summaryrefslogtreecommitdiff
path: root/thirdparty/bullet/BulletCollision/CollisionShapes/btHeightfieldTerrainShape.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'thirdparty/bullet/BulletCollision/CollisionShapes/btHeightfieldTerrainShape.cpp')
-rw-r--r--thirdparty/bullet/BulletCollision/CollisionShapes/btHeightfieldTerrainShape.cpp950
1 files changed, 0 insertions, 950 deletions
diff --git a/thirdparty/bullet/BulletCollision/CollisionShapes/btHeightfieldTerrainShape.cpp b/thirdparty/bullet/BulletCollision/CollisionShapes/btHeightfieldTerrainShape.cpp
deleted file mode 100644
index 01bf7f67f5..0000000000
--- a/thirdparty/bullet/BulletCollision/CollisionShapes/btHeightfieldTerrainShape.cpp
+++ /dev/null
@@ -1,950 +0,0 @@
-/*
-Bullet Continuous Collision Detection and Physics Library
-Copyright (c) 2003-2009 Erwin Coumans http://bulletphysics.org
-
-This software is provided 'as-is', without any express or implied warranty.
-In no event will the authors be held liable for any damages arising from the use of this software.
-Permission is granted to anyone to use this software for any purpose,
-including commercial applications, and to alter it and redistribute it freely,
-subject to the following restrictions:
-
-1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
-2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
-3. This notice may not be removed or altered from any source distribution.
-*/
-
-#include "btHeightfieldTerrainShape.h"
-
-#include "LinearMath/btTransformUtil.h"
-
-btHeightfieldTerrainShape::btHeightfieldTerrainShape(
- int heightStickWidth, int heightStickLength,
- const float* heightfieldData, btScalar minHeight, btScalar maxHeight,
- int upAxis, bool flipQuadEdges)
- : m_userValue3(0), m_triangleInfoMap(0)
-{
- initialize(heightStickWidth, heightStickLength, heightfieldData,
- /*heightScale=*/1, minHeight, maxHeight, upAxis, PHY_FLOAT,
- flipQuadEdges);
-}
-
-btHeightfieldTerrainShape::btHeightfieldTerrainShape(
- int heightStickWidth, int heightStickLength, const double* heightfieldData,
- btScalar minHeight, btScalar maxHeight, int upAxis, bool flipQuadEdges)
- : m_userValue3(0), m_triangleInfoMap(0)
-{
- initialize(heightStickWidth, heightStickLength, heightfieldData,
- /*heightScale=*/1, minHeight, maxHeight, upAxis, PHY_DOUBLE,
- flipQuadEdges);
-}
-
-btHeightfieldTerrainShape::btHeightfieldTerrainShape(
- int heightStickWidth, int heightStickLength, const short* heightfieldData, btScalar heightScale,
- btScalar minHeight, btScalar maxHeight, int upAxis, bool flipQuadEdges)
- : m_userValue3(0), m_triangleInfoMap(0)
-{
- initialize(heightStickWidth, heightStickLength, heightfieldData,
- heightScale, minHeight, maxHeight, upAxis, PHY_SHORT,
- flipQuadEdges);
-}
-
-btHeightfieldTerrainShape::btHeightfieldTerrainShape(
- int heightStickWidth, int heightStickLength, const unsigned char* heightfieldData, btScalar heightScale,
- btScalar minHeight, btScalar maxHeight, int upAxis, bool flipQuadEdges)
- : m_userValue3(0), m_triangleInfoMap(0)
-{
- initialize(heightStickWidth, heightStickLength, heightfieldData,
- heightScale, minHeight, maxHeight, upAxis, PHY_UCHAR,
- flipQuadEdges);
-}
-
-btHeightfieldTerrainShape::btHeightfieldTerrainShape(
- int heightStickWidth, int heightStickLength, const void* heightfieldData,
- btScalar heightScale, btScalar minHeight, btScalar maxHeight, int upAxis,
- PHY_ScalarType hdt, bool flipQuadEdges)
- :m_userValue3(0),
- m_triangleInfoMap(0)
-{
- // legacy constructor: Assumes PHY_FLOAT means btScalar.
