diff options
Diffstat (limited to 'thirdparty/bullet/BulletCollision/CollisionShapes/btHeightfieldTerrainShape.cpp')
-rw-r--r-- | thirdparty/bullet/BulletCollision/CollisionShapes/btHeightfieldTerrainShape.cpp | 754 |
1 files changed, 595 insertions, 159 deletions
diff --git a/thirdparty/bullet/BulletCollision/CollisionShapes/btHeightfieldTerrainShape.cpp b/thirdparty/bullet/BulletCollision/CollisionShapes/btHeightfieldTerrainShape.cpp index 441a89c6bb..34ec2d8c45 100644 --- a/thirdparty/bullet/BulletCollision/CollisionShapes/btHeightfieldTerrainShape.cpp +++ b/thirdparty/bullet/BulletCollision/CollisionShapes/btHeightfieldTerrainShape.cpp @@ -17,23 +17,17 @@ subject to the following restrictions: #include "LinearMath/btTransformUtil.h" - - -btHeightfieldTerrainShape::btHeightfieldTerrainShape -( -int heightStickWidth, int heightStickLength, const void* heightfieldData, -btScalar heightScale, btScalar minHeight, btScalar maxHeight,int upAxis, -PHY_ScalarType hdt, bool flipQuadEdges -) +btHeightfieldTerrainShape::btHeightfieldTerrainShape( + int heightStickWidth, int heightStickLength, const void* heightfieldData, + btScalar heightScale, btScalar minHeight, btScalar maxHeight, int upAxis, + PHY_ScalarType hdt, bool flipQuadEdges) { initialize(heightStickWidth, heightStickLength, heightfieldData, - heightScale, minHeight, maxHeight, upAxis, hdt, - flipQuadEdges); + heightScale, minHeight, maxHeight, upAxis, hdt, + flipQuadEdges); } - - -btHeightfieldTerrainShape::btHeightfieldTerrainShape(int heightStickWidth, int heightStickLength,const void* heightfieldData,btScalar maxHeight,int upAxis,bool useFloatData,bool flipQuadEdges) +btHeightfieldTerrainShape::btHeightfieldTerrainShape(int heightStickWidth, int heightStickLength, const void* heightfieldData, btScalar maxHeight, int upAxis, bool useFloatData, bool flipQuadEdges) { // legacy constructor: support only float or unsigned char, // and min height is zero @@ -45,27 +39,23 @@ btHeightfieldTerrainShape::btHeightfieldTerrainShape(int heightStickWidth, int h btScalar heightScale = maxHeight / 65535; initialize(heightStickWidth, heightStickLength, heightfieldData, - heightScale, minHeight, maxHeight, upAxis, hdt, - flipQuadEdges); + heightScale, minHeight, maxHeight, upAxis, hdt, + flipQuadEdges); } - - -void btHeightfieldTerrainShape::initialize -( -int heightStickWidth, int heightStickLength, const void* heightfieldData, -btScalar heightScale, btScalar minHeight, btScalar maxHeight, int upAxis, -PHY_ScalarType hdt, bool flipQuadEdges -) +void btHeightfieldTerrainShape::initialize( + int heightStickWidth, int heightStickLength, const void* heightfieldData, + btScalar heightScale, btScalar minHeight, btScalar maxHeight, int upAxis, + PHY_ScalarType hdt, bool flipQuadEdges) { // validation - btAssert(heightStickWidth > 1);// && "bad width"); - btAssert(heightStickLength > 1);// && "bad length"); - btAssert(heightfieldData);// && "null heightfield data"); + btAssert(heightStickWidth > 1); // && "bad width"); + btAssert(heightStickLength > 1); // && "bad length"); + btAssert(heightfieldData); // && "null heightfield data"); // btAssert(heightScale) -- do we care? Trust caller here - btAssert(minHeight <= maxHeight);// && "bad min/max height"); - btAssert(upAxis >= 0 && upAxis < 3);// && "bad upAxis--should be in range [0,2]"); - btAssert(hdt != PHY_UCHAR || hdt != PHY_FLOAT || hdt != PHY_SHORT);// && "Bad height data type enum"); + btAssert(minHeight <= maxHeight); // && "bad min/max height"); + btAssert(upAxis >= 0 && upAxis < 3); // && "bad upAxis--should be in range [0,2]"); + btAssert(hdt != PHY_UCHAR || hdt != PHY_FLOAT || hdt != PHY_SHORT); // && "Bad height data type enum"); // initialize member variables m_shapeType = TERRAIN_SHAPE_PROXYTYPE; @@ -73,42 +63,47 @@ PHY_ScalarType hdt, bool flipQuadEdges m_heightStickLength = heightStickLength; m_minHeight = minHeight; m_maxHeight = maxHeight; - m_width = (btScalar) (heightStickWidth - 1); - m_length = (btScalar) (heightStickLength - 1); + m_width = (btScalar)(heightStickWidth - 1); + m_length = (btScalar)(heightStickLength - 1); m_heightScale = heightScale; m_heightfieldDataUnknown = heightfieldData; m_heightDataType = hdt; m_flipQuadEdges = flipQuadEdges; m_useDiamondSubdivision = false; m_useZigzagSubdivision = false; + m_flipTriangleWinding = false; m_upAxis = upAxis; m_localScaling.setValue(btScalar(1.), btScalar(1.), btScalar(1.)); + + m_vboundsChunkSize = 0; + m_vboundsGridWidth = 0; + m_vboundsGridLength = 0; // determine min/max axis-aligned bounding box (aabb) values switch (m_upAxis) { - case 0: + case 0: { m_localAabbMin.setValue(m_minHeight, 0, 0); m_localAabbMax.setValue(m_maxHeight, m_width, m_length); break; } - case 1: + case 1: { m_localAabbMin.setValue(0, m_minHeight, 0); m_localAabbMax.setValue(m_width, m_maxHeight, m_length); break; }; - case 2: + case 2: { m_localAabbMin.setValue(0, 0, m_minHeight); m_localAabbMax.setValue(m_width, m_length, m_maxHeight); break; } - default: + default: { //need to get valid m_upAxis - btAssert(0);// && "Bad m_upAxis"); + btAssert(0); // && "Bad m_upAxis"); } } @@ -116,62 +111,58 @@ PHY_ScalarType hdt, bool flipQuadEdges m_localOrigin = btScalar(0.5) * (m_localAabbMin + m_localAabbMax); } - - btHeightfieldTerrainShape::~btHeightfieldTerrainShape() { + clearAccelerator(); } - - -void btHeightfieldTerrainShape::getAabb(const btTransform& t,btVector3& aabbMin,btVector3& aabbMax) const +void btHeightfieldTerrainShape::getAabb(const btTransform& t, btVector3& aabbMin, btVector3& aabbMax) const { - btVector3 halfExtents = (m_localAabbMax-m_localAabbMin)* m_localScaling * btScalar(0.5); + btVector3 halfExtents = (m_localAabbMax - m_localAabbMin) * m_localScaling * btScalar(0.5); btVector3 localOrigin(0, 0, 0); localOrigin[m_upAxis] = (m_minHeight + m_maxHeight) * btScalar(0.5); localOrigin *= m_localScaling; - btMatrix3x3 abs_b = t.getBasis().absolute(); + btMatrix3x3 abs_b = t.getBasis().absolute(); btVector3 center = t.getOrigin(); - btVector3 extent = halfExtents.dot3(abs_b[0], abs_b[1], abs_b[2]); - extent += btVector3(getMargin(),getMargin(),getMargin()); + btVector3 extent = halfExtents.dot3(abs_b[0], abs_b[1], abs_b[2]); + extent += btVector3(getMargin(), getMargin(), getMargin()); aabbMin = center - extent; aabbMax = center + extent; } - /// This returns the "raw" (user's initial) height, not the actual height. /// The actual height needs to be adjusted to be relative to the center /// of the heightfield's AABB. btScalar -btHeightfieldTerrainShape::getRawHeightFieldValue(int x,int y) const +btHeightfieldTerrainShape::getRawHeightFieldValue(int x, int y) const { btScalar val = 0.f; switch (m_heightDataType) { - case PHY_FLOAT: + case PHY_FLOAT: { - val = m_heightfieldDataFloat[(y*m_heightStickWidth)+x]; + val = m_heightfieldDataFloat[(y * m_heightStickWidth) + x]; break; } - case PHY_UCHAR: + case PHY_UCHAR: { - unsigned char heightFieldValue = m_heightfieldDataUnsignedChar[(y*m_heightStickWidth)+x]; + unsigned char heightFieldValue = m_heightfieldDataUnsignedChar[(y * m_heightStickWidth) + x]; val = heightFieldValue * m_heightScale; break; } - case PHY_SHORT: + case PHY_SHORT: { short hfValue = m_heightfieldDataShort[(y * m_heightStickWidth) + x]; val = hfValue * m_heightScale; break; } - default: + default: { btAssert(!"Bad m_heightDataType"); } @@ -180,74 +171,63 @@ btHeightfieldTerrainShape::getRawHeightFieldValue(int x,int y) const return val; } - - - /// this returns the vertex in bullet-local coordinates -void btHeightfieldTerrainShape::getVertex(int x,int y,btVector3& vertex) const +void btHeightfieldTerrainShape::getVertex(int x, int y, btVector3& vertex) const { - btAssert(x>=0); - btAssert(y>=0); - btAssert(x<m_heightStickWidth); - btAssert(y<m_heightStickLength); + btAssert(x >= 0); + btAssert(y >= 0); + btAssert(x < m_heightStickWidth); + btAssert(y < m_heightStickLength); - btScalar height = getRawHeightFieldValue(x,y); + btScalar height = getRawHeightFieldValue(x, y); switch (m_upAxis) { - case 0: + case 0: { - vertex.setValue( - height - m_localOrigin.getX(), - (-m_width/btScalar(2.0)) + x, - (-m_length/btScalar(2.0) ) + y - ); + vertex.setValue( + height - m_localOrigin.getX(), + (-m_width / btScalar(2.0)) + x, + (-m_length / btScalar(2.0)) + y); break; } - case 1: + case 1: { vertex.setValue( - (-m_width/btScalar(2.0)) + x, - height - m_localOrigin.getY(), - (-m_length/btScalar(2.0)) + y - ); + (-m_width / btScalar(2.0)) + x, + height - m_localOrigin.getY(), + (-m_length / btScalar(2.0)) + y); break; }; - case 2: + case 2: { vertex.setValue( - (-m_width/btScalar(2.0)) + x, - (-m_length/btScalar(2.0)) + y, - height - m_localOrigin.getZ() - ); + (-m_width / btScalar(2.0)) + x, + (-m_length / btScalar(2.0)) + y, + height - m_localOrigin.getZ()); break; } - default: + default: { //need to get valid m_upAxis btAssert(0); } } - vertex*=m_localScaling; + vertex *= m_localScaling; } - - static inline int -getQuantized -( -btScalar x -) +getQuantized( + btScalar x) { - if (x < 0.0) { - return (int) (x - 0.5); + if (x < 0.0) + { + return (int)(x - 0.5); } - return (int) (x + 0.5); + return (int)(x + 0.5); } - - /// given input vector, return quantized version /** This routine is basically determining the gridpoint indices for a given @@ -257,7 +237,7 @@ btScalar x "with clamp" means that we restrict the point to be in the heightfield's axis-aligned bounding box. */ -void btHeightfieldTerrainShape::quantizeWithClamp(int* out, const btVector3& point,int /*isMax*/) const +void btHeightfieldTerrainShape::quantizeWithClamp(int* out, const btVector3& point, int /*isMax*/) const { btVector3 clampedPoint(point); clampedPoint.setMax(m_localAabbMin); @@ -266,11 +246,8 @@ void btHeightfieldTerrainShape::quantizeWithClamp(int* out, const btVector3& poi out[0] = getQuantized(clampedPoint.getX()); out[1] = getQuantized(clampedPoint.getY()); out[2] = getQuantized(clampedPoint.getZ()); - } - - /// process all triangles within the provided axis-aligned bounding box /** basic algorithm: @@ -278,128 +255,132 @@ void btHeightfieldTerrainShape::quantizeWithClamp(int* out, const btVector3& poi - convert input aabb to a range of heightfield grid points (quantize) - iterate over all triangles in that subset of the grid */ -void btHeightfieldTerrainShape::processAllTriangles(btTriangleCallback* callback,const btVector3& aabbMin,const btVector3& aabbMax) const +void btHeightfieldTerrainShape::processAllTriangles(btTriangleCallback* callback, const btVector3& aabbMin, const btVector3& aabbMax) const { // scale down