * points, GUINT point_count, DISTANCE_FUNC distance_func)
+ {
+ m_point_count = 0;
+ m_penetration_depth= -1000.0f;
+
+ GUINT point_indices[MAX_TRI_CLIPPING];
+
+ GUINT _k;
+
+ for(_k=0;_k<point_count;_k++)
+ {
+ GREAL _dist = -distance_func(plane,points[_k]) + margin;
+
+ if(_dist>=0.0f)
+ {
+ if(_dist>m_penetration_depth)
+ {
+ m_penetration_depth = _dist;
+ point_indices[0] = _k;
+ m_point_count=1;
+ }
+ else if((_dist+G_EPSILON)>=m_penetration_depth)
+ {
+ point_indices[m_point_count] = _k;
+ m_point_count++;
+ }
+ }
+ }
+
+ for( _k=0;_k<m_point_count;_k++)
+ {
+ m_points[_k] = points[point_indices[_k]];
+ }
+ }
+
+ //! classify points that are closer
+ SIMD_FORCE_INLINE void merge_points(const btVector4 & plane, GREAL margin,
+ const btVector3 * points, GUINT point_count)
+ {
+ m_separating_normal = plane;
+ mergepoints_generic(plane, margin, points, point_count, DISTANCE_PLANE_3D_FUNC());
+ }
+};
+
+
+//! Class for colliding triangles
+class GIM_TRIANGLE
+{
+public:
+ btScalar m_margin;
+ btVector3 m_vertices[3];
+
+ GIM_TRIANGLE():m_margin(0.1f)
+ {
+ }
+
+ SIMD_FORCE_INLINE GIM_AABB get_box() const
+ {
+ return GIM_AABB(m_vertices[0],m_vertices[1],m_vertices[2],m_margin);
+ }
+
+ SIMD_FORCE_INLINE void get_normal(btVector3 &normal) const
+ {
+ TRIANGLE_NORMAL(m_vertices[0],m_vertices[1],m_vertices[2],normal);
+ }
+
+ SIMD_FORCE_INLINE void get_plane(btVector4 &plane) const
+ {
+ TRIANGLE_PLANE(m_vertices[0],m_vertices[1],m_vertices[2],plane);;
+ }
+
+ SIMD_FORCE_INLINE void apply_transform(const btTransform & trans)
+ {
+ m_vertices[0] = trans(m_vertices[0]);
+ m_vertices[1] = trans(m_vertices[1]);
+ m_vertices[2] = trans(m_vertices[2]);
+ }
+
+ SIMD_FORCE_INLINE void get_edge_plane(GUINT edge_index,const btVector3 &triangle_normal,btVector4 &plane) const
+ {
+ const btVector3 & e0 = m_vertices[edge_index];
+ const btVector3 & e1 = m_vertices[(edge_index+1)%3];
+ EDGE_PLANE(e0,e1,triangle_normal,plane);
+ }
+
+ //! Gets the relative transformation of this triangle
+ /*!
+ The transformation is oriented to the triangle normal , and aligned to the 1st edge of this triangle. The position corresponds to vertice 0:
+ - triangle normal corresponds to Z axis.
+ - 1st normalized edge corresponds to X axis,
+
+ */
+ SIMD_FORCE_INLINE void get_triangle_transform(btTransform & triangle_transform) const
+ {
+ btMatrix3x3 & matrix = triangle_transform.getBasis();
+
+ btVector3 zaxis;
+ get_normal(zaxis);
+ MAT_SET_Z(matrix,zaxis);
+
+ btVector3 xaxis = m_vertices[1] - m_vertices[0];
+ VEC_NORMALIZE(xaxis);
+ MAT_SET_X(matrix,xaxis);
+
+ //y axis
+ xaxis = zaxis.cross(xaxis);
+ MAT_SET_Y(matrix,xaxis);
+
+ triangle_transform.setOrigin(m_vertices[0]);
+ }
+
+
+ //! Test triangles by finding separating axis
+ /*!