-#ifdef BT_USE_DOUBLE_PRECISION
- if (hdt == PHY_FLOAT) hdt = PHY_DOUBLE;
-#endif
- initialize(heightStickWidth, heightStickLength, heightfieldData,
- heightScale, minHeight, maxHeight, upAxis, hdt,
- flipQuadEdges);
-}
-
-btHeightfieldTerrainShape::btHeightfieldTerrainShape(int heightStickWidth, int heightStickLength, const void* heightfieldData, btScalar maxHeight, int upAxis, bool useFloatData, bool flipQuadEdges)
- : m_userValue3(0),
- m_triangleInfoMap(0)
-{
- // legacy constructor: support only btScalar or unsigned char data,
- // and min height is zero.
- PHY_ScalarType hdt = (useFloatData) ? PHY_FLOAT : PHY_UCHAR;
-#ifdef BT_USE_DOUBLE_PRECISION
- if (hdt == PHY_FLOAT) hdt = PHY_DOUBLE;
-#endif
- btScalar minHeight = 0.0f;
-
- // previously, height = uchar * maxHeight / 65535.
- // So to preserve legacy behavior, heightScale = maxHeight / 65535
- btScalar heightScale = maxHeight / 65535;
-
- initialize(heightStickWidth, heightStickLength, heightfieldData,
- heightScale, minHeight, maxHeight, upAxis, hdt,
- flipQuadEdges);
-}
-
-void btHeightfieldTerrainShape::initialize(
- int heightStickWidth, int heightStickLength, const void* heightfieldData,
- btScalar heightScale, btScalar minHeight, btScalar maxHeight, int upAxis,
- PHY_ScalarType hdt, bool flipQuadEdges)
-{
- // validation
- btAssert(heightStickWidth > 1); // && "bad width");
- btAssert(heightStickLength > 1); // && "bad length");
- btAssert(heightfieldData); // && "null heightfield data");
- // btAssert(heightScale) -- do we care? Trust caller here
- btAssert(minHeight <= maxHeight); // && "bad min/max height");
- btAssert(upAxis >= 0 && upAxis < 3); // && "bad upAxis--should be in range [0,2]");
- btAssert(hdt != PHY_UCHAR || hdt != PHY_FLOAT || hdt != PHY_DOUBLE || hdt != PHY_SHORT); // && "Bad height data type enum");
-
- // initialize member variables
- m_shapeType = TERRAIN_SHAPE_PROXYTYPE;
- m_heightStickWidth = heightStickWidth;
- m_heightStickLength = heightStickLength;
- m_minHeight = minHeight;
- m_maxHeight = maxHeight;
- m_width = (btScalar)(heightStickWidth - 1);
- m_length = (btScalar)(heightStickLength - 1);
- m_heightScale = heightScale;
- m_heightfieldDataUnknown = heightfieldData;
- m_heightDataType = hdt;
- m_flipQuadEdges = flipQuadEdges;
- m_useDiamondSubdivision = false;
- m_useZigzagSubdivision = false;
- m_flipTriangleWinding = false;
- m_upAxis = upAxis;
- m_localScaling.setValue(btScalar(1.), btScalar(1.), btScalar(1.));
-
- m_vboundsChunkSize = 0;
- m_vboundsGridWidth = 0;
- m_vboundsGridLength = 0;
-
- // determine min/max axis-aligned bounding box (aabb) values
- switch (m_upAxis)
- {
- case 0:
- {
- m_localAabbMin.setValue(m_minHeight, 0, 0);
- m_localAabbMax.setValue(m_maxHeight, m_width, m_length);
- break;
- }
- case 1:
- {
- m_localAabbMin.setValue(0, m_minHeight, 0);
- m_localAabbMax.setValue(m_width, m_maxHeight, m_length);
- break;
- };
- case 2:
- {
- m_localAabbMin.setValue(0, 0, m_minHeight);
- m_localAabbMax.setValue(m_width, m_length, m_maxHeight);
- break;
- }
- default:
- {
- //need to get valid m_upAxis
- btAssert(0); // && "Bad m_upAxis");
- }
- }
-
- // remember origin (defined as exact middle of aabb)
- m_localOrigin = btScalar(0.5) * (m_localAabbMin + m_localAabbMax);
-}
-
-btHeightfieldTerrainShape::~btHeightfieldTerrainShape()
-{
- clearAccelerator();
-}
-
-void btHeightfieldTerrainShape::getAabb(const btTransform& t, btVector3& aabbMin, btVector3& aabbMax) const
-{
- btVector3 halfExtents = (m_localAabbMax - m_localAabbMin) * m_localScaling * btScalar(0.5);
-
- btVector3 localOrigin(0, 0, 0);
- localOrigin[m_upAxis] = (m_minHeight + m_maxHeight) * btScalar(0.5);
- localOrigin *= m_localScaling;
-
- btMatrix3x3 abs_b = t.getBasis().absolute();
- btVector3 center = t.getOrigin();
- btVector3 extent = halfExtents.dot3(abs_b[0], abs_b[1], abs_b[2]);
- extent += btVector3(getMargin(), getMargin(), getMargin());
-
- aabbMin = center - extent;
- aabbMax = center + extent;
-}
-
-/// This returns the "raw" (user's initial) height, not the actual height.