the input aabb's so they are in local (non-scaled) coordinates - btVector3 localAabbMin = aabbMin*btVector3(1.f/m_localScaling[0],1.f/m_localScaling[1],1.f/m_localScaling[2]); - btVector3 localAabbMax = aabbMax*btVector3(1.f/m_localScaling[0],1.f/m_localScaling[1],1.f/m_localScaling[2]); + btVector3 localAabbMin = aabbMin * btVector3(1.f / m_localScaling[0], 1.f / m_localScaling[1], 1.f / m_localScaling[2]); + btVector3 localAabbMax = aabbMax * btVector3(1.f / m_localScaling[0], 1.f / m_localScaling[1], 1.f / m_localScaling[2]); // account for local origin localAabbMin += m_localOrigin; localAabbMax += m_localOrigin; //quantize the aabbMin and aabbMax, and adjust the start/end ranges - int quantizedAabbMin[3]; - int quantizedAabbMax[3]; - quantizeWithClamp(quantizedAabbMin, localAabbMin,0); - quantizeWithClamp(quantizedAabbMax, localAabbMax,1); - + int quantizedAabbMin[3]; + int quantizedAabbMax[3]; + quantizeWithClamp(quantizedAabbMin, localAabbMin, 0); + quantizeWithClamp(quantizedAabbMax, localAabbMax, 1); + // expand the min/max quantized values // this is to catch the case where the input aabb falls between grid points! - for (int i = 0; i < 3; ++i) { + for (int i = 0; i < 3; ++i) + { quantizedAabbMin[i]--; quantizedAabbMax[i]++; - } + } - int startX=0; - int endX=m_heightStickWidth-1; - int startJ=0; - int endJ=m_heightStickLength-1; + int startX = 0; + int endX = m_heightStickWidth - 1; + int startJ = 0; + int endJ = m_heightStickLength - 1; switch (m_upAxis) { - case 0: + case 0: { - if (quantizedAabbMin[1]>startX) + if (quantizedAabbMin[1] > startX) startX = quantizedAabbMin[1]; - if (quantizedAabbMax[1]<endX) + if (quantizedAabbMax[1] < endX) endX = quantizedAabbMax[1]; - if (quantizedAabbMin[2]>startJ) + if (quantizedAabbMin[2] > startJ) startJ = quantizedAabbMin[2]; - if (quantizedAabbMax[2]<endJ) + if (quantizedAabbMax[2] < endJ) endJ = quantizedAabbMax[2]; break; } - case 1: + case 1: { - if (quantizedAabbMin[0]>startX) + if (quantizedAabbMin[0] > startX) startX = quantizedAabbMin[0]; - if (quantizedAabbMax[0]<endX) + if (quantizedAabbMax[0] < endX) endX = quantizedAabbMax[0]; - if (quantizedAabbMin[2]>startJ) + if (quantizedAabbMin[2] > startJ) startJ = quantizedAabbMin[2]; - if (quantizedAabbMax[2]<endJ) + if (quantizedAabbMax[2] < endJ) endJ = quantizedAabbMax[2]; break; }; - case 2: + case 2: { - if (quantizedAabbMin[0]>startX) + if (quantizedAabbMin[0] > startX) startX = quantizedAabbMin[0]; - if (quantizedAabbMax[0]<endX) + if (quantizedAabbMax[0] < endX) endX = quantizedAabbMax[0]; - if (quantizedAabbMin[1]>startJ) + if (quantizedAabbMin[1] > startJ) startJ = quantizedAabbMin[1]; - if (quantizedAabbMax[1]<endJ) + if (quantizedAabbMax[1] < endJ) endJ = quantizedAabbMax[1]; break; } - default: + default: { //need to get valid m_upAxis btAssert(0); } } - - + // TODO If m_vboundsGrid is available, use it to determine if we really need to process this area - for(int j=startJ; j<endJ; j++) + for (int j = startJ; j < endJ; j++) { - for(int x=startX; x<endX; x++) + for (int x = startX; x < endX; x++) { btVector3 vertices[3]; - if (m_flipQuadEdges || (m_useDiamondSubdivision && !((j+x) & 1))|| (m_useZigzagSubdivision && !(j & 1))) + int indices[3] = { 0, 1, 2 }; + if (m_flipTriangleWinding) + { + indices[0] = 2; + indices[2] = 0; + } + + if (m_flipQuadEdges || (m_useDiamondSubdivision && !((j + x) & 1)) || (m_useZigzagSubdivision && !