+ \param other Triangle for collide
+ \param contact_data Structure for holding contact points, normal and penetration depth; The normal is pointing toward this triangle from the other triangle
+ */
+ bool collide_triangle_hard_test(
+ const GIM_TRIANGLE & other,
+ GIM_TRIANGLE_CONTACT_DATA & contact_data) const;
+
+ //! Test boxes before doing hard test
+ /*!
+ \param other Triangle for collide
+ \param contact_data Structure for holding contact points, normal and penetration depth; The normal is pointing toward this triangle from the other triangle
+ \
+ */
+ SIMD_FORCE_INLINE bool collide_triangle(
+ const GIM_TRIANGLE & other,
+ GIM_TRIANGLE_CONTACT_DATA & contact_data) const
+ {
+ //test box collisioin
+ GIM_AABB boxu(m_vertices[0],m_vertices[1],m_vertices[2],m_margin);
+ GIM_AABB boxv(other.m_vertices[0],other.m_vertices[1],other.m_vertices[2],other.m_margin);
+ if(!boxu.has_collision(boxv)) return false;
+
+ //do hard test
+ return collide_triangle_hard_test(other,contact_data);
+ }
+
+ /*!
+
+ Solve the System for u,v parameters:
+
+ u*axe1[i1] + v*axe2[i1] = vecproj[i1]
+ u*axe1[i2] + v*axe2[i2] = vecproj[i2]
+
+ sustitute:
+ v = (vecproj[i2] - u*axe1[i2])/axe2[i2]
+
+ then the first equation in terms of 'u':
+
+ --> u*axe1[i1] + ((vecproj[i2] - u*axe1[i2])/axe2[i2])*axe2[i1] = vecproj[i1]
+
+ --> u*axe1[i1] + vecproj[i2]*axe2[i1]/axe2[i2] - u*axe1[i2]*axe2[i1]/axe2[i2] = vecproj[i1]
+
+ --> u*(axe1[i1] - axe1[i2]*axe2[i1]/axe2[i2]) = vecproj[i1] - vecproj[i2]*axe2[i1]/axe2[i2]
+
+ --> u*((axe1[i1]*axe2[i2] - axe1[i2]*axe2[i1])/axe2[i2]) = (vecproj[i1]*axe2[i2] - vecproj[i2]*axe2[i1])/axe2[i2]
+
+ --> u*(axe1[i1]*axe2[i2] - axe1[i2]*axe2[i1]) = vecproj[i1]*axe2[i2] - vecproj[i2]*axe2[i1]
+
+ --> u = (vecproj[i1]*axe2[i2] - vecproj[i2]*axe2[i1]) /(axe1[i1]*axe2[i2] - axe1[i2]*axe2[i1])
+
+if 0.0<= u+v <=1.0 then they are inside of triangle
+
+ \return false if the point is outside of triangle.This function doesn't take the margin
+ */
+ SIMD_FORCE_INLINE bool get_uv_parameters(
+ const btVector3 & point,
+ const btVector3 & tri_plane,
+ GREAL & u, GREAL & v) const
+ {
+ btVector3 _axe1 = m_vertices[1]-m_vertices[0];
+ btVector3 _axe2 = m_vertices[2]-m_vertices[0];
+ btVector3 _vecproj = point - m_vertices[0];
+ GUINT _i1 = (tri_plane.closestAxis()+1)%3;
+ GUINT _i2 = (_i1+1)%3;
+ if(btFabs(_axe2[_i2])<G_EPSILON)
+ {
+ u = (_vecproj[_i2]*_axe2[_i1] - _vecproj[_i1]*_axe2[_i2]) /(_axe1[_i2]*_axe2[_i1] - _axe1[_i1]*_axe2[_i2]);
+ v = (_vecproj[_i1] - u*_axe1[_i1])/_axe2[_i1];
+ }
+ else
+ {
+ u = (_vecproj[_i1]*_axe2[_i2] - _vecproj[_i2]*_axe2[_i1]) /(_axe1[_i1]*_axe2[_i2] - _axe1[_i2]*_axe2[_i1]);
+ v = (_vecproj[_i2] - u*_axe1[_i2])/_axe2[_i2];
+ }
+
+ if(u<-G_EPSILON)
+ {
+ return false;
+ }
+ else if(v<-G_EPSILON)
+ {
+ return false;
+ }
+ else
+ {
+ btScalar sumuv;
+ sumuv = u+v;
+ if(sumuv<-G_EPSILON)
+ {
+ return false;
+ }
+ else if(sumuv-1.0f>G_EPSILON)
+ {
+ return false;
+ }
+ }
+ return true;
+ }
+
+ //! is point in triangle beam?