-/// The actual height needs to be adjusted to be relative to the center
-/// of the heightfield's AABB.
-btScalar
-btHeightfieldTerrainShape::getRawHeightFieldValue(int x, int y) const
-{
- btScalar val = 0.f;
- switch (m_heightDataType)
- {
- case PHY_FLOAT:
- {
- val = m_heightfieldDataFloat[(y * m_heightStickWidth) + x];
- break;
- }
-
- case PHY_DOUBLE:
- {
- val = m_heightfieldDataDouble[(y * m_heightStickWidth) + x];
- break;
- }
-
- case PHY_UCHAR:
- {
- unsigned char heightFieldValue = m_heightfieldDataUnsignedChar[(y * m_heightStickWidth) + x];
- val = heightFieldValue * m_heightScale;
- break;
- }
-
- case PHY_SHORT:
- {
- short hfValue = m_heightfieldDataShort[(y * m_heightStickWidth) + x];
- val = hfValue * m_heightScale;
- break;
- }
-
- default:
- {
- btAssert(!"Bad m_heightDataType");
- }
- }
-
- return val;
-}
-
-/// this returns the vertex in bullet-local coordinates
-void btHeightfieldTerrainShape::getVertex(int x, int y, btVector3& vertex) const
-{
- btAssert(x >= 0);
- btAssert(y >= 0);
- btAssert(x < m_heightStickWidth);
- btAssert(y < m_heightStickLength);
-
- btScalar height = getRawHeightFieldValue(x, y);
-
- switch (m_upAxis)
- {
- case 0:
- {
- vertex.setValue(
- height - m_localOrigin.getX(),
- (-m_width / btScalar(2.0)) + x,
- (-m_length / btScalar(2.0)) + y);
- break;
- }
- case 1:
- {
- vertex.setValue(
- (-m_width / btScalar(2.0)) + x,
- height - m_localOrigin.getY(),
- (-m_length / btScalar(2.0)) + y);
- break;
- };
- case 2:
- {
- vertex.setValue(
- (-m_width / btScalar(2.0)) + x,
- (-m_length / btScalar(2.0)) + y,
- height - m_localOrigin.getZ());
- break;
- }
- default:
- {
- //need to get valid m_upAxis
- btAssert(0);
- }
- }
-
- vertex *= m_localScaling;
-}
-
-static inline int
-getQuantized(
- btScalar x)
-{
- if (x < 0.0)
- {
- return (int)(x - 0.5);
- }
- return (int)(x + 0.5);
-}
-
-// Equivalent to std::minmax({a, b, c}).
-// Performs at most 3 comparisons.
-static btHeightfieldTerrainShape::Range minmaxRange(btScalar a, btScalar b, btScalar c)
-{
- if (a > b)
- {
- if (b > c)
- return btHeightfieldTerrainShape::Range(c, a);
- else if (a > c)
- return btHeightfieldTerrainShape::Range(b, a);
- else
- return btHeightfieldTerrainShape::Range(b, c);
- }
- else
- {
- if (a > c)
- return btHeightfieldTerrainShape::Range(c, b);
- else if (b > c)
- return btHeightfieldTerrainShape::Range(a, b);
- else
- return btHeightfieldTerrainShape::Range(a, c);
- }
-}
-
-/// given input vector, return quantized version
-/**
- This routine is basically determining the gridpoint indices for a given
- input vector, answering the question: "which gridpoint is closest to the
- provided point?".
-
- "with clamp" means that we restrict the point to be in the heightfield's
- axis-aligned bounding box.