(j & 1))) { - //first triangle - getVertex(x,j,vertices[0]); - getVertex(x, j + 1, vertices[1]); - getVertex(x + 1, j + 1, vertices[2]); - callback->processTriangle(vertices,x,j); - //second triangle - // getVertex(x,j,vertices[0]);//already got this vertex before, thanks to Danny Chapman - getVertex(x+1,j+1,vertices[1]); - getVertex(x + 1, j, vertices[2]); - callback->processTriangle(vertices, x, j); - - } else + //first triangle + getVertex(x, j, vertices[indices[0]]); + getVertex(x, j + 1, vertices[indices[1]]); + getVertex(x + 1, j + 1, vertices[indices[2]]); + callback->processTriangle(vertices, x, j); + //second triangle + // getVertex(x,j,vertices[0]);//already got this vertex before, thanks to Danny Chapman + getVertex(x + 1, j + 1, vertices[indices[1]]); + getVertex(x + 1, j, vertices[indices[2]]); + callback->processTriangle(vertices, x, j); + } + else { - //first triangle - getVertex(x,j,vertices[0]); - getVertex(x,j+1,vertices[1]); - getVertex(x+1,j,vertices[2]); - callback->processTriangle(vertices,x,j); - //second triangle - getVertex(x+1,j,vertices[0]); - //getVertex(x,j+1,vertices[1]); - getVertex(x+1,j+1,vertices[2]); - callback->processTriangle(vertices,x,j); + //first triangle + getVertex(x, j, vertices[indices[0]]); + getVertex(x, j + 1, vertices[indices[1]]); + getVertex(x + 1, j, vertices[indices[2]]); + callback->processTriangle(vertices, x, j); + //second triangle + getVertex(x + 1, j, vertices[indices[0]]); + //getVertex(x,j+1,vertices[1]); + getVertex(x + 1, j + 1, vertices[indices[2]]); + callback->processTriangle(vertices, x, j); } } } - - - } -void btHeightfieldTerrainShape::calculateLocalInertia(btScalar ,btVector3& inertia) const +void btHeightfieldTerrainShape::calculateLocalInertia(btScalar, btVector3& inertia) const { //moving concave objects not supported - - inertia.setValue(btScalar(0.),btScalar(0.),btScalar(0.)); + + inertia.setValue(btScalar(0.), btScalar(0.), btScalar(0.)); } -void btHeightfieldTerrainShape::setLocalScaling(const btVector3& scaling) +void btHeightfieldTerrainShape::setLocalScaling(const btVector3& scaling) { m_localScaling = scaling; } @@ -407,3 +388,458 @@ const btVector3& btHeightfieldTerrainShape::getLocalScaling() const { return m_localScaling; } + +namespace +{ + struct GridRaycastState + { + int x; // Next quad coords + int z; + int prev_x; // Previous quad coords + int prev_z; + btScalar param; // Exit param for previous quad + btScalar prevParam; // Enter param for previous quad + btScalar maxDistanceFlat; + btScalar maxDistance3d; + }; +} + +// TODO Does it really need to take 3D vectors? +/// Iterates through a virtual 2D grid of unit-sized square cells, +/// and executes an action on each cell intersecting the given segment, ordered from begin to end. +/// Initially inspired by http://www.cse.yorku.ca/~amana/research/grid.pdf +template <typename Action_T> +void gridRaycast(Action_T& quadAction, const btVector3& beginPos, const btVector3& endPos, int indices[3]) +{ + GridRaycastState rs; + rs.maxDistance3d = beginPos.distance(endPos); + if (rs.maxDistance3d < 0.0001) + { + // Consider the ray is too small to hit anything + return; + } + + + btScalar rayDirectionFlatX = endPos[indices[0]] - beginPos[indices[0]]; + btScalar rayDirectionFlatZ = endPos[indices[2]] - beginPos[indices[2]]; + rs.maxDistanceFlat = btSqrt(rayDirectionFlatX * rayDirectionFlatX + rayDirectionFlatZ * rayDirectionFlatZ); + + if (rs.maxDistanceFlat < 0.0001) + { + // Consider the ray vertical + rayDirectionFlatX = 0; + rayDirectionFlatZ = 0; + } + else + { + rayDirectionFlatX /= rs.maxDistanceFlat; + rayDirectionFlatZ /= rs.maxDistanceFlat; + } + + const int xiStep = rayDirectionFlatX > 0 ? 