+ /*!
+ Test if point is in triangle, with m_margin tolerance
+ */
+ SIMD_FORCE_INLINE bool is_point_inside(const btVector3 & point, const btVector3 & tri_normal) const
+ {
+ //Test with edge 0
+ btVector4 edge_plane;
+ this->get_edge_plane(0,tri_normal,edge_plane);
+ GREAL dist = DISTANCE_PLANE_POINT(edge_plane,point);
+ if(dist-m_margin>0.0f) return false; // outside plane
+
+ this->get_edge_plane(1,tri_normal,edge_plane);
+ dist = DISTANCE_PLANE_POINT(edge_plane,point);
+ if(dist-m_margin>0.0f) return false; // outside plane
+
+ this->get_edge_plane(2,tri_normal,edge_plane);
+ dist = DISTANCE_PLANE_POINT(edge_plane,point);
+ if(dist-m_margin>0.0f) return false; // outside plane
+ return true;
+ }
+
+
+ //! Bidireccional ray collision
+ SIMD_FORCE_INLINE bool ray_collision(
+ const btVector3 & vPoint,
+ const btVector3 & vDir, btVector3 & pout, btVector3 & triangle_normal,
+ GREAL & tparam, GREAL tmax = G_REAL_INFINITY)
+ {
+ btVector4 faceplane;
+ {
+ btVector3 dif1 = m_vertices[1] - m_vertices[0];
+ btVector3 dif2 = m_vertices[2] - m_vertices[0];
+ VEC_CROSS(faceplane,dif1,dif2);
+ faceplane[3] = m_vertices[0].dot(faceplane);
+ }
+
+ GUINT res = LINE_PLANE_COLLISION(faceplane,vDir,vPoint,pout,tparam, btScalar(0), tmax);
+ if(res == 0) return false;
+ if(! is_point_inside(pout,faceplane)) return false;
+
+ if(res==2) //invert normal
+ {
+ triangle_normal.setValue(-faceplane[0],-faceplane[1],-faceplane[2]);
+ }
+ else
+ {
+ triangle_normal.setValue(faceplane[0],faceplane[1],faceplane[2]);
+ }
+
+ VEC_NORMALIZE(triangle_normal);
+
+ return true;
+ }
+
+
+ //! one direccion ray collision
+ SIMD_FORCE_INLINE bool ray_collision_front_side(
+ const btVector3 & vPoint,
+ const btVector3 & vDir, btVector3 & pout, btVector3 & triangle_normal,
+ GREAL & tparam, GREAL tmax = G_REAL_INFINITY)
+ {
+ btVector4 faceplane;
+ {
+ btVector3 dif1 = m_vertices[1] - m_vertices[0];
+ btVector3 dif2 = m_vertices[2] - m_vertices[0];
+ VEC_CROSS(faceplane,dif1,dif2);
+ faceplane[3] = m_vertices[0].dot(faceplane);
+ }
+
+ GUINT res = LINE_PLANE_COLLISION(faceplane,vDir,vPoint,pout,tparam, btScalar(0), tmax);
+ if(res != 1) return false;
+
+ if(!is_point_inside(pout,faceplane)) return false;
+
+ triangle_normal.setValue(faceplane[0],faceplane[1],faceplane[2]);
+
+ VEC_NORMALIZE(triangle_normal);
+
+ return true;
+ }
+
+};
+
+
+
+
+#endif // GIM_TRI_COLLISION_H_INCLUDED