- */
-void btHeightfieldTerrainShape::quantizeWithClamp(int* out, const btVector3& point, int /*isMax*/) const
-{
- btVector3 clampedPoint(point);
- clampedPoint.setMax(m_localAabbMin);
- clampedPoint.setMin(m_localAabbMax);
-
- out[0] = getQuantized(clampedPoint.getX());
- out[1] = getQuantized(clampedPoint.getY());
- out[2] = getQuantized(clampedPoint.getZ());
-}
-
-/// process all triangles within the provided axis-aligned bounding box
-/**
- basic algorithm:
- - convert input aabb to local coordinates (scale down and shift for local origin)
- - convert input aabb to a range of heightfield grid points (quantize)
- - iterate over all triangles in that subset of the grid
- */
-void btHeightfieldTerrainShape::processAllTriangles(btTriangleCallback* callback, const btVector3& aabbMin, const btVector3& aabbMax) const
-{
- // scale down the input aabb's so they are in local (non-scaled) coordinates
- btVector3 localAabbMin = aabbMin * btVector3(1.f / m_localScaling[0], 1.f / m_localScaling[1], 1.f / m_localScaling[2]);
- btVector3 localAabbMax = aabbMax * btVector3(1.f / m_localScaling[0], 1.f / m_localScaling[1], 1.f / m_localScaling[2]);
-
- // account for local origin
- localAabbMin += m_localOrigin;
- localAabbMax += m_localOrigin;
-
- //quantize the aabbMin and aabbMax, and adjust the start/end ranges
- int quantizedAabbMin[3];
- int quantizedAabbMax[3];
- quantizeWithClamp(quantizedAabbMin, localAabbMin, 0);
- quantizeWithClamp(quantizedAabbMax, localAabbMax, 1);
-
- // expand the min/max quantized values
- // this is to catch the case where the input aabb falls between grid points!
- for (int i = 0; i < 3; ++i)
- {
- quantizedAabbMin[i]--;
- quantizedAabbMax[i]++;
- }
-
- int startX = 0;
- int endX = m_heightStickWidth - 1;
- int startJ = 0;
- int endJ = m_heightStickLength - 1;
-
- switch (m_upAxis)
- {
- case 0:
- {
- if (quantizedAabbMin[1] > startX)
- startX = quantizedAabbMin[1];
- if (quantizedAabbMax[1] < endX)
- endX = quantizedAabbMax[1];
- if (quantizedAabbMin[2] > startJ)
- startJ = quantizedAabbMin[2];
- if (quantizedAabbMax[2] < endJ)
- endJ = quantizedAabbMax[2];
- break;
- }
- case 1:
- {
- if (quantizedAabbMin[0] > startX)
- startX = quantizedAabbMin[0];
- if (quantizedAabbMax[0] < endX)
- endX = quantizedAabbMax[0];
- if (quantizedAabbMin[2] > startJ)
- startJ = quantizedAabbMin[2];
- if (quantizedAabbMax[2] < endJ)
- endJ = quantizedAabbMax[2];
- break;
- };
- case 2:
- {
- if (quantizedAabbMin[0] > startX)
- startX = quantizedAabbMin[0];
- if (quantizedAabbMax[0] < endX)
- endX = quantizedAabbMax[0];
- if (quantizedAabbMin[1] > startJ)
- startJ = quantizedAabbMin[1];
- if (quantizedAabbMax[1] < endJ)
- endJ = quantizedAabbMax[1];
- break;
- }
- default:
- {
- //need to get valid m_upAxis
- btAssert(0);
- }
- }
-
- // TODO If m_vboundsGrid is available, use it to determine if we really need to process this area
-
- const Range aabbUpRange(aabbMin[m_upAxis], aabbMax[m_upAxis]);
- for (int j = startJ; j < endJ; j++)
- {
- for (int x = startX; x < endX; x++)
- {
- btVector3 vertices[3];
- int indices[3] = { 0, 1, 2 };
- if (m_flipTriangleWinding)
- {
- indices[0] = 2;
- indices[2] = 0;
- }
-
- if (m_flipQuadEdges || (m_useDiamondSubdivision && !((j + x) & 1)) || (m_useZigzagSubdivision && !(j & 1)))
- {
- getVertex(x, j, vertices[indices[0]]);
- getVertex(x, j + 1, vertices[indices[1]]);
- getVertex(x + 1, j + 1, vertices[indices[2]]);
-
- // Skip triangle processing if the triangle is out-of-AABB.