1 : rayDirectionFlatX < 0 ? -1 : 0; + const int ziStep = rayDirectionFlatZ > 0 ? 1 : rayDirectionFlatZ < 0 ? -1 : 0; + + const float infinite = 9999999; + const btScalar paramDeltaX = xiStep != 0 ? 1.f / btFabs(rayDirectionFlatX) : infinite; + const btScalar paramDeltaZ = ziStep != 0 ? 1.f / btFabs(rayDirectionFlatZ) : infinite; + + // pos = param * dir + btScalar paramCrossX; // At which value of `param` we will cross a x-axis lane? + btScalar paramCrossZ; // At which value of `param` we will cross a z-axis lane? + + // paramCrossX and paramCrossZ are initialized as being the first cross + // X initialization + if (xiStep != 0) + { + if (xiStep == 1) + { + paramCrossX = (ceil(beginPos[indices[0]]) - beginPos[indices[0]]) * paramDeltaX; + } + else + { + paramCrossX = (beginPos[indices[0]] - floor(beginPos[indices[0]])) * paramDeltaX; + } + } + else + { + paramCrossX = infinite; // Will never cross on X + } + + // Z initialization + if (ziStep != 0) + { + if (ziStep == 1) + { + paramCrossZ = (ceil(beginPos[indices[2]]) - beginPos[indices[2]]) * paramDeltaZ; + } + else + { + paramCrossZ = (beginPos[indices[2]] - floor(beginPos[indices[2]])) * paramDeltaZ; + } + } + else + { + paramCrossZ = infinite; // Will never cross on Z + } + + rs.x = static_cast<int>(floor(beginPos[indices[0]])); + rs.z = static_cast<int>(floor(beginPos[indices[2]])); + + // Workaround cases where the ray starts at an integer position + if (paramCrossX == 0.0) + { + paramCrossX += paramDeltaX; + // If going backwards, we should ignore the position we would get by the above flooring, + // because the ray is not heading in that direction + if (xiStep == -1) + { + rs.x -= 1; + } + } + + if (paramCrossZ == 0.0) + { + paramCrossZ += paramDeltaZ; + if (ziStep == -1) + rs.z -= 1; + } + + rs.prev_x = rs.x; + rs.prev_z = rs.z; + rs.param = 0; + + while (true) + { + rs.prev_x = rs.x; + rs.prev_z = rs.z; + rs.prevParam = rs.param; + + if (paramCrossX < paramCrossZ) + { + // X lane + rs.x += xiStep; + // Assign before advancing the param, + // to be in sync with the initialization step + rs.param = paramCrossX; + paramCrossX += paramDeltaX; + } + else + { + // Z lane + rs.z += ziStep; + rs.param = paramCrossZ; + paramCrossZ += paramDeltaZ; + } + + if (rs.param > rs.maxDistanceFlat) + { + rs.param = rs.maxDistanceFlat; + quadAction(rs); + break; + } + else + { + quadAction(rs); + } + } +} + +struct ProcessTrianglesAction +{ + const btHeightfieldTerrainShape* shape; + bool flipQuadEdges; + bool useDiamondSubdivision; + int width; + int length; + btTriangleCallback* callback; + + void exec(int x, int z) const + { + if (x < 0 || z < 0 || x >= width || z >= length) + { + return; + } + + btVector3 vertices[3]; + + // TODO Since this is for raycasts, we could greatly benefit from an early exit on the first hit + + // Check quad + if (flipQuadEdges || (useDiamondSubdivision && (((z + x) & 1) > 0))) + { + // First triangle + shape->getVertex(x, z, vertices[0]); + shape->getVertex(x + 1, z, vertices[1]); + shape->getVertex(x + 1, z + 1, vertices[2]); + callback->processTriangle(vertices, x, z); + + // Second triangle + shape->getVertex(x, z, vertices[0]); + shape->getVertex(x + 1, z + 1, vertices[1]); + shape->getVertex(x, z + 1, vertices[2]); + callback->processTriangle(vertices, x, z); + } + else + { + // First triangle + shape->getVertex(x, z, vertices[0]); + shape->getVertex(x, z + 1, vertices[1]); + shape->getVertex(x + 