- Range upRange = minmaxRange(vertices[0][m_upAxis], vertices[1][m_upAxis], vertices[2][m_upAxis]);
-
- if (upRange.overlaps(aabbUpRange))
- callback->processTriangle(vertices, 2 * x, j);
-
- // already set: getVertex(x, j, vertices[indices[0]])
-
- // equivalent to: getVertex(x + 1, j + 1, vertices[indices[1]]);
- vertices[indices[1]] = vertices[indices[2]];
-
- getVertex(x + 1, j, vertices[indices[2]]);
- upRange.min = btMin(upRange.min, vertices[indices[2]][m_upAxis]);
- upRange.max = btMax(upRange.max, vertices[indices[2]][m_upAxis]);
-
- if (upRange.overlaps(aabbUpRange))
- callback->processTriangle(vertices, 2 * x + 1, j);
- }
- else
- {
- getVertex(x, j, vertices[indices[0]]);
- getVertex(x, j + 1, vertices[indices[1]]);
- getVertex(x + 1, j, vertices[indices[2]]);
-
- // Skip triangle processing if the triangle is out-of-AABB.
- Range upRange = minmaxRange(vertices[0][m_upAxis], vertices[1][m_upAxis], vertices[2][m_upAxis]);
-
- if (upRange.overlaps(aabbUpRange))
- callback->processTriangle(vertices, 2 * x, j);
-
- // already set: getVertex(x, j + 1, vertices[indices[1]]);
-
- // equivalent to: getVertex(x + 1, j, vertices[indices[0]]);
- vertices[indices[0]] = vertices[indices[2]];
-
- getVertex(x + 1, j + 1, vertices[indices[2]]);
- upRange.min = btMin(upRange.min, vertices[indices[2]][m_upAxis]);
- upRange.max = btMax(upRange.max, vertices[indices[2]][m_upAxis]);
-
- if (upRange.overlaps(aabbUpRange))
- callback->processTriangle(vertices, 2 * x + 1, j);
- }
- }
- }
-}
-
-void btHeightfieldTerrainShape::calculateLocalInertia(btScalar, btVector3& inertia) const
-{
- //moving concave objects not supported
-
- inertia.setValue(btScalar(0.), btScalar(0.), btScalar(0.));
-}
-
-void btHeightfieldTerrainShape::setLocalScaling(const btVector3& scaling)
-{
- m_localScaling = scaling;
-}
-const btVector3& btHeightfieldTerrainShape::getLocalScaling() const
-{
- return m_localScaling;
-}
-
-namespace
-{
- struct GridRaycastState
- {
- int x; // Next quad coords
- int z;
- int prev_x; // Previous quad coords
- int prev_z;
- btScalar param; // Exit param for previous quad
- btScalar prevParam; // Enter param for previous quad
- btScalar maxDistanceFlat;
- btScalar maxDistance3d;
- };
-}
-
-// TODO Does it really need to take 3D vectors?
-/// Iterates through a virtual 2D grid of unit-sized square cells,
-/// and executes an action on each cell intersecting the given segment, ordered from begin to end.
-/// Initially inspired by http://www.cse.yorku.ca/~amana/research/grid.pdf
-template <typename Action_T>
-void gridRaycast(Action_T& quadAction, const btVector3& beginPos, const btVector3& endPos, int indices[3])
-{
- GridRaycastState rs;
- rs.maxDistance3d = beginPos.distance(endPos);
- if (rs.maxDistance3d < 0.0001)
- {
- // Consider the ray is too small to hit anything
- return;
- }
-
-
- btScalar rayDirectionFlatX = endPos[indices[0]] - beginPos[indices[0]];
- btScalar rayDirectionFlatZ = endPos[indices[2]] - beginPos[indices[2]];
- rs.maxDistanceFlat = btSqrt(rayDirectionFlatX * rayDirectionFlatX + rayDirectionFlatZ * rayDirectionFlatZ);
-
- if (rs.maxDistanceFlat < 0.0001)
- {
- // Consider the ray vertical
- rayDirectionFlatX = 0;
- rayDirectionFlatZ = 0;
- }
- else
- {
- rayDirectionFlatX /= rs.maxDistanceFlat;
- rayDirectionFlatZ /= rs.maxDistanceFlat;
- }
-
- const int xiStep = rayDirectionFlatX > 0 ? 1 : rayDirectionFlatX < 0 ? -1 : 0;
- const int ziStep = rayDirectionFlatZ > 0 ? 1 : rayDirectionFlatZ < 0 ? -1 : 0;
-
- const float infinite = 9999999;
- const btScalar paramDeltaX = xiStep != 0 ? 1.f / btFabs(rayDirectionFlatX) : infinite;
- const btScalar paramDeltaZ = ziStep != 0 ? 1.f / btFabs(rayDirectionFlatZ) : infinite;
-
- // pos = param * dir
- btScalar paramCrossX; // At which value of `param` we will cross a x-axis lane?