1, z, vertices[2]); + callback->processTriangle(vertices, x, z); + + // Second triangle + shape->getVertex(x + 1, z, vertices[0]); + shape->getVertex(x, z + 1, vertices[1]); + shape->getVertex(x + 1, z + 1, vertices[2]); + callback->processTriangle(vertices, x, z); + } + } + + void operator()(const GridRaycastState& bs) const + { + exec(bs.prev_x, bs.prev_z); + } +}; + +struct ProcessVBoundsAction +{ + const btAlignedObjectArray<btHeightfieldTerrainShape::Range>& vbounds; + int width; + int length; + int chunkSize; + + btVector3 rayBegin; + btVector3 rayEnd; + btVector3 rayDir; + + int* m_indices; + ProcessTrianglesAction processTriangles; + + ProcessVBoundsAction(const btAlignedObjectArray<btHeightfieldTerrainShape::Range>& bnd, int* indices) + : vbounds(bnd), + m_indices(indices) + { + } + void operator()(const GridRaycastState& rs) const + { + int x = rs.prev_x; + int z = rs.prev_z; + + if (x < 0 || z < 0 || x >= width || z >= length) + { + return; + } + + const btHeightfieldTerrainShape::Range chunk = vbounds[x + z * width]; + + btVector3 enterPos; + btVector3 exitPos; + + if (rs.maxDistanceFlat > 0.0001) + { + btScalar flatTo3d = chunkSize * rs.maxDistance3d / rs.maxDistanceFlat; + btScalar enterParam3d = rs.prevParam * flatTo3d; + btScalar exitParam3d = rs.param * flatTo3d; + enterPos = rayBegin + rayDir * enterParam3d; + exitPos = rayBegin + rayDir * exitParam3d; + + // We did enter the flat projection of the AABB, + // but we have to check if we intersect it on the vertical axis + if (enterPos[1] > chunk.max && exitPos[m_indices[1]] > chunk.max) + { + return; + } + if (enterPos[1] < chunk.min && exitPos[m_indices[1]] < chunk.min) + { + return; + } + } + else + { + // Consider the ray vertical + // (though we shouldn't reach this often because there is an early check up-front) + enterPos = rayBegin; + exitPos = rayEnd; + } + + gridRaycast(processTriangles, enterPos, exitPos, m_indices); + // Note: it could be possible to have more than one grid at different levels, + // to do this there would be a branch using a pointer to another ProcessVBoundsAction + } +}; + +// TODO How do I interrupt the ray when there is a hit? `callback` does not return any result +/// Performs a raycast using a hierarchical Bresenham algorithm. +/// Does not allocate any memory by itself. +void btHeightfieldTerrainShape::performRaycast(btTriangleCallback* callback, const btVector3& raySource, const btVector3& rayTarget) const +{ + // Transform to cell-local + btVector3 beginPos = raySource / m_localScaling; + btVector3 endPos = rayTarget / m_localScaling; + beginPos += m_localOrigin; + endPos += m_localOrigin; + + ProcessTrianglesAction processTriangles; + processTriangles.shape = this; + processTriangles.flipQuadEdges = m_flipQuadEdges; + processTriangles.useDiamondSubdivision = m_useDiamondSubdivision; + processTriangles.callback = callback; + processTriangles.width = m_heightStickWidth - 1; + processTriangles.length = m_heightStickLength - 1; + + // TODO Transform vectors to account for m_upAxis + int indices[3] = { 0, 1, 2 }; + if (m_upAxis == 2) + { + indices[1] = 2; + indices[2] = 1; + } + int iBeginX = static_cast<int>(floor(beginPos[indices[0]])); + int iBeginZ = static_cast<int>(floor(beginPos[indices[2]])); + int iEndX = static_cast<int>(floor(endPos[indices[0]])); + int iEndZ = static_cast<int>(floor(endPos[indices[2]])); + + if (iBeginX == iEndX && iBeginZ == iEndZ) + { + // The ray will never cross quads within the plane, + // so directly process triangles within one