- btScalar paramCrossZ; // At which value of `param` we will cross a z-axis lane?
-
- // paramCrossX and paramCrossZ are initialized as being the first cross
- // X initialization
- if (xiStep != 0)
- {
- if (xiStep == 1)
- {
- paramCrossX = (ceil(beginPos[indices[0]]) - beginPos[indices[0]]) * paramDeltaX;
- }
- else
- {
- paramCrossX = (beginPos[indices[0]] - floor(beginPos[indices[0]])) * paramDeltaX;
- }
- }
- else
- {
- paramCrossX = infinite; // Will never cross on X
- }
-
- // Z initialization
- if (ziStep != 0)
- {
- if (ziStep == 1)
- {
- paramCrossZ = (ceil(beginPos[indices[2]]) - beginPos[indices[2]]) * paramDeltaZ;
- }
- else
- {
- paramCrossZ = (beginPos[indices[2]] - floor(beginPos[indices[2]])) * paramDeltaZ;
- }
- }
- else
- {
- paramCrossZ = infinite; // Will never cross on Z
- }
-
- rs.x = static_cast<int>(floor(beginPos[indices[0]]));
- rs.z = static_cast<int>(floor(beginPos[indices[2]]));
-
- // Workaround cases where the ray starts at an integer position
- if (paramCrossX == 0.0)
- {
- paramCrossX += paramDeltaX;
- // If going backwards, we should ignore the position we would get by the above flooring,
- // because the ray is not heading in that direction
- if (xiStep == -1)
- {
- rs.x -= 1;
- }
- }
-
- if (paramCrossZ == 0.0)
- {
- paramCrossZ += paramDeltaZ;
- if (ziStep == -1)
- rs.z -= 1;
- }
-
- rs.prev_x = rs.x;
- rs.prev_z = rs.z;
- rs.param = 0;
-
- while (true)
- {
- rs.prev_x = rs.x;
- rs.prev_z = rs.z;
- rs.prevParam = rs.param;
-
- if (paramCrossX < paramCrossZ)
- {
- // X lane
- rs.x += xiStep;
- // Assign before advancing the param,
- // to be in sync with the initialization step
- rs.param = paramCrossX;
- paramCrossX += paramDeltaX;
- }
- else
- {
- // Z lane
- rs.z += ziStep;
- rs.param = paramCrossZ;
- paramCrossZ += paramDeltaZ;
- }
-
- if (rs.param > rs.maxDistanceFlat)
- {
- rs.param = rs.maxDistanceFlat;
- quadAction(rs);
- break;
- }
- else
- {
- quadAction(rs);
- }
- }
-}
-
-struct ProcessTrianglesAction
-{
- const btHeightfieldTerrainShape* shape;
- bool flipQuadEdges;
- bool useDiamondSubdivision;
- int width;
- int length;
- btTriangleCallback* callback;
-
- void exec(int x, int z) const
- {
- if (x < 0 || z < 0 || x >= width || z >= length)
- {
- return;
- }
-
- btVector3 vertices[3];
-
- // TODO Since this is for raycasts, we could greatly benefit from an early exit on the first hit
-
- // Check quad
- if (flipQuadEdges || (useDiamondSubdivision && (((z + x) & 1) > 0)))
- {
- // First triangle
- shape->getVertex(x, z, vertices[0]);
- shape->getVertex(x + 1, z, vertices[1]);
- shape->getVertex(x + 1, z + 1, vertices[2]);
- callback->processTriangle(vertices, x, z);
-
- // Second triangle
- shape->getVertex(x, z, vertices[0]);
- shape->getVertex(x + 1, z + 1, vertices[1]);
- shape->getVertex(x, z + 1, vertices[2]);
- callback->processTriangle(vertices, x, z);
- }
- else
- {
- // First triangle
- shape->getVertex(x, z, vertices[0]);
- shape->getVertex(x, z + 1, vertices[1]);
- shape->getVertex(x + 1, z, vertices[2]);
- callback->processTriangle(vertices, x, z);
-
- // Second triangle
- shape->getVertex(x + 1, z, vertices[0]);
- shape->getVertex(x, z + 1, vertices[1]);
- shape->getVertex(x + 1, z + 1, vertices[2]);
- callback->processTriangle(vertices, x, z);
- }
- }
-
- void operator()(const GridRaycastState& bs) const
- {