quad + // (typically, vertical rays should end up here) + processTriangles.exec(iBeginX, iEndZ); + return; + } + + + + if (m_vboundsGrid.size()==0) + { + // Process all quads intersecting the flat projection of the ray + gridRaycast(processTriangles, beginPos, endPos, &indices[0]); + } + else + { + btVector3 rayDiff = endPos - beginPos; + btScalar flatDistance2 = rayDiff[indices[0]] * rayDiff[indices[0]] + rayDiff[indices[2]] * rayDiff[indices[2]]; + if (flatDistance2 < m_vboundsChunkSize * m_vboundsChunkSize) + { + // Don't use chunks, the ray is too short in the plane + gridRaycast(processTriangles, beginPos, endPos, &indices[0]); + } + + ProcessVBoundsAction processVBounds(m_vboundsGrid, &indices[0]); + processVBounds.width = m_vboundsGridWidth; + processVBounds.length = m_vboundsGridLength; + processVBounds.rayBegin = beginPos; + processVBounds.rayEnd = endPos; + processVBounds.rayDir = rayDiff.normalized(); + processVBounds.processTriangles = processTriangles; + processVBounds.chunkSize = m_vboundsChunkSize; + // The ray is long, run raycast on a higher-level grid + gridRaycast(processVBounds, beginPos / m_vboundsChunkSize, endPos / m_vboundsChunkSize, indices); + } +} + +/// Builds a grid data structure storing the min and max heights of the terrain in chunks. +/// if chunkSize is zero, that accelerator is removed. +/// If you modify the heights, you need to rebuild this accelerator. +void btHeightfieldTerrainShape::buildAccelerator(int chunkSize) +{ + if (chunkSize <= 0) + { + clearAccelerator(); + return; + } + + m_vboundsChunkSize = chunkSize; + int nChunksX = m_heightStickWidth / chunkSize; + int nChunksZ = m_heightStickLength / chunkSize; + + if (m_heightStickWidth % chunkSize > 0) + { + ++nChunksX; // In case terrain size isn't dividable by chunk size + } + if (m_heightStickLength % chunkSize > 0) + { + ++nChunksZ; + } + + if (m_vboundsGridWidth != nChunksX || m_vboundsGridLength != nChunksZ) + { + clearAccelerator(); + m_vboundsGridWidth = nChunksX; + m_vboundsGridLength = nChunksZ; + } + + if (nChunksX == 0 || nChunksZ == 0) + { + return; + } + + // This data structure is only reallocated if the required size changed + m_vboundsGrid.resize(nChunksX * nChunksZ); + + // Compute min and max height for all chunks + for (int cz = 0; cz < nChunksZ; ++cz) + { + int z0 = cz * chunkSize; + + for (int cx = 0; cx < nChunksX; ++cx) + { + int x0 = cx * chunkSize; + + Range r; + + r.min = getRawHeightFieldValue(x0, z0); + r.max = r.min; + + // Compute min and max height for this chunk. + // We have to include one extra cell to account for neighbors. + // Here is why: + // Say we have a flat terrain, and a plateau that fits a chunk perfectly. + // + // Left Right + // 0---0---0---1---1---1 + // | | | | | | + // 0---0---0---1---1---1 + // | | | | | | + // 0---0---0---1---1---1 + // x + // + // If the AABB for the Left chunk did not share vertices with the Right, + // then we would fail collision tests at x due to a gap. + // + for (int z = z0; z < z0 + chunkSize + 1; ++z) + { + if (z >= m_heightStickLength) + { + continue; + } + + for (int x = x0; x < x0 + chunkSize + 1; ++x) + { + if (x >= m_heightStickWidth) + { + continue; + } + + btScalar height = getRawHeightFieldValue(x, z); + + if (height < r.min) + { + r.min = height; + } + else if (height > r.max) + { + r.max = height; + } + } + } + + m_vboundsGrid[cx + cz * nChunksX] = r; + } + } +} + +void btHeightfieldTerrainShape::clearAccelerator() +{ + m_vboundsGrid.clear(); +}
\ No newline at end of file |