- exec(bs.prev_x, bs.prev_z);
- }
-};
-
-struct ProcessVBoundsAction
-{
- const btAlignedObjectArray<btHeightfieldTerrainShape::Range>& vbounds;
- int width;
- int length;
- int chunkSize;
-
- btVector3 rayBegin;
- btVector3 rayEnd;
- btVector3 rayDir;
-
- int* m_indices;
- ProcessTrianglesAction processTriangles;
-
- ProcessVBoundsAction(const btAlignedObjectArray<btHeightfieldTerrainShape::Range>& bnd, int* indices)
- : vbounds(bnd),
- m_indices(indices)
- {
- }
- void operator()(const GridRaycastState& rs) const
- {
- int x = rs.prev_x;
- int z = rs.prev_z;
-
- if (x < 0 || z < 0 || x >= width || z >= length)
- {
- return;
- }
-
- const btHeightfieldTerrainShape::Range chunk = vbounds[x + z * width];
-
- btVector3 enterPos;
- btVector3 exitPos;
-
- if (rs.maxDistanceFlat > 0.0001)
- {
- btScalar flatTo3d = chunkSize * rs.maxDistance3d / rs.maxDistanceFlat;
- btScalar enterParam3d = rs.prevParam * flatTo3d;
- btScalar exitParam3d = rs.param * flatTo3d;
- enterPos = rayBegin + rayDir * enterParam3d;
- exitPos = rayBegin + rayDir * exitParam3d;
-
- // We did enter the flat projection of the AABB,
- // but we have to check if we intersect it on the vertical axis
- if (enterPos[1] > chunk.max && exitPos[m_indices[1]] > chunk.max)
- {
- return;
- }
- if (enterPos[1] < chunk.min && exitPos[m_indices[1]] < chunk.min)
- {
- return;
- }
- }
- else
- {
- // Consider the ray vertical
- // (though we shouldn't reach this often because there is an early check up-front)
- enterPos = rayBegin;
- exitPos = rayEnd;
- }
-
- gridRaycast(processTriangles, enterPos, exitPos, m_indices);
- // Note: it could be possible to have more than one grid at different levels,
- // to do this there would be a branch using a pointer to another ProcessVBoundsAction
- }
-};
-
-// TODO How do I interrupt the ray when there is a hit? `callback` does not return any result
-/// Performs a raycast using a hierarchical Bresenham algorithm.
-/// Does not allocate any memory by itself.
-void btHeightfieldTerrainShape::performRaycast(btTriangleCallback* callback, const btVector3& raySource, const btVector3& rayTarget) const
-{
- // Transform to cell-local
- btVector3 beginPos = raySource / m_localScaling;
- btVector3 endPos = rayTarget / m_localScaling;
- beginPos += m_localOrigin;
- endPos += m_localOrigin;
-
- ProcessTrianglesAction processTriangles;
- processTriangles.shape = this;
- processTriangles.flipQuadEdges = m_flipQuadEdges;
- processTriangles.useDiamondSubdivision = m_useDiamondSubdivision;
- processTriangles.callback = callback;
- processTriangles.width = m_heightStickWidth - 1;
- processTriangles.length = m_heightStickLength - 1;
-
- // TODO Transform vectors to account for m_upAxis
- int indices[3] = { 0, 1, 2 };
- if (m_upAxis == 2)
- {
- indices[1] = 2;
- indices[2] = 1;
- }
- int iBeginX = static_cast<int>(floor(beginPos[indices[0]]));
- int iBeginZ = static_cast<int>(floor(beginPos[indices[2]]));
- int iEndX = static_cast<int>(floor(endPos[indices[0]]));
- int iEndZ = static_cast<int>(floor(endPos[indices[2]]));
-
- if (iBeginX == iEndX && iBeginZ == iEndZ)
- {
- // The ray will never cross quads within the plane,
- // so directly process triangles within one quad
- // (typically, vertical rays should end up here)
- processTriangles.exec(iBeginX, iEndZ);
- return;
- }
-
-
-
- if (m_vboundsGrid.size()==0)
- {
- // Process all quads intersecting the flat projection of the ray
- gridRaycast(processTriangles, beginPos, endPos, &indices[0]);
- }
- else
- {
- btVector3 rayDiff = endPos - beginPos;
- btScalar flatDistance2 = rayDiff[indices[0]] * rayDiff[indices[0]] + rayDiff[indices[2]] * rayDiff[indices[2]];
- if (flatDistance2 < m_vboundsChunkSize * m_vboundsChunkSize)
- {
- // Don't use chunks, the ray is too short in the plane
- gridRaycast(processTriangles, beginPos, endPos, &indices[0]);
- }
-
- ProcessVBoundsAction processVBounds(m_vboundsGrid, &indices[0]);
- processVBounds.width = m_vboundsGridWidth;
- processVBounds.length = m_vboundsGridLength;
- processVBounds.rayBegin = beginPos;
- processVBounds.rayEnd = endPos;
- processVBounds.rayDir = rayDiff.normalized();
- processVBounds.processTriangles = processTriangles;
- processVBounds.chunkSize = m_vboundsChunkSize;
- // The ray is long, run raycast on a higher-level grid
- gridRaycast(processVBounds, beginPos / m_vboundsChunkSize, endPos / m_vboundsChunkSize, indices);
- }
-}
-
-/// Builds a grid data structure storing the min and max heights of the terrain in chunks.
-/// if chunkSize is zero, that accelerator is removed.
-/// If you modify the heights, you need to rebuild this accelerator.
-void btHeightfieldTerrainShape::buildAccelerator(int chunkSize)
-{
- if (chunkSize <= 0)
- {
- clearAccelerator();
- return;
- }
-
- m_vboundsChunkSize = chunkSize;
- int nChunksX = m_heightStickWidth / chunkSize;
- int nChunksZ = m_heightStickLength / chunkSize;
-
- if (m_heightStickWidth % chunkSize > 0)
- {
- ++nChunksX; // In case terrain size isn't dividable by chunk size
- }
- if (m_heightStickLength % chunkSize > 0)
- {
- ++nChunksZ;
- }
-
- if (m_vboundsGridWidth != nChunksX || m_vboundsGridLength != nChunksZ)
- {
- clearAccelerator();
- m_vboundsGridWidth = nChunksX;
- m_vboundsGridLength = nChunksZ;
- }
-
- if (nChunksX == 0 || nChunksZ == 0)
- {
- return;
- }
-
- // This data structure is only reallocated if the required size changed
- m_vboundsGrid.resize(nChunksX * nChunksZ);
-
- // Compute min and max height for all chunks
- for (int cz = 0; cz < nChunksZ; ++cz)
- {
- int z0 = cz * chunkSize;
-
- for (int cx = 0; cx < nChunksX; ++cx)
- {
- int x0 = cx * chunkSize;
-
- Range r;
-
- r.min = getRawHeightFieldValue(x0, z0);
- r.max = r.min;
-
- // Compute min and max height for this chunk.
- // We have to include one extra cell to account for neighbors.
- // Here is why:
- // Say we have a flat terrain, and a plateau that fits a chunk perfectly.
- //
- // Left Right
- // 0---0---0---1---1---1
- // | | | | | |
- // 0---0---0---1---1---1
- // | | | | | |
- // 0---0---0---1---1---1
- // x
- //
- // If the AABB for the Left chunk did not share vertices with the Right,
- // then we would fail collision tests at x due to a gap.
- //
- for (int z = z0; z < z0 + chunkSize + 1; ++z)
- {
- if (z >= m_heightStickLength)
- {
- continue;
- }
-
- for (int x = x0; x < x0 + chunkSize + 1; ++x)
- {
- if (x >= m_heightStickWidth)
- {
- continue;
- }
-
- btScalar height = getRawHeightFieldValue(x, z);
-
- if (height < r.min)
- {
- r.min = height;
- }
- else if (height > r.max)
- {
- r.max = height;
- }
- }
- }
-
- m_vboundsGrid[cx + cz * nChunksX] = r;
- }
- }
-}
-
-void btHeightfieldTerrainShape::clearAccelerator()
-{
- m_vboundsGrid.clear();
-}